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Abstract: Fishmeal and fish oil substitution in aquafeeds might have adverse effects on fish growth
and health, mainly in carnivorous species, such as Mediterranean yellowtail (Seriola dumerili). Mediter-
ranean yellowtail shows great potential as an alternative aquaculture species due to its fast growth
and high price on the market, but the need for high-quality protein and fatty acid content in its diets
is limiting its production. In order to improve the sustainability of its production, this study was
conducted with 360 fish of 35 g to evaluate the effects on fish growth and health. Six diets were used:
one control diet without replacement, three with FM replacement (FM66, FM33, and FM0) (33%,
66%, and 100% FM replacement), and two with FO replacement (FO50 and FO0) (50% and 100%
FO replacement). The substitution of FM was with vegetable (VM) (corn gluten) and animal (AM)
(krill and meat meal) meals. The reductions in FM and FO of up to 33 and 0%, respectively, did not
affect the growth and survival of S. dumerili at the intestinal morphology level, except for the anterior
intestine regarding the lower villi length and width and the posterior intestine regarding the lower
width of the lamina propria. On the other hand, the substitution of fish ingredients in the diet affects
liver morphology, indicating alterations in the major diameter of hepatocytes or their nuclei. Finally,
diet did not affect the gut microbiota with respect to the control, but significant differences were found
in alpha and beta diversity when FO and FM microbiota were compared. A 66% FM replacement and
total FO replacement would be possible without causing major alterations in the fish.
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1. Introduction

The cost of feed in aquaculture companies could reach up to 50% of total production
costs or even more. Therefore, research and business efforts have aimed to reduce it. The
most common solution has been the decrease in fishmeal (FM) and fish oil (FO) content in
the diets; nevertheless, this substitution could induce adverse effects on fish growth and
health [1,2].

High or complete FM and FO substitutions have been achieved in some trials without
a decrement in growth performance, as in juveniles of European sea bass (Dicentrarchus
labrax) [3], Asian sea bass (Lates calcarifer) [4], gilthead seabream (Sparus aurata) [5,6], or
California yellowtail (Seriola lalandi) [7], even in adult yellowtail (Seriola quinqueradiata) [8].
Generally, high or complete raw fish ingredients provide negative effects on growth and
health status [9]. No formulation has been found that allows 100% substitution of fishmeal
in Seriola spp., registering lower growth with 100% and 90% of FM substitution in S.
quinquieradiata [10] and S. dorsalis [11], respectively. However, with similar FM substitution
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(80%) using a mixture of soybean meal, seaweed meal, and squid meal, no effect on growth
was reported in S. rivoliana [12].

When plant-derived meals are used for FM substitution, likely due to the presence of
anti-nutritional substances (ANFs), a reduction in nutrient digestibility [13–15], alterations
at the hepatic/intestinal level, and/or an increase in digestive transit speed [10,16] may
occur. Total fishmeal substitutions or up to 75% by a mixture of plant protein in juvenile
gilthead seabream reported alterations at the intestinal level, such as a major lamina
propria [17] or a smaller absorption surface due to minor villi in alevin barramundi (Lates
calcalifer) with a 50% fishmeal replacement by soybean [18]. The inclusion of animal meals
also provided alterations in intestinal health, such as in adult rainbow trout with a 50%
FM replacement by insect meal, which caused a reduction in absorptive epithelial surface,
as well as a possible gut inflammation [19]. Negative effects on intestinal histology have
been reported with a total FM replacement by animal-derived meals, but other studies
with substitution found no effect. In juvenile barramundi, a total substitution of FM by
poultry by-product meal resulted in lower digestion and a reduced absorption surface
area [20]; however, there was no evidence of histological alterations in the intestine of
rainbow trout (Oncorhynchus mykiss) with a 60% FM replacement by poultry by-products
meal [21] or in Mozambique tilapia (Oreochromis mossambicus), with total FM replacement
by acid-fermented chicken silage [22].

It is anticipated that FM substitution by alternative protein sources (animal and vegetal
protein alternatives, hydrolysates, algae, and yeasts) will also affect intestinal microbial
composition [9]. In gilthead seabream, total FM substitution by a vegetable diet (soybean,
broad bean, wheat, pea, and sunflower) resulted in reported differences at the taxonomic
level but not in terms of diversity [23]. Nevertheless, high FM substitution (60%) by vegetal
meal (soybean, peas, and canola) decreased the richness and diversity of gut microbiota
in rainbow trout [24]. If FM is substituted by animal-derived meals, in juvenile seabream,
a minor number of operational taxonomic units (OTUs) and microbial richness [25] was
observed when 75% was substituted by meat and bone meal [25]. On the other hand, no
differences were found with total substitution by poultry by-product meal [26]. Studies
using insect meal for FM replacement have reported an increase in diversity [27–29].
Replacing total FM with a mixture of animal and vegetable meals did not alter the gut
microbiota in juvenile dusky kob (Argyrosomus japonicus) [30].

With FM substitution up to 25% by animal protein blend, at the liver level, negative
effects were also observed, registering enlarged hepatocytes in juvenile Japanese sea bass
(Lateolabrax japonicus) [31] or vacuolization and displacement of nuclei with 60% FM re-
placement by soybean concentrate in juvenile Totoaba macdonaldi [32]. In hybrid grouper
(Epinephelus Fuscoguttatus♀× Epinephelus Lanceolatus♂), liver alterations were observed
after the inclusion of animal protein mixture up to 80%, inducing hepatic steatosis [33].
In alevins seabream, total FM replacement by algae meal and total FO replacement by
algae oil showed no differences; all groups looked similar in appearance [34]. Both plant
and animal alternative protein sources can have negative effects on the intestinal and liver
health of fish [9].

On the other hand, if FO is substituted by vegetal oils (VOs), the main problem is
the lack of n-3 highly unsaturated fatty acids (HUFAs) in the diets [35]. This is the reason
that in marine fish, the use of vegetable oils as a unique lipid source is limited to those
species that have a minimum capacity to convert linoleic acid into arachidonic (ARA), and
conversion of linolenic acid into EPA and DHA, such as gilthead seabream, cod (Gadus
Morhua), sea bass, or yellowtail [36].

In seawater species, like adult seabream, fish oil substitution of 60% by vegetable
oils presented differences in hepatocyte size due to the fat accumulation, displacing the
nuclei towards the periphery [37], therefore altering the cellular structure. Conversely, no
intestinal and hepatic changes were found in juvenile European sea bass (Dicentrarchus
Labrax) [38] or juvenile sharp snout seabream (Diplodus puntazzo) [39] fed diets with soybean
oil up to 60%.
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In studies with fish oil substitution, different effects on fish have been found; in
juvenile seabream, a 60% FO substitution by camelina sativa oil did not affect alpha
and beta diversity, but a lower abundance of lactic acid bacteria was found, indicating
a potentially negative effect on microbiota in gilthead seabream [40]. If the substitution
is performed by an oil mixture, the microbiota was split into two groups (Bray–Curtis
dendrogram), control and experimental, without affecting richness or diversity [41]. Similar
results were found in juvenile European sea bass where very high or complete substitution
of FO by a mixture of vegetable oils neither affect the richness and diversity of the intestinal
mucosa [3]. The difference in fatty acid composition between vegetable oils and fish oil
can influence the function and fluidity of cell membranes, potentially affecting bacterial
adhesion and altering the intestinal microbiota profile [41].

In S. dumerili, nutritional studies have also been performed to evaluate the effect of
FM substitution. Alternative plant protein sources, like soybean, reported lower growth
with an FM substitution higher than 50% using soybean [42–44]. Nevertheless, with a
mixture of vegetal and animal protein sources, it was possible to achieve up to 66% FM
replacement [45,46]. Studies in juvenile Mediterranean yellowtail of FO substitution have
also been carried out, achieving a total replacement by vegetal oil mixture without effect
on growth and survival [47,48]. In other species, such as S. lalandi, a total FO replacement
by canola oil produced lower growth in juvenile fishes [49], and 90% FM replacement by
soy protein concentrate did not have an effect on growth [50]. S. quinqueradiata registered
similar results since a 25% FM replacement by meal mixture induced lower growth in
juvenile fish [51]; meanwhile, a total FO replacement by olive oil did not have an effect [52].

At the intestinal level, total or up to 70% FM substitutions reduced the villus height in
S. dorsalis, and a 20% soybean inclusion revealed a significant reduction in muscular fold
number and height [11] or the size of enterocytes and microvilli in S. dumerili [44]. The
effects of FM replacement on the intestinal microbiome in S. dumerili species are scarce. For
example, a study of probiotic addition in the diet did not report a relevant effect [53]. In
another Seriola spp., S. lalandi, a comparison among adult wild and aquaculture fish reported
differences in bacterial composition and diversity, with major microbiome diversity in wild
fishes [54]. When FM was partially replaced, a diet containing 30% soybean meal did not
show significant differences [55]; however, in S. rivoliana, juvenile fish fed with similar diets
exhibited different alpha and beta diversity [56].

Therefore, in this study, in order to achieve the highest level of sustainability, different
levels of FM and FO substitution into the diet were assayed in S. dumerili, and their possible
effects on growth and health status were evaluated.

2. Materials and Methods
2.1. Fish and Experimental Diets

A total of 360 S. dumerili fish from the Futuna Blue S.A. company (Cádiz, Spain) were
acclimatized for a month to laboratory conditions before starting the trial. During this
time, fish were fed up to apparent satiation twice daily (9:00 a.m.–4:00 p.m.) with a control
diet (Table 1), six days a week. Water parameters were constantly monitored: temperature
21.5 ± 2.4 ◦C, salinity 31 g·L−1 (31.5 ± 4.1 g·L−1), pH from 7.5 to 8.0, and dissolved oxygen
8 mg·L−1. After the acclimatization period, fish were randomly distributed in 18 tanks
(20 fish/tank; average weight 38.4 ± 11.6 g). The animals were anesthetized with clove oil
at 30 mg·L−1, containing 87% eugenol (Guinamas, Valencia, Spain) to limit stress during
re-distribution. The trial lasted 154 days. The fish were sampled every 28 days to determine
growth and survival data.
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Table 1. Formulation and proximate composition of the experimental diets.

C FM66 FM33 FM0 FO50 FO0

Ingredients (g/Kg)
Fishmeal 1 525 350 175 525 525
Wheat meal 2 235 108 43 235 235
Wheat gluten 3 130 130 140 180 130 130
Corn gluten 4 100 100 100
Defatted Krill 5 120 230 345
Meat Meal 6 80 198 250
Linseed oil 9 18
Palm oil 36 72
Fish oil 90 92 88 95 45 0
L-Methionine 3 5
L-Lysine Clh 3 5
v Multivitamin and minerals mix 20 20 20 20 20 20
Analyzed composition (g/kg dry matter)
Dry matter (DM) 888 888 895 902 894 899
Crude protein (CP) 530 580 604 633 534 540
Crude lipid (CL) 139 142 138 137 133 135
Ash 103 106 121 115 87 87
Mainly Amino acids a (g/kg dry matter)
Arginine 35.1 31.9 37 34.5 34.8 34.6
Leucine 25.8 27.4 27.1 26.7 26 25.9
Lysine 33.3 29.2 32.1 28 32.9 33
Methionine 11 9.9 11.6 12.5 11.1 11.4
Mainly Fatty Acids b (g/kg dry matter)
EPA 19.65 17.74 15.07 13.23 13.97 7.63
DHA 15.33 12.85 10.52 8.97 10.91 7.08
ARA 1.01 0.87 0.74 0.62 0.73 0.39
LC-PUFA c 48.31 44.97 41.08 38.27 34.44 20.31
Calculated values
µ Energy (kJ/g) 23.8 24.1 23.7 23.8 24.5 24.0

Note: Diet formulations presented in this table have been previously published in [45,48]. 1 Fishmeal (93.2%
DM, 70.7% CP, 8.9% CL, 15.1% ash). 2 Wheat meal (92.4% DM, 17.1% CP, 2.4% CL, 78.3% CHO, 2.4% ash).
3 Wheat gluten (93.3% DM, 8.1% CP, 9% CL, 73.9% CHO, 9% ash). 4 Corn gluten (93.3% DM, 72.9 CP, 0.9% CL,
25.3% CHO, 0.9% ash). 5 Extracted krill meal: product obtained by removing the fat with ethanol (87.8% DM,
69.7% CP, 2.9% CL, 8.17% CHO, 11.6% ash); VALGRA S.A. Beniparrell. Valencia. Spain. 6 Meat and bone meal
(97.0% DM, 53.1% CP, 15.3% CL, 4.7% CHO, 26.9% ash, 17.69 kJ−1 energy); VALGRA S.A. Beniparrell. Valencia.
Spain. v Multivitamin and minerals mix (values are g/kg except those in parentheses): premix: 25; Choline, 10;
DL-a-tocopherol, 5; ascorbic acid, 5; (PO4)2Ca3, 5. Premix composition: retinol acetate, 1,000,000 IU/kg; calciferol,
500 IU/kg; DL-a-tocopherol, 10; menadione sodium bisulfite, 0.8; thiamine hydrochloride, 2.3; riboflavin, 2.3;
pyridoxine hydrochloride, 15; cyanocobalamin, 25; nicotinamide, 15; pantothenic acid, 6; folic acid, 0.65; biotin,
0.07; ascorbic acid, 75; inositol, 15; betaine, 100; polypeptides, 12. a Total amino acids values in [47]. b Total fatty
acids values in [46,48]. c LC-PUFA: long-chain polyunsaturated fatty acids. µ Energy (%) = (51.8 × (%C/100)) −
(19.4 × (%N/100)). Calculated according to [57].

With the aim of evaluating the effect of protein and lipidic substitution in diets,
six diets were formulated. Diets were formulated with different levels of fishmeal and
fish oil substitution by a mixture of animal and vegetable meal and a mixture of vegetable
oils. Diets formulation and composition are shown in Table 1. Diet C had fishmeal as the
main protein source and fish oil as the main lipid source. Diets FM66, FM33, and FM0 had
FM percentages of 66%, 33%, and 0%, respectively; the rest of the protein percentage was
substituted with corn gluten meal, krill meal, and meat and bone meal. Diets FO50 and
FO0 had FO percentages of 50% and 0%, respectively; the FO was replaced by a mixture of
palm oil and linseed oil (4:1).

2.2. Chemical Analysis

Chemical analyses of the dietary ingredients were performed prior to diet formulation
and after the fabrication to check the final diet composition. Fish diets ingredients com-
position were analyzed according to [58] procedures: dry matter, official method 934.01
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(105 ◦C to constant weight); ash, official method 942.05 (incinerated at 550 ◦C for 5 h);
crude protein, official method 990.03 (determined by direct combustion method DUMAS
using LECO CN628) and crude lipid, official method 920.39 (extracted with methyl ether
using ANKOMXT10 Extractor) The energy was calculated from the C (g) and N (g) balance
(GE = 51.8 × C − 19.4 × N) according to [57]. Nitrogen and carbon were analyzed by the
Dumas principle (TruSpec CN; Leco Corporation, St. Joseph, MI, USA).

2.3. Histological Analysis

Samples of proximal and distal intestines from three fish per tank were taken at the
end of the experiment, fixed in formalin, dehydrated in a different ethanol concentration,
and fixed in paraffin. Sections (5 µm) were dyed with PAS-Alcian blue for intestine samples
and eosin–hematoxylin for liver samples and observed through light microscopy.

The histological analysis performed was a quantitative analysis. Measurements used
a combination of parameters proposed by different authors [17,59,60]. Specifically, the
histological analysis focused on the measurement of the length and width of the intestinal
villus in the proximal and distal intestine and liver. In gut samples, six villi were measured
for each of the three fish collected in each of the three tanks belonging to the same treatment.
In addition, the thickness of the lamina propria and the submucosa, muscular, and serous
layers were analyzed. In liver samples, six nuclei and six hepatocytes were measured.

All the images of samples were taken with an optical microscope Nikon JAPON 0.90.
The images were analyzed using Photoshop CC 2014 software and a conversion into metric
units.

2.4. 16S rRNA Sequencing and Library Construction

For metagenomic analysis, fish (n = 7) were included from those diets with the max-
imum FO and FM replacement, with the best performance: FM33 and FO0. Genomic
DNA (gDNA) extraction was performed from posterior intestinal tract samples using the
commercial house DNeasy ® Tissue Kit (QIAGEN, Hilden, Germany). The extracted DNA
was evaluated for purity and concentration using a NanoDropTM 2000 spectrophotometer
(Thermo Scientific, Milan, Italy). Samples with optical density (OD) readings falling be-
tween 1.6 and 1.9 at 260/280 nm were considered acceptable and sent to Macrogen (Seoul,
South Korea) for 16S rRNA gene-based metagenomic sequencing. Before sequencing, the
quantity of DNA was assessed by processing it through vector 3 fluorometry (Waltham,
MA, USA) with the use of DNA-binding dye (Invitrogen, cat. #P7589, Waltman, MA, USA),
having a final number of 6 individuals per group.

The 16S rRNA gene amplicon libraries were generated following the Illumina system
protocol “16S Metagenomic Sequencing Library Preparation”. First, following the proto-
col, PCR—targeting the V3–V4 variable regions of 16S rDNA—was performed using the
high-fidelity enzyme Platinum® Taq DNA Polymerase (Thermo Fisher Scientific, Milan,
Italy) and the universal primers Pro341F (5′-CCTACGGGNBGCASCAG-3′) and Pro805R
(5′-GACTACNVGGGTATCTAATCC-3′) described by [61]. Subsequently, to verify the
amplicon size, the samples were run on an Agilent 2100 Bioanalyzer, with the expected
size being approximately 550 bp. For the preparation and sequencing of the library, the
protocol described by [62] was followed. Briefly, using a kit the PCR products are purified
using Agencourt AMPure XP Kit (Beckman Coulter Genomics, Milan Italy) for this purpose.
Next, using the Herculase II Fusion DNA polymerase Nextera XT Index Kit V2 (Illumina,
San Diego, CA, USA), the Illumina sequencing adapters (P5 and P7) and dual index are
ligated to the purified amplicons.

The libraries were then purified, and the final size of the amplicons was verified
using the AMPure XP beads purification system (Beckman Coulter Genomics, Milan, Italy)
and Agilent 2200 TapeStation bioanalyzer (Agilent Technologies, Cernuso, Italy). The
expected size of the library was approximately 630 bp. Prior to sequencing, libraries
were quantified by quantitative PCR (qPCR) using the KAPA Library Quantification Kits
for Illumina® platforms (Kapa Biosystems Ltd., London, UK). Finally, libraries pooled
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in equimolar concentrations are multiplexed and sequenced following the 2 × 300 bp
paired-end protocol of the Illumina HiSeq X Ten platform (Illumina, San Diego, CA, USA).

Out of the 15 selected samples (5 from each group), 14 successfully passed the library
quality control (QC) assessment. However, one sample from the control group did not meet
the QC criteria and was rejected.

2.5. Bioinformatics Analysis

The quality of reads was assessed after sequencing of amplicons with FastQC soft-
ware v.0.11.9 and Qiime2 software v.2021.4 I tools. Trimming and filtering for quality
were performed with the q2-demux add-on and subsequent denoising with DADA2
via q2-dada2 [63]. Amplicon sequence variants (ASVs) were aligned with MAFFT via
q2-alignment [64] and subsequently used to construct phylogeny with fasttree2 via q2-
phylogeny [65]. Taxonomy was assigned to ASVs using the q2 classify-sklearn feature
classifier [66] with the naïve Bayes taxonomy classifier itself trained against the Silva
139_99% to 16S V3–V4 region reference sequences [67]. Based on the number of assigned
reads, the relative abundances (%) of taxa in each gut microbiota sample were calculated.

In addition, the diversity between serials fed the same experimental diets was evalu-
ated, as well as the variability existing between diets C, FM33, and FO0. For this purpose,
the following alpha diversity indices, which evaluate taxonomic richness and abundance,
were determined: Shannon index, Chao1 index, Evenness index, Simpson index, and
Berger–Parker index. The alpha rarefaction curve, observed features (number of observed
taxa), and Faith’s phylogenetic diversity index have also been determined. On the other
hand, the differences between samples of both groups have been analyzed by beta diversity.
For this purpose, UniFrac, Unweighted UniFrac (presence/absence matrix), and Weighted
UniFrac (presence/absence/abundance matrix) analyses were performed, from which prin-
cipal coordinate analysis (PCoA) plots of three dimensions were constructed. All diversity
indices were obtained using Qiime2 software v.2021.4 [66].

2.6. Statistical Analysis

Growth data and histological analysis were treated using one-way analysis of variance
(ANOVA). The Newman–Keuls test was used to assess specific differences among diets at
0.05 significant levels (Statgraphics, Statistical Graphics System, Version Centurion XVI,
Warrenton, VA, USA).

3. Results
3.1. Growth Data

For 154 days of the trial, no negative effects were found, neither in partial nor complete
fish oil substitution (Figure 1); lower values were observed in fish fed with FM0 diet but
without statistical differences.

A complete fishmeal substitution also affected the survival at the end of the trial,
with a lower percentage (22.8 ± 13%) with respect to control and other experimental diets
(Figure 2).

3.2. Histological Analysis

At the anterior intestine level, fishmeal replacement reduced the length and width of
the villi and the thickness of the muscular layer (Table 2). At the posterior level, wider and
narrower lamina propria and muscle layer, respectively, were registered in the experimental
groups with higher fishmeal substitution (Table 2 and Figure S1).
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Figure 2. Survival per treatment during the growth trial. The asterisk indicates significant differences
between treatments (p < 0.05).

Regarding liver histology, FM replacement decreased the diameter of the hepatocyte
(Table 3 and Figure S2).

On the other hand, at the anterior level, FO replacement affected the width of lamina
propria but without a clear effect, with lower values in FO50 and higher in the FO0 group
(Table 4). Nevertheless, at the posterior level, the substitution induced a clear reduction in
the width of lamina propria (Table 4 and Figure S3). At the posterior level, differences were
also found in the width villi, but again without a clear effect in relation to FO substitution.
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Table 2. Histological measurements of the anterior and posterior intestines in fish fed the experimental
diets (FM replacement) at the end of the growth trial.

C FM66 FM33 FM0 p-Value

Anterior intestine
SL (µm) 48 ± 4 43 ± 4 52 ± 4 58 ± 4 0.083
ML (µm) 147 b ± 10 109 a ± 9 140 b ± 10 165 b ± 10 0.001

SML (µm) 83 ± 5 b 63 ± 4 a 73 ± 5 ab 69 ± 5 ab 0.015
VL (µm) 661 ± 46 b 467 ± 46 a 507 ± 47 a 430 ± 44 a 0.003

WVL (µm) 64 ± 4 b 61 ± 4 ab 57 ± 4 ab 48± 4 a 0.035
WLP (µm) 15.6 ± 1.3 16.3 ± 1.3 15.9 ± 1.3 15.3 ± 1.2 0.946

GC 60 ± 5 47 ± 5 53 ± 5 47 ± 5 0.221
Posterior intestine

SL (µm) 48 ± 4 48 ± 4 58 ± 5 56 ± 4 0.263
ML (µm) 117 ab ± 8 113 a ± 8 147 b ± 10 148 b ± 9 0.007

SML (µm) 67 ± 4 64 ± 4 77 ± 5 60 ± 5 0.140
VL (µm) 510 ± 37 594 ± 29 525 ± 54 494 ± 39 0.169

WVL (µm) 60 ± 3 63 ± 2 55 ± 4 62 ± 3 0.444
WLP (µm) 11.1 a ± 1.2 11.1 a ± 1.7 15.5 a ± 1.1 19.8 b ± 1.3 0.001

GC 43 ± 4 49 ± 3 42 ± 6 51 ± 4 0.379
The values represent the mean ± standard error (n = 18). Different superscript letters indicate significant differ-
ences between treatments (p < 0.05). SL: thickness of serosa layer; ML: thickness of muscular layer; SML: thickness
of submucosa layer; VL: villus length; WVL: width of villi; WLP: width of lamina propria; GC: goblet cell.

Table 3. Histological measurements of liver in fish fed the experimental diets (FM replacement) at the
end of the growth trial.

C FM66 FM33 FM0 p-Value

Nuclei diameter (µm) 59 ± 1 61 ± 1 57 ± 1 62 ± 2 0.432
Hepatocyte diameter (µm) 152 b ± 3 148 b ± 3 141 ab ± 4 130 a ± 6 0.007

The values represent the mean ± standard error (n = 54). Different superscript letters indicate significant
differences between treatments (p < 0.05).

Table 4. Histological measurements of the anterior and posterior intestines in fish fed the experimental
diets (FO replacement) at the end of the growth trial.

C FO50 FO0 p-Value

Anterior intestine
SL (µm) 48 ± 4 55 ± 4 55 ± 4 0.239
ML (µm) 147 ± 10 151 ± 9 174 ± 10 0.076

SML (µm) 83 ± 5 84 ± 4 88 ± 5 0.722
VL (µm) 661 ± 45 541 ± 51 542 ± 61 0.148

WVL (µm) 64 ± 4 50 ± 5 65 ± 6 0.057
WLP (µm) 15.6 ab ± 1.4 12.3 a ± 1.6 18.3 b ± 1.9 0.049

GC 60 ± 5 48 ± 5 48 ± 7 0.166
Posterior intestine

SL (µm) 48 ± 4 45 ± 4 47 ± 4 0.864
ML (µm) 117 ± 8 128 ± 8 134 ± 8 0.385

SML (µm) 67 ± 4 65 ± 4 69 ± 4 0.811
VL (µm) 510 ± 37 433 ± 35 498 ± 49 0.201

WVL (µm) 60 ab ± 3 51 a ± 3 64 b ± 4 0.030
WLP (µm) 11.1 a ± 1.2 10.4 a ± 1.2 15.3 b ± 1.7 0.005

GC 43 ± 4 33 ± 4 42 ± 5 0.108
The values represent the mean ± standard error (n = 18). Different superscript letters indicate significant
differences between treatments (p < 0.05); Newman–Keuls test. SL: thickness of serosa layer; ML: thickness of
muscular layer; SML: thickness of submucosa layer; VL: villus length; WVL: width of villi; WLP: width of lamina
propria; GC: goblet cell.
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At the liver level, FO substitution did not affect the diameter of hepatocytes; instead, a
reduction in nuclei was observed with respect to control diets (Table 5 and Figure S4).

Table 5. Histological measurements of the liver in fish fed the experimental diets (FO replacement) at
the end of the growth trial.

C FO50 FO0 p-Value

Nuclei diameter (µm) 59 a ± 1 54 b ± 1 56 ab ± 2 0.011
Hepatocyte diameter (µm) 152 a ± 3 133 b ± 3 142 b ± 4 0.001

The values represent the mean ± standard error (n = 54). Different superscript letters indicate significant
differences between treatments (p < 0.05); Newman–Keuls test.

3.3. Gut Microbiota

After quality filtering, a total of 1,028,047 reads were obtained, with reads per sam-
ple ranging from 41,952 to 63,319. The mean of the percentage of non-chimeric merged
sequences was 82.37 ± 3.05%. A total of 17 phyla and 34 genera were identified. From the
17 phyla identified in Seriola dumerili intestinal gut, more than 94% of operational taxonomic
units belonged to six of them. The most abundant phyla (≥5%) common to all fish analyzed
were Spirochaetes, Proteobacteria, and Actinobacteria.

Based on the diet, we registered slight differences (Figure S5). Control diet fish were
dominated by the phylum Proteobacteria (57 ± 13.3%), followed by Spirochaetes (16 ± 12.1%),
and Bacterioidetes (10 ± 4.5%). Within the phylum Proteobacteria, the most numerous genera
were Legionella (7.1%), Rhodobacterium (4.9%), and Sphingomona (3%). The Brevinema spp.
(15.6%) of the phylum Spirochaetota also stands out. Other genera with less representation
are Corynebacterium (1.8%), Staphylococcus (1.75%), and Mycobacterium (1.4%).

The FM33 diet showed a similar dominance: Proteobacteria (61 ± 12%) followed by
Spirochaetes (22 ± 12%), but the third most abundant was Actinobacteria (10 ± 5.8%). At
the genus level, the highest representation corresponds to Brevinema (21.9%), followed by
Legionella (6.75%), Vibrio (6%), Rhodobacterium (4.3%), Marivita (3.9%), and Sphingomona
(2.4%). The Mycobacterium spp. from the Actinobacteriota phylum also has an important
presence (9.4%).

If FO was totally replaced (FO0), the intestinal microbiota was also dominated by
Proteobacteria (62 ± 13.3%), with the following genera standing out: Rhodobacterium (7.3%),
Sphingomona (5.2%), Legionella (2.5%), and Photobacterium (3.4%). Firmicutes were repre-
sented by 13 ± 1.5% and Bacterioidetes by 9 ± 5.1%. In the phylum Firmicutes, the genera
Staphylococcus (3.6%) and Thermicanus (2%) were also abundant. Other genera with lower
representation are Brevinema (2.6%), Mycobacterium (1.4%), Atopobium (1.6%), and Lactobacil-
lus (2.6%).

Significant differences were found for Cyanobacteria, with lower values in the fish fed
FM33. Although no significant differences were found in the rest of the phyla, perhaps
due to the high intra-group variability, with FM replacement, the phyla Bacteroidetes and
Firmicutes show a downward tendency, while the phyla Actinobacteria, Proteobacteria,
Spirochaetes, and Dependentiae have a tendency to increase. When FO is substituted, the
relative abundance of Spirochaetes and Actinobacteria tends to decrease and Firmicutes and
Cyanobacteria to increase. In the case of the analysis of bacteria at the genus level, no
differences were found, quite possibly the same as at the phylum level due to the variability
in the groups.
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Thanks to the Venn diagram, a broader perspective is shown (Figure 3). A core of six
bacterial genera was shared by three experimental groups. Only one genus was common
between FM33 and the control diet (Babeliaceae), and the other between the control and
FO0 diets (Staphylococcus). A greater number of genera specifically associated with the
diet FO0 were found. Photobacterium, Enhydrobacter, Thermicanus Atopobium, Lactobacillus,
Prevoleta, Neisseria, and Muribaculaceae genera were exclusive to FO0, while Cloacibacterium
and Corynebacterium were only observed in fish fed C and Marivita and Babeliae in FM33.
Finally, significant differences in α-diversity were found between FM33 and FO0 but not
with the control group (C). Fish fed the FO0 diet not only had a higher number of taxa
observed than FM33 (Figure 4A) but also major species richness using Chao1 (Figure 4B)
and Shannon (Figure 4C) indices. On the other hand, surprisingly, the control diet presented
middle values without differences in either FO0 or FM33. β-diversity was visualized using
a PCoA Unweighted Unifrac distance plot, and significant separation of the gut microbial
compositions by treatment was found (Figure 5). The samples from the FO0 diet were
grouped and separated from the FM33 samples.
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4. Discussion

Attending to the results, it could be confirmed that high fishmeal and total fish oil
substitution by a mix of alternative vegetal and animal sources is possible without affecting
the growth and health of S. dumerili. Nevertheless, a total fishmeal substitution reported
higher mortality. Previous work with total FM substitution registered similar results,
likely as a consequence of the presence of antinutrients in plant protein sources. It has
been reported that antinutrients may cause immune depression events [13] and nutrient
deficiencies [68], leading to a deterioration of intestinal health, increasing the susceptibility
to pathogens, and finally to death [2,69]. These results are in discordance with previous
studies in juvenile Seriola dumerili, when soybean was used to replace FM by up to 50%,
and lower growth was obtained, but without affecting survival [42,43]. In this trial, the FM
replacement affected survival but did not affect growth.

As has been described, the poor results obtained with a total FM substitution may
be due to the fact that plant protein sources induce intestinal inflammation [9,70]. This
inflammatory response is characterized in salmonids by a shortening of mucosal folds and
a widening of lamina propria [60] due to the infiltration of inflammatory cells identified
as lymphocytes, macrophages, eosinophils and cells, granular neutrophils, and diffuse
immunoglobulin M (IgM) [71]. However, the inclusion of plant protein sources does not
produce such striking alterations in other species as seabream [72], and there is no available
information about the effect on Mediterranean yellowtail, but it has been shown that
high FM replacement (75%) can cause a decrease in enterocytes and villi size at intestine
level [44]. In this work, the results showed significant differences in the length of the villi
between the different diets, mainly in the anterior intestine, but it cannot be stated that the
surface has been reduced with the substitution since it also depends on the number of villi.
This is contrary to what was observed in perch [73] and turbot [74], in which differences
were found in the posterior intestine with a shortening of villi when FM was substituted by
soybean and poultry by-product meal. In the posterior intestine, a thickness increase in
lamina propria (LP) was observed with FM substitution; in fact, the FM0 group registered
the thickest LP, close to enteritis symptom. Similar results were reported in turbot, where
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the replacement of fishmeal caused enteritis in the posterior intestine [74]. FO substitution
also induced LP differences in both the anterior and posterior intestines, registering major
values. In previous studies, similar data were observed in this species [47], likely caused by
an inflammatory process since the LP width is usually related to the cell number that forms
it and the level of eosinophilic cell infiltration.

An inadequate diet can cause hepatocyte vacuolization, fat degeneration, metabolic
changes, or necrosis [75,76]. The alterations found can be different depending on whether
the replacement is proteinic or lipidic. Smaller hepatocyte diameter was observed with
FM substitution in this work, which is a hallmark of hepatic apoptosis, usually considered
an indicator of unbalanced nutrition [9]. Similar results were obtained in Ameiurus nebulo-
sus [77] and Sparus aurata [78], where a complete FM replacement led to the appearance of
inflammatory signs and irregular hepatocytes with smaller nuclei.

In this work, FO substitution caused a decrease in the hepatocyte size and nuclei,
which is also considered an indicator of fish malnutrition. In fish fed with vegetable oils,
similar results were found in gilthead seabream [79] or Japanese sea bass [80] when a 60%
FO replacement resulted in steatosis and the appearance of vacuoles in the hepatocyte.
A higher hepatocyte size by leukocyte infiltration and a reduction in its nuclei have also
been reported as indicators of liver damage, possibly due to the presence of anti-nutritive
substances in the diet [79]. If we attend to the visual aspect of the liver after FM substitution
(Figure S3), a significant presence of fat can be observed, especially in the fish fed with the
control feed with respect to experimental diets. The low number of vacuoles may be related
to lower enzyme activity [79].

Microbial communities are also a tool to evaluate intestinal health status [81]. In
fact, an association has been established between a high richness and relative abundance
in the gastrointestinal tract with good metabolic capacity and animal welfare [82]. A
substitution of traditional protein sources for alternative plant or animal sources ought not
to cause a negative effect on gut microbial communities [24]. In fact, a moderate fishmeal
substitution did not report a significant effect on microbiota diversity and composition in
seabream [83]; however, higher or complete substitutions of FM can affect the immune
system [69], causing inflammatory secretions [84] or enteropathy [85]. As far as is known,
no studies have been conducted to date on the influence of fish oil and fishmeal substitution
on the gut microbiota of Seriola dumerili.

In this work, the experimental groups with the highest FO and FM substitution with
no significant differences in terms of growth and survival with respect to the control group
were chosen to evaluate their microbiota, with the aim of confirming that no relevant
alterations have been induced by the fish source replacement.

Regardless of diet, in this study, the dominant phylum was Proteobacteria, as in other
species: salmon [86], seabream [2,87], carp (Cyprinus carpio) [88], or trout [24]. In previ-
ous studies in Seriola lalandi, farmed fish registered Firmicutes as the dominant phylum;
meanwhile, in wild fish, it was Proteobacteria [54,89]. In fact, Proteobacteria is usually the
dominant phylum in animals of non-herbivorous trophic levels [90]. In the control diet, the
most relevant classes were Gammaproteobacteria and Alphaproteobacteria, which are relevant
for adaptation to environmental changes [56]. In particular, Gammaproteobacteria are key
in animal nutrition and maintenance of other beneficial bacteria [91]. On the other hand,
the Photobacterium spp. of the Vibrionaceae family was over-represented in Mediterranean
yellowtail after fish oil replacement. In this work, Photobacterium was only found in rep-
resentative amounts in FO0. These genera have also been associated with fish welfare
as a result of a mutualistic relationship with their host for chitin digestion, but also, in
some cases, with pathogens and producers of enzymes such as neuraminidases that can
cause tissue damage [92,93]. Other abundant phyla identified in the control diet were Bac-
teroidota, Actinobacteriota, and Firmicutes, coinciding with those reported in S. rivoliana [56]
and S. lalandi [54,94]. The latter two are phyla related to carbohydrate and polysaccharide
metabolism [95,96]. However, when dietary fishmeal is substituted, the abundance of
Actinobacteria increases, especially the Mycobacterium spp., which could be due to the fact
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that dietary needs have not been adequately met, which is known for its role as a producer
of secondary metabolites in the gut [91]. Nevertheless, the opposite case occurs in FO sub-
stitution in which the presence of Actinobacteriota decreases; although the genus Atopobium
is only found in fish fed without FO, Atopobium spp. has the ability to cause periodontitis,
vaginitis, and urethritis, as well as bacteremia and sepsis [97]. Furthermore, the presence
of the class Ruminococcaceae in fishes fed FM33 and FO0 may be related to the production
of butyrate from non-digestible complex polysaccharides, which is known to benefit host
physiology, improving the ability to obtain energy from the diet, reinforcing the intestinal
epithelial barrier and modulating immune function [98]. When fishmeal was replaced, a
relatively high abundance of Brevinema spp. was observed, decreasing considerably in fish
fed without FO. Although some species are known to cause disease in vertebrates, they
are also known as endosymbionts, participating in lignocellulose digestion and nitrogen
fixation in termites [99]. In addition, the enrichment of Brevinemia and other species of the
family Spirochaetaceae in salmon has recently been linked to the expression of genes involved
in immune response and distal gut barrier function [27]. Similarly, bacteria of the phylum
Spirochaetes are involved in the fermentation of carbohydrates, transporting non-digestible
sugars across their cell membranes [100]. In fish fed with high levels of dietary fish oil, the
abundance of the Bacilli class, which dominates the phylum Firmicutes, is notable. Although
there are species that might cause disease, Bacillus spp. is being used to improve water
quality [101] or as probiotics to improve growth and immune status [102–105]. On the
other hand, the increase in cyanobacteria in fish fed FO0, significantly higher than FM33,
may be relevant since it has been demonstrated to produce metabolites that alter nutrient
uptake [106].

According to α- and β-diversity analysis, a clear separation was observed among the
FO0 and FM33 groups; meanwhile, the control diet registered a middle value without
significant differences with FM33 and FO0. Like in this work, in Seriola lalandi or gilthead
seabream, a minor diversity was reported after FM substitution by plant protein as an
alternative to animal protein sources [25,94]. Similar results can also be found in largemouth
bass (Micropterus salmoides) using algae meal [107] or Nile tilapia (Oreochromis niloticus)
using rice protein concentrate [108]. However, in salmon, a complete FO substitution did
not alter the intestinal bacterial population using a mix of rapeseed, linseed, and palm
oils [109]. In Nile tilapia, algae oil inclusion does not affect alpha microbiome diversity
either [110]. In this study, no differences were found with respect to the control diet,
but there were differences in those fish fed with high fishmeal substitution, which is in
concordance with previous studies detailed above.

In summary, it can be concluded that a total FO and high FM substitution is possible
without affecting the growth performance and has no relevant effect on intestinal histology
and microbiota. These results suggest a robust tolerance of the Mediterranean yellowtail
to the tested levels of fishmeal and fish oil substitution, highlighting the potential for
sustainable aquaculture practices without compromising intestinal health and microbial
balance. Nevertheless, the studies should continue in order to find more sustainable raw
materials to include in the diets without affecting growth performance and intestinal health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cimb46010049/s1. Figure S1: microphotographs of posterior
intestine section of yellowtail: (a) C (20×), (b) FM66 (20×), (c) FM33 (20×), and (d) FM0 (20×);
hematoxylin and eosin staining. Figure S2: microphotographs of posterior intestine section of
yellowtail: (a) C (20×), (b) FO50 (20×), and (c) FO0 (20×); hematoxylin and eosin staining. Figure S3:
microphotographs of liver section of yellowtail: (a) C (20×), (b) FM66 (20×), (c) FM33 (20×), and
(d) FM0 (20×); hematoxylin and eosin staining. Figure S4: microphotographs of liver section of
yellowtail: (a) C (20×), (b) FO50 (20×), and (c) FO0 (20×); hematoxylin and eosin staining. Figure S5:
16S OUT relative abundance (%) of the main taxa at the phylum level present in the control diet (C),
the FM substitute diet (FM33), and FO replacement (FO0).

https://www.mdpi.com/article/10.3390/cimb46010049/s1
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