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Abstract: This is a new installment in the series of publications that describe the mathematical
modeling of the Floating Hybrid Generator Systems Simulator (FHYGSYS) tool. This work presents
an improved mathematical model of the turbines of the floating hybrid system—consisting of an
“OC3-Hywind” wind turbine and two marine current turbines—presented by the authors in previous
publications. In this third installment, the modeling of the three turbines of the floating hybrid system
is described using the Blade Element Momentum (BEM) theory. This modeling allows one to replace
the one based on the One-Dimensional theory used in previous installments. For the operation of
modeling with BEM, it has been considered necessary to implement a continuous feedback control
system. In this case, two PID (proportional–integral–derivative) controllers have been implemented
in each of the turbines. The first controls the torque on the turbine generator and the second controls
the collective pitch angle of the blades. The results obtained are presented and validated through a
code-to-code comparison with simulations carried out with FASTv8 under the same conditions and
with the operating results of marine current turbines that exist in the literature. This improvement in
the mathematical model offers the possibility of implementing other types of controllers that allow
for the testing of different strategies of the floating hybrid control system, with the aim of maximizing
energy production while ensuring the structural stability of the floating hybrid system.

Keywords: floating wind turbine; marine current turbines; tidal turbines; wind energy; renewable
energy; spar-buoy platform; system modeling and identification; blade element momentum theory;
BEM; aerodynamics; hydrodynamics; airfoils; hydrofoils; PID controller

1. Introduction

To extract mechanical energy from a fluid, one of the most common options that has
been used for centuries is the use of turbines [1]. Turbine modeling consists of finding a
mathematical procedure that reproduces the real behavior of the turbine as accurately as
possible. This modeling allows for the incorporation of turbines into simulation tools for
mechanical systems such as FHYGSYS (Floating Hybrid Generator Systems Simulator).

Among the different turbine modeling techniques in the area of aerodynamics, two
stand out: the One-Dimensional theory, also known Simple theory [2,3], and the Blade
Element Momentum (BEM) theory [2–4]. The first is easier to implement and serves
as a starting point for the application of the second. Turbine modeling using the One-
Dimensional theory is based on reproducing the behavior of the turbine from known
operating data, whether the data are from a real turbine or from proven precision simulators
such as, for example, FASTv8 [5] and HAWC2 [6]. This makes it possible to easily reproduce
the behavior of systems that incorporate turbines modeled with this technique.

However, turbine modeling using BEM provides results based on the mechanical and
aerodynamic characteristics of the turbine, which allows one to predict the behavior of
turbines for which real operating data have not been previously available.
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Another important feature of turbine modeling using BEM is the following: by mod-
ifying the magnitudes of the turbine, which can be used as actuation magnitudes of a
continuous feedback control system such as the generator torque or the pitch angle of the
blades, results proportional to these modifications are obtained.

These two factors are the key that has motivated the implementation of turbine
modeling using BEM in FHYGSYS, motivation that will be explained in detail and reasoned
throughout this work.

Wind turbine modeling using BEM to compute turbine aerodynamics is widely used
by many codes. In [7], some of the most relevant codes were analyzed, most of which used
the BEM theory to model their wind turbines including most of the participants in Phase
IV of the OC3 (Offshore Code Comparison Collaboration) project [8]. Likewise, BEM was
also used by most of the participants of the OC4 [9], OC5 [10], and OC6 [11] projects.

In other works such as [12], the analytical, empirical, and computational methods for
determining the aerodynamic forces on a single Horizontal Axis Wind Turbine (HAWT)
have been reviewed. The application of BEM theory to a wind turbine is described in detail
as well as the modeling of the wind and the application of both for the modeling of the
aerodynamics of wind turbine farms.

In [13], a Real-Time Hybrid Simulation (RTHS) was presented that allowed the authors
to generate data on the operation of Offshore Wind Turbines (OWT) in real-time, and
combine these results with external equipment in the laboratory such as actuation and
sensor systems. This work used the 5 MW reference wind turbine [14] from the National
Renewable Energy Lab (NREL) installed on a monopile structure, implemented at different
scales, and compared the RTHS data with those obtained in scaled real models. The
modeling of the wind turbine was carried out using BEM theory in all cases.

The modeling of a 15 MW offshore wind turbine mounted on a fixed base was pre-
sented in [15], who used BEM theory for the aerodynamic modeling of the turbine. This
work presented a model on a 1:70 scale that allowed the authors to obtain data for compari-
son with the modeling developed, in which the aero-elastic effects were not included. The
wind turbine control system consisted of two parts: the generator torque controller and the
collective blade pitch angle controller.

In another work (e.g., [16]), the validation techniques of BEM theory for the modeling
of wind turbines were reviewed. These were fundamentally based on comparing the results
obtained through turbine modeling using BEM theory with data from real wind turbines,
or data obtained through Computational Fluid Dynamics (CFD) codes.

An interesting recent work was presented in [17], in which an extensive review of wind
turbine aerodynamics modeling was carried out. Chapter 3 reviewed the wind turbine
modeling using BEM theory, while Chapters 4 and 5 reviewed the CFD techniques applied
to wind turbines. In Chapter 6, the aeroelastic effects on wind turbines were reviewed, and
in Chapter 8, the consistency between different types of modeling was compared.

In [18], a study was carried out to improve the starting behavior of small HAWT at
low wind speeds, a situation in which the low torque may not be enough to overcome
the inertia of the turbine and therefore start the wind turbine. The BEM theory was
used to model the wind turbine and the validation of the results was carried out with
experimental data.

An aero-hydro-elastic model was described in [19] to predict the behavior of a floating
OC3-Hywind-type wind turbine [14,20]. The aerodynamic modeling of the turbine was
performed using BEM theory by comparing the results with those presented in [21].

Based on the current trend of increasing the diameters of wind turbines to obtain more
energy, [22] explained the relationship between this increase and a greater flexibility of the
wind turbine blades. This forces the simulators to be able to reproduce this behavior. This
increase in flexibility was in contrast to many of the assumptions on which methods such
as BEM theory are based. The work compared the results obtained with three different
techniques: the first used OpenFAST [23] with BEM theory, the second also used OpenFAST
but in this case a free vortex wake model—cOnvecting LAgrangian Filaments (OLAF)—was
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used to compute the aerodynamic forces on moving HAWT blades. The third technique
used a high-fidelity CFD simulation software called Simulator for Wind Farm Applications
(SOWFA). The study concluded that the three techniques agreed well for steady inflow
conditions with no yaw misalignment, but that with increasing absolute yaw misalignment,
the BEM results deviated significantly more from the SOWFA results.

Regarding research works on marine turbines, the study presented in [24] covered all
of the issues of the simulation of marine turbines, from the modeling of the marine currents
for long periods of time to the modeling of the marine turbines by applying the BEM theory.
The results were compared with those presented in [25,26].

In [27], three scale-model tidal turbines were designed and arranged to form an array,
thus obtaining experimental results of the interaction between each of the turbines. This
work is complemented by [28], in which the modeling of the turbines was carried out using
BEM theory and the ANSYS Fluent [29] CFD software, thus allowing for a comparison of
the results between both works.

BEM theory was used in [30] for the modeling of two different concepts of marine
turbines: a marine turbine with three blades of horizontal axis and a high solidity ducted
and open-center turbine. The results were compared with various validation data from
the literature.

Another example was shown in [31], in which BEM theory was used to model several
tidal turbines that constituted a farm, specifically to a small cluster of ten turbines. Some
simplifications were applied in this work such as considering each turbine as a disk to
which a uniform fluid velocity was applied throughout the area swept by the turbines. The
modeling of the fluid that interacted with each of the tidal turbines was carried out using
SHYFEM (System of HydrodYnamic Finite Element Modules) [32], validating the model
from the experimental data.

Finishing this brief review, in [33]. a model of tidal turbines in a water–sediment
environment was presented. Once again, the authors used BEM for the modeling of the
turbines, but corrected the values of the lift coefficient (CL) and the drag coefficient (CD)
of each airfoil. The fluid modeling was performed with ANSYS Fluent [29], and they
compared the results with the experimental data obtained in a wind tunnel.

Focusing on the present work, this article presents the way in which the two types of
turbines—wind and marine current turbines (MCT)—have been modeled using BEM in a
floating hybrid system, like the one shown in Figure 1.
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Both the wind turbine and the two MCTs are part of the floating hybrid system, so in
order to obtain results for their study and validation, it is necessary to have an adequate
mathematical model of the system as a whole and of the environment—seawater—in
which it is found. A complete mathematical model of the floating hybrid system shown
in Figure 1—consisting of a floating OC3-Hywind-type wind turbine [14,20] to which two
MCTs have been coupled such as those described in [34,35]—was presented in [36,37], but
without using the BEM theory for the modeling of the turbines. The complete mathematical
model was implemented in [36,37] using MATLAB®, and they called the resulting code
FHYGSYS. In [36], the kinematic, dynamic, and inertial models were presented and the
way in which the added mass of the floating system was computed. On the other hand,
in [37], the method to calculate the hydrodynamics and the rest of the forces acting on the
floating hybrid system was described in detail including the modeling of the turbines using
One-Dimensional theory.

In this third installment, the mathematical modeling presented in [36,37] is extended,
offering the possibility to choose between the One-Dimensional theory or the BEM theory
for turbine modeling in FHYGSYS. In this case, the programming environment used was
also MATLAB®. From the point of view of computing time, the simulation of the three
turbines of the floating hybrid system using the BEM theory was longer than using One-
Dimensional theory. However, from the point of view of the quality of the modeling of the
turbines, the use of BEM theory offers significant improvements.

With One-Dimensional theory, the turbine is modeled as a disk on which the fluid
impinges homogeneously [2,3]—generating a thrust on the turbine—considering constant
the fluid velocity over the area swept by the turbine disc, with the results being independent
of the number of blades it has. For this reason, as discussed in previous paragraphs, turbine
operating data are needed to reproduce its behavior, and it is not possible to infer results
from turbines for which the operating data are not known.

On the contrary, the BEM theory is implemented by dividing each of the turbine blades
into portions—called blade elements (see Figure 1)—that are assigned a different geometry
and airfoil [2–4] (or hydrofoil). In this case, it is considered that the fluid impinges on
each blade element (with a different fluid velocity, depending on the height or depth),
generating a thrust on the turbine from the thrust originating in each of the blade elements,
thus obtaining results without the prior knowledge of turbine operating data.

Strictly speaking, the experimental operating data must be known, but not on the
operation of the turbine, but rather on the behavior of the airfoils or hydrofoils that are
usually obtained in wind tunnels. As indicated in [38], the behavior of hydrofoils in water
is analogous to the behavior of airfoils in air, the main difference between them being the
fluid density. This allows for the use of the experimental data from airfoils in the modeling
of marine turbines.

After consulting the existing literature, BEM theory is applied in essentially the same
way, but the application in this work was based on the methodology used in [2–4], with
some differences that will be explained in detail in the following sections. In the same way
as in [15], the aero-elastic effects were not included, and the turbine control consisted of
two parts: a generator torque controller and a collective blade pitch angle controller.

In summary, with the inclusion of the BEM theory, a more precise turbine modeling
is obtained and, in addition, two fundamental objectives are achieved: the first one is to
provide two acting magnitudes on the floating hybrid system in each of the turbines—the
generator torque and the blade pitch angle—that allow for the testing of different control
strategies on it [39]. The second is to present a model that allows us to obtain the results of
turbines for which the operating data are not previously known.

The rest of this paper is structured as follows. Section 2.1 explains how BEM theory
is used in FHYGSYS for turbine modeling. In Section 2.2, we explain in detail how BEM
theory is applied in FHYGSYS. Next, in Section 2.3, the calculation of the magnitudes of the
wind turbine obtained from the application of BEM theory is described and in Section 2.4,
the control system implemented in the wind turbine is presented. Then, in Section 2.5, the
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differences and similarities between the calculation of the magnitudes of the wind and
MCTs obtained from the application of the BEM theory are indicated, and in Section 2.6, the
control system implemented in MCTs is described. Section 3 explains the results obtained
in the performed tests, and finally, Section 4 presents the discussion and future work for
this line of research.

2. Materials and Methods
2.1. Introduction to Turbine Modeling Using Blade Element Momentum Theory

The application of BEM theory in FHYGSYS is illustrated in Figure 2. It shows how
the modeling of turbine aerodynamics, or hydrodynamics in the case of MCTs, using BEM
theory is related to the rest of the mathematical model of the floating hybrid system.
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The first step for the application of this method in FHYGSYS is the calculation of
the effective fluid velocity vector in each blade element (see Figure 2) by applying the
methodology described in Section 2.3 in [37]. In this way, a different fluid velocity is
obtained for each blade element, which offers an adequate approximation to the real
behavior, since the differences in height or depth can be considerable in the turbine blades.

From the effective fluid velocity vector calculated in each blade element, a calculation
algorithm from the BEM theory is applied (see Figure 2); specifically in this work, the one
described in [2] was chosen. This algorithm includes some corrections that are presented in
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the next section. From the application of the BEM algorithm, three fundamental magnitudes
are obtained for each blade element: the differential of thrust force (dFthrust), the differential
of torque force (dFtorque), and the differential of pitching moment (dMpitching). These are
the quantities from which the rest of the turbine modeling calculations in FHYGSYS are
deduced, calculations that are described in the following sections.

Once the BEM algorithm has been applied to the blade elements of each of the turbine
blades, the results are integrated, obtaining the values of Fthrust, Ftorque, and Mpitching of the
turbine. These values are used, on the one hand, to obtain the new angular position of
the turbine, and on the other hand, to contribute to the acceleration of the floating hybrid
system by acting on its dynamics (see Figure 2). This process is repeated for the new
angular position of the turbine until the end of the simulation.

2.2. Application of Blade Element Momentum Theory

For clarity in the study, in this section, the application of BEM theory is explained
using the wind turbine as an example. In Section 2.5, the differences and similarities in the
application of the BEM theory between the wind and the MCTs are discussed.

As indicated in the preceding sections, the previous step to the application of BEM
theory is the division of the blades into blade elements or blade differentials (dpni). Figure 3
shows this division made in one of the blades of the wind turbine. In this work, the center
of each of the blade elements is called pni. The values of the pni points of each of the blades
of the wind and MCTs can be found in Appendix A, expressed in a blade coordinate system
(pni(BLADE)) and in the mobile coordinate system (pni(BODY)).
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wind turbine blade.

Each blade was divided into 17 blade elements for consistency with [14] and be-
cause it has been verified that dividing the blade into a greater number of blade elements
does not offer significant differences in the results obtained, but increases the simulation
computing time.

As shown in Figure 2 and as indicated in the previous section, the first step to applying
BEM theory in FHYGSYS is the calculation of the effective fluid velocity vector—the effec-
tive wind velocity vector in this case—at the center point (pni) of each blade element, which
is based in the methodology described in Section 2.3.1 in [37], but including a correction
that considers the tower shadow effect. This calculation starts from the data found in
Appendix A, expressing the pni (BODY)(t) points in the inertial coordinate system using
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Equation (1), in which the homogeneous transformation matrix MHT
INERTIAL
BODY appears.

The calculation of this matrix is explained in detail in Section 2.3.1 in [36].

pni (INERTIAL)(t) = MHT
INERTIAL
BODY ·pni (BODY)(t) (1)

Because the floating hybrid system is subject to displacements and rotations in a
Euclidean space (see Figure 1), to calculate the effective wind velocity vector, the velocity
vector (

→
v pni (BODY)(t)) of the center point (pni) of each blade element must be known. This

is achieved in two steps: calculating with Equation (2) the derivative with respect to time
by applying the Richardson extrapolation method [40] (as shown in Appendix C in [36])
of each of these points expressed in the inertial coordinate system (pni (INERTIAL)(t)) and
with Equation (3), expressing this velocity vector in the mobile coordinate system.

→
v pni (INERTIAL)(t) =

d
dt

pni (INERTIAL)(t) (2)

→
v pni (BODY)(t) =

(
MINERTIAL

BODY

)−1
·→v pni (INERTIAL)(t) (3)

As indicated in [37], the MINERTIAL
BODY matrix of Equation (3) is equivalent to the

MHT
INERTIAL
BODY matrix of Equation (1). With the MINERTIAL

BODY matrix, the vectors are rep-
resented with three components, while with the MHT

INERTIAL
BODY matrix, they must be rep-

resented in a homogeneous format. Next, the wind speed (VWIND(h)) at the height of the
center point of each blade element (pni) is calculated from the wind speed (VW−REF) at the
reference height (zREF) using Equation (4), extracted from [41]. The reference height (zREF)
is 90 m above the still water level (the height of the hub of the wind turbine in the initial
position [14,20]) following the same criteria used in [5,41]. The zWIND(t) height is the Z
component of the pni points expressed in the inertial coordinate system (pni(INERTIAL)(t)),
and α is the power law exponent, which has a value of 1/7 for normal wind conditions [41].

VWIND(h) = VW−REF·
(

zWIND(t)
zREF

)α

(4)

The wind velocity vector expressed in the inertial coordinate system can be obtained
with Equation (5), where δ is the angle that represents the wind direction. Through
Equation (6), this vector can be found, but is expressed in the mobile coordinate system
(
→
v WIND (BODY)(h)).

→
v WIND (INERTIAL)(h) = VWIND(h)·

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

·
1

0
0

 (5)

→
v WIND (BODY)(h) =

(
MINERTIAL

BODY

)−1
·→v WIND (INERTIAL)(h) (6)

To finish the calculation of the effective wind velocity vector, a correction is carried
out that considers the tower shadow effect. While there are different techniques in the
literature, out of all of them, the correctiSon presented in [4] was chosen. To apply this
correction, the center point of each blade element is expressed according to Equation (7).xpni

ypni
zpni

 =

cos(−δ) − sin(−δ) 0
sin(−δ) cos(−δ) 0

0 0 1

·pni (BODY)(t) (7)
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From the results of Equations (6) and (7), through Equation (8) (extracted from [4]),
the wind velocity vector (

→
v WIND tower−shadow (BODY)(h)) can be obtained considering the

tower shadow effect.

→
v WIND tower−shadow (BODY)(h) =

→
v WIND (BODY)(h)·

1−

(
D(h)

2

)2
·
(

x2
pni − y2

pni

)
(

x2
pni + y2

pni

)2

 (8)

The diameter D(h) of Equation (8) can be calculated by performing linear interpolation
from the data in Table 1 and the value of the Z component of the pni points expressed in
the mobile coordinate system (zpni) when these are less than the value of hTower−top.

Table 1. Relationship between the height and the diameter of the tower.

Property 1 Value Symbol

Elevation to tower top above still water level 87.6 m hTower−top
Elevation to tower base above still water level 10 m hTower−base

Tower top diameter 3.87 m DTower−top
Tower base diameter 6.5 m DTower−base

1 The data are from [20].

As shown in Figure 4, the central points of each blade element in Equation (7) can
be considered as expressed in the tower shadow coordinate system since this system
matches that of the mobile coordinate system. Additionally, in Figure 4, the tower shadow
calculation zone can be observed; this is the zone in which Equation (8) is applied.
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Therefore, the calculation of the effective wind velocity vector (
→
v ni EFF−WIND(BODY)(h, t))

can be undertaken through Equations (9) and (10) by using Equation (9) if the center point of
each blade element (pni) is outside the tower shadow calculation zone, and using Equation (10)
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if otherwise. However, it should be kept in mind that Equation (10) only applies if the following
condition is true:

∣∣∣→v WIND tower−shadow (BODY)(h)
∣∣∣ < ∣∣∣→v WIND (BODY)(h)

∣∣∣.
→
v ni EFF−WIND (BODY)(h, t) =

→
v WIND (BODY)(h) +

→
v pni (BODY)(t) (9)

→
v ni EFF−WIND (BODY)(h, t) =

→
v WIND tower−shadow (BODY)(h) +

→
v pni (BODY)(t) (10)

The next step is the reasoning of how the effective wind velocity vector acts on each of
the turbine blades. Obviously, this vector is not aligned with the blades for different reasons
including the shaft tilt angle, the movement of the floating system due to buoyancy, sea
currents, the waves, etc. The modeling of this situation is carried out in a similar way to that
described in Section 2.8.1 in [37]. In this case, the projection vector [42] of the effective wind
velocity vector (

→
v ni EFF−WIND (BODY)(h, t)) is calculated over the unit vector perpendicular

to each of the blades (
→
u Bj thrust (BODY)). This is calculated using Equation (11), and the

symbol ∗ in the equation means the scalar product of the two vectors.

→
v ni EFF−Bj thrust (BODY)(t) =

→
u Bj thrust (BODY)·

→
v ni EFF−WIND (BODY)(h, t) ∗→u Bj thrust (BODY)∣∣∣→u Bj thrust (BODY)

∣∣∣2 (11)

V0(t) = V0 ij(t) =
∣∣∣→v ni EFF−Bj thrust(BODY)(t)

∣∣∣ (12)

The magnitude of the effective wind velocity vector (
→
v ni EFF−Bj thrust(BODY)(t)) on

each of the blades obtained in Equation (11) is named as either V0(t) or V0 ij(t) in Equation
(12) for simplicity in subsequent calculations and for consistency with the nomenclature
used in [3]. Figure 5 shows the unit vectors (

→
u Bj thrust) perpendicular to each of the blades.

The calculation of these vectors can be found in Appendix A.
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2.2.1. BEM Algorithm Application

The application of the BEM algorithm starts from the magnitude (V0(t)) obtained with
Equation (12). In addition to this important value, it is necessary to know the properties
that define the wind turbine, which were extracted from [14] and appear in Table 2.

Table 2. Wind turbine properties.

Property 1 Value Symbol

Rated electrical power 5 MW PELE−rated
Number of blades 3 B

Hub height 90 m hHub
Hub radius 1.5 m rHub
Blade length 61.5 m LBlade

Precone −2.5 deg ϕPrecone
Shaft tilt 5 deg ϕSha f t Tilt

Rated rotor speed 12.1 rpm Ωrated
Gearbox ratio 97:1 gearR

Electrical generator efficiency 0.944 genE
Generator inertia about high-speed shaft 534.116 kg·m2 IGEN

Minimum generator speed to connect the torque controller 670 rpm ωGEN−min
Rated generator torque 43,093.55 N·m QGEN−rated

Maximum generator torque rate 15,000 N·m/s ∆QGEN−rate
Minimum blade-pitch setting 0 deg ϕPitch−min
Maximum blade-pitch setting 90 deg ϕPitch−max

Maximum absolute blade pitch rate 8 deg/s ∆ϕPitch−rate
1 The data are from [14].

Figure 6 shows the algorithm used in FHYGSYS for the application of the BEM theory.
This algorithm is based on the one explained in [2], and the equations that compose it are
presented below.

For the application of this algorithm, it is also necessary to know the aerodynamic
properties of the wind turbine blades, which were extracted from [14] and are shown in
Table 3.

Table 3. Wind blade aerodynamic properties 1.

Node rni dpni ϕTwist LChord Airfoil(m) (m) (deg) (m)

1 2.8667 2.7333 0 2 3.542 Cylinder 1
2 5.6 2.7333 0 2 3.854 Cylinder 1
3 8.3333 2.7333 0 2 4.167 Cylinder 2
4 11.75 4.1 13.308 4.557 DU 40
5 15.85 4.1 11.48 4.652 DU 35
6 19.95 4.1 10.162 4.458 DU 35
7 24.05 4.1 9.011 4.249 DU 30
8 28.15 4.1 7.795 4.007 DU 25
9 32.25 4.1 6.544 3.748 DU 25
10 36.35 4.1 5.361 3.502 DU 21
11 40.45 4.1 4.188 3.256 DU 21
12 44.55 4.1 3.125 3.01 NACA 64–618
13 48.65 4.1 2.319 2.764 NACA 64–618
14 52.75 4.1 1.526 2.518 NACA 64–618
15 56.1667 2.7333 0.863 2.313 NACA 64–618
16 58.9 2.7333 0.37 2.086 NACA 64–618
17 61.6333 2.7333 0.106 1.419 NACA 64–618

1 The data are from [14]. 2 Value used in FHYGSYS.
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Figure 6. Algorithm used in FHYGSYS for the application of the BEM theory.

The aerodynamic properties of the wind turbine blade that appear in Table 3 are the
same as those described in [14], since the floating hybrid system is based on the “OC3-
Hywind” concept, except for the twist angle of nodes 1, 2, and 3. As the airfoil of these
nodes is a cylinder, these twist angles were set to zero.

The algorithm in Figure 6 starts from the value of V0(t), then by applying Equations
(13) and (14)—extracted from [2–4]—the normal (V1−2(t)) and tangential (Vrot(t)) velocities
to the vertical plane of each blade can be obtained. The value of rni was taken from Table 3
for each blade element (see Figure 4) and the low-speed shaft angular speed of the turbine
ωrotor(t) = 0 for the initial time instant of the simulation (t = 0). As seen in Figure 6, the
values of axi f (t) and ani f (t) equaled zero at the beginning of the iterations each time the
algorithm was applied.

V1−2(t) = V0(t)·(1− axi f (t)) (13)

Vrot(t) = ωrotor(t)·rni·(1 + ani f (t)) (14)



J. Mar. Sci. Eng. 2023, 11, 1634 12 of 62

Figure 7 is based on the explanation of aerodynamics from [3] and represents how
aerodynamics (or hydrodynamics) is applied to each blade element in FHYGSYS.
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Following the reasoning presented in [2–4], the magnitude of the wind velocity reach-
ing each blade element (Vrel(t)) and the angle between this velocity and the vertical plane
of each blade (θ(t)) can be calculated using Equations (15) and (16).

Vrel(t) =
√

V2
rot(t) + V2

1−2(t) (15)

θ(t) = atan
V1−2(t)
Vrot(t)

(16)

Figure 7 shows the relationship between Equations (13)–(16), with Equations (15) and
(16) being the result of applying trigonometry to the results of Equations (13) and (14).
From the θ(t) angle, the pitch angle of the blade (ϕPitch(t))—which depends on the control
system (see Section 2.4.2)—and the twist angle (ϕTwist) of each blade element (see Table 3),
the angle of attack (ϕAttack(t)) between the relative wind velocity (Vrel(t)) and the chord
line of each blade element can be obtained (see Figure 7). This is expressed mathematically
by Equation (17) and graphically in Figure 7.

ϕAttack(t) = θ(t)− ϕPitch(t)− ϕTwist (17)

Expressing the angle of attack (ϕAttack(t)) in degrees, the airfoil-data tables corre-
sponding to each blade element (see Table 3) were consulted to obtain the values of the lift
coefficient (CL(t)), drag coefficient (CD(t)), and pitching-moment coefficient (CM(t)). The
airfoil-data tables used for the wind turbine can be found in Appendix B in [14].

From the values of CL(t) and CD(t), the values of the normal (CNθ(t)) and tangential
(CTθ(t)) coefficients for the θ(t) angle are obtained by means of Equations (18) and (19).
These equations were extracted from [2,4] and can also be deduced from [3].

CNθ(t) = CL(t)· cos(θ(t)) + CD(t)· sin(θ(t)) (18)

CTθ(t) = CL(t)· sin(θ(t))− CD(t)· cos(θ(t)) (19)

The next step is the calculation of the losses (tip and hub losses) in the wind turbine.
As a previous step, the turbine radius (rTurbine) is calculated using Equation (20); the data
in this equation can be found in Table 2.

rTurbine = (LBlade + rHub)· cos(ϕPrecone) (20)
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Tip-losses are modeled using Prandtl’s tip-loss factor (FTip−loss(t)), as shown in Equa-
tion (21), where B is the number of turbine blades (see Table 2). This model is widely used
and can be found in [2–4,43].

FTip−loss(t) =
2
π
·acos

[
exp

(
−B·(rTurbine − rni)

2·rni· sin θ(t)

)]
(21)

The hub-losses are modeled through Equation (22) (extracted from [43]), thus ob-
taining the hub-loss factor (FHub−loss(t)). The total turbine losses (Floss(t)) are obtained by
multiplying these two factors [43], as shown in Equation (23).

FHub−loss(t) =
2
π
·acos

[
exp

(
−B·(rni − rHub)

2·rni· sin θ(t)

)]
(22)

Floss(t) = FTip−loss(t)·FHub−loss(t) (23)

Next, a local solidity [2–4,43] is calculated with Equation (24), which is defined in [2]
“as the fraction of the annular area in the control volume that is covered by the blades”. In
this equation, the value of LChord can be found in Table 3 and is illustrated in Figure 7.

σi =
B·LChord
2·π·rni

(24)

From the local solidity (σi), the new values of both the axial induction factor (axi f (t))
and angular induction factor (ani f (t)) are obtained. However, it must be taken into ac-
count that the application of BEM theory breaks down from values of axi f (t) greater
than 0.4 [2,4,43]. Therefore, it is common to include techniques—usually based on empir-
ical data—to correct this situation. Two different techniques have been implemented in
FHYGSYS to solve this issue: the Glauert correction [2,4,43] and the Wilson and Walker cor-
rection [2]. Although both types of correction can be used in FHYGYS, all of the simulations
presented in this work were performed using the Glauert correction.

For clarity, in the equation that yields axi f (t), the term Kaxi f (t) (also used in [2]) has
been previously calculated with Equation (25).

Kaxi f (t) =
4·Floss(t)· sin2(θ(t))

σi·CNθ(t)
(25)

Thus, the calculation of the axi f (t) is obtained through Equation (26) in a simpler
way, where axi fmax is the threshold for the application of the correction when the BEM
theory breaks down. Equation (25) is taken from [2] and Equation (26) is deduced from the
equation for calculating the axi f (t) also presented in [2].

axi f (t) =
1

Kaxi f (t) + 1
f or axi f (t) ≤ axi fmax (26)

The application of the Glauert correction [2,4,43] is based only on the application of an
equation. In FHYSGYS, this equation is deduced by applying the same reasoning presented
in [2] for the Wilson and Walker correction, but using the equation for the Glauert correction
also described in [2]. This option was chosen because, after carrying out some tests with the
methods presented by various authors, this has been the method in which the best results
have been obtained in the process of validating the mathematical model of the wind turbine
with FASTv8. To apply the Glauert correction, two equations can be used: Equation (27),
which is the result of applying the criteria described, or its polynomial version, according
to Kaxi f (t), as shown by Equation (28), which is the one used in FHYGSYS.

4·axi f (t)·
(

1− 1
4
·(5− 3·axi f (t))·axi f (t)

)
·Floss(t) =

(1− axi f (t))2·σi·CNθ(t)
sin2(θ(t))

(27)
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3
4
·Kaxi f (t)·axi f 3(t)−

(
5
4
·Kaxi f (t) + 1

)
·axi f 2(t) +

(
Kaxi f (t) + 2

)
·axi f (t)− 1 = 0 (28)

As indicated in [2], the value of axi fmax for the Glauert correction is 1/3, therefore, to
apply this correction, when the value of axi f (t) obtained with Equation (26) exceeds this
value (axi fmax > 1/3), it is recalculated by applying Equation (28). This equation is solved
in FHYGSYS by applying the Newton–Raphson method described in [40].

As previously indicated, the ani f (t) calculation is also obtained from the local solidity
(σi). By analogy with the previous case—as a step prior to calculating the ani f (t)—the
Kani f (t) value is obtained using Equation (29), this allows one to express the obtaining of
the ani f (t) value more clearly through Equation (30). Equations (29) and (30) are deduced
from the equation for calculating the ani f (t) presented in [2].

Kani f (t) =
4·Floss(t)· sin(θ(t))· cos(θ(t))

σi·CTθ(t)
(29)

ani f (t) =
1

Kani f (t)− 1
(30)

For the BEM algorithm (see Figure 6) to be executed, a singularity is produced in the
value of ani f (t) in the first instants of time of the simulation, when the turbine has an
angular speed close to zero. This singularity is avoided by forcing the value of ani f (t) not
to take values less than −1. This is expressed mathematically in Equation (31).

ani f (t) = −1 f or ani f (t) < −1 (31)

Equations (13)–(31) represent a loop in which the values of axi f (t) and ani f (t) are
calculated, and consequently the values of the rest of the magnitudes are set by iteration
(see Figure 6). The iteration stops when the value of the percent relative error (εa) of
these two values—axi f (t) and ani f (t)— is less than a chosen threshold (εa < εa−min). The
minimum value of the percent relative error (εa−min) used in FHYGSYS for this iteration
is εa−min = 5·10−9. The formula used to calculate these errors is shown in Equation (32),
which corresponds to the one to calculate the percent relative error (εa) indicated in [40]. In
Equation (32), current value are those calculated by means of Equations (26) and (30) and
previous value are those included in Equations (13) and (14), according to the calculation
of the percent relative error of axi f (t) or ani f (t), respectively, considering that the axi f (t)
value of Equation (26) can be recalculated by Equation (28), as explained above.

εa =
current value− previous value

current value
·100 (32)

2.3. Obtaining Values of the Wind Turbine Magnitudes

The BEM algorithm shown in Figure 6 and explained in the previous section, was
applied to each blade element for each of the wind turbine blades. Figure 8 shows the
relationship between the BEM algorithm and the rest of the actions for the calculation of
the main magnitudes of the wind turbine at a given simulation time instant.
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These main magnitudes are the differential rotor thrust force (dFthrust), the differential
rotor torque force (dFtorque), and the differential pitching moment (dMpitching). From them,
the calculation of the vector of wind turbine forces, the moment about the shaft, the blade
azimuth position, and other additional magnitudes of the wind turbine can be derived.
The reasoned deduction for all of them is discussed in the following subsections.

2.3.1. Moment about the Shaft

From the data calculated in the blade elements (i) of each of the blades (j)—fundamentally
from CL(t), CD(t) and CM(t)—the main magnitudes shown in Figure 8 can be calculated.
Using Equations (33) and (34)—based on the explanations of [3]—the values of the differential
rotor thrust force (dFthrust ij(t)) and differential rotor torque force (dFtorque ij(t)) in the blade
elements of each of the wind turbine blades can be calculated.

dFthrust ij(t) =
1
2
·ρAIR·V2

rel i(t)·LChord i·CNθ i(t)·dpni (33)

dFtorque ij(t) =
1
2
·ρAIR·V2

rel i(t)·LChord i·CTθ i(t)·dpni (34)
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In [3], Equation (33) appears multiplied by the number of blades (B), but in FHYGSYS,
Equation (33) is applied to each blade element of each of the blades independently, later
adding the effect of each of them, considering a different wind vector affecting the blade
elements depending on the height, as already explained in previous sections. On the
other hand, Equation (34) is the one expressed in [3] for the calculation of the differential
rotor torque but omitting the radius, thus obtaining the differential force that produces the
differential rotor torque indicated in [3].

With this approach, the differential rotor thrust force (d
→
F thrust ij (BODY)(t)) and

differential rotor torque force (d
→
F torque ij (BODY)(t)) vectors can be found by applying

Equations (35) and (36), multiplying by the unit vectors (
→
u Bj thrust (BODY) and

→
u Bj torque (BODY)) the values obtained in Equations (33) and (34), respectively. These
unit vectors may be observed—or reasoned—from Figures 5 and 7, and their values
appear in Appendix A.

d
→
F thrust ij (BODY)(t) = dFthrust ij(t)·

→
u Bj thrust (BODY) (35)

d
→
F torque ij (BODY)(t) = dFtorque ij(t)·

→
u Bj torque (BODY) (36)

Next, using Equation (37), the resultant (d
→
F blade ij (BODY)(t)) of the differential forces

calculated with Equations (35) and (36) is obtained (see Figure 7).

d
→
F blade ij (BODY)(t) = d

→
F thrust ij (BODY)(t) + d

→
F torque ij (BODY)(t) (37)

The next step is to calculate the differential moments (d
→
M blade ij (BODY)(t)) produced

by each of the resultant (d
→
F blade ij (BODY)(t)) differential forces of each blade element

(pnij (BODY)(t) points) at the base of each of the blades (pn0j (BODY)(t) points) of the wind
turbine. This is achieved by Equation (38), where the values of the points pnij (BODY)(t)
and pn0j (BODY)(t) can be found in Appendix A.

d
→
M blade ij (BODY)(t) =

(
pnij (BODY)(t)− pn0j (BODY)(t)

)
× d
→
F blade ij (BODY)(t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xij yij zij
dFx dFy dFz

∣∣∣∣∣∣∣ (38)

The vectors found in Equations (37) and (38) are integrated using the multiple application

of trapezoidal rule [40] through Equation (39), thus obtaining the force (
→
F blade j (BODY)(t))

and moment (
→
M blade j (BODY)(t)) vectors at the points of the bases (pn0j (BODY)(t)) of each of

the blades.  →F blade j (BODY)(t)
→
M blade j (BODY)(t)

 =
∫ rTurbine

rHub

 d
→
F blade ij (BODY)(t)

d
→
M blade ij (BODY)(t)

·dpni (39)

The resultant of several moments applied to a body and expressed in the same coordi-
nate system—in this case, the mobile coordinate system—may be obtained in a simple way
by adding its components [44]. Bearing this in mind, Equation (40) can be applied to find

the total moment (
→
M blade (BODY)(t)) caused by the blades on the wind turbine.

→
M blade (BODY)(t) =

B

∑
j=1

→
M blade j (BODY)(t) (40)



J. Mar. Sci. Eng. 2023, 11, 1634 17 of 62

Another moment calculated in FHYGSYS to obtain the moment about the shaft of the
wind turbine is the pitching moment. This is achieved by Equations (41)–(43).

Mpitching j(t) =
1
2
·ρAIR·

∫ rTurbine

rHub

V2
rel(t)·L

2
Chord·CM(t)·dpni (41)

→
M pitching j (BODY)(t) = Mpitching j(t)·

→
u Mj pitching (BODY) (42)

→
M pitching (BODY)(t) =

B

∑
j=1

→
M pitching j (BODY)(t) (43)

Equation (41) is deduced from the explanation indicated in [2,3] with which the value
of the pitching moment (Mpitching j(t)) originating in each of the blades is obtained. Using

Equation (42), the pitching moment vector (
→
M pitching j (BODY)(t)) is calculated by multi-

plying the result of Equation (41) by the unit vector (
→
u Mj pitching (BODY)) in the direction

of the moment. This unit vector is illustrated in Figure 5 and its value can be found in

Appendix A. Finally, the total pitching moment vector (
→
M pitching (BODY)(t)) that affects the

wind turbine is found by means of Equation (43), adding the pitching moment vectors
calculated previously with Equation (42). Finally, the moment produced by the force vector

(
→
F blade j (BODY)(t)) at the base of each of the blades (pn0j (BODY)(t) points) to the center of

mass of the wind turbine (CoMWTurbine (BODY)(t)) is calculated using Equation (44). This
center of mass is easily obtained from the inertial data appearing in Appendix A in [36].

→
M hub j (BODY)(t) =

(
pn0j (BODY)(t)− CoMWTurbine (BODY)(t)

)
×
→
F blade j (BODY)(t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xj yj zj
Fx Fy Fz

∣∣∣∣∣∣∣ (44)

Adding the moment vectors found with Equation (44), the total moment vector

(
→
M hub (BODY)(t)) originated by the force vector (

→
F blade j (BODY)(t)) from the bases of the blades

to the center of mass of the wind turbine is obtained by applying Equation (45).

→
M hub (BODY)(t) =

B

∑
j=1

→
M hub j (BODY)(t) (45)

The vector of the total moment caused by the aerodynamics on the wind turbine

(
→
M aero (BODY)(t)) is calculated by adding the three moment vectors previously calculated,

as shown in Equation (46). The magnitude of this vector (Qaero(t)) is an important piece of
information of the wind turbine model, so it is interesting to highlight it, as indicated in
Equation (47).

→
M aero (BODY)(t) =

→
M blade (BODY)(t) +

→
M pitching (BODY)(t) +

→
M hub (BODY)(t) (46)

Qaero(t) =
∣∣∣∣ →M aero (BODY)(t)

∣∣∣∣ (47)

As a last step, the moment (torque) about the shaft (Maero−sha f t(t)) of the wind turbine
is found by applying the scalar product—as explained in [44]—between the vector of

the total moment originated by the aerodynamics (
→
M aero (BODY)(t)) and the unit vector
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(
→
u sha f t (BODY)) in the direction of the axis of rotation of the turbine. This calculation can be

carried out by using Equation (48), in which the scalar product is symbolized by ∗.

Maero−sha f t(t) =
→
M aero (BODY)(t) ∗

→
u sha f t (BODY) (48)

The unit vector (
→
u sha f t (BODY)) is calculated by applying Equation (49) and is repre-

sented in Figure 5. The shaft tilt angle (ϕSha f t Tilt) is shown in in Table 2 and δ is the angle
that represents the wind direction, previously used in Equation (5) for the calculation of
the wind velocity vector.

→
u sha f t (BODY) =

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

·


cos
(

ϕSha f t Tilt

)
0 sin

(
ϕSha f t Tilt

)
0 1 0

− sin
(

ϕSha f t Tilt

)
0 cos

(
ϕSha f t Tilt

)
·
1

0
0

 (49)

2.3.2. Blade Azimuth Position

This section describes the methodology used in FHYGSYS to calculate the blade
azimuth position, that is, the angular position of the wind turbine rotor at each instant
of time. As a previous step, the inertia tensor (MIT (WTurbine)) of the rotor—made up
of the hub and the blades—of the wind turbine must be known. This inertia tensor is
calculated at the center of mass (CoMWTurbine) of the wind turbine rotor (see Figure 5). The
calculation is simplified by calculating the inertia tensor with respect to a coordinate system
with origins in CoMWTurbine and whose axes are parallel to those of the mobile coordinate
system (see Figure 12 of [37]). Next, the inertia tensor is rotated by the shaft tilt angle
(ϕSha f t Tilt) and then by the angle that represents the wind direction (δ), thus leaving the
X axis of the coordinate system attached to the inertia tensor aligned in the direction of
the axis of rotation of the wind turbine, represented by the unit vector

→
u sha f t (BODY). This

whole process is carried out based on the inertial data of the blade and hub of the wind
turbine found in Appendix A in [36], following the explanation given in Section 2.3.2, also
from [36]. Equation (50) shows the value of the inertia tensor (MIT (WTurbine)) calculated
and positioned as indicated.

MIT (WTurbine) =

IWTxx 0 0
0 IWTyy 0
0 0 IWTzz

 =

35196249 0 0
0 17930184 0
0 0 17930184

 kg·m2 (50)

As we intended to find the angular position of the wind turbine rotor (ψrotor(t)) and
the inertia tensor (MIT (WTurbine)) was aligned—as indicated previously—with respect to
a coordinate system whose X axis coincides with the direction of the axis of rotation of
the wind turbine; to continue the calculations, the moment of inertia about this X axis
(IWTurbine) is extracted, ignoring the rest of the data of the inertia tensor. This is expressed
in Equation (51).

IWTurbine = IWTxx (51)

As shown in Figure 5, the axis of rotation of the wind turbine is coupled with an
electrical generator, which is responsible for converting the mechanical energy of the axis
into electrical energy. This coupling causes an increase in the inertia of the axis of rotation
due to the inertia (IGEN) of the electric generator (see Table 2). In Equation (52)—deduced
from the explanation in [14]—this increase is expressed mathematically, yielding the total
inertia of the rotor (Irotor), where gearR is the gearbox ratio found in Table 2. The coupling
between the shaft and the electric generator in wind turbines has been widely discussed in
the literature and works such as [45–47] have addressed this issue in more depth.

Irotor = IWTurbine + IGEN ·gearR2 (52)
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Similarly, the coupling between the axis of rotation of the wind turbine and the electric
generator causes the existence of opposing torques in the shaft. These opposing torques
are the low-speed shaft aerodynamic torque (Maero−sha f t(t)) (calculated in Equation (48))
and the low-speed shaft generator torque (MGEN−sha f t(t)). Equation (53) represents the
opposition of these two torques on the shaft, yielding the low-speed shaft torque (Mrotor(t)).

Mrotor(t) = Maero−sha f t(t)−MGEN−sha f t(t) (53)

The torque (MGEN−sha f t(t)) produced by the electric generator in the low-speed shaft
(see Figure 5) is obtained through Equation (54), where MGEN(t) is the torque of the electric
generator on the high-speed shaft (see Figure 5)—which depends on the control system
(see Section 2.4.1)—with gearR being the gearbox ratio. Equations (53) and (54) can also be
deduced from the explanation given in [14].

MGEN−sha f t(t) = MGEN(t)·gearR (54)

From the results of Equations (52) and (53), Newton’s second law for rotation [48], ex-
pressed in Equation (55), can be applied, yielding the low-speed shaft angular acceleration
(αrotor(t)) of the wind turbine.

αrotor(t) =
Mrotor(t)

Irotor
(55)

Next, the laws of kinematics are applied, by integrating the low-speed shaft angular
acceleration (through Equation (56)), the low-speed shaft angular speed (ωrotor(t)) of the
turbine is obtained and, integrating this angular speed with Equation (57), the angular
position (ψrotor(t)) of the rotor can be found. These two integrals are solved in FHYGSYS
by applying the method of Romberg’s algorithm [40], as explained in Appendix C in [36].

ωrotor(t) =
∫

αrotor(t)·dt (56)

ψrotor(t) =
∫

ωrotor(t)·dt (57)

The result of the low-speed shaft angular speed (ωrotor(t)) calculated with
Equation (56) is expressed in rad/s, but since it is usual to represent this angular speed in
rpm (Ωrotor(t)), this calculation is included in Equation (58).

Ωrotor(t) =
ωrotor(t)·60

2·π rpm (58)

2.3.3. Vector of Wind Turbine Forces

This calculation starts from the force vector (
→
F blade j (BODY)(t)) exerted at the base of

each blade (pn0j (BODY)(t) points), calculated using Equation (39). Equation (59) can be

used to find the moment (
→
M Thrust j (BODY)(t)) produced by these force vectors at the origin

of the mobile coordinate system.

→
M Thrust j (BODY)(t) = pn0j (BODY)(t)×

→
F blade j (BODY)(t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xn0j yn0j zn0j
Fx Fy Fz

∣∣∣∣∣∣∣ (59)
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Next, the forces and moments that originated in each of the blades are added to obtain

the total thrust (
→
F Thrust (BODY)(t)) and moment (

→
M Thrust (BODY)(t)) vectors produced by

the wind turbine. This is achieved by means of Equations (60) and (61), respectively.

→
F Thrust (BODY)(t) =

B

∑
j=1

→
F blade j (BODY)(t) (60)

→
M Thrust (BODY)(t) =

B

∑
j=1

→
M Thrust j (BODY)(t) (61)

The magnitude (TThrust(t)) of the total thrust vector (
→
F Thrust (BODY)(t)) calculated in

Equation (60) is another important piece of information of the wind turbine model; for this
reason, it is important to highlight it, as shown in Equation (62).

TThrust(t) =
∣∣∣∣→F Thrust (BODY)(t)

∣∣∣∣ (62)

At this point, the vector of wind turbine forces (
→
Fk

WIND TURBINE

(BODY) (t)) can be found
by applying Equation (63), where k takes values from 1 to 6, representing the degrees
of freedom (DOF) of the vector (1 = surge, 2 = sway, 3 = heave, 4 = roll, 5 = pitch,
and 6 = yaw).

→
Fk

WIND TURBINE

(BODY) (t) =

 →
F Thrust(BODY)(t)

→
M Thrust(BODY)(t) +

→
M aero (BODY)(t)−

→
M rotor (BODY)(t)

 (63)

In this equation, the vectors
→
F Thrust (BODY)(t) and

→
M Thrust (BODY)(t) are those ob-

tained in Equations (60) and (61), respectively, the vector
→
M aero (BODY)(t) is the result

of Equation (46) and the vector
→
M rotor (BODY)(t) is calculated by applying Equation (64),

where Mrotor(t) is the result of Equation (53), and the unit vector
→
u sha f t (BODY) is the one

obtained by Equation (49).

→
M rotor (BODY)(t) = Mrotor(t)·

→
u sha f t (BODY) (64)

The vector of wind turbine forces (
→
Fk

WIND TURBINE

(BODY) (t)) calculated using Equation (63)
is the main result of all the work presented in this article, since it represents the vector of
forces and moments resulting from applying the BEM theory to the wind turbine, being the
main milestone of everything described up to this moment in Section 2.

It could even be considered as the piece that completes the mathematical model
discussed in [36,37], substituting the modeling of the turbines described in Section 2.8
in [37], which uses the One-Dimensional theory, by the one described in Section 2 of this
work. In fact, this is what happens when FHYGSYS chooses to simulate the turbines using
BEM theory.

2.3.4. Additional Magnitudes

The mathematical model presented in the previous subsections allows one to obtain
the values of other important magnitudes that offer interesting information about the
behavior of the turbine. These magnitudes are the different powers, the thrust and power
coefficients, the axial and angular induction factors, the tip-speed ratio, and the average
value of the angle of attack.
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When applying BEM theory in FHYGSYS to model the turbines, three different powers
can be obtained: electrical power (PELE(t)), mechanical power (PMEC(t)), and aerodynamic
power (PAERO(t)). These powers can be calculated using Equations (65)–(67), where genE
is the value of the electrical generator efficiency (see Table 2) and the rest of the values have
been referred to on several occasions in the previous subsections.

PELE(t) = ωrotor(t)·MGEN−sha f t(t)·genE (65)

PMEC(t) =
PELE(t)

genE
(66)

PAERO(t) = ωrotor(t)·Maero−sha f t(t) (67)

As a previous step to the rest of the calculations, the area swept by the wind turbine
blades (ATurbine) is calculated using Equation (68), being the expression of the area of a
circular crown. The radius of the turbine (rTurbine) is obtained with Equation (20), and the
radius of the hub (rHub) is shown in Table 2.

ATurbine = π·
(

r2
Turbine − r2

Hub

)
(68)

Another necessary value is the mean of the magnitude of the effective wind velocity
vector (V0 (AV)(t)) on each of the blades (j) applied to each of the blade elements (i). This
value can be found by Equation (69), where V0 ij(t) is obtained from Equation (12).

V0 (AV)(t) =
1
B
·

B

∑
j=1

(
1

17
·

17

∑
i=1

V0 ij(t)

)
(69)

With these data, the power (CP(t)) and thrust (CT(t)) coefficients are calculated from
the values of the aerodynamic power (PAERO(t)) obtained with Equation (67), and the
thrust module (TThrust(t)) found with Equation (62), taking as the value of the air density
ρAIR = 1.225 kg/m3. These coefficients can be calculated through Equations (70) and (71),
respectively. Equation (70) was extracted from [2–4], while Equation (71) was extracted
from [2,4].

CP(t) =
PAERO(t)

1
2 ·ρAIR·ATurbine·V3

0 (AV)
(t)

(70)

CT(t) =
TThrust(t)

1
2 ·ρAIR·ATurbine·V2

0 (AV)
(t)

(71)

The value of the tip-speed ratio (TSR(t)) can be obtained through Equation (72),
extracted from [2–4].

TSR(t) =
ωrotor(t)·rTurbine

V0 (AV)(t)
(72)

Finally, using Equations (73)–(75), the mean values of the angle of attack (ϕAttack (AV)(t)),
the axial induction factor (axi f(AV)(t)), and the angular induction factor (ani f(AV)(t)) can
be calculated. In addition to presenting the average of these values, FHYGSYS can de-
liver the data individually to study the temporal evolution of these magnitudes in each
blade element.

ϕAttack (AV)(t) =
1
B
·

B

∑
j=1

(
1

17
·

17

∑
i=1

ϕAttack ij(t)

)
(73)

axi f(AV)(t) =
1
B
·

B

∑
j=1

(
1

17
·

17

∑
i=1

axi fij(t)

)
(74)



J. Mar. Sci. Eng. 2023, 11, 1634 22 of 62

ani f(AV)(t) =
1
B
·

B

∑
j=1

(
1

17
·

17

∑
i=1

ani fij(t)

)
(75)

2.4. Wind Turbine Control System

As indicated in Sections 2.2.1 and 2.3.2, there are two magnitudes whose values depend
on the control system of the floating hybrid system, in other words, the control system
establishes the appropriate value of these magnitudes so that the wind turbine works in
the desired way in each instant of time. These magnitudes are the torque (MGEN(t)) of the
electric generator on the high-speed shaft and the collective blade pitch angle (ϕPitch(t)).

The control system of the floating hybrid system consists of two closed-loop PID
controllers. One controls the generator torque (MGEN(t)) when the wind speed (VW−REF)
is between 3 m/s and 11.4 m/s, and the other controls the collective blade pitch angle
(ϕPitch(t)) when the wind speed (VW−REF) is between 11.4 m/s and 25 m/s. These speed
ranges correspond to those established in the design of the “OC3-Hywind” wind turbine
described in [14,49]. As the floating hybrid system clearly has a nonlinear behavior, a gain
schedule was implemented for the operation of each of the PID controllers.

The modeling of the control system works independently of the mathematical model
of the floating hybrid system, and interacts with the turbine modeling described in previous
sections. Despite this, the control system was also implemented mathematically as well as
the actuators of each controller. Figure 9 shows the block diagram of the control system
interacting with the wind turbine (plant) of the floating hybrid system, where the separation
between these mathematical models can be observed.
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Figure 9. Block diagram of the control system interacting with a floating hybrid system turbine
modeled with BEM theory.

The only connection between the two mathematical models is produced (resembling
the operation of a real system) through three magnitudes: the generator torque (MGEN(t))
and the collective blade pitch angle (ϕPitch(t)) as inputs to the plant, and the high-speed
shaft angular speed (ωGEN(t)) as the output of it.

Figure 9 clearly shows how the two controllers work: the torque controller modifies the
low-speed shaft generator torque (MGEN−sha f t(t)) to obtain the desired wind turbine speed
(ωrotor(t)), while the pitch controller modifies, indirectly, the low-speed shaft aerodynamic
torque (Maero−sha f t(t)) to achieve the same goal, the desired wind turbine speed.

From the analysis of the block diagram in Figure 9, some relationships can be deduced.
Equation (76) allows one to obtain the difference (ωerror(t)) between the angular speed to
be reached (ωSP), which establishes the set point, and the high-speed shaft angular speed
(ωGEN(t)), which is the angular speed of the electrical generator at a given instant of time.

ωerror(t) = ωSP −ωGEN(t) (76)
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Equation (77) establishes the relationship between the low-speed shaft angular speed
(ωrotor(t)) and the high-speed shaft angular speed (ωGEN(t)), where gearR is the
gearbox ratio.

ωGEN(t) = ωrotor(t)·gearR (77)

Figure 9 also illustrates Equation (53), which relates the low-speed shaft aerodynamic
torque (Maero−sha f t(t)) with the low-speed shaft generator torque (MGEN−sha f t(t)), yielding
the low-speed shaft torque (Mrotor(t)). Likewise, Equation (54) is also derived, which
relates the low-speed shaft generator torque (MGEN−sha f t(t)) with the torque of the electric
generator on the high-speed shaft (MGEN(t)) through the gearbox ratio.

Because FHYGSYS is a time-domain simulation tool, the mathematical expression
used for the modeling of the controllers is the one described in [50] for the time-domain
modeling of PID controllers, as shown in Equation (78), in which Kp, Ti, and Td are the
parameters that define the behavior of the PID controller (proportional gain, integration
time, and derivative time, respectively), e(t) is the error value (the input value to the
controller), and u(t) is the output value of the PID controller.

u(t) = Kp·
(

e(t) +
1
Ti
·
∫

e(t)·dt + Td·
d
dt
·e(t)

)
(78)

Equation (78) is the general expression of a PID controller, but in the controllers
implemented in the control system of the floating hybrid system, the derivative action has
not been included because with the proportional and integral actions, it is possible to reach
the conditions of operation of the wind turbine indicated in [14].

The integral that appears in Equation (78) is solved in FHYGSYS by applying the
method of Romberg’s algorithm [40].

2.4.1. Generator Torque Controller

As indicated in the previous section, the generator torque controller is in operation
for wind speeds (VW−REF) between 3 m/s and 11.4 m/s. Above these wind speeds, the
generator torque (MGEN(t)) is equal to the rated generator torque (QGEN−rated), whose
value can be found in Table 2, in the same way as in [14].

On the other hand, as explained in [14], the PID torque controller starts operating
when the high-speed shaft angular speed (ωGEN(t)) exceeds the minimum generator speed
to connect the torque controller (ωGEN−min), which appears in Table 2. Until that instant
of time, the low-speed shaft aerodynamic torque (Maero−sha f t(t)) accelerates the wind
turbine [14], while the generator torque (MGEN(t)) is equal to zero.

The main objective of FHYGSYS is to provide a simulation tool for a floating hybrid
system like the one shown in Figure 1, which allows for experimentation with different
control strategies. For this reason, in the design process of this first control system at
FHYGSYS, it was decided to control the generator torque directly with a gain scheduled
PID controller, unlike the strategy described in [14], in which different torque control
guidelines were established depending on the wind speed (VW−REF).

However, the gain scheduled PID controller was based on the wind turbine speed
(ΩSP(t)) as a function of each wind speed (VW−REF) described in [14,49]. The wind turbine
speed (ΩSP(t)) is the set point speed expressed in rpm in the low-speed shaft. This is
related to the set point in the high-speed shaft angular speed (ωSP), which appears in
Equation (76) through the gearbox ratio (gearR), expressing the result in rad/s.

Table 4 shows the gain scheduled established in FHYGSYS for the operation of the
torque PID controller. The values of wind turbine speed (ΩSP(t)), proportional gain
(KpGEN ), and integration time (TiGEN ) were established as a function of wind speed (VW−REF),
performing linear interpolation for intermediate values of this.
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Table 4. Wind turbine generator torque gain scheduled PID controller.

Wind Speed 1

VW−REF (m/s)
Wind Turbine Speed 2

ΩSP(t) (rpm)
Proportional Gain

KpGEN
(−)

Integration Time
TiGEN (s)

3 6.97 0.09 15
4 7.18 0.08 15
5 7.51 0.07 15
6 7.94 0.06 15
7 8.47 0.05 20
8 9.16 0.04 30
9 10.3 0.03 40
10 11.43 0.02 50
11 11.89 0.018 100

11. 4 12.1 0.019 100
12 12.1 0.018 100

13 to 25 12.1 0.01 200
1 Wind speeds at a 90-m reference height. 2 The data are from [49].

Figure 10 shows the behavior of the wind turbine speed (Ωrotor(t)) obtained in
Equation (58)–with and without the torque control system in operation and compares
the results with those obtained by FASTv8 under the same conditions. It shows what
would happen when the low-speed shaft generator torque (MGEN−sha f t(t)), for whatever
reason, takes the zero value; in this situation, the low-speed shaft aerodynamic torque
(Maero−sha f t(t)) produces an uncontrolled increase in the wind turbine speed. This justifies
the importance of the torque control system.
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Equation (79) yields the control action (uMGEN (t)) of the torque controller (being a
particularization of Equation (78)), where KpGEN and TiGEN are the proportional gain and
integration time of the gain scheduled PID controller (see Table 4) and ωerror(t) is the error
angular speed obtained with Equation (76).

uMGEN (t) = KpGEN ·
(

ωerror(t) +
1

TiGEN

·
∫

ωerror(t)·dt
)

(79)

In order to avoid the windup effect in the controller, the value of the integral of the
error angular speed (ωerror(t)) of the controller is kept at zero until the generator reaches
the minimum generator speed (ωGEN−min) to connect the torque controller (see Table 2).
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In a similar way as to how a PID controller is implemented in industrial devices—as in
a PLC (Programmable Logic Controller)—the output of the generator torque PID controller
is scaled, as shown in Equation (80).

uMGEN (t) > 1 → uMGEN (t) = 1

uMGEN (t) < −1 → uMGEN (t) = −1
(80)

To complete the description of the elements that make up the closed-loop torque
controller, it remains to describe the equations that define the behavior of the generator
torque actuator (see Figure 9). For this, a linearized behavior was considered based on the
data included in Table 5.

Table 5. Generator torque actuator linearization data.

uMGEN (t) MGEN(t)

1 0
0 QGEN−rated

From the data in Table 5, the equation of a straight line can be obtained, showing the
result in Equation (81).

MGEN(t) = QGEN−rated·
(
1− uMGEN (t)

)
(81)

The modeling of the torque controller actuator is completed by establishing its operat-
ing limits. On the one hand, Equation (82) establishes the maximum and minimum values
that the generator torque (MGEN(t)) can take.

MGEN(t) > QGEN−rated → MGEN(t) = QGEN−rated

MGEN(t) < 0 → MGEN(t) = 0
(82)

On the other hand, through Equation (83), the maximum values of the rise or fall of
the generator torque can be established. Both the values of QGEN−rated and ∆QGEN−rated
are shown in Table 2.∣∣∣∣ d

dt
MGEN(t)

∣∣∣∣ > ∆QGEN−rate

{ d
dt MGEN(t) > 0 → d

dt MGEN(t) = ∆QGEN−rate
d
dt MGEN(t) < 0 → d

dt MGEN(t) = −∆QGEN−rate
(83)

2.4.2. Collective Blade Pitch Angle Controller

As indicated at the beginning of Section 2.4, the collective blade pitch angle controller
is in operation for wind speeds (VW−REF) between 11.4 m/s and 25 m/s. Below these wind
speeds, the collective blade pitch angle (ϕPitch(t)) is zero, in the same way as in [14].

As explained in the previous case, the gain scheduled PID controller is based on the
wind turbine speed (ΩSP(t)) (set point speed) as a function of each wind speed (VW−REF)
described in [14,49].

Table 6 shows the gain scheduled established in FHYGSYS for the operation of the
collective blade pitch angle PID controller. The values of wind turbine speed (ΩSP(t)),
proportional gain (KpPitch ), and integration time (TiPitch ) were established as a function of
wind speed (VW−REF), also performing linear interpolation for intermediate values of this.
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Table 6. Wind turbine blade pitch gain scheduled PID controller.

Wind Speed 1

VW−REF (m/s)

Wind Turbine
Speed 2

ΩSP(t) (rpm)

Proportional
Gain

KpPitch
(−)

Integration
Time

TiPitch (s)

Trigger Offset
Factor FTrigg(%)

(%)

3 to 11 6.97 to 11.89 0 1 0
11.4 12.1 0.0023 7 11
12 12.1 0.0025 7 11
13 12.1 0.0016 7 7
14 12.1 0.0013 7 4.5
15 12.1 0.0012 7 3
16 12.1 0.0011 7 3
17 12.1 0.0011 7 3
18 12.1 0.0011 7 3
19 12.1 0.0010 7 3
20 12.1 0.0010 7 3
21 12.1 0.0010 7 3
22 12.1 0.0010 7 3
23 12.1 0.0010 7 3
24 12.1 0.0010 7 3
25 12.1 0.0010 7 3

1 Wind speeds at a 90-m reference height. 2 The data are from [49].

From the analysis of Equation (76), it can be observed that if the speed of the high-
speed shaft angular speed (ωGEN(t)) is greater than the set point speed (ωSP), the error
angular speed (ωerror(t)) is negative. This implies that the rated rotor speed (Ωrated(t), see
Table 2) has been exceeded. This is the situation in which the pitch controller in FHYGSYS
should start. In order to adjust the pitch angle PID controller so that it can be put into
operation before this situation occurs, the trigger offset factor (FTrigg(%)) was introduced,
which appears in Table 6. Equation (84) scales the trigger offset factor (FTrigg(%)) so that it
can be used in conjunction with the control action (uPitch(t)), yielding the pitch controller
trigger offset factor (FTrigg).

FTrigg =
FTrigg(%)

100
(84)

Figure 11 shows the behavior of the wind turbine speed (Ωrotor(t)) obtained in
Equation (58) in three situations.
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The first case is in normal conditions, when the two controllers are active, one deliver-
ing the maximum torque of the generator (MGEN(t) = QGEN−rated) and the other applying
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the corresponding pitch angle (red line). This situation was compared with the results
obtained by FASTv8 (blue line) under the same conditions.

The second case shows what happens if the pitch controller is disconnected and only
the torque controller works (green line). In this case, the wind turbine speed (Ωrotor(t))
exceeds the rated rotor speed (Ωrated(t)), exceeding the operating limits and producing the
destruction of the turbine.

In the third case, the uncontrolled increase in the wind turbine speed (Ωrotor(t))
produced by the absence of control is observed (orange line), which would produce catas-
trophic consequences.

This justifies the importance of the existence of a floating hybrid system control system
for proper operation.

Equation (85) shows the equation of the collective blade pitch angle PID controller
derived, as in the torque controller, from Equation (78). Equation (85) yields the control
action (uPitch(t)) from the error angular speed (ωerror(t)), the proportional gain (KpPitch ),
and the integration time (TiPitch ).

uPitch(t) = KpPitch ·
(

ωerror(t) +
1

TiPitch

·
∫

ωerror(t)·dt
)

(85)

As in the previous case, the output of the controller (uPitch(t)) is scaled as indicated in
Equation (86). 

uPitch(t) > 1 → uPitch(t) = 1

uPitch(t) < −1 → uPitch(t) = −1
(86)

The last step is to present the equations that define the behavior of the blade pitch
angle actuator (see Figure 9). In a similar way to the previous case, a linearized behavior
based on the data in Table 7 was considered.

Table 7. Blade pitch angle actuator linearization data.

uPitch(t) ϕPitch(t)

−1 ϕPitch−max
FTrigg 0

From the data in Table 7, the equation of a straight line can be obtained, showing the
result in Equation (87).

ϕPitch(t) =
ϕPitch−max
1 + FTrigg

·
(

FTrigg − uPitch(t)
)

(87)

In this case, the modeling of the blade pitch angle actuator is also completed by
establishing its operating limits, being equivalent to the previous case. On the one hand,
Equation (88) establishes the maximum and minimum values that the pitch angle (ϕPitch(t))
can take. 

ϕPitch(t) > ϕPitch−max → ϕPitch(t) = ϕPitch−max

ϕPitch(t) < 0 → ϕPitch(t) = 0
(88)

On the other hand, through Equation (89), the maximum values of the rise or fall of
the pitch angle are established. Both the values of ϕPitch−max and ∆ϕPitch−rate are shown in
Table 2.∣∣∣∣ d

dt
ϕPitch(t)

∣∣∣∣ > ∆ϕPitch−rate

{ d
dt ϕPitch(t) > 0 → d

dt ϕPitch(t) = ∆ϕPitch−rate
d
dt ϕPitch(t) < 0 → d

dt ϕPitch(t) = −∆ϕPitch−rate
(89)
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An important issue to highlight regarding the FHYGSYS control system described
in this section is that when the pitch angle (ϕPitch(t)) takes values greater than zero, this
implies, as indicated before, that the rated rotor speed (Ωrated(t)) has been exceeded; the
torque controller forces the generator torque (MGEN(t)) to be equal to the rated generator
torque (QGEN−rated).

2.5. Application of BEM Modeling to Marine Current Turbines

This section explains the differences and similarities between the application of the
wind turbine modeling methodology, as described in previous sections, with respect to
those of MCTs.

The first step is to obtain the magnitude of the effective fluid velocity vector (V0(t))
with Equation (12), which, in this case, is based on the explanation of Section 2.3.2 in [37]
for the sub-surface current modeling. This causes Equation (9) from [37] to be used instead
of Equation (4), and the flow direction is ε, the sub-surface current direction, instead of δ in
Equations (5) and (49).

A similar correction was also made to model the tower shadow effect, which in this
case was called the support shadow effect. This correction is based on the data in Table 8.

Table 8. Data for modeling the support shadow effect.

Property Value Symbol

Length from the hub center to tube junction 4.427 m lhub−junction
Length from the hub center to floating platform 12.09 m lhub−plat f orm

Maximum Length between the center of the main tube and the others 2 m ltube−max
Turbine support tube diameter 0.6 m Dtube

Figure 12 illustrates the modeling used to correct the support shadow effect by apply-
ing the data from Table 8.
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In the case of the wind turbine, the tower shadow coordinate system matches the
mobile coordinate system (see Figure 4), so the components of the pni (BODY)(t) points
in Equation (8) are used directly. By analyzing Figure 12, it can be verified that this did
not occur in this case, so each pni (BODY)(t) point must be expressed in the corresponding
turbine coordinate system using Equation (90).xpni (MCT)

ypni (MCT)
zpni (MCT)

 = pni (MCT)(t) =

cos(−ε) − sin(−ε) 0
sin(−ε) cos(−ε) 0

0 0 1

·(pni (BODY)(t)− poC−MCT (BODY)

)
(90)
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It is not necessary to use a transformation matrix in this equation for the change
between systems since the axes of the mobile coordinate system and the turbine coordinate
systems are parallel. In Equation (90), the center of the clockwise turbine has been used, but
the equation is equivalent using the center of the counterclockwise turbine. Both points can
be found in Table 9, while the value of the pni (BODY)(t) points can be found in Appendix A.

Table 9. Origin of the marine current turbine coordinate systems. The points are in their initial
position for a sub-surface current direction (ε) equal to zero degrees.

Description Value (m) Symbol

Origin of clockwise turbine
coordinate system (0, 17.1, −20) poC−MCT (BODY)

Origin of counterclockwise
turbine coordinate system (0, −17.1, −20) poCC−MCT (BODY)

Similar to the case of the wind turbine, the support shadow effect calculation is applied
only when the Y component of the pni (MCT)(t) points is less than zero in the case of the
clockwise turbine, or greater than zero in the case of the counterclockwise turbine.

As can be seen in Figure 12, each support is made up of three tubes, so the equa-
tion (extracted from [4]) that models the support shadow effect must be applied three
times, adapting the formula to the position of the support of MCTs. This is achieved by
Equation (91), where the factor Fcenter−shadow represents the shadow effect of the
central tube.

Fcenter−shadow = 1−

(
Dtube

2

)2
·
(

x2
pni (MCT) − z2

pni (MCT)

)
(

x2
pni (MCT) + z2

pni (MCT)

)2 (91)

The calculation of the shadow effect of the upper and lower tube is carried out only
when the Y component of pni (MCT)(t) exceeds the length lhub−junction within each support
shadow calculation zone (see Figure 12). In this situation, a value (∆zpni (MCT)) is calculated
through Equation (92) that corrects the Z component of the pni (MCT)(t) point by applying
linear interpolation from the data in Table 8.

∆zpni (MCT) = ltube−max·
lhub−junction −

∣∣∣ypni (MCT)

∣∣∣
lhub−junction − lhub−plat f orm

(92)

Increasing and decreasing the Z component of the pni (MCT)(t) point with the result of
Equation (92), Equation (91) is applied with the new corrected values of the Z component
of the pni (MCT)(t) point, yielding the factors Fup−shadow and Fdown−shadow.

The modeling of the support shadow effect ends by applying Equation (93), which
provides a result equivalent to that obtained with Equation (8).

→
v SSCUR support−shadow (BODY)(h) =

→
v SSCUR (BODY)(h)·Fcenter−shadow·Fup−shadow·Fdown−shadow (93)

From this point, the rest of the steps until calculating the magnitude of the effective
fluid velocity vector (V0(t)) with Equation (12) are equivalent.

For the calculations in Sections 2.2–2.4, it is also necessary to define the properties of
the MCTs, which are shown in Table 10.
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Table 10. Marine current turbine properties.

Property Value Symbol

Rated electrical power 1 550 kW PELE−rated
Number of blades 1 2 B

Hub depth 1 −20 m hHub
Hub radius 1 1 m rHub
Blade length 1 9 m LBlade

Precone 1 0 deg ϕPrecone
Shaft tilt 1 0 deg ϕSha f t Tilt

Rated rotor speed 1 11.5 rpm Ωrated
Gearbox ratio 2 97:1 gearR

Electrical generator efficiency 2 0.944 genE
Generator inertia about high-speed shaft 2 534.116 kg·m2 IGEN
Minimum generator speed to connect the

torque controller 3 325 rpm ωGEN−min

Rated generator torque 3 4971.531 N·m QGEN−rated
Maximum generator torque rate 3 1000 N·m/s ∆QGEN−rate

Minimum blade-pitch setting 2 0 deg ϕPitch−min
Maximum blade-pitch setting 2 90 deg ϕPitch−max

Maximum absolute blade pitch rate 3 4 deg/s ∆ϕPitch−rate
1 The data are from [34,35]. 2 The same values as those used for the wind turbine [14]. 3 Values established
by the authors.

In the case of MCTs, it is also necessary to know the aerodynamic characteristics of
airfoils, or rather, the hydrodynamic characteristics of hydrofoils. As indicated in [38], the
behavior of hydrofoils in water is analogous to the behavior of airfoils in air, the main
difference between them being fluid density. This allows for the use of airfoil data for the
modeling of MCTs without any additional correction.

The modeling of the MCTs used in the floating hybrid system was based on the design
presented in [34,35], where a single hydrofoil (airfoil) is used for the design of the blades.
This hydrofoil is the NACA 63-424.

From Equation (17), the angle of attack (ϕAttack(t)) can be obtained, and as in the case
of the wind turbine, with these data expressed in degrees, the airfoil-data (hydrofoil-data)
tables corresponding to each blade element were consulted to obtain the values of the lift
coefficient (CL(t)), drag coefficient (CD(t)), and pitching-moment coefficient (CM(t)).

Table 11 shows the hydrodynamic properties of marine current turbine blades.
The data shown in Table 11 for each blade differential (dpni)—blade element—and

their centers (pni) were obtained by dividing the blade length (LBlade) of the MCTs (see
Table 10) into 17 portions. The twist angle (ϕTwist) and chord length (LChord) data were
obtained by performing linear interpolation from the data in Table 4 in [34], in which the
blade was divided into 74 blade elements. This adaptation was carried out by equivalence
with the data presented in [14] of the wind turbine blades, and used in this work after
verifying that no significant differences were observed between the marine current turbine
simulation results obtained with 17 and 74 blade elements. However, the computational
cost was considerably reduced.
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Table 11. Marine current blade hydrodynamic properties 1.

Node1 pni
(m)

dpni
(m)

φTwist
(deg)

LChord
(m) Hydrofoil

1 1.075 0.15 0 2 0.8 Cylinder 3
2 1.3607 0.42143 12.86 0.87812 NACA 63–424
3 1.7821 0.42143 12.86 1.1802 NACA 63–424
4 2.2036 0.42143 12.86 1.5287 NACA 63–424
5 2.625 0.42143 12.805 1.7023 NACA 63–424
6 3.1342 0.59702 10.727 1.6304 NACA 63–424
7 3.7313 0.59702 8.8252 1.5404 NACA 63–424
8 4.3283 0.59702 7.5219 1.4565 NACA 63–424
9 4.9253 0.59702 6.5262 1.372 NACA 63–424

10 5.5223 0.59702 5.7432 1.2867 NACA 63–424
11 6.1193 0.59702 5.1057 1.2002 NACA 63–424
12 6.7164 0.59702 4.5608 1.1116 NACA 63–424
13 7.3134 0.59702 4.0772 1.0214 NACA 63–424
14 7.9104 0.59702 3.6195 0.9299 NACA 63–424
15 8.5074 0.59702 3.1795 0.83481 NACA 63–424
16 9.1045 0.59702 2.7241 0.73776 NACA 63–424
17 9.7015 0.59702 2.2413 0.63825 NACA 63–424

1 Data deduced from the blade properties described in [34]. 2 Value used in FHYGSYS.

The hydrofoil-data tables of the NACA 63-424 and cylinder 3, which appear in Table 11,
can be found in Appendix D in [51] and were used without any additional correction.

Figure 13 shows the unit vectors
→
u Bj thrust,

→
u sha f t, and

→
u Mj pitching that replace those

shown in Figure 5 and were used on several occasions in the turbine modeling calculations.
The values of the vectors

→
u Bj thrust and

→
u Mj pitching can be found in Appendix A. As

seen in Figure 13, each of the two MCTs rotated in opposite directions, which implies
that when dealing with the counterclockwise turbine, the sign of the unit vector

→
u sha f t

calculated with Equation (49) is changed. This practice is usually used in boats with two
propellers to compensate for the moments produced by each of them. This technique is
even used in tandem-rotor helicopters for the same reason.

This feature can be used as a control strategy for yaw compensation, turning each
MCT at a different speed.

The application of the rest of the equations of the model described in Sections 2.2 and 2.3,
was carried out in an equivalent way to the two MCTs, although they rotated in different
directions. It is only necessary to use the unit vectors (shown in Figure 13) appropriate to the
corresponding turbine.

The only exception to consider is that the MCTs are always completely submerged
in the sea, so, unlike the wind turbine, the density of the fluid interacting with them is
that of seawater. Therefore, the density used in Equations (33), (34), (70) and (71) was
ρSEA WATER = 1025 kg/m3.
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This also implies that in the calculation of the inertia tensor in Equations (50)–(52), the
inertia tensor caused by the added mass of the MCTs must be taken into account. Therefore,
Equation (52) can be redefined as indicated in Equation (94).

Irotor = IMCTurbine + IMCTurbine (SUM) + IGEN ·gearR2 (94)

Equation (95) shows the inertia tensor of the clockwise turbine, while Equation (96)
shows the inertia tensor of the added mass of the same turbine. These results were obtained
from the inertial data in Appendix A in [36].

MIT (MCTTurbine) =

IMCTxx 0 0
0 IMCTyy 0
0 0 IMCTzz

 =

169177 0 0
0 169584 −2884
0 −2884 11241

 kg·m2 (95)

MIT (MCTTurbine (SUM)) =

IMCTxx (SUM) 0 0
0 IMCTyy (SUM) 0
0 0 IMCTzz (SUM)

 =

107768 0 0
0 108304 −1873
0 −1873 5413

 kg·m2 (96)

The difference between these inertia tensors and those of the counterclockwise turbine
is in the sign of the products of inertia of the inertia tensor. The data needed to solve
Equation (94) are, as in the case of the wind turbine, the moments of inertia with respect to
the X axis of the two inertia tensors represented in Equations (95) and (96). Therefore, the
inertia tensors of the counterclockwise turbine are omitted.

In Equations (97) and (98), the moments of inertia necessary to solve Equation (94) are
represented mathematically.

IMCTurbine = IMCTxx (97)

IMCTurbine (SUM) = IMCTxx (SUM) (98)

2.6. Marine Current Turbines Control System

The control system of the MCTs is designed in FHYGSYS in the same way as for the
wind turbine. It is also based on two gain scheduled PID controllers: one to control the
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torque of the generators (MGEN(t)), and another to control the collective pitch angle of the
blades (ϕPitch(t)).

Each of the controllers of the two MCTs act individually. This means that when the
three turbines of the floating hybrid system are in operation, there are three PID controllers
governing each turbine independently, but not in a coordinated way.

The gain scheduled of both the torque and collective pitch angle controllers of the two
MCTs are the same.

Table 12 shows the gain scheduled for the torque controller.

Table 12. Marine current turbine generator torque gain scheduled PID controller.

Current Speed 1

VSWL (m/s)
MCT Speed 2

ΩSP(t) (rpm)
Proportional Gain

KpGEN
(−)

Integration Time
TiGEN (s)

0.5 3.37 0.300 30
0.65 4.363 0.150 30
0.8 5.356 0.100 30

0.95 6.349 0.090 30
1.1 7.35 0.080 30

1.25 8.355 0.070 40
1.4 9.36 0.060 50

1.55 10.21 0.050 60
1.7 10.77 0.045 70

1.85 11.32 0.045 80
2.0 11.47 0.040 80

2.03 11.5 0.040 150
2.1 to 3.0 11.5 0.030 150

1 Sub-surface current speeds at the still water level. 2 Data derived from [34,35].

Completing the data from the control system of the MCTs, Table 13 shows the gain
scheduled for the collective pitch angle controller.

Table 13. Marine current turbine blade pitch gain scheduled PID controller.

Current Speed 1

VSWL (m/s)
MCT Speed 2

ΩSP(t) (rpm)
Proportional Gain

KpPitch
(−)

Integration Time
TiPitch (s)

Trigger Offset Factor
FTrigg(%) (%)

0.5 to 2.0 3.37 to 11.47 0 1 0
2.03 11.5 0.0015 9 12
2.1 11.5 0.0012 10 10

2.25 11.5 0.0012 10 10
2.4 11.5 0.0012 10 10

2.55 11.5 0.0012 10 10
2.7 11.5 0.0012 10 10

2.85 11.5 0.0012 10 10
3 11.5 0.0012 10 10

1 Sub-surface current speeds at the still water level. 2 The data are from [34,35].

3. Results

In order to present the work carried out as completely as possible, we performed two
simulations in which a fluid velocity sweep is made from the lowest to the highest value at
which the turbines can operate. These maximum and minimum values of fluid velocity are
those shown in the gain schedules in Tables 4, 6, 12 and 13. In each test, the most relevant
magnitudes are represented, whose calculations were described throughout Section 2.

In this section, the titles of the figures that include graphs of the different magnitudes
as well as the nomenclature that appears in them are the same used by FASTv8.
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3.1. Test 1. Wind Speed Sweep from 3 to 25 m/s

Figure 14 shows the configuration of Test 1, in which a sweep of wind speeds was
made from 3 to 25 m/s, with a direction of zero degrees, a sub-surface current speed of
0 m/s, and without the presence of waves.
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Figure 15b shows the graph of the electrical power generated ( )—the main 
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Figure 14. Test 1 conditions. Sweep of wind speeds from 3 to 25 m/s and direction of 0 degrees.

As shown in Figure 14, in Test 1, the “OC3-Hywind” version without MCTs imple-
mented in FHYGSYS was used. As can be seen in Figure 15a, the sweep of wind speeds was
carried out increasing the wind speed (VW−REF) by 1 m/s every 300 s. Tests were performed
for all of these speeds and a code-to-code comparison was made with simulations carried
out with FASTv8 under the same conditions, obtaining satisfactory results. Two examples
of these validation simulations are shown in Appendix B.
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Figure 15. Wind speed and electrical power generated by the wind turbine: (a) wind speed sweep;
(b) electrical generator power, Equation (65).

Figure 15b shows the graph of the electrical power generated (PELE(t))—the main
magnitude of the installation—in which it reaches the maximum power from a wind
speed of 12 m/s. Figure 16 shows the graphs of the six degrees of freedom of the floating
hybrid system.
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Figure 16. Linear and angular degrees of freedom in the wind turbine test: (a) linear degrees of
freedom; (b) angular degrees of freedom.

An increase in surge and pitch was observed as the wind speed increased and just
when the power generated reached its maximum; as the wind speed continued to in-
crease, these degrees of freedom decreased. However, in sway and roll, an increase was
observed whenever the wind speed increased, with the variations in heave and yaw of
little relevance. These results corresponded to those expected, considering the angle of inci-
dence of the wind on the floating hybrid system (see Figure 14) and that the wind turbine
rotated clockwise.

Figure 17 shows the behavior of the two input magnitudes that control the wind
turbine (see Figure 9): electrical generator torque (MGEN(t)) and collective blade pitch
angle (ϕPitch(t)). It was also observed how these affected the rotor aerodynamic torque
(Qaero(t)) and the rotor speed (Ωrotor(t)) of the turbine.

The electrical generator torque opposes the rotor aerodynamic torque to achieve the
desired rotor speeds until the rated generator torque (QGEN−rated) is reached (see Table 2).
At this wind speed, which is approximately 12 m/s, the rated rotor speed (Ωrated) is reached
(see Table 2). From that wind speed, the collective blade pitch angle is responsible for
slowing down the increase in rotor aerodynamic torque and keeping the rated rotor speed
as stable as possible.

Figure 18 shows the relationship between the rotor thrust (TThrust(t)) exerted by the
wind turbine and the rotor aerodynamic power (PAERO(t)) present in the low-speed shaft
with their respective coefficients: the thrust coefficient (CT(t)) and the power coefficient
(CP(t)) respectively. Figure 18a shows how the rotor thrust increases as the wind speed
increases until the rated generator torque is reached. From this wind speed, the collective
blade pitch angle behaves like an aerodynamic brake, decreasing the rotor thrust exerted
by the wind turbine as this angle increases.

The rotor aerodynamic power behaves in a similar way to the electrical generator
power (see Figure 15b), settling around the maximum power of the wind turbine once
the rated rotor speed is reached. Figure 18c shows how the CT(t) stabilizes around 0.8 for
intermediate wind speeds and how it decreases drastically as the wind speed increases
once the rated rotor speed is reached. The CP(t) behaves in a similar way to the CT(t),
showing a high efficiency—considering the Betz limit [2–4]—for intermediate wind speeds,
decreasing as the wind speed increases once the wind turbine reaches the situation of
maximum wind energy absorption.
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Figure 17. Aerodynamic and electrical torque, rotor speed, and collective blade pitch angle in
the wind turbine test: (a) rotor aerodynamic torque, Equation (47); (b) rotor speed, Equation (58);
(c) electrical generator torque, Equation (81); (d) collective blade pitch angle, Equation (87).

It is common to use graphical representations of CP − TSR to evaluate the efficiency of
the wind turbine [2–4], in which the maximum value that can be reached is below the Betz
limit. This representation can also be made by normalizing the CP(t) value with the Betz
limit [2], obtaining 27CP/16− TSR graphs like the one shown in Figure 19b, which shows
the evolution of CP(t) between 0 and 1 as a function of the TSR(t). Analyzing Figure 19b,
it can be observed that the maximum efficiency of the wind turbine is around 0.85, obtained
for a TSR(t) between 8 and 9. Comparing these observations with Figures 18d and 19a, it
was verified that the maximum efficiency of the wind turbine occurred for intermediate
values of wind speed, in which a higher CP(t) was obtained.
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Figure 18. Aerodynamic thrust and power and their coefficients in the wind turbine test: (a) rotor 
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Figure 19. Tip-speed ratio and 27 /16 −  curve in the wind turbine test: (a) tip-speed ratio, 
Equation (72); (b) 27 /16   graphic representation. 

Figure 18. Aerodynamic thrust and power and their coefficients in the wind turbine test: (a) rotor
thrust, Equation (62); (b) rotor aerodynamic power, Equation (67); (c) thrust coefficient, Equation (71);
(d) power coefficient, Equation (70).

Figure 19 shows the tip-speed ratio (TSR(t)) and the 27CP/16− TSR curve.
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Figure 20 shows the control actions of the two PID controllers, with which their
behavior can be analyzed.
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Comparing Figures 17c and 20a, it was observed that the control action (uMGEN (t))
of the torque controller manages the value of the generator torque (MGEN(t)) when it is
positive, since when it reaches negative values the generator torque takes the value of the
rated generator torque (QGEN−rated). This behavior is consistent with the modeling of the
generator torque actuator shown in Table 5.

As indicated in Section 2.4.2, a design criterion of the control system is that when the
collective blade pitch angle is greater than zero, the torque controller forces the generator
torque to be equal to the rated generator torque. For this reason, around 2700 s, although
the torque control action still delivers positive values, since the pitch angle already takes
positive values (see Figure 17d), the value of the generator torque is equal to the rated
generator torque.

Similarly, the control action (uPitch(t)) of the collective blade pitch controller (see
Figure 20b) manages the value of the pitch angle when it is negative. However, due to
the value of the trigger offset factor (FTrigg(%)), it is possible for the pitch controller to start
working before the rated rotor speed is exceeded, obtaining positive pitch angle values in
this situation. This behavior is also consistent with the modeling of the collective blade pitch
angle actuator shown in Table 7. Figure 20c,d shows the behavior, by way of illustration, of
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the integral control actions of the controllers; these are part of the control actions, as can be
deduced from Equations (79) and (85).

The scaling of Figures 16, 17b,d, 18a,c,d, 19 and 20 was conducted in the same manner
as that of the equivalent figures of Test 2, in order to more easily compare the results
between the two tests.

3.2. Test 2. Sub-Surface Current Speed Sweep from 0.5 to 3 m/s

Figure 21 shows the configuration of Test 2, in which a sweep of sub-surface current
speeds was made from 0.5 to 3 m/s, with a direction of zero degrees, a wind speed
of 0 m/s, and without the presence of waves.
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Figure 21. Test 2 conditions. Sweep of the sub-surface current speeds from 0.5 to 3 m/s and direction
of 0 degrees.

As shown in Figure 21, Test 2 uses the complete mathematical model of the floating
hybrid system made up of the three turbines (as shown in Figure 1), although in this case,
the wind turbine was stopped due to the absence of wind.

As can be seen in Figure 22a, the sweep of sub-surface current speeds (VSWL) is carried
out in two sections. The first from 0.5 to 2 m/s, and the second from 2.1 to 3 m/s. In each
of them, the speed also increased by 0.15 m/s every 300 s.
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Figure 22. Wind speed and electrical power generated by the marine current turbines: (a) wind speed
sweep; (b) electrical generator power, Equation (65).

Figure 22b shows a graph of the electrical power generated, in which it reached the
maximum power from a sub-surface current speed of approximately 2 m/s.



J. Mar. Sci. Eng. 2023, 11, 1634 40 of 62

Figure 23 shows the graphs of the different degrees of freedom of the floating hybrid
system, but in this case, two simulations were included under the same conditions: one
with the turbines running and generating power, and another in which the turbines are
stopped. This is because the density of the fluid, in this case seawater, is almost a thousand
times greater than that of air, so the interaction of the sub-surface current on the floating
platform is by no means negligible.
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marine current turbines test: (a) rotor aerodynamic torque, Equation (47); (b) rotor speed, Equation 
(58); (c) electrical generator torque, Equation (81); (d) collective blade pitch angle, Equation (87). 

Figure 23. Linear and angular degrees of freedom in the marine current turbines test: (a) linear
degrees of freedom; (b) angular degrees of freedom.

When analyzing Figure 23, it can be deduced that most of the displacements produced
did not come from the thrust of the MCTs, but rather from the effect of the sub-surface
current on the floating platform.

Figure 24 shows the two magnitudes that control the MCTs as well as their relationship
with the rotor aerodynamic torque and the rotor speed of the turbine.

Figure 24 shows three of the magnitudes that can be compared with the results
presented in [34,35], with this comparison proving satisfactory. These are the rotor aerody-
namic torque, the collective blade pitch angle, and the rotor speed of the turbine.

Figure 25 shows, in this case, the relationship between the rotor thrust exerted by
the MCTs and the rotor aerodynamic power present in the low-speed shaft with their
respective coefficients.

Figure 26a shows another magnitude that can be satisfactorily compared with the
results presented in [34,35], the tip-speed ratio. Figure 26b shows the 27CP/16− TSR curve
in which a maximum efficiency of MCTs around 0.8 was observed.

Finally, Figure 27 shows the control actions of the generator torque and collective
blade pitch angle controllers.



J. Mar. Sci. Eng. 2023, 11, 1634 41 of 62

J. Mar. Sci. Eng. 2023, 11, 1634 37 of 56 
 

 

with the turbines running and generating power, and another in which the turbines are 
stopped. This is because the density of the fluid, in this case seawater, is almost a thousand 
times greater than that of air, so the interaction of the sub-surface current on the floating 
platform is by no means negligible. 

  
(a) (b) 

Figure 23. Linear and angular degrees of freedom in the marine current turbines test: (a) linear de-
grees of freedom; (b) angular degrees of freedom. 

When analyzing Figure 23, it can be deduced that most of the displacements pro-
duced did not come from the thrust of the MCTs, but rather from the effect of the sub-
surface current on the floating platform. 

Figure 24 shows the two magnitudes that control the MCTs as well as their relation-
ship with the rotor aerodynamic torque and the rotor speed of the turbine. 

  
(a) (b) 

  
(c) (d) 

Figure 24. Aerodynamic and electrical torque, rotor speed, and collective blade pitch angle in the 
marine current turbines test: (a) rotor aerodynamic torque, Equation (47); (b) rotor speed, Equation 
(58); (c) electrical generator torque, Equation (81); (d) collective blade pitch angle, Equation (87). 

Figure 24. Aerodynamic and electrical torque, rotor speed, and collective blade pitch angle in
the marine current turbines test: (a) rotor aerodynamic torque, Equation (47); (b) rotor speed,
Equation (58); (c) electrical generator torque, Equation (81); (d) collective blade pitch angle,
Equation (87).

The reasoning described in the previous section for Test 1 is extensible for the interpre-
tation of most of the graphs represented in this section. However, it is interesting to verify
the operation of the MCTs as a result of the application of the gain scheduled of the two
controllers shown in Tables 12 and 13.

In the graphs in which the results are indicated for the clockwise turbine and for the
counterclockwise turbine, only one line appeared because the results were superimposed.
This was due to the orientation of the current with respect to the floating hybrid system
(see Figure 21), which caused mooring lines 2 and 3 to act symmetrically (see mooring
lines numbering in Figure 14). This situation was also caused by the fact that the marine
current turbines rotated in opposite directions, counteracting the moments produced in
each of them (see Figure 13). This did not occur in Test 1 since the wind turbine only rotated
clockwise, causing increases in the sway and roll degrees of freedom as seen in Figure 16.

Using FHYGSYS, more magnitudes can be plotted such as the angle of attack
(ϕAttack (AV)(t)), the axial induction factor (axi f(AV)(t)), and the angular induction fac-
tor (ani f(AV)(t)), which are obtained through Equations (73) to (75), respectively.
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(a) rotor thrust, Equation (62); (b) rotor aerodynamic power, Equation (67); (c) thrust coefficient,
Equation (71); (d) power coefficient, Equation (70).
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ratio, Equation (72); (b) 27CP/16 vs. TSR graphic representation.
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Figure 27. Control and integral control actions of the marine current turbine PID controllers:
(a) generator torque control action, Equation (79); (b) collective blade pitch angle control action,
Equation (85); (c) generator torque integral control action; (d) collective blade pitch angle integral
control action.

3.3. Comparison of Mooring Line Tensions between Tests 1 and 2

Concluding the presentation of results, it is interesting to highlight the behavior of
the mooring system in each of the tests performed. Figure 28 shows the tensions in the
fairleads of the mooring lines in both cases.

Figure 28b shows that mooring lines 2 and 3 suffered much higher tensions in Test 2
than those in Test 1. This was mainly due, as seen in Figure 23a, to the thrust caused by the
sub-surface current on the platform floating. This is an effect that occurs in spar-buoy type
systems. In other concepts such as the semisubmersible floating system [52], this problem
is minimized.

In Test 2, the graphs of mooring lines 2 and 3 appeared superimposed by the symme-
tries produced and explained in the previous section. While differences were observed in
the same mooring lines of Test 1 (Figure 28a), this was because there was only one turbine
that rotated clockwise in Test 1, causing a moment that was not countered.

In Test 1, it was also observed that when there was a decrease in thrust—around
2700 s—the tension in mooring lines 2 and 3 decreased, and increased in mooring line 1.
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4. Discussion

This work presents the modeling of the turbines of a floating hybrid system—wind
and two marine current turbines (see Figure 1)—using the BEM theory, integrating this
modeling in the FHYGSYS tool.

It was possible to obtain a reliable mathematical model since the version of OC3-
Hywind implemented in FHYGSYS has been validated through a code-to-code comparison
with simulations carried out under the same conditions with FASTv8. Appendix B shows
the comparison of results for two wind speeds: 11 and 15 m/s. Similar comparisons were
made for all of the wind speeds in Test 1, obtaining results with a precision similar to that
presented in the results in Appendix B.

The operating results of the marine current turbines shown in Section 3.2 using the
floating hybrid system model shown in Figure 1 were also validated by comparing the
results obtained with the magnitudes available in [34,35].

The results presented in Section 3 also allow us to deepen our understanding of the
operation of wind and marine current turbines over their entire working range, thanks to
the number of magnitudes for which information is available.

Analyzing the results presented in Section 3, it was observed that at low speeds,
logically, the power generated was low. It was also observed that until the turbines reached
their rated rotor speed, as the fluid velocity increased, so did the power and thrust exerted
by the turbines. Once the rated rotor speed was reached, the pitch angle controller came
into operation and from that situation, as the fluid speed increased, the power stabilized,
progressively lowering the thrust exerted by the turbines. This is an example of the great
influence that the blade pitch angle has on the aerodynamic or hydrodynamic behavior of
the turbines.

Another issue to highlight from the results is the influence of the sub-surface current on
the floating platform (spar-buoy), since, as can be seen in Figure 23, the greatest percentage
of the thrust on the floating hybrid system is not caused by the marine current turbines. In
fact, in this figure, it can be seen that when the rated rotor speed was reached at around
3300 s, the thrust on the floating system decreased due to the reduction in the thrust of the
marine turbines. This issue forces the mooring system to suffer high tensions for which it
must be correctly sized. There is also the possibility of studying the use of other concepts
of floating wind turbines that minimize this problem such as the semisubmersible floating
system [52].

The incorporation of the modeling of the turbines using the BEM theory allows, for
example, to study the behavior of these at start-up when they are stopped. However, one
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of the most important issues achieved with this work is having the possibility of designing
different control systems simply by replacing the control system shown in Figure 9 with a
different one.

In this work, a first control system was developed based on two PID controllers that
control the rotor speed of the turbine by controlling the generator torque and controlling the
collective blade pitch angle. Because the floating hybrid system presents a clearly nonlinear
behavior, a gain scheduled was implemented for the torque and pitch PID controllers of
the wind turbine and the marine current turbines. This is a relatively simple control system
with which the speed of the turbines is controlled. When the three turbines are running,
the controllers operate simultaneously but not in a coordinated manner.

For this reason, future works will address cooperative control strategies that allow
for the establishment of coordinated control actions in order to optimize the energy per-
formance and the structural stability of the floating hybrid system. Based on this idea
and using FHYGSYS, multivariable control systems—multi-input multi-output (MIMO)
systems—can be designed, thus improving the operation of the floating hybrid system. In
addition, control strategies can also be designed that allow for the use of marine current
turbines as actuation elements, making them work as a twin propulsion system actuator, to
help in the stability of the system in adverse weather conditions.

As with the control system, the modeling of the actuators that intervene on the floating
hybrid system can also be modified (see Figure 9). This allows for the application of other
approaches different from the one described in Section 2.4 for the modeling of the actuators.

Another important possibility offered by turbine modeling using BEM theory is to
predict the behavior of turbines for which operating data are not available. This allows
future works to evaluate other marine current turbine designs with different dimensions,
different hydrodynamic profiles, etc.

Finally, it is intended to conclude this series of works describing the mathematical
model implemented in FHYGSYS from the point of view of the computer techniques used.
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Abbreviations

Acronym list
ANSYS Swanson Analysis Systems
BEM Blade Element Momentum theory
CFD Computational Fluid Dynamics
DOF Degrees Of Freedom
FAST Fatigue, Aerodynamics, Structures, and Turbulence
FHYGSYS Floating Hybrid Generator SYstems Simulator
HAWC2 Horizontal Axis Wind turbine simulation Code 2nd generation
HAWT Horizontal Axis Wind Turbine
MCT Marine Current Turbines
MIMO Multi-Input Multi-Output
NREL National Renewable Energy Lab
OC3 Offshore Code Comparison Collaboration
OLAF cOnvecting LAgrangian Filaments
OWT Offshore Wind Turbines
PID Proportional–Integral–Derivative
PLC Programmable Logic Controller
RTHS Real-Time Hybrid Simulation
SHYFEM System of HYdrodynamic Finite Element Modules
SOWFA Simulator for Wind Farm Applications
WRP WAMIT Reference Point
Symbol List

ani f (t)
angular induction factor of the wind turbine
(or marine current turbine)

ani f(AV)(t) mean value of angular induction factor
ATurbine area of the wind turbine (or marine current turbine)

axi f (t)
axial induction factor of the wind turbine
(or marine current turbine)

axi f(AV)(t) mean value of axial induction factor
axi fmax value of Glauert correction whose value is 1/3
αrotor(t) low-speed shaft angular acceleration of the turbine rotor
α power law exponent
CD aerodynamic (or hydrodynamic) drag coefficient
CL aerodynamic (or hydrodynamic) lift coefficient
CNθ(t) aerodynamic (or hydrodynamic) normal coefficient

center of mass of the wind turbine

CoMWTurbine (BODY)(t)
center of mass of the wind turbine expressed in the mobile
coordinate system

CP(t) power coefficient
CT(t) thrust coefficient
CTθ(t) aerodynamic (or hydrodynamic) tangential coefficient

D(h)
tower diameter to calculate the vector
→
v WIND tower−shadow (BODY)(h)

∆zpni (MCT)
value that corrects the Z component of the pni (MCT)(t) To
calculate the shadow effect in a marine current turbine

d
→
F blade ij (BODY)(t)

resultant of the differential forces of blade element i of blade j
expressed in the mobile coordinate system
differential of thrust force
differential of thrust force of blade element i of blade

d
→
F thrust ij (BODY)(t)

differential of thrust force vector of blade element i of blade j
expressed in the mobile coordinate system

dFtorque differential of torque force
dFtorque ij(t) differential of torque force of blade element of blade j
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d
→
F torque ij (BODY)(t)

differential of torque force vector of blade element i of blade
expressed in the mobile coordinate system

d
→
M blade ij (BODY)(t)

resultant of the differential moments of blade element i of blade j
expressed in the mobile coordinate system

dMpitching differential of pitching moment
dpni blade elements or blade differentials
δ direction of the wind velocity vector
e(t) error value of a PID controller
ε direction of the sub-surface current velocity vector

εa
value of the percent relative error to calculate the values of axi f (t)
and ani f (t)

εa−min
minimum value of the percent relative error whose
value is 5·10−9

→
F blade j (BODY)(t)

resultant of the forces of blade j expressed in the mobile
coordinate system

Fcenter−shadow
factor that represents the shadow effect of the central tube of the
marine current support

Fdown−shadow
factor that represents the shadow effect of the lower tube of the
marine current support

FHub−loss(t) hub-loss factor
→
Fk

WIND TURBINE

(BODY) (t)
vector of wind turbine forces and moments expressed in the
mobile coordinate system

Floss(t) total turbine losses
Fthrust thrust force
→
F Thrust (BODY)(t)

total thrust vector produced by the wind turbine expressed in the
mobile coordinate system

FTip−loss(t) Prandtl’s tip-loss factor
Ftorque torque force
FTrigg pitch controller trigger offset factor
FTrigg(%) trigger offset factor

Fup−shadow
factor that represents the shadow effect of the upper tube of the
marine current support

i symbol to refer to a specific blade element
Irotor total inertia of the wind turbine rotor
IWTurbine wind turbine moment of inertia about this x axis (IWTxx)

IMCTurbine
marine current turbine moment of inertia about this
x axis (IMCTxx)

IMCTurbine (SUM)
marine current turbine moment of inertia about this x axis
(IMCTxx (SUM)) to calculate added mass

IWTxx, IWTyy, IWTzz wind turbine moments of inertia
IMCTxx, IMCTyy, IMCTzz marine current turbine moments of inertia
IMCTxx (SUM), IMCTyy (SUM)

IMCTzz (SUM)

marine current turbine moments of inertia to calculate
added mass

j symbol to refer to a specific blade
Kani f (t) term of ani f (t) equation
Kaxi f (t) term of axi f (t) equation
Kp proportional gain of a PID controller
KpGEN proportional gain of the torque PID controller

KpPitch

proportional gain of the collective blade pitch
angle PID controller

LChord chord length of a blade element

MINERTIAL
BODY

transformation matrix that allows changing between the inertial
coordinate system and the mobile coordinate system

→
M aero (BODY)(t) total moment caused by the aerodynamics on the turbine
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Maero−sha f t(t)
low-speed shaft aerodynamic torque or moment (torque) about
the shaft of the turbine

→
M blade (BODY)(t) moment vector caused by the blades on a turbine
→
M blade j (BODY)(t)

resultant of the moments of blade j expressed in the mobile
coordinate system

MGEN(t) high-speed shaft generator torque
MGEN−sha f t(t) low-speed shaft generator torque
→
M hub (BODY)(t)

total moment vector originated by the force vector from the bases
of the blades to the center of mass of the turbine

→
M hub j (BODY)(t)

moment vector originated by the force vector
→
F blade j (BODY)(t)

from the bases of the blades to the center of mass of the turbine

MHT
INERTIAL
BODY

homogeneous transformation matrix that allows for changing
between the inertial coordinate system and the mobile coordinate
system

MIT (WTurbine) wind turbine rotor inertia tensor
MIT (MCTurbine) marine current turbine rotor inertia tensor

MIT (MCTurbine (SUM))
marine current turbine rotor inertia tensor to calculate
added mass

Mpitch resultant of pitching moment on a turbine
pitching moment

→
M pitching (BODY)(t) total pitching moment vector

Mpitching j(t) pitching moment originated in blade j

→
M pitching j (BODY)(t)

pitching moment vector originated in blade j expressed in the
mobile
coordinate system

Mrotor(t) low-speed shaft torque
→
M rotor (BODY)(t)

low-speed shaft torque vector expressed in the mobile
coordinate system

→
M Thrust (BODY)(t)

total moment vector produced by the wind turbine at the origin
of the mobile coordinate system expressed in the same
coordinate system

→
M Thrust j (BODY)(t)

moment produced by the resultant of the forces of blade j at the
origin of the mobile coordinate system expressed in the same
coordinate system
difference between the angular speed to be reached () and
the high− speed shaft angular speed ()

ωGEN(t) high-speed shaft angular speed of the generator
ωrotor(t) low-speed shaft angular speed of the turbine rotor

Ωrotor(t)
low-speed shaft angular speed of the turbine rotor
expressed in rpm

ΩSP(t) set point of low-speed shaft angular speed expressed in rpm
ωSP set point of high-speed shaft angular speed
PAERO(t) rotor aerodynamic power
PELE(t) electrical generator power
PMEC(t) mechanical power or low-speed shaft power
pni center of each of the blade elements

pni(BLADE)
center of each of the blade elements expressed in a blade
coordinate system

pni(BODY)
center of each of the blade elements expressed in the mobile
coordinate system

pni(INERTIAL)
center of each of the blade elements expressed in the inertial
coordinate system

pn0j (BODY)(t) center point at the base of blade j

pnij (BODY)(t)
center of blade element i of blade j expressed in the mobile
coordinate system
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ϕAttack(t)
angle of attack between velocity Vrel(t) and the chord line of
each blade element

ϕAttack (AV)(t) mean value of angle of attack
ϕPitch(t) collective blade pitch angle
ϕTwist twist angle of a blade element
ψrotor(t) angular position of the turbine rotor
Qaero(t) magnitude of vector
rTurbine turbine radius
RtAeroF total rotor aerodynamic forces (thrust)
RtAeroM total rotor aerodynamic moments (torque)
ρAIR density of air whose value is 1.225 kg/m3

ρSEA WATER density of seawater whose value is
σi local solidity
Td derivative time of a PID controller

integration time of a PID controller
TiGEN integration time of the torque PID controller
TiPitch

integration time of the collective blade pitch angle PID controller
TThrust(t) magnitude of vector

→
F Thrust (BODY)(t)

TSR(t) tip-speed ratio
θ(t) angle between Vrel(t) velocity and a blade vertical plane
u(t) control action of a PID controller
uMGEN (t) control action of the torque PID controller
uPitch(t) control action of the collective blade pitch angle PID controller
→
u Bj thrust thrust
→
u Bj thrust (BODY)

thrust unit vector or vector perpendicular to blade expressed in
the mobile coordinate system

→
u Bj torque (BODY) torque unit vector expressed in the mobile coordinate system

pitching
→
u Mj pitching (BODY) pitching expressed in the mobile coordinate system
→
u sha f t shaft unit vector
→
u sha f t (BODY) shaft unit vector expressed in the mobile coordinate system

V0(t) or V0 ij(t) magnitude of vector
→
v ni EFF−Bj thrust(BODY)(t)

V0 (AV)(t) mean of the magnitude of the effective wind velocity vector
V1−2(t) normal velocity to the vertical plane of each blade
Vrel(t) magnitude of the wind velocity reaching each blade element
Vrot(t) tangential velocity to the vertical plane of each blade

VW−REF
magnitude—or mean wind speed—of the wind velocity vector at
the reference height

VWIND(h)
wind speed at the height of the center point of each
blade element (pni )

→
v ni EFF−Bj thrust(BODY)(t)

effective wind velocity vector at node i of expressed in the mobile
coordinate system

→
v ni EFF−WIND(BODY)(h, t)

effective wind velocity vector at node i expressed in the mobile
coordinate system

→
v pni (BODY)(t)

velocity vector of the center point of each blade element (pni )
expressed in the mobile coordinate system

→
v pni (INERTIAL)(t)

velocity vector of the center point of each blade element (pni )
expressed in the inertial coordinate system

→
v SSCUR(BODY)(h)

sub-surface current velocity vector of the vector field rotated by
the corresponding angle ε expressed in the mobile
coordinate system

→
v SSCUR support−
shadow (BODY)(h)

sub-surface current velocity vector considering the support
shadow effect

→
v WIND(BODY)(h)

wind velocity vector of the vector field rotated by the
corresponding angle δ expressed in the mobile coordinate system

→
v WIND(INERTIAL)(h)

wind velocity vector of the vector field rotated by the
corresponding angle δ expressed in the inertial coordinate system
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→
v WIND tower−
shadow (BODY)(h)

wind velocity vector considering the tower shadow effect

xpni, ypni, zpni x, y and z components of pni(BODY)(t) point
xpni (MCT),
ypni (MCT), zpni (MCT)

x, y and z components of pni(MCT)(t) point

zREF reference height of the wind velocity vector
zWIND(t) height to calculate the magnitude of the wind velocity vector

Appendix A

This appendix presents the central points (pni) of each blade element as well as the
points that allow for the calculation of the unit vectors associated with the blades and used
on multiple occasions throughout this work. Table A1 shows the central points of the wind
turbine blades. The points expressed in the mobile coordinate system are in their initial
position for a wind direction (δ) equal to zero degrees.

Table A1. Central points of the wind turbine blades.

Node pni(BLADE) (m) pni(BODY) (m)
(Blade 1)

pni(BODY) (m)
(Blade 2)

pni(BODY) (m)
(Blade 3)

0 (blade base) (0, 0, 0) (−5.126, 0, 91.52) (−5.322, −1.299, 89.28) (−5.322, 1.299, 89.28)
1 (0, 0, 1.3667) (−5.067, 0, 92.88) (−5.441, −2.482, 88.60) (−5.441, 2.482, 88.60)
2 (0, 0, 4.1) (−4.948, 0, 95.61) (−5.679, −4.846, 87.25) (−5.679, 4.846, 87.25)
3 (0, 0, 6.8333) (−4.828, 0, 98.34) (−5.917, −7.211, 85.90) (−5.917, 7.211, 85.90)
4 (0, 0, 10.25) (−4.679, 0, 101.8) (−6.214, −10.17, 84.21) (−6.214, 10.17, 84.21)
5 (0, 0, 14.35) (−4.500, 0, 105.9) (−6.571, −13.72, 82.19) (−6.571, 13.72, 82.19)
6 (0, 0, 18.45) (−4.322, 0, 110.0) (−6.927, −17.26, 80.16) (−6.927, 17.26, 80.16)
7 (0, 0, 22.55) (−4.143, 0, 114.1) (−7.284, −20.81, 78.14) (−7.284, 20.81, 78.14)
8 (0, 0, 26.65) (−3.964, 0, 118.1) (−7.641, −24.36, 76.12) (−7.641, 24.36, 76.12)
9 (0, 0, 30.75) (−3.785, 0, 122.2) (−7.997, −27.90, 74.09) (−7.997, 27.90, 74.09)
10 (0, 0, 34.85) (−3.606, 0, 126.3) (−8.354, −31.45, 72.07) (−8.354, 31.45, 72.07)
11 (0, 0, 38.95) (−3.427, 0, 130.4) (−8.711, −35.00, 70.04) (−8.711, 35.00, 70.04)
12 (0, 0, 43.05) (−3.249, 0, 134.5) (−9.067, −38.55, 68.01) (−9.067, 38.55, 68.01)
13 (0, 0, 47.15) (−3.070, 0, 138.6) (−9.424, −42.09, 65.99) (−9.424, 42.09, 65.99)
14 (0, 0, 51.25) (−2.891, 0, 142.7) (−9.781, −45.64, 63.97) (−9.781, 45.64, 63.97)
15 (0, 0, 54.6667) (−2.742, 0, 146.1) (−10.08, −48.60, 62.28) (−10.08, 48.60, 62.28)
16 (0, 0, 57.4) (−2.623, 0, 148.9) (−10.32, −50.96, 60.93) (−10.32, 50.96, 60.93)
17 (0, 0, 60.1333) (−2.503, 0, 151.6) (−10.55, −53.33, 59.58) (−10.55, 53.33, 59.58)

18 (blade tip) (0, 0, 61.5) (−2.444, 0, 153.0) (−10.67, −54.51, 58.91) (−10.67, 54.51, 58.91)
19 (Surge positive unit) (1, 0, 0) (−4.127, 0, 91.47) (−4.329, −1.337, 89.17) (−4.329, 1.337, 89.17)
20 (Sway negative unit) (0, −1, 0) (−5.126, −1, 91.52) (−5.398, −0.7990, 88.41) (−5.247, 1.799, 90.14)
21 (Heave positive unit) (0, 0, 1) (−5.082, 0, 92.52) (−5.409, −2.164, 88.78) (−5.409, 2.164, 88.78)

The calculation of the unit vectors
→
u Bj thrust,

→
u Bj torque, and

→
u Mj pitching was carried

out using Equations (A1)–(A3), respectively.

→
u Bj thrust = pn19 (BODY) − pn0 (BODY) (A1)

→
u Bj torque = pn20 (BODY) − pn0 (BODY) (A2)

→
u Mj pitching = pn21 (BODY) − pn0 (BODY) (A3)

These points rotate along with the blades and the subtraction at each moment produces
the unit vector in the desired direction.

Figure A1 shows the floating hybrid system in its initial position as well as the num-
bering of each blade.
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Table A2 shows the central points of the clockwise marine current turbine blades.
The points expressed in the mobile coordinate system are in their initial position for a
sub-surface current direction (ε) equal to zero degrees.

Table A2. Central points of the clockwise marine current turbine blades.

Node pni(BLADE) (m) pni(BODY) (m)
(Blade 1)

pni(BODY) (m)
(Blade 2)

0 (blade base) (−1.1, 0, 0) (−0.9, 17.1, −19) (−0.9, 17.1, −21)
1 (−1.1, 1.075, 0) (−0.9, 17.1, −18.93) (−0.9, 17.1, −21.08)
2 (−1.1, 1.3607, 0) (−0.9, 17.1, −18.639) (−0.9, 17.1, −21.36)
3 (−1.1, 1.7821, 0) (−0.9, 17.1, −18.22) (−0.9, 17.1, −21.78)
4 (−1.1, 2.2036, 0) (−0.9, 17.1, −17.80) (−0.9, 17.1, −22.20)
5 (−1.1, 2.625, 0) (−0.9, 17.1, −17.38) (−0.9, 17.1, −22.63)
6 (−1.1, 3.1342, 0) (−0.9, 17.1, −16.87) (−0.9, 17.1, −23.13)
7 (−1.1, 3.7313, 0) (−0.9, 17.1, −16.27) (−0.9, 17.1, −23.73)
8 (−1.1, 4.3283, 0) (−0.9, 17.1, −15.67) (−0.9, 17.1, −24.32)
9 (−1.1, 4.9253, 0) (−0.9, 17.1, −15.08) (−0.9, 17.1, −24.93)

10 (−1.1, 5.5223, 0) (−0.9, 17.1, −14.48) (−0.9, 17.1, −25.52)
11 (−1.1, 6.1193, 0) (−0.9, 17.1, −13.88) (−0.9, 17.1, −26.12)
12 (−1.1, 6.7164, 0) (−0.9, 17.1, −13.28) (−0.9, 17.1, −26.72)
13 (−1.1, 7.3134, 0) (−0.9, 17.1, −12.69) (−0.9, 17.1, −27.31)
14 (−1.1, 7.9104, 0) (−0.9, 17.1, −12.09) (−0.9, 17.1, −27.91)
15 (−1.1, 8.5074, 0) (−0.9, 17.1, −11.49) (−0.9, 17.1, −28.51)
16 (−1.1, 9.1045, 0) (−0.9, 17.1, −10.89) (−0.9, 17.1, −29.11)
17 (−1.1, 9.7015, 0) (−0.9, 17.1, −10.30) (−0.9, 17.1, −29.70)

18 (blade tip) (−1.1, 0, 10) (−0.9, 17.1, −10) (−0.9, 17.1, −30)
19 (Surge positive unit) (−0.1, 0, 0) (0.1, 17.1, −19) (0.1, 17.1, −21)
20 (Sway negative unit) (−1.1, −1, 0) (−0.9, 16.1, −19) (−0.9, 18.1, −21)
21 (Heave positive unit) (−1.1, 0, 1) (−0.9, 17.1, −18) (−0.9, 17.1, −22)
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Table A3 shows the central points of the counterclockwise marine current turbine
blades. The points expressed in the mobile coordinate system are in their initial position
for a sub-surface current direction (ε) equal to zero degrees.

Table A3. Central points of the counterclockwise marine current turbine blades.

Node pni(BLADE) (m) pni(BODY) (m)
(Blade 1)

pni(BODY) (m)
(Blade 2)

0 (blade base) (−1.1, 0, 0) (−0.9, −17.1, −19) (−0.9, −17.1, −21)
1 (−1.1, 1.075, 0) (−0.9, −17.1, −18.93) (−0.9, −17.1, −21.08)

2 (−1.1, 1.3607, 0) (−0.9, −17.1,
−18.639) (−0.9, −17.1, −21.36)

3 (−1.1, 1.7821, 0) (−0.9, −17.1, −18.22) (−0.9, −17.1, −21.78)
4 (−1.1, 2.2036, 0) (−0.9, −17.1, −17.80) (−0.9, −17.1, −22.20)
5 (−1.1, 2.625, 0) (−0.9, −17.1, −17.38) (−0.9, −17.1, −22.63)
6 (−1.1, 3.1342, 0) (−0.9, −17.1, −16.87) (−0.9, −17.1, −23.13)
7 (−1.1, 3.7313, 0) (−0.9, −17.1, −16.27) (−0.9, −17.1, −23.73)
8 (−1.1, 4.3283, 0) (−0.9, −17.1, −15.67) (−0.9, −17.1, −24.32)
9 (−1.1, 4.9253, 0) (−0.9, −17.1, −15.08) (−0.9, −17.1, −24.93)

10 (−1.1, 5.5223, 0) (−0.9, −17.1, −14.48) (−0.9, −17.1, −25.52)
11 (−1.1, 6.1193, 0) (−0.9, −17.1, −13.88) (−0.9, −17.1, −26.12)
12 (−1.1, 6.7164, 0) (−0.9, −17.1, −13.28) (−0.9, −17.1, −26.72)
13 (−1.1, 7.3134, 0) (−0.9, −17.1, −12.69) (−0.9, −17.1, −27.31)
14 (−1.1, 7.9104, 0) (−0.9, −17.1, −12.09) (−0.9, −17.1, −27.91)
15 (−1.1, 8.5074, 0) (−0.9, −17.1, −11.49) (−0.9, −17.1, −28.51)
16 (−1.1, 9.1045, 0) (−0.9, −17.1, −10.89) (−0.9, −17.1, −29.11)
17 (−1.1, 9.7015, 0) (−0.9, −17.1, −10.30) (−0.9, −17.1, −29.70)

18 (blade tip) (−1.1, 0, 10) (−0.9, −17.1, −10) (−0.9, −17.1, −30)
19 (Surge positive unit) (−0.1, 0, 0) (0.1, −17.1, −19) (0.1, −17.1, −21)
20 (Sway negative unit) (−1.1, 1, 0) (−0.9, −16.1, −19) (−0.9, −18.1, −21)
21 (Heave positive unit) (−1.1, 0, −1) (−0.9, −17.1, −20) (−0.9, −17.1, −20)

Appendix B

To validate the mathematical model of the turbines using the BEM theory developed
in this work, two tests are presented: the first with a wind speed (VW−REF) of 11 m/s in
which, as indicated in Table 4, only the generator torque PID controller is in operation,
and the second with a wind speed (VW−REF) of 15 m/s, in which, as indicated in Table 6
and explained in Section 2.4, both the generator torque PID controller and the collective
blade pitch angle PID controller are in operation. Both tests do not include the effect of
sub-surface currents or the effect of waves.

To carry out a code-to-code comparison between the results obtained with FHYGSYS
and those obtained by FASTv8 under the same conditions, the version of OC3-Hywind
implemented in FHYGSYS was used.

In this appendix, in all of the figures in which the results obtained using FHYGSYS
were compared to those obtained with FASTv8 appear (Appendices B.1 and B.2), both the
titles of the figures and the nomenclature included were the same as those used by FASTv8.

Appendix B.1. Test B1. Wind Speed 11 m/s and Direction 70 Degrees

The adjustment of the FASTv8 parameters to carry out a simulation with the same
conditions as FHYGSYS, was the same as that indicated in the introduction of Appendix E
in [36], with the differences shown in Tables A4 and A5. In the Supplementary Materials,
there is a video with the simulation of Test B1.
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Table A4. Changes in “NRELOffshrBsline5MW_InflowWind_12mps.dat”.

Section Parameter Original Value Modified Value

PropagationDir 0 −70
Parameters for steady wind conditions HWindSpeed 0 11

Table A5. Changes in “NRELOffshrBsline5MW_OC3Hywind_ElastoDyn.dat”.

Section Parameter Original Value Modified Value

Initial conditions
RotSpeed 11.89 0
NacYaw 0 70

Figure A2 illustrates the orientation of the floating system toward the direction of the wind.
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Figure A7. Total integrated hydrodynamic loads from both the potential flow and strip theory at the
WRP point and mooring system fairlead forces of Test B1: (a) surge and sway forces; (b) roll, pitch,
and yaw moments; (c) heave force; (d) force on the fairleads of the floating platform of each mooring
line. T[1], T[2], and T[3] are the nomenclature used by FASTv8 for the fairlead tensions in mooring
lines 1, 2, and 3.

In Figure A7, the WRP point (WAMIT reference point) is named; this point corresponds
to the origin of the inertial coordinate system (see Figure 1) [53]. In Figures A4a and A5a,
the FASTv8 results shown corresponded to the modulus of the total rotor aerodynamic
loads, where we applied Equation (A4) for Figure A4a and Equation (A5) for Figure A5a.

RtAeroM =
√

RtAeroMxh2 + RtAeroMyh2 + RtAeroMzh2 (A4)

RtAeroF =
√

RtAeroFxh2 + RtAeroFyh2 + RtAeroFzh2 (A5)

Appendix B.2. Test B2. Wind Speed 15 m/s and Direction 0 Degrees

As in the previous case, the adjustment of the FASTv8 parameters to carry out a
simulation with the same conditions as with FHYGSYS was the same as that indicated in
the introduction of Appendix E in [36], with the differences shown in Tables A6 and A7. In
the Supplementary Materials, there is a video with the simulation of Test B2.
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Table A6. Changes in “NRELOffshrBsline5MW_InflowWind_12mps.dat”.

Section Parameter Original Value Modified Value

PropagationDir 0 0
Parameters for steady wind conditions HWindSpeed 0 15

Table A7. Changes in “NRELOffshrBsline5MW_OC3Hywind_ElastoDyn.dat”.

Section Parameter Original Value Modified Value

Initial conditions
RotSpeed 12.1 0
NacYaw 0 0

Figure A8 shows the orientation of the floating system toward the direction of the wind.
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Figure A13. Total integrated hydrodynamic loads from both the potential flow and strip theory at the
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