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ABSTRACT In autonomous navigation and route planning, the data obtained by the different sensors play
a significant role. On the one hand, more data will lead to faster learning of the behavioral policy. On the
other hand, agents equipped with different sensors will need more computing power to process the data, thus
requiringmore robust equipment and increasing the cost of implementation. In addition, the complexity of the
algorithms increases as different types of data, i.e., data with different structures, have to be synchronized.
Therefore, this paper addresses the problem of homogenization and synchronization of data provided by
heterogeneous sensors. Furthermore, it presents a novel method of estimating data in order to provide
the agent with a 360-degree view of the environment, similar to that provided by a laser. The method’s
performance compares the different behavioral policies obtained by different viewing angles of a camera
with the policy obtained by a laser. The data obtained from the different viewing angles of each sensor are
used in a path planning algorithm, which was designed to use a single 24-scan laser as an input source.
The results show that the proposed method is robust since the behavior policies can be reused regardless of
the viewing angle with which the sensor (camera) is provided. Furthermore, the proposed novel algorithm
achieves an average efficiency of 68% and 94% using a 90 and 360-degree camera, respectively.

INDEX TERMS Artificial intelligence, reinforcement learning, heterogeneous data, homogeneous data,
point cloud, laser scan, interpolation.

I. INTRODUCTION
The field of Artificial Intelligence (AI) has produced a series
of challenges and opportunities that have led to significant
technological achievements, where Machine Learning (ML)
has been one of the pillars of digital transformation. Enabling
the development of many use cases in the fields of entertain-
ment, medicine, mining, education, military space, agricul-
ture, robotics, and transportation [1].

One of the main case studies in the field of robotics
and transportation is the implementation of autonomous sys-
tems. These include autonomous ground or airborne vehi-
cles, robots providing services such as food preparation,
space robots, marine robots, and smart factories [2]. However,
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providing autonomy to an agent represents a great challenge
since it means that the agent is able to move in an unknown
environment and successfully react to sudden changes that
may occur in the environment [3].

Many algorithms have been proposed to provide a solu-
tion to this type of scenario, such as the case of Pfeiffer et
al., who presented amodel based on laser mapping, which can
determine the position of the different targets and select the
best decision. However, being a supervised learning method,
it is limited by the quality of the experiences obtained by the
simulation performedwith amotion planner [4]. To overcome
these limitations, Gregory et al. presented a Reinforcement
Learning (RL) algorithm that estimates the collision proba-
bility of the robot [5]. Due to the drawback of its high dimen-
sionality, Quan et al. decided to incorporate Deep Learning
(DL) into RL, developing the Deep Reinforcement Learning
(DRL) method [6].
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Other authors proposed using Double Deep Reinforcement
Learning (DDRL) to reduce the instability during the training
process, resulting in a better navigation policy and reducing
the overestimation of the behavioral policy [7]. However, the
efficiency of traditional methods is based on the data obtained
by their sensors. Therefore, the better the accuracy of the
sensors, the higher the efficiency of the algorithm.

Considering the above, having different sensors in the
same agent, such as lasers and radars, represents a high
efficiency, as well as a high computational and economic cost.
Consequently, processing and synchronizing data collected
in real time represents a significant challenge. That is why,
to reduce costs, Yue et al. carried out themapping and optimal
selection of the robot action from a Red Green Blue and
Depth (RGB-D) camera [8], [9], [10], [11].
In order to provide a solution to this challenge, this study

focuses on the homogenization of data obtained by a sensor
(camera) with different viewing angles. The homogenization
process is necessary because the data is sought to be com-
patible with the type of input data required by the planning
algorithm published in previous works [12]. This algorithm is
based onDDRL and uses amatrix of 24 laser scan data to feed
the neural network. It is important to mention that the path
planning algorithm will be used only to test the performance
of the data homogenization and estimation proposed in this
work.

Additionally, due to the need to develop new methods for
sharing behavior policies with agents equipped with hetero-
geneous sensors, this work also addresses the estimation of
unknown data using geometric considerations and data inter-
polation. This estimate reduces the computational capabilities
required in the equipment inside each agent to process the
data. Because, instead of processing the data obtained by a
laser, a lower technology sensor such as a camera can be used,
and achieve similar performance.

A. RELATED WORK
Current technology has enabled progress in the development
of autonomous agents. However, their efficiency is affected
by the data received by their sensors. Sensors represent
the source of information about the environment and each
provides different types of data depending on their defined
structure. Therefore, workingwith several of them at the same
time represents a huge challenge. To reduce this complexity,
it is necessary to process these data simultaneously after
homogenizing the output data.

Oliveira et al. developed an extrinsic calibrationmethod for
multiple heterogeneous sensors in intelligent vehicles inte-
grated into the Robot Operating System (ROS). This method
optimizes all the sensors, achieving precise calibrations that
allow them to be used in parallel [13]. Continuing with
the treatment of heterogeneous data from different sensors,
Ratasich et al. proposed a configurable multi-sensor measure-
ment fusion node implemented in ROS. This fusion pack-
age incorporates different fusion techniques and allows the

concatenation of one-dimensional value sensors [14]. On the
other hand, Kumar et al. focused on analyzing only two
types of sensors, radar, and camera. To do this, they calibrate
and fuse data from both heterogeneous sensors. However,
they focus on synchronization, which is vital in applications
such as autonomous driving. As this application requires
the merged data to be valid and accurate at every point in
time [15].

Kokovkina et al. proposed an algorithm combining syn-
chronized camera and laser data to create a 3D model of
the environment in which the robot is located [16]. Several
authors have continued with this line of research, devel-
oping different methods for data integration and fusion of
3D camera data and 2D laser data, which are synchronized
and implemented in real-time robotic applications such as
object detection, localization, and navigation [17], [18], [19],
[20], [21].

Ohnishi et al. presented a method of concatenating data
from the same sensors to test the performance of the
processing of heterogeneous data in Q-Learning (Q-L),
Deep Q-Learning (DQL), and Double Deep Q-Learning
(DDQL) algorithms [22]. Another alternative multisensor
data fusion method using cubic interpolation was presented
by Zhou et al., which solves the temporal alignment problems
that occur when existing data frommultiple data sources [23].
In order to use depth cameras for robot navigation, Sand-

fuchs et al. proposed an algorithm that transforms 3D depth
images into a 2D laser data format, aiming at reducing the
computational cost of processing 3D data [24]. Continuing
with this approach, Faria et al. proposed to transform the data
from two RGB-D cameras into a 2D laser format to be the
input data of an artificial intelligence algorithm that creates
estimated depth images that are used for robot mapping and
navigation [25].
Surmann et al. focused their work on the autonomous

navigation of robots in unknown environments using a Two-
dimensional (2D) laser scanner and an RGB-D camera. The
heterogeneous data processing from the two sensors was done
by transforming the Three-dimensional (3D) data from the
camera to the laser data format [26]. Whereas Yoo et al.
proposed a method for planning trajectories in a real envi-
ronment using a map of the current field obtained by inter-
polating real tidal current observation data [27]. Finally,
Choi et al. suggested a method to select between different
path-planning strategies by reinforcement learning adap-
tively. This is achieved by obtaining high interpolation accu-
racy over the explored environment, thus reducing the total
distance of the path [28].

B. CONTRIBUTION OF THE PAPER
The proposed method allows the compatibility of the behav-
ioral policies created by the different sensors. This leads to
satisfactory performance and accuracy, regardless of the pol-
icy or sensor used by the agent. In summary, the contributions
of this work are:
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• A data synchronization and sorting algorithm.
• A data estimation strategy using geometric
considerations.

• A data estimation strategy using linear interpolation.
• The source code of the algorithm proposed in this work
is available at https://github.com/ELIZABETH1611/
Homogenization.git.

The rest of the paper is organized as follows: Section II cov-
ers the technical background and formulation of the problem.
Section III proposes the different phases for data processing,
while Section IV presents the main characteristics of the
method proposed in this paper for the estimation of unknown
data. Section V discusses and compares the results obtained
with the different sensors using the same planning algorithm.
Section VI presents conclusions and future lines.

II. TECHNICAL BACKGROUND AND FORMULATION
OF THE PROBLEM
This section briefly introduces laser scan data, point cloud
data, interpolation, RL and DDQL techniques that are the
foundation to understand the processing and homogenization
of the data used in this work.

A. LASER SCAN
It is characterized by returning values corresponding to the
distance from the center of the laser to surrounding obstacles.
The distance data it provides depends on the angle of view of
the laser and the separation between the laser single scans.
This type of data represents one of the primary sources for
many existing mapping and navigation techniques [29], [30].

B. POINT CLOUD
Point cloud data come from sensors such as cameras. They are
characterized by containing a 3D point cloud in the viewing
angle of the sensor. Each 3D point has its position in free
space, with 32 bits of precision. Moreover, this data type is
widely used in automatic modeling [31]. Considering that the
objective is always to work with laser scan type data, it is
necessary to specify the reference frame of the point cloud in
order to get correct rotational translations [32].

C. INTERPOLATION
Interpolation methods use way-points to calculate a continu-
ous trajectory [33]. In other words, it allows the estimation
of data using neighboring data. This interpolation can be
performed in different ways; in the case of linear interpo-
lation, a smooth transition between neighboring points is
obtained [34].

D. REINFORCEMENT LEARNING
The techniques of RL allow a system to learn using its expe-
riences acquired by interacting with its environment. In other
words, to achieve learning, the agent first obtains information
about its environment and then acts based on that information.
Whether the action is good or bad, it will receive a reward or

FIGURE 1. Distribution of the 360◦ laser vision through 24 single scans.
Where ϕ represents the angle of separation between the single scans.

a punishment. This process will be repeated until the agent
achieves the desired learning [35].

E. DOUBLE DEEP Q-LEARNING
In those applications where huge amounts of raw data
are used as input, DL techniques combined with RL are
applied [36]. The basic DDQL algorithm used two neural
networks; one of them is called an online network and is
the one that determines the action to be performed. While
the other is called an objective network since it evaluates
how good the performed action was. The online network is
continuously trained to obtain an optimal behavioral policy,
while the objective network receives constant updates from
the online network, preventing overfitting of the policy [37].

III. DATA PROCESSING
A. DATA HOMOGENIZATION
This paper focuses on the homogenization of data collected
from heterogeneous sensors. Such data will be used to train
the behavioral policy of a path-planning algorithm. The algo-
rithm requires a vector of 24 data (Y ) as input. These data
correspond to the distances read by the laser, which has a
viewing angle of 360 degrees (see Fig. 1).

Since the objective is to obtain compatible behavioral poli-
cies between heterogeneous sensors, the data obtained by the
camera (Point Cloud) are converted into laser data (Laser
Scan). In other words, the 3D points obtained with the camera
are transformed into a laser scan with 2D data. In each tested
configuration, the camera and the laser are processed unless
the agent has 360 degrees of vision. However, the laser data
are only used to corroborate the collision detected by the
camera or the estimated data, which will be explained in the
following sections.

The homogenization process is carried out by a ROS node,
where the source of data (camera) and the angle of view of the
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sensor (θ) are indicated. The angle of view is decomposed
into a minimum angle (θmin), maximum angle (θmax), and
increment angle (θ1) that defines the number of single scans
(N ) to be obtained from the input data. As a result of this
process, a vector X composed of N laser scan samples will
be obtained.

X = [sample[0], sample[1], . . . , sample[N − 1]]. (1)

It is important to mention that for each sensor, the aim is
to obtain a number of samples similar to the number obtained
by the laser at that angle of view. Therefore, the equations
shown below were designed taking into account the above-
mentioned. For cases where the sensor has a viewing angle
of fewer than 360 degrees, the following equations will be
used:

θmax = (
θ

2
·

π

180
) +

1
10

, (2)

θ1 =
θ ·

π
180

N − 1
, (3)

N =
θ

15
+ 2. (4)

whereas for those sensors that provide a 360-degree viewing
angle, a variation in the equations is made to ensure that both
sensors provide the same total number of single scans.

θmin = θmax =
θ

2
·

π

180
, (5)

θ1 =
θ ·

π
180

N
, (6)

N =
θ

15
. (7)

Once the data homogenization process has been completed,
the data received is synchronized and sorted.

B. DATA SYNCHRONIZATION
The synchronization module, as its name suggests, is respon-
sible for synchronizing data when more than one sensor is
used at the same time. For this purpose, a ROS node was used,
which is responsible for synchronizing messages coming
from two different data sources.

To start with the process, a vector Y is defined, which
represents the 24 data used as input for the algorithm. These
data are sorted in such a way that the first element of the
vector corresponds to the scan at the 0.1-degree position and
the last element corresponds to the scan at the −0.1 degree
position (see Fig.2). Since the vector X , obtained from the
homogenization process has a different order than the one
used in the vector Y , the data is sorted as shown in (8).

Y = [X [−1],X [−2], . . . ,X [−cx],

Z [0],Z [1], . . . ,Z [Nu − 1],

X [0],X [1], . . . ,X [cx]]. (8)

As the above equation defines, the vector Y is formed
by the known values represented by the vector X and the

unknown values which are defined by the vector Z . The num-
ber of unknown values (Nu), in other words, the number of
missing data to form an input vector of 24 data is determined
by (9). Whereas the angle of separation between each one of
them (ξ ) is determined by (10).

Nu = 24 − N , (9)

ξ =
0

Nu
. (10)

To calculate ξ the first step is to define the vectors which
contain the angular position of each of the known val-
ues (X ). Where the first one defines the positions of positive
angles (ϕl) in the range of zero degrees to θ/2. The second
one defines the positions of negative angles (ϕs) in the range
of zero degrees to −θ/2 (see Fig.2). While the size of each
vector is defined by cx which represents the central position
of X .

cx =
N
2

− 1, (11)

ϕl = θ1 ∗ [0, 1, . . . cx], (12)

ϕs = −ϕl . (13)

Then, the unobserved angle 0 (14) corresponding to the
area not covered by the sensor is calculated by taking into
account the last positive and negative angle of (12), and (13),
respectively.

0 = 180 + |90 − ϕl[−1]| + | − 90 − ϕs[−1]|, (14)

Finally, the vector B represents the angular position of each
of the unknown values.

B = [ϕl[−1] + ξ ] + ([0, 1, . . .
0 + ϕl[−1] − ξ

ξ
] ∗ ξ ).

(15)

Therefore, the final distribution of the data after sorting can
be seen in Fig. 2. While the process to obtain the initial Y data
vector formed by 24 values is summarized in the flow chart of
Fig. 3. Additionally, Table 1 summarizes the main parameters
of each of the implemented configurations, and the features
configured within the simulation are listed in Table 2.

IV. ESTIMATION OF UNKNOWN DATA
It is known that large data sets influence the performance of
the learned policy and reduce overfitting. For instance, data
augmentation techniques are used in image classification to
accelerate the learning process [38], [39], [40].

A 360-degree view of the environment provides more
information about it than a 120-degree view. Therefore, in the
first case, the route planning algorithm will need less training
time to obtain an optimal policy since it has more data about
the environment. In order to accelerate this learning process
for agents that have a limited view of the environment (less
data), a method is proposed in this paper. This method allows
a reliable estimation of the missing data by geometric estima-
tion and interpolation.
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FIGURE 2. Distribution of the 24 single scans, using a 90-degree camera,
where the eight known data (X ) are represented in different colors.
On the other hand, the unknown data (Z ) are represented by a single
color. However, since the known data have different sort order, the colors
represent the position of each of the data within the data vector obtained
by the sensor (X ). Additionally, the angle of view that is not covered by
the sensor (0) is represented.

TABLE 1. Configurations of the sensors used, specifying their minimum,
maximum, increment, and total angle. Also, the number of known data,
unknown data, and the position of the known data within the vector is
used to feed the neural network.

Consequently, even if the agent has a camera with a view-
ing angle of less than 360 degrees, after applying the proposed
method, the agent will have a very close estimation of the part
of the environment that the sensor cannot observe.

A. GEOMETRIC CONSIDERATIONS
As each sensor has a different viewing angle, this implies
that as the viewing angle increases, the number of known
data will increase, while the number of unknown data will
decrease. Therefore, themore known data available, the better
the estimation of the unknown data.

The first phase of data estimation is performed using
trigonometry and the data read by the sensor in the

FIGURE 3. Synchronization and sorting process of the data obtained by
the sensor. In addition, the process of the concatenation of the unknown
with the known data is described in order to obtain a vector with 24 data.

previous step. To do this, it is taken into account that linear
and angular actions define the agent’s movement. Therefore,
the estimation of the data will vary depending on whether its
motion is affected by linear velocity or a combination of both.

1) LINEAR MOTION
As mentioned above, for the estimation of the unknown val-
ues, it is necessary to have knowledge of the data read by
the sensor in the previous step. In addition, the current and
previous position of the agent is also needed to accurately
calculate the distance traveled.

The process consists of calculating the angle (η) formed
between the current direction and position of the agent
towards each of the different known points obtained by the
sensor reading in the previous step. If the η is lower than θ

of the agent, the position is discarded, but if η is higher, the
corresponding beam (single scan) is calculated.

η = (π − ρ) · sgn ϕ. (16)

So the value of the beam will correspond to the distance
from the current position of the agent to the reference point.
In order to calculate (η), first the distance traveled by the
agent is calculated by (17), then the distance x between the
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TABLE 2. Main characteristics of the sensors used, such as the characteristics of the images obtained by the camera, type of noise, and standard
deviation of the laser.

FIGURE 4. Calculation of the different angles and distances used in the
estimation of unknown data from the input data vector when the agent
performs linear motion actions.

new position of the robot (t1) to one of the known points (s)
from the previous step (t0) is calculated.

d =

√
(x0 − x1)2 + (y0 − y1)2, (17)

x =

√
s2 + d2 − (2sd · cos |ϕ|). (18)

As seen in Fig. 4, the distances form a triangle, where ϕ

corresponds to the beam angle of the data position used as the
reference point. On the other hand, ρ is the complementary
angle of η. To calculate it, use (19), and (16), respectively.
This entire process is described in the Algorithm 1.

ρ = cos−1(
d2 + x2 − s2

2dx
). (19)

2) ANGULAR MOTION
The process performed to estimate the values is similar to the
one used for linear motion, with the difference that the agent
will perform a uniform circular movement since it is affected
by a linear velocity (v) and angular velocity (w).

r =
v
w

. (20)

Algorithm 1 Data Estimation Using Linear Motions
1: Read the array of data from the previous step (Y ′)
2: Calculate the distance traveled (d)
3: for Each data (s) in Y ′ do
4: Calculate the distance x between s and the current

position
5: Calculate η

6: if η < θ then
7: pass
8: else
9: Search compatible beam angle
10: Replace in Y the position corresponding to the

compatible angle for the value of x
11: end if
12: end for
13: return Y

Therefore, first, the radius (r) of the circle is calculated.
Then the angle of rotation (2) during the action time (ta) is
calculated by taking the center of the circle as the point of
origin and using (21).

2 = |wta|. (21)

Considering that d , r , r forms an isosceles triangle as shown
in Fig. 5, λ can be computed by (22).

λ =
π − 2

2
. (22)

Consequently, η is calculated using (28). And the process
of calculating the estimated values in the turning actions is
shown in the Algorithm 2.

β =
π

2
− λ, (23)

α = |ϕ| + β, (24)

x =

√
s2 + d2 − (2sd · cos α), (25)

ζ = cos−1(
d2 + x2 − s2

2dx
), (26)

ρ = ζ − β, (27)

η = (π − ρ) · sgn ϕ. (28)
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FIGURE 5. Calculation of the different angles and distances used to
estimate unknown data from the input data vector when the agent
performs angular motion actions.

Algorithm 2 Data Estimation Using Angular Motions
1: Read the array of data from the previous step (Y ′)
2: Calculate the distance traveled (d)
3: Calculate the radius of the circle (r)
4: Calculate the angle of rotation (2)
5: Calculate the internal angle (λ) formed by d , r , r
6: for Each data (s) in Y ′ do
7: Calculate the distance x between s and the current

position
8: Calculate η

9: if η < θ then
10: pass
11: else
12: Search compatible beam angle
13: Replace in Y the position corresponding to the

compatible angle for the value of x
14: end if
15: end for
16: return Y

3) ESTIMATED BACK VALUES
Due to the fact that the different camera configurations have
a viewing angle of 180 or less, it is not possible to estimate
the back beams using the above methods. This is because the
angle of view only covers the front beams, which allows only
side beams to be estimated.

To estimate the values of the back beams (Y [ϕ]), which cor-
respond to positions 10 to 13 (Fig. 2) the initialization value
is used as the starting value(s). Since the agent’s starting point
is located at a collision-free distance, the initialization value
was assigned a distance less than the maximum distance read
by the sensor (3.5). Then, at each step, the values assigned to
each beam will be updated with the value corresponding to

FIGURE 6. Variables calculated to obtain the estimated back values.

the sum or subtraction of the distance (z) and the value of the
current beam. This distance is added or subtracted depending
on the angle of rotation and the direction of their velocities
(see Fig. 6).

Y [ϕ] = s+ z. (29)

It is important to mention that, as in the previous methods,
s is the distance value for each of the single scans obtained in
the previous step. On the other hand, d is the distance that the
robot has traveled when performing the action, and µ is the
angle that the beam of the analyzed back position forms with
the 180-degree angle of the robot.

In addition, z represents the distance added or subtracted in
each beam in t1 with respect to t0. Algorithm 3 summarizes
the process it performs to estimate these values.

µ = |180 − ϕ|, (30)

z =
d

cos µ
. (31)

B. DATA INTERPOLATION
Thanks to geometric estimation, more data are known in this
part of the process and can be used to estimate the remaining
data by interpolation (see Fig. 7).

For this purpose, linear interpolation (see Fig. 8) is used,
as it allows us to approximate any position within the domain
defined by the input data. Moreover, given that data will
always correspond to the front and rear beams, the interpo-
lation will be more accurate.

In order to evaluate the different policies obtained, five
tests will be carried out. The performance obtained with a
laser will be taken as a general reference.

V. RESULTS DISCUSSION
In those scenarios where it is intended to have a global behav-
ior policy for different agents or when they can exchange
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Algorithm 3 Data Estimation of Back Values
1: for Each step do
2: if step < 1 then
3: Initialize the distance values of positions
Y [10 : 14] to a collision-free value, less than 3.5 (laser
maximum).

4: else
5: Read the array of data from the previous step (Y ′)
6: end if
7: Calculate the distance traveled (d)
8: for Each data (i) in Y ′[10 : 14] do
9: s= Data from the previous step (Y ′[i])

10: Calculate the angle µ

11: Calculate the distance z between s and the current
position

12: s′ = s+ z
13: Replaces s′ at the corresponding position

in Y (Eq. (29))
14: end for
15: end for

FIGURE 7. Process of interpolation of the remaining unknown data using
the known data so far.

their learned policies, the agents must have the same type
of sensors or, in the case of using other sensors, their data
must go through a homogenization process. If, after the

FIGURE 8. Interpolation of the remaining unknown data using the known
data and the data obtained by geometric considerations.

homogenization process, the data obtained are less than those
needed to feed the neural network, a data estimation process
is required.

In this work, the performance obtained by a laser with a
360-degree view of the environment within a route planning
algorithm was compared with that obtained by cameras with
five different viewing angles. The method proposed in this
paper of homogenization and data estimation was applied to
these cameras in order to satisfy the requirements of the path
planning algorithm used.

In the first four cases, only one camera is used, while in
the last configuration, two cameras are used, each with a
180-degree viewing angle (Table 1 and Table 2).

As previously mentioned, the same path-planning algo-
rithm was used in all tests, which requires an input vector
of 24 laser scan data. In addition, the behavioral policy used
for the comparisons was obtained after an eight-hour training.
The training and test environment contains sixteen objectives
located in different parts of the environment, each at a differ-
ent distance from the agent’s starting point. Hence, an agent
with an optimal policy will need less time to reach a close
objective than one that is in a distant position.

Since a large data set will help the algorithm learn faster
and the lack of data will reduce the learning efficiency, this
work aims to have a learning rate similar to that achieved by a
laser but using sensors with smaller viewing angles and with
the estimation of unknown data.

As can be seen in Fig. 9, all sensors achieved more than
70% of their task during the whole training process. Note
that even if an episode has a certain duration (500 steps)
the total number of objectives to be reached during each
episode will be different since the sampling of the objectives
is random. This means that in those training phases in which
the closest and lower difficulty objectives are sampled more
often, as long as the trained policy is optimal, the agent will
have a higher success rate.

As can be seen in Fig. 9 in the case of the two 180-degree
cameras, which in this paper is denoted as a 360, the first
observation from the training sessions is that the algorithm
learns faster when it has a smaller number of estimated data.
It has a higher number of targets achieved (successes) during
the entire training session. This is because the sensor has
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FIGURE 9. Number of goals achieved (successes) and the number of collisions the agent has had during the training process. The training was carried out
for 8 hours, in the same environment and with the same targets but randomly selected. In total, there were 16 different target positions used for training
and testing, which are represented on the x-axis.

FIGURE 10. Performance obtained for each of the different viewing angles of the different cameras
compared to that obtained by a laser.

a complete view of the environment, making its data more
accurate.

For instance, if an agent is provided by a sensor whose
angle of view does not correspond to a complete view of
the environment, it will need more time and, therefore, more
episodes to reach its optimal policy. However, thanks to the
estimation of unknown data, this agent will have an estimated
view of the whole environment, and their learning process
will be faster.
First Test: The optimal behavioral policy obtained by each

sensor is loaded five times during five minutes (see Fig. 10).
As a result, the best-performing optimal behavior policy
corresponds to the 360-degree camera. Given that it has a
median success rate of 94%, similar to that obtained with the
reference policy of comparison (93% - laser). This is because
the distance values corresponding to the 24 individual scans
are calculated directly from the data collected by the camera
without requiring a previous data estimation process since all
24 values are known.

Regarding the other configurations, the 90-degree cam-
era has the lowest success rate, with 68%. In contrast, the
remaining configurations show a 74%, 82%, and 84% of
success rate, respectively. In these configurations, it has been
necessary to estimate the unknown values and it can be
demonstrated that these estimated values are very close to
reality since the behavioral policy achieves a percentage of
success of more than 70%.
Second Test: In contrast, in this test the optimal perfor-

mance policy obtained by the 90-degree camera is loaded
five times for five minutes on each of the other sensors (see
Fig. 11a). This test is used to check the compatibility of
loading the behavior policy obtained by a sensor with a
different viewing angle on an agent using a different sensor.
The results show that the 120-degree camera maintains the
same rate as when using its model, corresponding to an
average success rate of 74%. This is because there are only
two data differences between the number of known data for a
90-degree camera and a 120-degree camera.
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FIGURE 11. The subfigures show: a-b) Comparison of the performance obtained using the 90-degree policy on the rest of the sensors, c-d) Comparison
of the performance obtained using the 360-degree policy on the rest of the sensors. The gray line represents the median of the policy loaded on its own
sensor.

TABLE 3. Summary of the medians obtained when the agent uses the model created by its sensor and when using models created by a sensor with
higher vision and one with lower vision.

Although the other sensors do not reach the median
achieved with their own models (see Fig. 10), they have a
median of over 78%. This shows that the models are compat-
ible since a high success rate is achieved even if the agent uses
a model created with a sensor with a viewing angle limited to
a few degrees.

This shows that the models are compatible and a high
success rate is achieved even if a model created with a sensor
with a low viewing angle is used.
Third Test: The same process is performed as in the pre-

vious one, with the difference that now the tests have a
duration of one hour. This is done in order to analyze how

77356 VOLUME 11, 2023



E. Palacios-Morocho et al.: Data Homogenization Method for Heterogeneous Sensors Applied to Reinforcement Learning

the performance of the loaded model is affected by the new
data used to feed the neural network, which is obtained from
a different sensor than the one from which the policy was
trained. Since the robot runs for a longer period of time, i.e.
one hour instead of five minutes as in the previous case, the
policy will be fitted using this data that can make it better or
worse. The results (see Fig. 11b) show that the data estimation
is good since the median in all cases is equal to or higher
than 76%.
Fourth Test: The process followed in this test is the same

as in the second one, but now the optimal performance policy
loaded is the 360-degree camera policy, with the objective
of analyzing the success rate achieved when the agent uses
a model created with a sensor that provides the 24 distance
values directly from the sensor. In each configuration, the
optimal performance policy is loaded five times for five
minutes to ensure that the results are consistent and have not
been altered by random events (see Fig. 11c). The results
have shown that the median hit rate of the camera con-
figurations with the smallest viewing angle has a median
of 68%, while the median hit rate for the other sensors is
over 72%.
Fifth Test: The same policy that was used in the last test

is loaded five times for one hour (see Fig. 11d). The results
obtained are similar to those obtained in the previous test in
which the agent with a 90-degree camera achieves a success
rate of 69%, and with the rest of the sensors, it is higher
than 75%.

VI. CONCLUSION
The homogenization and synchronization processes are nec-
essary when information about the environment from more
than one sensor is fed to the agent because, in this way, the
data would be collected in the same format and time.

In order to obtain compatible policies between heteroge-
neous sensors, a method of homogenization and data estima-
tion was proposed. As a result, it was shown that, regardless
of the loaded policy, a median above 71% was achieved for
all sensors with a viewing angle higher than 90 degrees.
Furthermore, with the proposed method, it is possible to
use cameras with different viewing angles and use them in
algorithms designed for laser scan data.

On the other hand, it was observed that the data estimation
process helps to learn the behavioral policy much faster. This
can be seen in Fig. 9, where sensors with viewing angles
less than 180 degrees have a similar success rate in the
same number of hours. Therefore, with a 180-degree camera,
an efficiency of 84% is achieved, the computational resources
needed by the agent to process the agent’s data are reduced,
and the economic cost of implementing these use cases is
reduced.

On the other hand, if higher accuracy is required, it is
possible to use two 180-degree camera-type sensors since this
configuration achieves the same percentage of accuracy as
with a laser while using fewer resources.

As a future work, the homogenization method is intended
to be used in the case of the use of collaborating agents with
heterogeneous sensors is proposed.
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