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ABSTRACT In this article we carry out a comparison between early (feature) and late (score) multimodal
fusion, for the two-class problem. The comparison is made first from a general perspective, and then from
a specific mathematical analysis. Thus, we deduce the error probability expressions for the uncorrelated
and correlated multivariate Gaussian distribution, assuming perfect model knowledge (Bayes error rates).
We also deduce the corresponding expressions when the model is to be learned from a finite training
set, demonstrating its convergence to the Bayes error rates as the training set size goes to infinite. These
expressions also demonstrates that early fusion is the best option with model knowledge, and that both early
and late fusion degrade due to a finite training set. This degradation is showed to be greater for early fusion
due to the dimensionality increase of the feature space, so, eventually, late fusion could be a better option in a
practical setting. The mathematical analysis also suggests the convenience of using a, so called, convergence
factor, to quantify if a training set size is appropriate for the error probability to be close enough to the
Bayes error rate. Different simulated experiments have been made to verify the validity of the mathematical
analysis, as well as its possible extension to non-Gaussian models.

INDEX TERMS Multimodal two-class classification, early fusion, late fusion, probability of error, training
set size.

I. INTRODUCTION
Data fusion is a consolidated concept in the areas of pattern
recognition, machine learning and artificial intelligence. It
refers to methods which combine data from different chan-
nels, with the aim of improving the performance of the overall
data processing system. There exists a number of compre-
hensive reviews which introduce a variety of taxonomies,
categorizations and bibliographical analysis. Although some
approaches are general [1], most of the reviews have different
perspectives: modality fusion [2], [3], [4], sensor fusion [5],
[6] or classifier combination [7], [8]. Federated analytics [9]
is also a recent related paradigm where fusion from differ-
ent parties is implemented without revealing the private raw
data. Apart from specific issues, all the approaches share
some common essential concepts. One especially relevant is
the distinction between early and late fusion. Early fusion
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normally refers to directly combining signals from differ-
ent source sensors or, most commonly, to combine features
separately extracted from every source and then provided to
a unique classifier. On the other hand, late fusion refers to
fuse scores (soft late fusion) or decisions (hard late fusion)
provided by different classifiers operating on the same target
problem.

So far, there exists some research comparing early and
late fusion [10], [11], [12], [13], [14], [15], [16], [17].
Unfortunately it is focused in specific application domains
and are mostly experimental. There is a lack of con-
tributions in establishing first principles from theoretical
approaches in this area. In this article we intend to con-
tribute to fill this gap by providing some understanding
about the implications of selecting early or late fusion and
even some guidelines for selecting the most appropriate
option. The contributions have general interest (not applica-
tion domain dependence), and are supported by mathematical
analysis.
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To be specific we will consider early fusion of features cor-
responding to different modalities. Any preprocessing related
to modality synchronization, feature normalization or dimen-
sion reduction is out of the scope of this work. Thus early
fusion will consider a feature vector formed by the direct con-
catenation of features from individual modalities. This vector
will be the input to a unique classifierwhich provides a unique
score to be compared with a threshold to decide between class
1 and class 2. However, in (soft) late fusion every modality
feature vector is the input to a separate classifier, then scores
from all the modalities are fused to give a unique score
before comparison with a threshold. Fig. 1 describes the two
options. We consider I modalities, the feature vector of the
i-th modality is xi, so the early fusion concatenation of all the
feature vectors is vector x = [x1 . . . xI ]T , this is the input to a
unique classifier providing the score s and, after thresholding,
a binary decision d of early fusion. Correspondingly, si is the
score given by every modality classifier, ss the (soft) fused
score and ds the binary decision of late fusion.

The paper is organized as follows. In the next section
we provide a general comparison between early and late
fusion, in terms of classifier error probability, both assuming
known or estimated models. The comparison is valid for any
class-conditional distributions of the data. In Section III we
present a mathematical analysis for the multivariate uncorre-
lated Gaussian case. We deduce expressions for the probabil-
ities of error assuming knowledge of the model parameters
(Bayes error rates) as well as considering that the parameters
are to be learned from training data. In Section IV the analysis
is extended to the correlated case. Discussion and conclusions
are respectively considered in Sections V and VI.

II. A GENERAL COMPARISON
Let us assume the scenario of two classes (k = 1, 2). Suppose
we perform early fusion by selecting the class that maximizes
the a posteriori probability given x = [x1 . . . xI ]T , i.e., the
decision rule will be:

P
(
k = 1

/
x
) k=1

>

<
k=2

P
(
k = 2

/
x
)

⇔ P
(
k = 1

/
x
) k=1

>

<
k=2

0.5.

(1)

where we have taken into account that P
(
k = 1

/
x
)

+

P
(
k = 2

/
x
)

= 1. Note that rule (1) implies minimization of
the probability of error if we assume that the costs of being
wrong in the decisions are symmetric and normalized to 1.
That is, with exact knowledge of the a posteriori probability
P
(
k = 1

/
x
)
, there is no other fusion rule that allows us to

reduce the probability of error more than (1).
Let us now assume that we perform late fusion. For this

we generate an a posteriori probability (score) separately for
each modality si = P

(
k = 1

/
xi
)
i = 1 . . . I . Notice again

that since P
(
k = 1

/
xi
)

+ P
(
k = 2

/
xi
)

= 1 i = 1 . . . I ,
it is sufficient to consider the defined scores si i = 1 . . . I .
Then we generate a new score ss by means of a certain fusion
function ss = f (s1, . . . , sI ) 0 ≤ s ≤ 1, and the new decision

rule will be

s
k=1
>

<
k=2

0.5. (2)

Notice that f (s1, . . . , sI ) = f
(
P
(
k = 1

/
x1
)
, . . . ,

P
(
k = 1

/
xI
))

is ultimately a function of the multivariate
random variables xi i = 1 . . . I , which will in general
be different from the function P

(
k = 1

/
x
)
in (1). There-

fore (2) can never achieve a lower error probability than (1).
However, exact knowledge of P

(
k = 1

/
x
)
is only strictly

possible if we have an infinite training set and assume
statistical consistency in the estimation of P

(
k = 1

/
x
)
, i.e.

P̂
(
k = 1

/
x
) N→∞

→ P
(
k = 1

/
x
)
. Where N is the size of the

training set for each class (for simplicity we will assume the
same for both classes throughout the paper). From a practical
point of view accurate estimation implies having ‘‘suffi-
ciently’’ large training set sizes for each class. Unfortunately
it is not easy to determine what should be an appropriate
size, as it depends on several factors like type of classifier,
data distributions and class separability. Efforts have been
given to this problem ([18], [19], [20], [21], [22], [23] are
some representative examples), the research was basically
experimental and the conclusions not easy to generalize.
Recently some theoretical learning curves have been deduced
in the framework of Bayesian classifiers with parametric
models [24]. In any case, many real data problems in machine
learning are constrained by a limited amount of available
samples for training. Moreover, as far as we are concerned
here, it is important to bear in mind that training sizes must
increase with increasing feature vector dimension, and they
do so in a generally nonlinear fashion. So, given a training
set size N , the increase in the dimension of x = [x1 . . . xI ]T

with respect to the dimensions of xi i = 1 . . . I , means that
the actual performance of early fusion could severely degrade
and be under the performance of late fusion. Next we delve
into this problem.

Let us focus on Bayesian generative methods. Suppose a
feature vector y. The estimation of the a posteriori probability
is done by applying Bayes’ rule

P̂
(
k = 1

/
y
)

=
p̂
(
y
/
k = 1

)
P̂1

P̂ (y)

=
p̂
(
y
/
k = 1

)
P̂1

p̂
(
y
/
k = 1

)
P̂1 + p̂

(
y
/
k = 2

)
P̂2

. (3)

So we must estimate the a priori probabilities P1,P2
and the probability densities conditional on each class
p
(
y
/
k = 1

)
, p
(
y
/
k = 2

)
. The first two are usually esti-

mated by considering the proportion of instances (feature
vectors) of each class in the training set or simply assumed
to be equal (P̂1 = P̂2 = 0.5), if there is no collateral
information suggesting other values. However, the probabil-
ities conditional on each class are more complex to estimate.
Nonparametric methods and parametric methods can be used.
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FIGURE 1. Early and late fusion schemes.

The simplest nonparametric method is to calculate a multi-
dimensional histogram for each class from the training data.
Essentially, one divides the hyperspace into small hypercubes
and measures the proportion of instances of a class that
are inside the hypercube with respect to the total number
of instances of that class available in the training set. Let
us call M the dimension of vector y. Suppose initially that
M = 1, so y is really a scalar y, and the hypercubes are simply
intervals. Let us also assume that we have a number N ⟨1⟩ of
training instances to compute the histogram and a number h
of intervals. The N ⟨1⟩ instances will be unevenly distributed
among the intervals, producing estimates of the conditional
probability densities associated with each of the intervals. If
we increase the dimension of the feature vector to M = 2,
(i.e. in this case the hypercubes are square two-dimensional
cells), and we wish to maintain the same accuracy in the
histogram calculation, we must consider h intervals for each
of the two components of the vector. This implies a number of
h2 two-dimensional cells. For an arbitrary M , the number of
hypercubes will be hM , therefore to keep the same quality
of the estimation we should also increase the number of
training instances to be distributed among the total number
of hypercubes, i.e.

N ⟨1⟩

h
=
N ⟨M⟩

hM
⇒ N ⟨M⟩

=
N ⟨1⟩

h
hM . (4)

This implies an exponential growth of the training set with
the dimension of the feature vector. This is part of what is
commonly referred to as ‘‘the curse of dimensionality’’. Let
us apply (4) to the case of fusing I modalities with feature
vectors xi i = 1 . . . I of equal dimensionM . Early fusion will
involve feature vectors x = [x1 . . . xI ]T of dimension M × I
and late fusion will involve I vectors of dimension M , hence
considering (4)

early fusion N ⟨M×I ⟩
=
N ⟨1⟩

h
hMxI

late fusion N ⟨M⟩
× I =

N ⟨1⟩

h
hM × I


N ⟨M×I ⟩

N ⟨M⟩ × I

=
hMxI

hM × I
=

1
I
hM×(I−1). (5)

where we observe the large increase in the size of the training
set required in early fusion with respect to late fusion. Even
for low values of h and M , the increase required for early
fusion to maintain accuracy, is exorbitant. For example for
h = 10, I = 2 and M = 3 turns out to be 103

/
2 = 500,

we need to multiply by 500 the size of the training set for
each class and modality.

Similar considerations can be made with respect to other
nonparametric methods such as Parzen’s window method
[25], which can be understood as a generalization of the
hypercubic kernel implicit in a histogram to other multidi-
mensional (typically Gaussian) kernels. The result is basi-
cally a ‘‘smoothed’’ version of the histogram. Although
usually considered a discriminative method, the popular
‘‘K -nearest neighbours’’ (K -nn) method [26] can also be
interpreted as a nonparametric generative method. In this case
the size of the hypercubes is variable as it must include the K
instances of the total training set closest to the instance under
test. Given a training set of size N ⟨1⟩ and an initial dimension
M = 1, if we increase the dimension of the hyperspace by
adding more components to the feature vector, the distance
between the N ⟨1⟩ instances increases and consequently so
does the size of the hypercubes that include the K-nearest
neighbors, which are no longer really close to the instance
under test. To avoid this problem we must increase the size
of the training set to N ⟨M⟩, which can be seen to grow expo-
nentially withM [26].

The huge increases in the size of the training set of non-
parametric generative methods can be partly alleviated by
considering parametric methods. In these methods, certain
models are assumed for p

(
y
/
k = 1

)
, p
(
y
/
k = 2

)
specified

by a finite (and parsimonious) number of parameters to be
estimated for each class from the training instances. Normally
the number of parameters grows with M , so again it is nec-
essary to increase N as we increaseM . The required increase
depends on the model, so for example if we assume a multi-
variate Gaussian model we need to estimate a M × M sym-
metric covariance matrix plus a mean vector of dimensionM .
This amounts to a total number of

(
M2

+ 3M
)/

2 parameters
to be estimated. Let us assume that in a first approximation
(‘‘rule of thumb’’) a certain number of constant instances C
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are required for each parameter to be estimated, then let us
consider a comparison similar to (5) between early and late
fusion

early fusion

N ⟨M×I ⟩
= C

(
1
2

(
(M × I )2 + 3 (M × I )

))
late fusion

N ⟨M⟩
× I = C

1
2

(
M2

+ 3M
)

× I


N ⟨M×I ⟩

N ⟨M⟩ × I

=

(
M2

× I
)
+ 3M

M2 + 3M
. (6)

Notice that for M and/or I large N ⟨M×I ⟩

N ⟨M⟩×I
≃ I , i.e., we need to

multiply by I , the number of instances per class and modality.
This is clearly a more conservative requirement than the one
deduced from (5), but it may nevertheless imply a significant
increase of the training set size. Furthermore the assumed
model may not be sufficient to capture the probabilistic struc-
ture of the data, other models may require more parameters.
For example the Gaussian mixture model will require to
estimate a number of parameters

(
M2

+ 3M
)/

2 multiplied
by the number of mixture components.

In the next two sections we present a mathematical analysis
to get a more formal comparison of early and late fusion. A
(parametric) multivariate Gaussian model will be assumed to
make the analysis tractable, but conclusions will be consistent
with this previous general discussions. Firstly the case of
uncorrelated features will be considered so that only centroids
are to be estimated, then the analysis will be extended to
the correlated case where covariance matrices estimates are
required.

III. A CASE OF ANALYSIS, UNCORRELATED DATA
A. KNOWN MODEL PARAMETERS
We will now consider a particular case that allows us to
illustrate and verify the conclusions of the previous section.
This is a simple parametric model scenario, where the number
of parameters involved has been reduced as much as possible
in order to make the analysis tractable and to focus on the
essential ideas outlined above. Thus, we will consider two
equiprobable classes with multivariate Gaussian generative
models. Furthermore, all the feature vectors of everymodality
xi i = 1 . . . I will have the same dimensionM .
Let us call m(k)

i the mean vector (centroid) of modality i
and class k , and C(k)

i the corresponding covariance matrix.
We will assume in principle that

m(1)
i = mi ∥mi∥

2
= mT

i mi ̸= 0

m(2)
i = 0M =

0 . . . 0︸ ︷︷ ︸
M

T
 i = 1 . . . I

C(k)
i = IMxM , i = 1, . . . I k = 1, 2. (7)

where IMxM is the identity matrix of dimension M × M .
We see that the centroids of class 2 are the origin of coor-
dinates in all modalities, whereas the centroids of class 1 are

mi i = 1 . . . I . These later can take arbitrary values other than
0M , since we impose the nonzero Euclidean norm condition.
Moreover, as indicated in (7), we consider that the features
of each class are uncorrelated and variance normalized. Thus,
the model is defined only frommi i = 1 . . . I . We will assume
in this section that mi i = 1 . . . I are known. In Section III-B
we will consider the effects that occur in a practical scenario
in which they must be estimated from training sets (estimated
model). On the other hand, in Section IV we will extend
the case analysis to arbitrary covariance matrices, both with
known and estimated model.

In the following, we will calculate the error probabilities
corresponding to the classification problem defined above
for early and late fusion. As we are assuming perfect model
knowledge, the calculated error probabilities coincide with
the so called Bayes error rates, so they are the minimum
achievable probability of errors for the defined classification
problem.

Let us start with the early fusion and take into account (7),
hence vector x = [x1 . . . xI ]T will be multivariate Gaussian
characterized by

m(1)
= m = [m1, . . . ,mI ]T , m(2)

= 0(M×I )

C(k)
= I(M×I )×(M×I ), k = 1, 2. (8)

where we have made the additional assumption that features
from different modalities are also uncorrelated. Let us con-
sider the test (1) that minimizes the probability of error for
the early fusion case. For convenience we will express it in
the form

P
(
k = 1

/
x
)

P
(
k = 2

/
x
) =

p(x/k=1)P1
p(x)

p(x/k=2)P2
p(x)

=
p
(
x
/
k = 1

)
p
(
x
/
k = 2

) k=1
>

<
k=2

1. (9)

where we have applied Bayes’ theorem and considered that
both classes are equiprobable, P1 = P2 = 0.5. On the other
hand, according to the Gaussian model (8)

p
(
x
/
k = 1

)
=

1

(2π)M
exp

(
−
1
2

(x − m)T (x − m)

)
p
(
x
/
k = 2

)
=

1

(2π)M
exp

(
−
1
2
xT x

)
. (10)

Therefore it is fulfilled

p
(
x
/
k = 1

)
p
(
x
/
k = 2

)
= exp

(
−
1
2

(x − m)T (x − m) +
1
2
xT x

)
= exp

(
mT x −

1
2
mTm

)
⇒

p
(
x
/
k = 1

)
p
(
x
/
k = 2

) k=1
>

<
k=2

1 ⇔ ln
p
(
x
/
k = 1

)
p
(
x
/
k = 2

) k=1
>

<
k=2

0

⇔
mT x
mTm

k=1
>

<
k=2

1
2
. (11)
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Let us denote z =
mT x
mTm . Being a linear combination of

Gaussian random variables, z will also be a Gaussian random
variable, let us calculate its mean and variance for each class.

E (1) (z) =
mTE (1) (x)

mTm
=

mTm
mTm

= 1

var(1) (z) = E (1)
(
z2
)

− E (1)2 (z)

=
1(

mTm
)2E (1)

(
mT xxTm

)
− 1

=
1(

mTm
)2
mT E (1)

(
xxT

)
︸ ︷︷ ︸
I2Mx2M+mmT

m

− 1 =
1

mTm

E (2) (z) =
mTE (2) (x)

mTm
= 0;

var(2) (z) = E (2)
(
z2
)
−E (2)2 (z)=

1(
mTm

)2E (2)
(
mT xxTm

)

=
1(

mTm
)2
mT E (2)

(
xxT

)
︸ ︷︷ ︸

I2Mx2M

m

 =
1

mTm
. (12)

For simplicity of notation, we will call v =
1

mTm , a parameter
which is the inverse of the Euclidean distance between the
centroids of the two classes in the fusion hyperspace. Con-
sidering (12) we can write the probability densities of z for
each class

p(1) (z) =
1

√
2πv

e−
(z−1)2

2v p(2) (z) =
1

√
2πv

e−
z2
2v . (13)

We are now in a position to calculate the probability of error
for the early fusion case

Pe =
1
2
Pr
(
z >

1
2

/
k = 2

)
+

1
2
Pr
(
z <

1
2

/
k = 1

)
=

1
2

∫
∞

1
2

1
√
2πv

e−
z2
2v dz+

1
2

∫ 1
2

−∞

1
√
2πv

e−
(z−1)2

2v dz

=
1
2

∫
∞

1
2

1
√
2πv

e−
z2
2v dz+

1
2

∫
−

1
2

−∞

1
√
2πv

e−
z2
2v dz

=

∫
∞

1
2

1
√
2πv

e−
z2
2v dz =

∫
∞

1
2
√
2ν

1
√

π
e−u

2
du

=
1
2
erfc

(
1

2
√
2ν

)
. (14)

where erfc (x) = 2
∫

∞

x
1

√
π
e−w

2
dw is the so-called comple-

mentary error function. Note that Pe︸︷︷︸
ν→∞

→ 0.5, Pe︸︷︷︸
ν→0

→ 0, i.e.

as the two classes approach each other, the classifier becomes
fully random, and as they separate, the classifier converges to
an error-free classifier. On the other hand we note that the
key parameter of the error probability is the ‘‘separability’’
between classes 1

/
ν.

All of the above is applicable to each modality separately

by considering the statistics zi =
mT
i x

mT
i mi

i = 1 . . . I , which
will have Gaussian distributions in each of the two classes
characterized by

E (1) (zi) = 1, E (2) (zi) = 0

var(1) (zi) = var(2) (zi) =
1

mT
i mi

= νi i = 1 . . . I . (15)

We can therefore take advantage of (14), to deduce the error
probability Pei corresponding to the use of only modality i by
simply replacing ν by νi

Pei =
1
2
erfc

(
1

2
√
2νi

)
i = 1 . . . I . (16)

Note that ν =
1

[m1,...,mI ]T [m1,...,mI ]
=

1
I∑
i=1

mT
i mi

=
1

I∑
i=1

1
νi

is the harmonic mean of ν1, . . . , νI divided by I . Also

notice that 1
ν

=

I∑
i=1

1
νi

⇒
1
ν

> 1
νi
i = 1 . . . I , i.e., the

class separability in the M × I hyperspace (early fusion)
is greater than de separability in any of the M -dimensional
hyperspace of every separate modality. Moreover as erfc (x)
is a monotonically decreasing function and ν < νi i = 1 . . . I ,
the error probabilities will decrease as the variance parameter
decreases and it will be true that Pe < Pei i = 1 . . . I . In other
words, early fusion with knowledge of the model parameters
always reduces the probability of error with respect to any
individual modality.

Let us now consider late fusion. From the above it is clear
that the optimal test applicable in each modality, can be
expressed in an equivalent way

P
(
k = 1

/
xi
) k=1

>

<
k=2

1
2

⇔
mT
i xi

mT
i mi

k=1
>

<
k=2

1
2

i = 1 . . . I . (17)

Therefore, to make the analysis tractable we will assume that

the scores to be fused are zi =
mT
i xi

mT
i mi

i = 1 . . . I . Further-
more, for simplicity, we will focus on a fusion function that
calculates the average of the I previous scores, which we
will call zs. Bearing in mind that the mean of a sum is the
sum of the means, and that the variance of a sum (assuming
independence) is the sum of the variances, we conclude that:

zs =
1
I

I∑
i=1

zi

E (1) (zs) =
1
I

I∑
i=1

E (1) (zi) = 1;

E (2) (zs) =
1
I

I∑
i=1

E (2) (zi) = 0

var(1) (zs) =
1
I2

I∑
i=1

var(1) (zi)=
1
I2

I∑
i=1

νi=νs=var(2) (zs) .

(18)
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TABLE 1. Error probabilities assuming knowledge of model parameters.

Again, we can take advantage of (14) to derive the error
probability corresponding to late fusion by simply replacing ν

with νs, where νs is the arithmetic mean of ν1, . . . , νI divided
by I .

Pes =
1
2
erfc

(
1

2
√
2νs

)
. (19)

It is well known that the harmonic mean is always less than or
equal to the arithmetic mean, therefore ν ≤ νs ⇒ Pe ≤ Pes,
the early fusion gives a probability of error less than or equal
to the late fusion. Equality Pe = Pes holds if ν1 = ν2 = . . . =

νI . That is, if the separability between classes is the same in
all modalities, the mean of the scores provides the same error
probability as early fusion.

With respect to considering each modality separately, late
fusion will provide a lower probability of error than either

modality separately if it is satisfied that νs =
1
I2

I∑
i=1

νi ≤

νj j = 1 . . . I . For example, if I = 2 it should be
1
4 (ν1 + ν2) ≤ ν1 and 1

4 (ν1 + ν2) ≤ ν2, i.e. ν2 ≤ 3ν1 and
ν1 ≤ 3ν2.Therefore, late fusion outperforms both separate
modalities if certain conditions are met. This is illustrated by
Fig. 2 for ν1 and ν2 varying between 0 and 1. The region
between the two lines is the geometric locus of the pairs
ν1, ν2 where late fusion produces improvement over both
separate modalities. Intuitively, what this indicates is that
if the separability between classes in one of the modalities
is clearly higher than the separability between classes in
the other modality, it could be better to work only with the
modality with the higher separability, and not incorporate the
other modality where the separability is small. For example,
if ν2 > 3ν1 ⇔ ∥m2∥

2 <
(
1
/
3
)
∥m1∥

2, the separability of
modality 2 is less than 1/3 of the separability of modality 1,
and it is better to work only with modality 1 than to late fusing
with modality 2. This is not the case with early fusion, where
there will always be an improvement of the error probability
with respect to both modalities working separately.

Table 1 summarizes the results obtained in the analysis of
the case under consideration. These results are consistent with
what was stated in previous section: knowing the parameters

FIGURE 2. Late fusion improves both modalities for separabilities inside
the two lines.

of the models, early fusion outperforms late fusion. It is also
worth noting that in all cases, the corresponding error proba-
bility is determined by the inverse measures of separabilities
ν1, . . . , νI .
We illustrate the above results in Fig. 3. It represents the

different probabilities of error for the case I = 2, assuming
that ν2 = 0.2 is fixed and ν1 varies between 0 and 1. Thus,
the early fusion always outperforms late fusion as well as the
modalities working individually. Only for the case ν2 = ν1 =

0.2 does late fusion provides the same error probability than
early fusion (harmonic mean coincidences with arithmetic
mean). Therefore, for equal separability of both modalities,
the mean is the optimum late fuser. On the other hand, late
fusion always outperforms the individual modalities if the
aforementioned conditions ν2 ≤ 3ν1, ν1 ≤ 3ν2 are met,
i.e. in the case of Fig. 3, 0.2 ≤ 3ν1 ⇒ ν1 ≥

0.2
3 = 0.0

⌢

6.

B. ESTIMATED MODEL PARAMETERS
In a real situation, models of probabilistic distributions must
be estimated from training data. In our example, we have
assumed Gaussian models defined by the parameters mi
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FIGURE 3. Error probability for I = 2, ν2 = 0.2 and ν1 varying between
0 and 1: Modality 1, Modality 2, Early fusion, Late fusion.

i = 1 . . . I . These are the centroids of class 1 respectively
corresponding to each modality since, for simplicity, we have
assumed class 2 to be centered at the origin and the covariance
equal to the identity matrix in both classes. Let us therefore
assume that we have N training vectors of class 1 in every
modality x(1)

im m = 1 . . .N i = 1 . . . I . We assume equal
training set sizes for all modalities in order to reduce the
number of variables involved as much as possible and without
impeding the illustration of the general considerations of
Section I. We will use the sample means to estimate the
centroids

m̂i =
1
N

N∑
m=1

x(1)
im i = 1 . . . I . (20)

It is well known that, under Gaussian models, (20) is the max-
imum likelihood estimator, which turns out to be unbiased
and reduces the original variance of the data by a factor N ,
thus

E
(
m̂i
)

= mi; Cm̂im̂i = E
(
m̂im̂

T
i

)
=

1
N
IMxM

i = 1 . . . I . (21)

Our aim is to deduce how the fact that we work with centroid
estimates affects the expressions of the error probabilities. Let
us start, as we did in the previous section, with early fusion.
To do so, we begin from the equivalent form of the optimal
test (17), but considering the estimated value ofm

ẑ =
m̂T x

m̂T m̂

k=1
>

<
k=2

1
2
. (22)

where m̂ =
[
m̂1, . . . , m̂I

]T , therefore, taking into
account (21), the following will be satisfied

E
(
m̂
)

= m; Cm̂m̂ = E
(
m̂m̂T

)
=

1
N
I2Mx2M . (23)

In Appendix VI-B we deduce that the probability of error
Pe(N ) corresponding to early fusion with a training set of size

N , is given by the integral

Pe(N ) =
1
4

∫
∞

0

erfc
 1

2
√
2 1

η̂

+erfc

2 1
νη̂

− 1

2
√
2 1

η̂

f (η̂) d η̂

E
(
η̂
)

=
M × I
N

+
1
ν
; var

(
η̂
)

= 2
(
M × I
N 2 +

2
Nν

)
.

(24)

where f
(
η̂
)
is the probability density function of the random

variable η̂ = m̂T m̂ =
1
ν̂

=
1
N χ where χ is a non-

central chi-squared random variable with M × I degrees of
freedom and non-centrality parameter NmTm =

N
ν
[27]. We

indicate in (24) the mean and variance of η̂, it is easy to check
that limE

(
η̂
)

N→∞

=
1
ν
; lim var

(
η̂
)

N→∞

= 0, so that lim f
(
η̂
)

N→∞

=

δ
(
η̂ −

1
ν

)
⇒ lim

N→∞
Pe(N ) = Pe.

The extension of the above to each individual modality is
straightforward, we only have to consider in (24) 1

νi
instead

of 1
ν
and M instead ofM × I , i.e.,

Pei(N ) =
1
4

∫
∞

0

erfc
 1

2
√
2 1

η̂i


+ erfc

2 1
νiη̂i

− 1

2
√
2 1

η̂i

 f
(
η̂i
)
d η̂i

E
(
η̂i
)

=
M
N

+
1
νi

; var
(
η̂i
)

= 2
(
M
N 2 +

2
Nνi

)
i = 1 . . . I . (25)

Obviously, training consistency is still fulfilled in (25) since
again it is limE

(
η̂i
)

N→∞

=
1
νi
; lim var

(
η̂i
)

N→∞

= 0 so that

lim f
(
η̂i
)

N→∞

= δ
(
η̂i −

1
νi

)
⇒ lim

N→∞
Pei(N ) = Pei

For the extension to late fusion we can start from (22)
since all the previous development would be valid other than

considering the statistic ẑs =
1
I

I∑
i=1

ẑi =
1
I

I∑
i=1

m̂T
i xi

m̂T
i m̂i

instead

of ẑ =
m̂T x
m̂T m̂

. From this consideration, in Appendix VI-B
we derive the error probability Pes(N ) corresponding to late
fusion with a training set of size N for each modality, which
is given by the multiple integral

Pes(N ) =
1
4

∫
∞

0
. . .

∫
∞

0

erfc
 1

2

√
2
I2

I∑
i=1

1
η̂i



+ erfc


2 1
I

I∑
i=1

1
νiη̂i

− 1

2

√
2
I2

I∑
i=1

1
η̂i




× f
(
η̂1
)
. . . f

(
η̂I
)
d η̂1 . . . d η̂I
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TABLE 2. Error probabilities with model parameters estimated from training sets of size N .

E
(
η̂i
)

=
M
N

+
1
νi

var
(
η̂i
)

= 2
(
M
N 2 +

2
Nνi

)
i = 1 . . . I . (26)

Notice that lim f
(
η̂1
)
. . . f

(
η̂2
)

N→∞

= δ
(
η̂1 −

1
ν1

)
. . .

δ
(
η̂I −

1
νI

)
, hence lim

N→∞
Pes(N ) = Pes.

Table 2 summarizes the error probabilities with estimated
model parameter. The equations in Table 2 allow us to assess
the effects on the error probabilities of finite training set sizes,
with respect to the ideal situation of exact model knowledge,
embodied in the equations of Table 1.

In Fig. 4 we present some experiments that illustrate these
results. As in Fig. 3, we show the curves of probability of
error for the case of two modalities I = 2, assuming that
ν2 = 0.2 is fixed and ν1 varies between 0 and 1. They
have been obtained by numerical integration of the equations
in Table 2 and are compared with the curves corresponding
to knowledge of the model in Fig. 3. In Fig. 4 we have
considered four pairs of valuesM and N .
It can be seen that there is always an increase in the error

probability when the model parameters have to be estimated
(dotted lines) with respect to the same case with knownmodel
parameters (solid lines). This increase is smaller the larger
N is for a given M (the closer we are to convergence to
the ideal values). It can also be observed that the results of
Fig. 4a (M = 10,N = 20) are similar to that of Fig. 4c
(M = 25,N = 50), and the same with respect to Fig. 4b
(M = 10,N = 50) and Fig. 4d (M = 25,N = 125). This is
consistent with the equations of Table 2, notice that in all three

cases, convergence of f (·) towards a delta function approx-
imately depends on the quotient M

/
N . It is also significant

that despite the fact that in early fusion (equation (24)) M is
multiplied by the number of modalities, the degradation of
early fusion for a given N is quite similar to the degradation
of the other cases.

This can be explained by noting that the separability 1
ν

=

I∑
i=1

1
νi

is the arithmetic mean of the individual separabili-

ties also multiplied by I . Let us assume for simplicity that
the individual separabilities are equal, so that 1

ν
= I 1

νi
.

Furthermore the convergences Pe(N ) →
N→∞

Pe Pei(N ) →
N→∞

Pei
Pes(N ) →

N→∞
Pes are equivalent to the convergences of the ran-

dom variables η̂ →
N→∞

1
ν

η̂i →
N→∞

1
νi
, so for a fair comparison

of these convergences we should consider normalized means
and variances in (24), (25) and (26)

E
(
η̂
)

1
/
ν

=

M×I
N +

1
ν

1
/
ν

=

M
N

1
/
νi

+ 1 =
E
(
η̂i
)

1
/
νi

var
(
η̂
)

1
/
ν

=

2
(
M×I
N 2 +

2
Nν

)
1
/
ν

=
2 M
N 2

1
/
νi

+
2
N

=
var

(
η̂i
)

1
/
νi

. (27)

We see that normalized means and variances are the same
in early fusion, late fusion and for every separate modality.
This can be explained from a different, perspective. On the
one hand, in the analyzed case, early and late fusion require
the same number of estimated parameters (M × I ). On the
other hand, no additional parameters are required in the early

84290 VOLUME 11, 2023



L. M. Pereira et al.: Comparative Analysis of Early and Late Fusion for the Multimodal Two-Class Problem

FIGURE 4. Error probability with known model (solid) and estimated (dotted) for different M and N, I = 2ν2 = 0.2 and ν1
varying between 0 and 1: Modality 1, Modality 2, Early fusion, Late fusion.

fusion model apart from the union of all of each modality.
Thus the finite sample size effects of the training set for a
given dimension M affects the same to all the options and
the comparative analysis of Section III-A is still valid. In
the next section we are going to consider the correlated case
where covariance matrices are to be estimated. Then different
amounts of parameters will be required in early and late
fusion, and the parameters of every separate modality will not
define the complete set of parameters estimates required for
early fusion (estimates of the correlation among modalities
will be necessary).

Before going to Section IV, let us make some verification
of the approximations made in the derivation of (24) and (26)
in Appendices VI-B and VI-B. We have resorted to Monte
Carlo simulation to validate these approximations. For this
purpose, we have generated sets of N independent train-
ing vectors with multivariate Gaussian distributions for each
modality (I = 2) and each class. According to model (8),
in class 2, the vectors have mean 0M in both modalities, and
in class 1 they have mean m1 for modality 1, and m2 for
modality 2. The centroidsm1 andm2 are randomly generated
from multivariate Gaussian distributions of mean 0M and
covariance Cmimi = IMxM , i = 1, 2 and are adjusted in their
Euclidean norm to achieve the desired separability values 1

ν1

and 1
ν2
. The covariance matrices generated in both modalities

are C(k)
i = IMxM , i = 1, 2 k = 1, 2. Additionally, 50 test

vectors are generated for each modality and each class under
the same conditions as those defined for the training vectors.
We apply the different methods trained with the training sets
((20)) and estimate the probability of error as the percentage
of misclassification on the 50 test vectors. Finally, we repeat
the above process 500 times and average the error probability
estimates obtained in each round to achieve stable results.
Fig. 5a and Fig. 5b show respectively the error probability
curves of Fig. 4a and Fig. 4b obtained from the equations
of Table 2 (dotted lines), superimposed with those obtained
by simulation (solid lines). It can be seen that they are quite
close.

IV. EXTENDING THE ANALYSIS TO DATA WITH
ARBITRARY COVARIANCE MATRICES
A. KNOWN MODEL PARAMETERS
Let us now complicate the Gaussian model so far considered,
assuming that the elements of the feature vectors present
arbitrary correlations, although equal in each class. Thus,
in the model (8) corresponding to the early fusion we will
assume that C(1)

= C(2)
= C and therefore

p
(
x
/
k = 1

)
=

1

(2π)M
exp

(
−
1
2

(x − m)T C−1 (x − m)

)
p
(
x
/
k = 2

)
=

1

(2π)M
exp

(
−
1
2
xTC−1x

)
. (28)
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FIGURE 5. Error probability with estimated model from the equations of
Table 2 (dotted) and by simulation (solid) for different M and N,
I = 2ν2 = 0.2 and ν1 varying between 0 and 1. Modality 1, Modality 2,
Early fusion, Late fusion.

And the optimal test in this case will be

zC =
mTC−1x

mTC−1m

k=1
>

<
k=2

1
2
. (29)

And for each modality we will assume C(1)
i = C(2)

i == Ci
i = 1 . . . I , so the optimal test for each modality separately
will be

ziC =
mT
i C

−1
i xi

mT
i C

−1
i mT

i

k=1
>

<
k=2

1
2

i = 1, 2. (30)

Note that C =


C11 C12 . . . C1I
C21 C22 . . . C1I
...

...
. . .

...

CI1 CI2 . . . CII

, being Cii = Ci and

Cij i ̸= j the cross-covariance between the feature vectors
of each pair of different modalities. Let us first consider that

the model is known. We can directly exploit the results of
the uncorrelated case by using the prewhitened vectors xiC =

C
−
1
2

i xi,miC = C
−
1
2

i mi, xC = C
−
1
2 x,mC = C

−
1
2 m, so that

we can write (29), (30) in the form

zC =
mT
CxC

mT
CmC

k=1
>

<
k=2

1
2
; zCi =

mT
CixCi

mT
CimCi

k=1
>

<
k=2

1
2

i = 1 . . . I .

(31)

Therefore, we can apply the same analysis from (12) to (19),
simply by properly defining the separabilities from the pre-
whitened centroids.

νC =
1

mT
CmC

=
1

mTC−1m

νiC =
1

mT
iCmiC

=
1

mT
i C

−1
i mi

i = 1 . . . I

νsC =
1
I2

I∑
i=1

νiC . (32)

And the equations in Table 1 would be applicable with the
modified parameters, i.e.,

PeC =
1
2
erfc

(
1

2
√
2νC

)
;

PeiC =
1
2
erfc

(
1

2
√
2νiC

)
i = 1 . . . I

PesC =
1
2
erfc

(
1

2
√
2νsC

)
. (33)

Notice that if Cij = 0M×M i ̸= j then C−1
=

C−1
1 0 . . . 0
0 C−1

2 . . . 0
...

...
. . .

...

0 0 . . . C−1
I

 and νC =
1

mTC−1m
=

1
I∑
i=1

mT
i C

−1
i mi

=
1

I∑
i=1

1
νiC

is still the harmonic mean of ν1, . . . , νI

divided by I . Therefore all the properties indicated in the third
column of Table 1 are still valid. However this will not be true
in general because the particular covariances between every
pair of modalities would affect the comparative performance
of early fusion with respect to late fusion or to every separate
modality.

B. ESTIMATED MODEL PARAMETERS
Tomaintain homogeneity with the previous approach, wewill
continue to assume that we have N training vectors of class 1
in every modality x(1)

im m = 1 . . .N i = 1 . . . I . From these
vectors we perform maximum likelihood estimates of both
the mean vectors and the covariance matrices that we will
substitute in (29) and (30)

m̂i =
1
N

N∑
m=1

x(1)
im
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Ĉi =
1
N

N∑
m=1

(
x(1)
im − m̂i

) (
x(1)
im − m̂i

)T
i = 1 . . . I

m̂ =
[
m̂1, m̂2

]T
x(1)
m =

[
x(1)
1m, x(1)

2m

]T
Ĉ =

1
N

N∑
m=1

(
x(1)
m − m̂

)(
x(1)
m − m̂

)T
.

(34)

We will follow a similar procedure as in Section III-B. Start-
ing with early fusion, we have deduced in Appendix VI-B
that the error probability with estimated covariance matrices
is given by

PeC(N ) =
1
4

∫
∞

0

erfc
 1

2
√
2 1

η̂C



+ erfc

2 1
νC η̂C

− 1

2
√
2 1

η̂C

 f
(
η̂C
)
d η̂C

E
(
η̂C
)

=
1

cM×I ,N

(
M × I
N

+
1
νC

)
N > M × I + 2

var
(
η̂C
)

=
1

c2M×I ,N

2
(
M × I
N 2 +

2
NνC

)

×

(
1 +

2
N −M × I − 4

)
+E2 (η̂C) 2

N −M × I − 4
N > M × I + 4.

(35)

where ν̂C =
1

m̂T
C m̂C

=
1

m̂T Ĉ
−1

m̂
=

1
η̂C

, cM×I ,N =
N−M×I−2

N−1

and again f (·) denotes probability density. Unfortunately,
in this case, unlike in (24), it is not possible to know f

(
η̂C
)

due to the randomness of the covariance matrix in the defini-
tion η̂C = m̂T Ĉ

−1
m̂. However, we have been able to calcu-

late, as expressed in (35), the mean and variance of η̂C . Firstly
it is observed in (35) that limE

(
η̂C
)

N→∞

=
1
νC
; lim var

(
η̂C
)

N→∞

=

0 ⇒ lim f
(
η̂C
)

N→∞

= δ
(
η̂C −

1
νC

)
so that lim

N→∞
PeC(N ) = PeC .

On the other hand (35) allows us to understand the effects
of estimating the covariance matrix with respect to the case
of only estimating the centroids. Thus, comparing E

(
η̂C
)

in (35) with E
(
η̂C
)
in (24) we can observe the presence

of the factor 1
cM×I ,N

being 0 ≤ cM×I ,N ≤ 1; lim cM×I ,N = 1
N→∞

.

The inverse of this factor increases
(
M×I
N +

1
νC

)
delaying

the convergence of E
(
η̂C
)
towards 1

νC
as we increase the

size of the training set. Moreover, comparing var
(
η̂C
)
in (35)

with var
(
η̂
)
in (24), we also observe an increasing effect

of 2
(
M×I
N 2 +

2
NνC

)
due in part to the factor 1

c2M×I ,N
as well

as the term E2
(
η̂C
) 2
N−M×I−4 (whose convergence is in turn

affected by 1
c2M×I ,N

). So, we will call cM×I ,N the convergence

factor. All this suggests that we can use the convergence
factor as a criterion for determining the appropriate size of
the training set. By solving for N in the definition of the
convergence factor we can write

N =
M × I + 2 − cM×I ,N

1 − cM×I ,N
. (36)

Thus if we wish to approximate the performance of early
fusion with known model we must choose a value cM×I ,N
close to 1. For example, for I = 2,M = 10 and c2M ,N = 0.9,
the required size of the training set is N = 211.
We can take advantage of (35) to directly derive the rest

of the error probabilities. Thus PeiC(N ) i = 1 . . . I can be
obtained from (35), replacing νC by viC , η̂C by η̂iC =

m̂T
i Ĉ

−1
i m̂i and M × I by M . Likewise, considering these

changes and starting from (26), it is immediate to obtain the
expression of the error probability PesC(N ) for the late fusion
with estimation of the covariance matrix.

Note that both in the case of individual modality and in the
case of the late fusion the convergence factor to be considered
is cM ,N =

N−M−2
N−1 , so that solving for N as in (36)

N =
M + 2 − cM ,N

1 − cM ,N
i = 1, 2. (37)

Hence if we want the same value cM ,N = 0.9 as above,
being I = 2;M = 10, the required size of the training set
for each modality is 111. However, we have seen that for
the late fusion, 211 feature vectors are needed, which are
obtained from 211 vectors for each modality. This confirm
the result of (6) in Section II, where we have deduced than in
the multivariate Gaussian model, the number of parameters
to estimate in early fusion was slightly less than twice the
required for late fusion. This simple example illustrates the
problem of the increased dimensionality of early fusion when
the model has to be estimated.

For further verification of the above, we present some
illustrative results in Fig. 6. The curves have been obtained
by simulation in the way described at the end of Section III
to obtain Fig. 5, but considering covariance matrices whose
generic element is Ci (m, n) = rm−n i = 1, 2. Additionally,
we have assumed uncorrelation between the feature vectors
of the two modalities, i.e. Cij = 0M×M i ̸= j, although we
will not consider this knowledge available in the training,
thus estimating the whole covariance matrix C, as well as the
centroids from (34). We observe in Fig. 6a, that early fusion
gets substantially worse with respect to previous cases, being
practically always worse than late fusion, and being the worst
option in the interval from ν1 = 0.05 to ν1 = 0.35. This is
due to the fact that the convergence factor c2×10,24 = 0.08 is
very close to zero, indicating that the valueN = 24 is far from
adequate to achieve the probability of error with knownmodel
in early fusion. The corresponding value for the rest of the
methods is c10,24 = 0.52which, although clearly improvable,
is substantially higher than 0.08. In Fig. 6b we increase N
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FIGURE 6. Error probability with estimated model assuming correlation obtained by simulation for different values of M and N . Where r = 0.2,
ν2 = 0.2 and ν1 varying between 0 and 1. Modality 1, Modality 2, Early fusion, Late fusion.

to 50, there is a notable improvement of the early fusion
which is consistent with the increase of the convergence fac-
tor c2×10,50 = 0.57. Despite this, it is still a worse choice than
late fusion in the interval from ν1 = 0.05 to ν1 = 0.55, as the
factor c10,50 = 0.77 has also improved. In Fig. 6c we increase
N to 500, which results in c2×10,500 = 0.96 and c2×10,500 =

0.98, indicating that all methods have practically reached
their maximum performance (known model) and early fusion
is the best choice in all cases. In Fig. 6d, 6e and 6f we have
increased M to 25. We have also increased N proportionally
according to the values respectively considered in Fig. 6a,
6b and 6c. We note that the result obtained in each upper
figure is comparable with that of the corresponding lower
figure, which is consistent with the similar values of c2M ,N
and cM ,N in both figures. This is due to the fact that for large
N both c2M ,N ≃ 1 − 2

(
M
/
N
)
and cM ,N ≃ 1 −

(
M
/
N
)
are

practically dependent on the ratioM
/
N .

V. DISCUSSION
We claimed in Section II that assuming perfect knowledge
of the data model, early fusion will always be better or,
in the worst case, equal to late fusion. This was made
in terms of minimizing the classifier error probability by
comparing the posterior probabilities of each class condi-
tional to the extracted features. This claim is valid for any
class-conditional distributions of the data. However, in a
practical setting where the models are to be learned from
training data, late fusion could eventually be a better option

than early fusion. This is due to the dimensionality increase of
the feature vectors in early fusion, which directly affects the
training set size. Actually we have showed that an exponential
increase in the training set size is required for early fusion
in nonparametric approaches ((5)). In parametric models, the
required increase depends mainly on the number of param-
eters to be estimated as we have illustrated in (6) for the
multivariate Gaussian model.

In a general setting, a mathematical analysis comparing
early and late fusion is unapproachable. On the data side,
we can find different distribution models. On the side of the
classifiers, there are a myriad of options. Both concepts, data
models and classifiers, could even vary from one modality
to another. Thus, in general, it is not a simple matter to
obtain the Bayes error rates nor the corresponding proba-
bilities of error for models estimated from a finite training
set. That is why we have focused in Sections III and IV on
the multivariate Gaussian model. Despite its specificity, the
analysis confirms the general considerations of Section II.
It should also serve the purpose of having some quantitative
criterion to determine if the size of the training set is adequate
for a given dimension. Even for non-Gaussian models or
different type of classifiers, it may be a tentative criterion at
least.

Just to illustrate this general interest we have performed a
similar experiment to that of Fig. 6, but considering a non-
Gaussian data model. Thus, it is assumed a mixture of two
equiprobable multivariate Gaussian probability densities in
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FIGURE 7. Error probability with estimated model assuming a mixture of two Gaussians for every modality and class, obtained by simulation for
different values of M and N . Where r = 0.2, β = 0.3, ν2 = 0.2 and ν1 varying between 0 and 1. Modality 1, Modality 2, Early fusion, Late fusion.

every class and modality.

x(k)
i ∼

1
2
N
(
m(k)
i

(
1 + β

(k)
i

)
,C(k)

i1

)
+

1
2
N
(
m(k)
i

(
1 − β

(k)
i

)
,C(k)

i2

)
m(1)
i = mi ∥mi∥

2
= mT

i mi ̸= 0,

m(2)
i = 0M =

0 . . . 0︸ ︷︷ ︸
M

T


i = 1 . . . I
k = 1, 2

.

(38)

where β
(k)
i indicates a symmetric shift of the class centroid to

define the respective location of the mean of every Gaussian
mixture component. Notice that the corresponding model for
the early fused vectors x(k) =

[
x(k)
1 . . . x(k)

I

]
cannot be clearly

defined from (38).
In Fig. 7 we present some illustrative results which can be

directly compared with those of Fig. 6. The case I = 2 has
been considered. Again, the curves have been obtained by
simulation in the way described at the end of Section III. The
training instances have been most equally divided between
both components of the Gaussian mixtures so that the total
training sizes of Fig. 6 are maintained. For simplicity we have
considered

β
(k)
i = β

C(k)
i1 (m, n) = C(k)

i2 (m, n) = rm−n

}
i = 1, 2 k = 1, 2.

(39)

The detectors (29) and (30), with the estimates (34) have
been implemented. As these detectors are optimum for the
multivariate Gaussian case, a general increase of the error
probability is observed when comparing each subfigure in
Fig. 7 with the corresponding subfigure in Fig. 6. However
the relative comparison among methods leads to similar con-
clusions to those from Fig. 6.

VI. CONCLUSION
The comparative mathematical analysis carried out, together
with the experimental verifications, allow us to reach the
conclusions indicated below:

A. WITH KNOWLEDGE OF THE MODEL PARAMETERS
Early fusion is always the best option. If early fusion is not
possible due to lack of access to feature vectors, late fusion is
an option that can improve the performance of all modalities
acting separately. For this later to be true, certain conditions
must be met for the separabilities of each of them. In the
case studied, when using the mean as the fusing function, the
separabilities must be comparable. This makes sense for a late
fusion that gives more weight to the modalities with higher
separability. Therefore, we can consider learning optimal
fusers from training data (α-integration is an example [31]).

B. WITH ESTIMATED MODEL PARAMETERS
In practice, the model parameters have to be estimated, which
leads to performance losses for all the methods analysed.
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We have found that avoiding such losses involves large (ide-
ally infinite) training sets. If the training set sizes are limited
but the number of parameters to be estimated is the same in
both early and late fusion, the superiority of early fusion still
holds. That is, both options suffer a comparable degradation
for a given training set size. But if the training set sizes
are limited and the number of parameters to be estimated
is greater in early fusion, its degradation could be higher.
In other words, we have verified the problem of increased
dimensionality of early fusion.

We have proposed a measure to quantify whether a training
set size is sufficiently large, which we have called the con-
vergence factor. This factor varies between 0 and 1, with a
value close to 1 indicating that the performance will be close
to that corresponding to knowledge of the model parameters
(Bayes error rate). If we have to choose between early or
late fusion and we have fixed the size N of the training set,
we can calculate the convergence factors for early (feature
vectors of dimension M × I ) and late fusion (feature vectors
of dimension M ). If the later is significantly higher than the
former, we should choose this option.

APPENDIX A
DERIVATION OF (24)
To analyse the effect of working with parameter estimates,
we will start by defining a binary random variable d̂ associ-
ated to the early fusion rule (22) (notation congruent with that
used in Section I), which will be 1 if ẑ > 0.5 and 0 if ẑ < 0.5.
The expected value of this variable conditional on each class
shall be

E
[
d̂
/
k = 1

]
= Pr

(
d̂ = 1

/
k = 1

)
= Pr

(
ẑ > 0.5

/
k = 1

)
= 1 − Pr

(
ẑ < 0.5

/
k = 1

)
E
[
d̂
/
k = 2

]
= Pr

(
d̂ = 1

/
k = 2

)
= Pr

(
ẑ > 0.5

/
k = 2

)
. (A1)

We will call Pe(N ) the error probability corresponding to
the test (22), as it will depend on N according to (20).
But

Pe(N ) =
1
2
Pr
(
ẑ >

1
2

/
k = 2

)
+

1
2
Pr
(
ẑ <

1
2

/
k = 1

)
.

(A2)

Considering (A1) we can write

Pe(N ) =
1
2
E
[
d̂
/
k = 2

]
+

1
2

(
1 − E

[
d̂
/
k = 1

])
. (A3)

But the random variable d̂ depends on the random variable
ẑ =

m̂T x
m̂T m̂

which in turn depends on two multivariate random
variables m̂ and x. We can therefore apply the law of total
expectation in (A3), by first averaging over x conditional on

m̂, and then averaging over m̂, i.e.,

Pe(N ) = Em̂

(
1
2
Ex
(
d̂
/
k = 2, m̂

)
+

1
2

(
1 − Ex

(
d̂
/
k = 1, m̂

)))
. (A4)

But

Ex
(
d̂
/
k = 2, m̂

)
= Pr

(
d̂ = 1

/
k = 2, m̂

)
= Pr

(
ẑ >

1
2

/
k = 2, m̂

)
Ex
(
d̂
/
k = 1, m̂

)
= Pr

(
d̂ = 1

/
k = 1, m̂

)
= Pr

(
ẑ >

1
2

/
k = 1, m̂

)
. (A5)

Being

E (1) (ẑ/m̂)
=

m̂TE (1) (x)

m̂T m̂
=

m̂Tm

m̂T m̂
var(1)

(
ẑ
/
m̂
)

= E (1)
(
ẑ2
/
m̂
)

− E (1)2 (ẑ/m̂)
=

1(
m̂T m̂

)2E (1)
(
m̂T xxT m̂

)
−

(
m̂Tm

m̂T m̂

)2

=
1(

m̂T m̂
)2
m̂T E (1)

(
xxT

)
︸ ︷︷ ︸
I2Mx2M+mmT

m̂

−

(
m̂Tm

m̂T m̂

)2

=
1

m̂T m̂
E (2) (ẑ/m̂)

=
m̂TE (2) (x)

m̂T m̂
= 0;

var(2)
(
ẑ
/
m̂
)

= E (2)
(
ẑ2
/
m̂
)

− E (2)2 (ẑ/m̂)
=

1(
m̂T m̂

)2E (2)
(
m̂T xxT m̂

)

=
1(

m̂T m̂
)2
m̂T E (2)

(
xxT

)
︸ ︷︷ ︸

I2Mx2M

m̂

 =
1

m̂T m̂
. (A6)

Taking into account (23), we will consider that m̂Tm ≃

mTm, this will make the analysis tractable by following a
parallel path to that of (13)-(14). Thus, defining ν̂ =

1
m̂T m̂

,

it will be E (1)
(
ẑ
/
m̂
)

≃
mTm
m̂T m̂

=
ν̂
ν
; E (2)

(
ẑ
/
m̂
)

= 0;
var(1)

(
ẑ
/
m̂
)

= var(2)
(
ẑ
/
m̂
)

= ν̂ so that the probability

84296 VOLUME 11, 2023



L. M. Pereira et al.: Comparative Analysis of Early and Late Fusion for the Multimodal Two-Class Problem

densities of ẑ in each class will be

p(1) (ẑ/m̂) =
1

√
2π v̂

e−
(
ẑ− ν̂

ν

)2
2v̂ p(2) (ẑ/m̂) =

1
√
2π v̂

e−
ẑ2
2v̂ .

(A7)
And therefore
1
2
Ex
(
d̂
/
k = 2, m̂

)
+

1
2

(
1 − Ex

(
d̂
/
k = 1, m̂

))
=

1
2
Pr
(
ẑ >

1
2

/
k = 2, m̂

)
+

1
2

(
1 − Pr

(
ẑ >

1
2

/
k = 1, m̂

))
=

1
2

∫
∞

1
2

1
√
2π v̂

e−
ẑ2
2v̂ dẑ+

1
2

1−

∫
∞

1
2

1
√
2π v̂

e−
(
ẑ− ν̂

ν

)2
2v̂ dẑ


=

1
2

∫
∞

1
2
√
2v̂

1
√

π
e−u

2
du+

1
2

(
1 −

∫
∞

1−2 ν̂
ν

2
√
2v̂

1
√

π
e−u

2
du

)

=
1
4
erfc

(
1

2
√
2ν̂

)
+

1
2

(
1 −

1
2
erfc

(
1 − 2 ν̂

ν

2
√
2v̂

))

=
1
4
erfc

(
1

2
√
2ν̂

)
+

1
4
erfc

(
2 ν̂

ν
− 1

2
√
2v̂

)
. (A8)

where we have taken into account that erfc(x) = 2−erfc(−x).
We then incorporate the result of (A8) into (A4), taking into
account that the dependence on m̂manifests itself through the
dependence on ν̂

Pe(N ) = Eν̂

[
1
4
erfc

(
1

2
√
2ν̂

)
+

1
4
erfc

(
2 ν̂

ν
− 1

2
√
2ν̂

)]
.

(A9)

To calculate (A9) we can take into account that Nm̂T m̂ =
N
ν̂

= χ̂ is a non-central chi-squared random variable, with
M × I degrees of freedom and non-centrality parameter
NmTm =

N
ν
. Its mean value is M × I +

N
ν
and its variance

2
(
M × I + 2N

ν

)
. Calling p

(
χ̂
)
the corresponding probability

density we have that

Pe(N )

=
1
4

∫
∞

0

erfc
 1

2
√
2N

χ̂

+erfc

2 N
νχ̂

−1

2
√
2N

χ̂

p (χ̂) d χ̂

=
1
4

∫
∞

0

erfc
 1

2
√
2 1

η̂

+erfc

2 1
νη̂

−1

2
√
2 1

η̂

Np (N η̂
)
d η̂

︸ ︷︷ ︸
χ̂=N η̂;d χ̂=Nd η̂;

.

(A10)
where Np

(
N η̂
)

= f
(
η̂
)
is the probability density of the

random variable η̂. In short

Pe(N ) =
1
4

∫
∞

0

erfc
 1

2
√
2 1

η̂


+ erfc

2 1
νη̂

− 1

2
√
2 1

η̂

 f
(
η̂
)
d η̂

E
(
η̂
)

=
1
N
E
(
χ̂
)

=
M × I +

N
ν

N
=
M × I
N

+
1
ν

var
(
η̂
)

=
1
N 2 var

(
χ̂
)

=
2
(
M × I + 2N

ν

)
N 2

= 2
(
M × I
N 2 +

2
Nν

)
. (A11)

APPENDIX B
DERIVATION OF (26)
We can follow a similar derivation as in Appendix A.We start
from (A4), (A5), the equivalent equations in this case are

Pes(N )

= Em̂1...m̂2

(
1
2
Ex
(
d̂
/
k = 2, m̂1 . . . m̂2

))
+Em̂1...m̂2

(
1
2

(
1 − Ex

(
d̂
/
k = 1, m̂1 . . . m̂2

)))
= Em̂1...m̂2

(
1
2
Pr
(
ẑs >

1
2

/
k = 2, m̂1 . . . m̂2

))
+Em̂1...m̂2

(
1
2

(
1 − Pr

(
ẑs >

1
2

/
k = 1, m̂1 . . . m̂2

)))
.

(B1)

where ẑs is a Gaussian random variable whose mean and
variance in each class are

E (1) (ẑs/m̂1 . . . m̂I
)

=
1
I

I∑
i=1

E (1) (ẑi/m̂i
)

≃
1
I

I∑
i=1

mT
i mi

m̂T
i m̂i

=
1
I

I∑
i=1

ν̂i

νi

var(1)
(
ẑs
/
m̂1 . . . m̂I

)
=

1
I2

I∑
i=1

var(1)
(
ẑi
/
m̂i
)

=
1
I2

I∑
i=1

1

m̂T
i m̂i

=
1
I2

I∑
i=1

ν̂i

E (2) (ẑs/m̂1 . . . m̂I
)

=
1
I

I∑
i=1

E (2) (ẑi/m̂i
)

= 0;

var(2)
(
ẑs
/
m̂1 . . . m̂I

)
=

1
I2

I∑
i=1

var(2)
(
ẑi
/
m̂i
)

=
1
I2

I∑
i=1

1

m̂T
i m̂i

=
1
I2

I∑
i=1

ν̂i. (B2)

Therefore

p(1) (ẑs/m̂1, m̂2
)

=
1√

2π 1
I2

I∑
i=1

ν̂i

e

−

(
ẑs− 1

I

I∑
i=1

ν̂i
νi

)2
2 1
I2

I∑
i=1

ν̂i
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p(2) (ẑs/m̂1, m̂2
)

=
1√

2π 1
I2

I∑
i=1

ν̂i

e

−
ẑ2s

2 1
I2

I∑
i=1

ν̂i
. (B3)

Thus, using a development similar to that of (A8) we arrive
at

Pes(N ) = Eν̂1,ν̂2

1
4
erfc

 1

2

√
2
I2

I∑
i=1

ν̂i



+
1
4
erfc


2 1
I

I∑
i=1

ν̂i
νi

− 1

2

√
2
I2

I∑
i=1

ν̂i


 . (B4)

Then, taking into account that ν̂1, . . . , ν̂I and, therefore
η̂1, . . . , η̂I , are independent, we arrive at

Pes(N ) =
1
4

∫
∞

0
. . .

∫
∞

0

erfc
 1

2

√
2
I2

I∑
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1
η̂i
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2 1
I

I∑
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1
νiη̂i

− 1

2

√
2
I2

I∑
i=1

1
η̂i
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(
η̂1
)
. . . f

(
η̂I
)
d η̂1 . . . d η̂I

E
(
η̂i
)

=
M
N

+
1
νi

var
(
η̂i
)

= 2
(
M
N 2 +

2
Nνi

)
i = 1 . . . I .

(B5)

APPENDIX C
DERIVATION OF (35)

The test in this case is ẑC =
m̂T Ĉ

−1
x

m̂T Ĉ
−1

m̂

k=1
>

<
k=2

1
2 , so ẑC , conditional

on m̂ and Ĉ
−1

, is a Gaussian random variable whose mean
and variance in each class are

E (1)
(
ẑC
/
m̂, Ĉ

−1)
=

m̂T Ĉ
−1
E (1) (x)
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=

m̂T Ĉ
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m̂T Ĉ

−1
m̂
)2E (1)

(
m̂T Ĉ
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−1
E (1)

(
xxT
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E (2) (x)
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−1
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(
ẑ
/
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−1)
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/
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=
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m̂
)2 (m̂T Ĉ
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CĈ

−1
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)

. (C1)

Let us consider again a couple of reasonable approxi-
mations to naturally extend the results of the uncorre-
lated case. We will assume that m̂T Ĉ

−1
m ≃ mT Ĉ

−1
m

and that Ĉ
−1

C ≃ I2M×2M . Thus, defining ν̂C =

1

m̂T Ĉ
−1

m̂
, it will be E (1)

(
ẑC
/
m̂, Ĉ

−1)
=

m̂T Ĉ
−1

m

m̂T Ĉ
−1

m̂
=

ν̂C
νC
; E (2)

(
ẑC
/
m̂, Ĉ

−1)
= 0; var(1)

(
ẑ
/
m̂, Ĉ

−1)
=

var(2)
(
ẑ
/
m̂, Ĉ

−1)
≃ ν̂C .

From this point on, we can directly apply (A7) to (A9) by
simply substituting ν̂ by ν̂C and ν by νC , arriving at

PeC(N ) =
1
4
Eν̂C

[
erfc

(
1

2
√
2ν̂C

)
+ erfc

(
2 ν̂C

ν
− 1

2
√
2ν̂C

)]
.

(C2)

From (C2) we can arrive at an integral equivalent to (A11) by
defining ν̂C =

1
η̂C

PeC(N ) =
1
4

∫
∞

0

erfc
 1

2
√
2 1

η̂C


+ erfc

2 1
νη̂C

− 1

2
√
2 1

η̂C

 f
(
η̂C
)
d η̂C . (C3)

where in this case it is not possible to determine the prob-
ability density f

(
η̂C
)
due to the presence of the esimated

covariance, i.e., η̂C = m̂T Ĉ
−1

m̂. However we can calcu-
late the mean and variance of η̂C , as we see below. First,
we can take into account that matrix 1

N−1 Ĉ
−1

follows an
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Wishart distribution 1
N−1 Ĉ

−1
∼ W−1

M

(
C−1,N − 1

)
[28],

with E
Ĉ

−1

[
Ĉ

−1]
=

N−1
N−M×I−2C

−1 being satisfied for N >

M × I + 2.
On the other hand, based on the well-known result for the

calculation of the mean of quadratic forms of random vectors
[29] and applying the law of the total expectation, we arrive
at

E
(
η̂C
)

= Em̂
(
E
Ĉ
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(
η̂C
/
m̂
))

= Em̂
(
m̂TE

Ĉ
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(
Ĉ

−1)
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)

= trace
(
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N −M × I − 2

C−1Cm̂m̂

)
+mT N − 1

N −M × I − 2
C−1m

= trace
(
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N −M × I − 2

C−1 1
N
C
)

+
1
νC

=
N − 1

N −M × I − 2
M × I
N

+
1
νC

=
1

cM×I ,N

(
M × I
N

+
1
νC

)
N > M × I + 2.

(C4)

where we have taken into account that, being m̂ =

1
N

N∑
m=1

x(1)
m , the covariance matrix of m̂ will be Cm̂m̂ =

1
NC.

In (C4) we have defined the factor cM×I ,N =
N−M×I−2

N−1 ,
which varies between 0 (N = M × I + 2), to 1 (N = ∞).
It can be interpreted as a convergence factor that slowdown
the error probability convergence for increasing training size,
with respect to the case of uncorrelated data. This slowdown
is due to the need to estimate the covariance matrix.

On the other hand, applying the law of total variance

var
(
η̂C
)

= varm̂
(
E
Ĉ

−1
(
η̂C
/
m̂
))

+ Em̂
(
var

Ĉ
−1
(
η̂C
/
m̂
))

.

(C5)

For the first term in (C5) we can apply the well-known result
for calculating the variance of quadratic forms of random
vectors [29]:

varm̂
(
E
Ĉ

−1
(
η̂C
/
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))

= varm̂
(
m̂TE

Ĉ
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(
Ĉ

−1)
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)

= 2trace
(

N − 1
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N − 1

N −M × I − 2
×C−1Cm̂m̂

)
+ 4mT N − 1

N −M × I − 2
C−1Cm̂m̂

N − 1
N −M × I − 2

C−1m

= 2
(

N − 1
N −M × I − 2

)2 M × I
N 2

+ 4
(

N − 1
N −M × I − 2

)2

mT 1
N
C−1m

= 2
(

N − 1
N −M × I − 2

)2 (M × I
N 2 +

2
NνC

)
N > M × I + 2. (C6)

As for the second term in (C4) let us take into account
that a quadratic form of an inverse Wishart matrix, properly
normalised, follows an inverse chi-squared distribution [30],
which implies in our case that(

m̂T Ĉ
−1

m̂
N − 1

/
m̂

)/(
m̂TC−1m̂

/
m̂
)

∼ invχ2
N−2M .

Considering further that x ∼ invχ2
G ⇒ var (x) =

2
/
(G− 2)2 (G− 4) G > 4, we can write
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(
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Ĉ
−1
(
η̂C
/
m̂
))
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Ĉ
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−1
m̂
)/(

m̂TC−1m̂
)))
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N > M × I + 4. (C7)

But
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((
m̂TC−1m̂
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1
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So finally, incorporating (C6), (C7) and (C8) in (C5),
we arrive at
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)

= 2
(

N − 1
N − 2M − 2

)2 (M × I
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2
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)
+
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