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a b s t r a c t

Given a sequence of observations over a plan execution, plan and goal recognition are considered as
interchangeable tasks in AI planning. However, strictly speaking, the former tries to identify a plan,
and the latter a set of goals, that explain the observations. Both recognition tasks are data-driven,
where data comprises the plan observations, and are specially useful in proactive systems. Depending
on the source of knowledge about the agents under observation, these tasks are traditionally solved
by two different approaches, which require a large plan library or a planning model. In between these
approaches, we propose a unified novel constraint-based approach, which distinguishes between the
two tasks but is valid for both. We present a formulation, based on Partial Order Causal Link planning,
that is compiled from a small plan library, to approximate a model that learns the essential causality
of the original planning model. We deal with unreliable observations, which include missing and noisy
observations on the real world. Modeling the observations in our formulation is straightforward. The
use of the learned model allows us to address a data-driven optimization task to find the plans that
most satisfy those observations (plan recognition) and the goals that are sufficiently supported by
the causal relationships of the observations (goal recognition). We perform a complete evaluation of
our approach in IPC domains under several indicators (accuracy, spread and ROC curves) with varying
degrees of partial observability and noise on the observations. We also perform a comparison with
other model-based approaches from literature.
© 2023 TheAuthor. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Plan recognition is the task of inferring the plan, or some of
ts actions, of one or more agents from partial observations of
heir behavior [1–6], where observations are defined in terms
f which actions are executed and/or which particular changes
re provoked. Goal recognition is the task of recognizing agents’
ain goals from the observations of their interactions in an
nvironment [7–9] and is generally considered to follow plan
ecognition [10].

In traditional AI planning literature, plan recognition and goal
ecognition are commonly interchangeable or mixed terms, and
hey are both understood as the problem of identifying a minimal
et of top-level actions of a plan or top-level goals sufficient
o explain a collection of observations [6,11,12]. However, in
his paper we maintain the strict distinction between plan and
oal recognition. In order to show the differences, practical ap-
licability of both tasks and the challenges they introduce, we
resent a motivating example on the blocksworld domain, which
as been widely used in the International Planning Competi-
ion (IPC, www.icaps-conference.org/competitions) and

E-mail address: agarridot@dsic.upv.es.
https://doi.org/10.1016/j.knosys.2023.110895
0950-7051/© 2023 The Author. Published by Elsevier B.V. This is an open access artic
nd/4.0/).
in plan/goal recognition [4,13,14]. This planning domain consists
of a set of blocks, a table and a robot hand, where one block can
be stacked on top of another or on the table. The top-level goal
is to find a sequence of actions that achieves a final configuration
of blocks or, more simply, a word.

Let us assume a simple scenario with six blocks {A,E,R,S,T,Y }
which, for simplicity, are initially on the table. Let us assume we
do not know the planning action model, but we count on a 5-plan
library to achieve the goals that express the words {π1 = SAY,
π2 = TRAY, π3 = TRAYS, π4 = TYRES, π5 = YEAR}, where the
first block of the word is the top of the stack and the last one
is on the table. Each word represents a top-level atomic goal,
but the candidate goals in the library are 18, e.g., {(clear S),(on
S A),(on A Y),(ontable Y),(clear T),(on T R). . .}. In particular, (clear
S) means the block S has no other block on it, (on S A) means
S is on top of A, (ontable Y) means Y is on the table, etc. Let us
consider two observations Θ = {(holding A),(holding R)}. Thus,
the only information is that the robot is holding A, and later R.
These observations represent a partial sequence of predicates or
actions, on an unknown plan π? (we assume π? = RAY ). Note
here that π? does not belong to the plan library. In our plan
recognition approach, we postulate the agent is executing any
plan π , π . . . π . This decision depends on which of these plans
1 2 5
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est explains (i.e., maximizes the satisfaction of ) the observations.
2 and π3 are the only plans that satisfy the two observations of

Θ , so plan recognition concludes the agent is executing π2 or π3.
owever, recognizing these plans does not necessarily mean that
he pretended goal of π? is entirely TRAY or TRAYS, as happens in
he approaches that mix plan and goal recognition, which assume
here is only one true (hidden) atomic goal and do not deal with
ndividual goals [4,5,13–15]. In our goal recognition approach, we
ostulate the agent is achieving a subset of the 18 original candi-
ate goals. This decision depends on which goals are sufficiently
xplained (i.e., above a given threshold) by the observations. Ac-
ording to Θ , only {(on R A), (on A Y)} are recognized. In π2 and
3, if the robot is holding R, R is finally stacked on top of A; and
nalogously with A on Y. This means the agent is trying to achieve
word that matches with ∗RAY∗, where the symbol ‘‘∗’’ repre-
ents a sequence of blocks of any size. This goal recognition shows
ore precision than just assuming the only one atomic goal given
y plan recognition. In consequence, plan recognition and goal
ecognition are distinct. They should not be interchangeable as
hey solve different tasks and, hence, have different objectives.

Maintaining the distinction between plan and goal recognition
ntroduces several challenges, which are specially remarkable
hen: (i) the planning domain is not totally known, (ii) π? is
ot part of the initial plan library, or (iii) Θ is unreliable. First,
f the action model is unknown, it becomes necessary to iden-
ify, or at least to approximate, the underlying causality of the
odel. Second, the goals of π? might include individual goals

frommultiple plans of the library, which is frequent when dealing
with multi-agent plans with non-atomic top-level goals. Third,
it is important to decide when a plan/goal best explains the
given observations, considering they may be unreliable. If Θ is
given by malfunctioned sensors, important observations might
be missing (they have not been observed when they should),
and others might be noisy (they have been observed when they
should not). For instance, let us now consider the possibility of
noise in the observations Θ = {(holding A),(holding R),(holding S)}.
Plan recognition will return {π1, π2, π3} because these three plans
satisfy two observations; a priori, (holding R)might be noisy in π1,
whereas (holding S) might be noisy in π2 and π3. Note that the
three observations cannot be satisfied altogether in the current
plan library. Goal recognition will now return {(on S A), (on R A),
(on A Y)}. In particular, (on S A) is recognized from π1; (on R A)
is recognized from π2 or π3; and (on A Y) is recognized from π1,
π2 or π3. This means the agent is trying to achieve a word that
matches with *SAY* or *RAY*.

If the library was extended with a new plan π6 = STRAY,
π6 would be then the only plan recognized, as it satisfies the
three observations. The goals recognized would be {(on S T), (on
R A), (on A Y)}, which means a word that includes ST and RAY.
Summing up, plan recognition returns the most similar plan/s to
π? w.r.t. Θ , whereas goal recognition returns the most promising
goals w.r.t. Θ from the goals of a set of plans that might be
different but very similar to π?.

From a reasoning perspective, plan and goal recognition can
be considered as abduction processes [16], that is, reasoning
to the best explanation: if we observe something, we conclude
something else as the best hypothesis. By recognizing the plans
or goals of other agents, we can reason about what the agents are
doing, what they will do next, and what their final intentions are.
This is crucial to support prediction and decision-making through
data science and knowledge-based computation techniques. Plan
and goal recognition are useful in a wide variety of applications
that include monitoring, activity recognition, detection, anticipa-
tion and prevention, and that require proactive and intelligent
responses. The most common applications include autonomous
systems, computer games, smart homes and environments (spe-
cially for the elderly), human–robot interaction and collaboration,
2

analysis of data, surveillance and warning, crisis management,
crime detection and prevention, industrial control, teaching and
intelligent tutoring systems, military operations, traffic monitor-
ing, exploratory domains, and proactive personal assistants to
monitor users’ needs such as wheelchair movement, trajectory
and manoeuvering [7,9,11,13,14,17].

From the incipient era of plan recognition [2], two kinds of
plan recognition are distinguished: keyhole vs. intended plan
recognition. In the former, the recognizer is simply observing the
agent and ignores the underlying planning action model, i.e., the
causal relationships between preconditions and effects of the
executed actions. In the latter, the agent is cooperative and the
actions are executed with the intent the planning model to be
understood. In practice, this means two different approaches. The
former uses an event log, a collection of plan traces or a library
of plans, potentially executed by the observed agent, where the
planning model is fully unknown. The recognition task consists
in matching observations over the library. The latter uses a fully
known planning model (or domain theory), shared between agent
and observer, rather than a library of plans or policies. The recog-
nition task consists in running planning algorithms to match a
plan that is compatible with the observations. Both approaches
have pros and cons (see Section 2.5 for more details). Clearly,
in some real world domains it is not always possible to have a
suitable, and likely large, plan library that represents the possible
agents’ behavior [15]. Some approaches require to encode the
standard operational procedures as complex structured plans or
Hierarchical Task Networks (HTN-style), which is complicated.
Also, matching observations to large plan libraries tends to be
costly [1]. However, in other domains it is impossible to know the
planning model used by the agents because it is simply hidden.
Moreover, the assumption of foreseeing such a model relies on
the fact that the observations must be compatible with plans,
preferably optimal or sub-optimal, executed by a somewhat ratio-
nal agent [4], which is not always feasible. Also, running planning
algorithms, often multiple times, is costly [13]. In between these
two approaches, we propose a novel and unified approach, which
automatically learns a planning model from a plan library, that is
later used for both plan and goal recognition under the premises
of working with unreliable observations. In short, it works as
follows:

1. We create a constraint-based formulation, based on POCL
(Partial Order Causal Link [18]) and [19,20], that requires
a very small plan library (10 plans prove enough in our
experiments) to learn a planning action model. This model
is approximate and usually incomplete, as it only learns
indispensable information, but it is consistent with the en-
tire library. By consistent we mean that the learned model
must satisfy the constraints imposed by all plans; i.e., if a
precondition/effect is learned in an action, it must appear
in every instance of such an action in any of the plans of
the library. Our library is formed by simple flat plans, rather
than complex HTN plans. We do not require top-level plans
that are hierarchically decomposed to define a grammar of
plans like in other approaches [1,11,21]. Also, we do not
require action costs nor the definition of plan utilities like
in other approaches [4,5,7,8,22].

2. We require a small amount of observations. Unlike typ-
ical approaches that require observations of actions [3,4,
10,13–15,21], we indistinctly support the observation of
predicates and/or actions; e.g., in the blocksworld domain,
it is easier to observe just that one block is on top of
another, rather than stack or put-down actions that involve
similar movements and several predicates. We also support
unreliable observations, which include both missing/partial
and noisy/untrue observations.
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Fig. 1. Example of one type, five predicates and two operators (pick-up and stack) of the blocksworld domain. The domain contains two additional operators put-down
nd unstack, as the inverse of pick-up and stack, respectively.
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3. We use the learned model in 1 to find the plans in the
library that most satisfy the observations of 2. For example,
if we have learned the effect of an action, the action ap-
pears in a plan, and we observe the effect, we can infer that
such observation is satisfied by that action, provided all
the causal relationships in the plan imposed by the learned
model are still consistent. Note this corresponds with a
plan recognition task, which involves solving a maximiza-
tion problem that also deals with the noisy observations.
Thanks to the constraints imposed by both the model and
the observations, this task is not particularly costly.

4. We use the goals of the plans recognized in 3, i.e., those
that most satisfy the observations. For each goal in each
plan, we analyze its causal graph [23] and match it with
the causal graphs calculated for the observations, where
causal graphs are derived in a POCL fashion. If there is
enough overlapping in the causal graphs, which intuitively
means the goal is sufficiently supported (or explained) by
the causal relationships induced by the observations, the
goal is marked as recognized. Note this corresponds with a
goal recognition task that, eventually: (i) allows us to rec-
ognize certain goals from the plans already recognized; and
(ii) reject others that are not promising w.r.t. the learned
causal relationships.

The rest of the paper is organized as follows. Section 2 for-
alizes the terminology used for planning, learning, recognition
nd constraint satisfaction, and discusses the related work in
etail. Section 3 presents our approach, organized in four steps,
nd provides a complete application example for clarification. In
ection 4, we provide a complete evaluation of our approach
nder several indicators with different degrees of partial ob-
ervability and noise. We also compare our approach with other
odel-based approaches in the literature. Finally, Section 5 con-
ludes the paper and proposes some indications for future work.

. Formalization and related work

This section has a twofold objective. On the one hand, we
ormalize the background and notation on planning, learning
lanning models, plan and goal recognition, and constraint satis-
action. On the other hand, we present related work and highlight
he main differences w.r.t. our approach.
 a

3

.1. Planning

Planning is a deliberative task to build a plan of actions to
chieve a set of goals [23]. In this paper, we follow the PDDL
Planning Domain Definition Language [24]) structure, based on
omain, problem and plan.

efinition 1 (Types and Predicates). PDDL defines a hierarchy
f types T and a set of T -parameterized predicates P . Each
redicate provides a semantic interpretation within the planning
cenario and is denoted by a name applied to a sequence of zero
r more parameters in T .

efinition 2 (Operator). An operator has a name and a set of
-parameters. The number and type of the parameters restrict
he potential predicates to be used per operator. Each opera-
or o ∈ O has a set of preconditions (pre(o)) and a set of
dd and delete effects (eff+(o) and eff−(o), respectively), where
re(o), eff+(o), eff−(o) ⊆ P . For simplicity, we only consider
ositive preconditions here, but negative ones can be simply
anaged by creating dummy predicates q = ¬p.

efinition 3 (Domain Theory or, Simply, Domain). The planning
omain is given by the tuple δ = ⟨T ,P,O⟩, where the operators
define the planning action model.

As an example, Fig. 1 shows one type, five predicates and two
perators of the blocksworld domain. For instance, given the type
lock, the predicate (on ?x - block ?y - block) represents the fact
hat block ?x is stacked on ?y, while (ontable ?x - block) represents
hat block ?x is on the table. The robot uses the operator pick-up
o hold block ?x and stack to put block ?x on top of ?y.

Given δ, we can define a set of T -typed constant values, which
llows us to fully ground P and O into V and A, respectively. V
nd A have all their parameters grounded and define the Boolean
redicates and actions1, respectively, to be used in a planning
roblem. For example, given two blocks S and T, we can ground
he predicates (on S T),(on T S) in V , with the real meaning (on S T)

1 PDDL uses the term action in the definition of the planning domain to
enote an operator. To avoid confusion in our notation, we distinguish between
perators, i.e., templates with parameters as represented in Fig. 1, and actions,
.e., instantiated operators where all parameters are grounded to constant values
s represented in Fig. 2.
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Fig. 2. Plan of length 8 to form the word STRAY in the blocksworld domain.

= true and (on T S) = true, to be used in actions (stack S T), (stack
T S) in A. Since all operators in O are T -parameterized, it is easy
to create a mapping between the preconditions/effects of O and
A. An action provides the dynamics of changes in the planning
domain: the action can be applied when its preconditions hold,
and its effects happen after its application.

Definition 4 (State). A state S is an assignment of true/false values
to predicates in V , so the size of the state space is 2|V|. S is a full
state if |S| = |V| and a partial state if |S| < |V|. Typically, a state
is modeled as a set where only the true predicates are present,
while the false predicates are omitted.

Definition 5 (Planning Problem, Aka Planning Instance). The prob-
lem is given by ρ = ⟨δ,V, I, G,A⟩, where the initial state I is a
full state (|I| = |V|), and G is the goal state (typically |G| ≤ |V|).

Definition 6 (Plan Trace or, Simply, Plan). A plan for ρ is defined
as π (ρ) = {⟨t1, a1⟩, ⟨t2, a2⟩ . . . ⟨tn, an⟩}, where each ⟨ti, ai⟩ gives
the time ti when action ai ∈ A happens. Note that parallel plans
(ti = tj for ai ̸= aj) and multiple occurrences of an action (ti ̸= tj
for ai = aj) are possible. π (ρ) induces a chronologically-ordered
sequence of full states ⟨S0 . . . Send⟩, where S0 = I and G ⊆ Send.
The plan length (length(π (ρ))) is the time for Send.

As an example, Fig. 2 shows a plan to form the word STRAY
in the blocksworld domain. For this plan, all the blocks are on
the table in I, and G = {(clear S),(on S T),(on T R),(on R A),(on A
Y),(ontable Y)}.

Definition 7 (Causal Relationship). Given a plan π (ρ) and two ac-
tions a1, a2 ∈ π (ρ), being t1 < t2, a causal relationship ⟨a1, p, a2⟩
represents the fact that a1 supports, as one of its positive effects,
the precondition p required by a2. This relation represents the
effect-precondition dependency between a1 and a2 in π (ρ).

As an example, ⟨ (pick-up A), (holding A), (stack A Y) ⟩ is a causal
relationship in the plan of Fig. 2 between the two first actions.
As can be seen in the domain definition of Fig. 1, (pick-up ?x)
has a positive effect (holding ?x) that, in this plan, supports the
precondition required by (stack ?x ?y).

Definition 8 (Causal Graph). Given a plan π (ρ), a causal graph is a
directed graph where the nodes stand for the actions and the arcs
for the causal relationships, or dependencies between actions.

Causal graphs are very valuable in planning as they capture
the internal structure of the plans when achieving goals [23].

2.2. Learning

Learning an action model is the task of gaining knowledge
by studying from experience. Particularly, we need to acquire
the preconditions and effects of the operators in the domain, by
identifying common structures from a library of plans or policies.
 o

4

Definition 9 (Plan Library). We define a plan library of size n, as
Πn = {⟨I1, G1, π (ρ1)⟩ . . . ⟨In, Gn, π (ρn)⟩}. We extend each plan
π (ρi) in the library with its Ii and Gi, which is retrieved from ρi

2.
Please note that we need the initial+goal states of the plans, but
no intermediate states whatsoever. Also note that the plans in the
library do not need to share the initial nor the goal state.

Let us consider a domain δ = ⟨T ,P,O⟩, a library Πn, and a
set of empty operators O?. O and O? are equal, but by empty
we mean that their preconditions and effects are unknown and,
consequently, have to be learned. We assume the name and
the parameters of operators in O? are known, as they can be
easily extracted from the plan library. Knowing this is simple:
in PDDL, actions and operators share the same name, so the
operators in O? are named from Πn and initialized with no
preconditions/effects. Such assumption, frequent in literature of
learning action models [19,25,26], may seem a bit strong but it
is minimally necessary to capture relationships between actions
(and operators). The parameters are needed to automatically
generate a set of candidate predicates that can be potentially used
in every operator. For instance, ‘‘(pick-up ?x - block){}’’ and ‘‘(stack
?x - block ?y - block){}’’ are empty operators for the operators of
Fig. 1.

Definition 10 (Learning Task). Learning a planning action model
is a task defined by the tuple Ln = ⟨δ, Πn,O?⟩. A solution for the
learning task Ln, denoted as solLn , is an approximation of O? to
the original operators in O, known as the reference model. It is an
approximation because: (i) not all the operators in O are learned
in solLn , as this depends on Πn; (ii) some preconditions/effects in
O may be missing in solLn ; and (iii) some preconditions/effects
not present in O may appear in solLn . Despite this, the model of
preconditions+effects in solLn must satisfy all plans in Πn (com-
pleteness) and the learned model must imply no contradictions
in any plan (soundness).

Intuitively, the learning task needs to complete the operators
in O? with some predicates P of δ by reasoning over the plan
library. This reasoning is a little inductive and a little abductive:
inductive because it makes inferences based on the plans and
abductive because it forms a probable, though not necessarily
unique, conclusion from those plans. More formally, solLn must be
consistent with the information in Πn. This means that if actions
Ai in every π (ρi) are instantiated versions of the operators in
solLn , all plans in Πn are consistent, that is, a correct sequence,
without contradictions, of full states ⟨S0i . . . Sendi⟩ is induced,
where S0i = Ii and Gi ⊆ Sendi .

Fig. 3 shows an example of solLn for the pick-up and stack
operators. In comparison to the reference operators shown in
Fig. 1, the preconditions of pick-up are correctly learned, but only
the two first preconditions in stack are in the original domain. The
dd effects learned are correct, but other effects, in particular the
elete effects, are missing.

.3. Plan and goal recognition

Plan and goal recognition are abductive tasks to infer a set
f actions and goals, respectively, that sufficiently support a se-
uence of observations from an unknown plan π?.

efinition 11 (Observation and Sequence of Observations). Given
n unknown plan π?, an observation θ is the result of watch-
ng the value of a grounded predicate in V? or an action being
xecuted in A?. For example, (holding A) is an observation in

2 For simplicity in our notation, we also denote the library as just a collection
f plans Π = {π (ρ ) . . . π (ρ )}.
n 1 n



A. Garrido Knowledge-Based Systems 278 (2023) 110895

F

t
o
w
a

Fig. 3. Example of solLn for the pick-up and stack operators of the blocksworld domain. Note the two operators are an approximation of the reference operators in
ig. 1.
l
p
M
c
v

2

w

he first case, and (pick-up A) in the second case. A sequence
f observations is defined as Θ = {θ1 . . . θn}, where the time
hen each θi is observed (time(θi)) is unknown. Θ represents
chronological sequence because time(θi) ≤ time(θi+1). In other

words, Θ must be monotonic and preserve the ordering of the
predicates/actions in π?, that is, θi+1 cannot precede θi in time.

Typical learning approaches only observe actions [3–5,7,10,
11,13–15,21]. In addition to these observations, we also support
the observation of predicates, which is less frequent [1,6]. Ob-
serving predicates is less informative but much more realistic in
the real world. After all, observing the location of one block is
more evident than observing the complex movement of the robot
hand, which combines several predicates. In our approach, Θ can
indistinctly include predicates and/or actions. Moreover, since the
sensors that capture the observations may be malfunctioning, the
observations are unreliable. This means that the observation of
predicates/actions may be incomplete (with gaps) and/or noisy
(wrongly observed).

Definition 12 (Plan Recognition Task). A plan recognition task is
defined as PR = ⟨Πn, solLn , Θ⟩. A solution for PR is defined as
solPR = {πi} ⊆ Πn, where every πi maximizes the number of
observations satisfied in Θ .

It is important to note that π? ∈ Πn is not required in our ap-
proach. However, if π? ∈ Πn and Θ is noiseless then π? ∈ solPR .
In such a case, the observed plan π? is always a plan recognized
as it maximizes the number of observations satisfied. As a general
case, the optimal solution for PR is the 1-size set solPR = {π?},
i.e., only the observed plan is recognized. Unfortunately, solPR
might include more than one plan, aka over-recognition, which is
frequent when Θ is small or noisy and, consequently, many plans
satisfy the max number of observations. Therefore, guaranteeing
the optimal solution is difficult.

Definition 13 (Goal Recognition Task). A goal recognition task is
defined as GR = ⟨Πn, solLn , Θ⟩. A solution for GR is defined as
solGR = {gj} ⊆ ∪GΠn

, where ∪GΠn
is the union of all the problem

goals achieved by plans in Πn.

The optimal solution for GR is, obviously, solGR = G?, which
are the original goals achieved by π?. Unfortunately, solGR might
include other goals and fail to include come goals in G?. Therefore,
guaranteeing the optimal solution is difficult.

Quality indicators. Popular metrics
Plan and goal recognition can be understood as binary classi-

fication tasks that assign a class label (recognized vs. not recog-
nized) to a set of candidate plans and goals, respectively. There-
fore, their quality indicators are inspired by those used in pattern
recognition and machine learning classification, and keep their
notation. Let TP, FP, TN, FN be true positive, false positive, true
negative and false negative, respectively. TP and TN represent a
5

successful recognition. In TP the hidden (unknown) element is
recognized when it should, and in TN the element is predicted
as not recognized because it should not be recognized. FP and FN
represent a flaw in recognition. In FP the element is recognized
when it should not, and in FN the hidden element is predicted
as not recognized when it should be recognized. Given a number
N of candidates, where N = TP+TN+FP+FN, we have different
metrics as quality indicators:

• Accuracy, defined as (TP+TN)/N, is the proportion of cor-
rect predictions over the candidate elements. Accuracy = 1
means the optimal recognition, with no FP and FN. Alterna-
tively, the error rate is defined as 1-accuracy. Some authors
define a more permissive type of accuracy, which we call
here boolean accuracy. In boolean accuracy, the result is 1 if
the set of recognized elements contains the hidden element
and 0 otherwise [8,13]. Note that boolean accuracy is a
good indicator for TP, but no for FP. Other authors define a
similar measure to accuracy, denoted as Q, as the proportion
of problems where the hidden element is among the most
likely recognized [5,7].
• Precision (positive predictive value), defined as TP/(TP+FP),

as the proportion of correct predictions over the recognized
ones. Precision = 1 means that there are no FP.
• TP rate (recall or sensitivity), defined as TP/(TP+FN), as the

proportion of correct predictions over the hidden ones. TP
rate = 1 means that there are no FN. Alternatively, FN rate
= 1-TP rate.
• TN rate (specificity or selectivity), defined as TN/(TN+FP), as

the proportion of correctly not recognized elements over the
elements not to be recognized. TN rate= 1 means that there
are no FP. Alternatively, FP rate = 1-TN rate.
• Agreement Ratio (denoted as AR), defined as TP/(TP+FN+FP),

as the proportion of correct predictions over all the elements
recognized together with the hidden ones. AR = 1 means
that there are no flaws in recognition.
• Spread, defined as TP+FP, as the number of recognized

elements. The spread is useful to evaluate the size of the
recognized set, but no if the elements are well or badly rec-
ognized. Despite this, it is a metric commonly used, specially
in plan recognition.

Although other metrics are clearly possible, such as preva-
ence, positive/negative likelihood ratios or F1-score, the most
opular metrics used in literature are those indicated above.
any authors also use ROC (Receiver Operating Characteristic)
urves to graphically compare TP rates vs. FP rates, or TN rates
s. FN rates, which provide very valuable information [13,15].

.4. Constraint satisfaction and optimization

A Constraint Satisfaction Problem (CSP) is a tuple ⟨X ,D, C⟩,
here X is a set of decision variables, D represents the domain
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or each of these variables and C is a set of constraints among the
ariables in X that bound their values in D.
An evaluation of values to variables is consistent if it does

ot violate any of the constraints in C. A consistent evaluation
s a solution if it includes values for all variables in X . A CSP
an have many solutions. If we do not define a metric over X ,
e are dealing with a pure satisfaction problem, rather than a
onstraint Optimization Problem (COP); i.e., many solutions are
ossible and equally valid. On the contrary, defining a metric
llows us to optimize the value of an X -expression. This can be

used, for example, to define soft constraints, which do not need to
be obligatorily satisfied, and maximize the number of them that
are finally satisfied in a CSP.

2.5. Related work

Traditionally, plan (and subsequently goal) recognition has no
knowledge on the planning model the agent is using. Therefore,
the recognition task relies on a plan library, which is typically
composed of top-level plans that are hierarchically decomposed
in different ways [1,11,21]. The simplest representation is used
in [11], with hierarchical plans that only include task decomposi-
tion. Then, [21] uses hierarchical plans with AND- and OR-nodes
captured as grammar rules. Finally, [1] uses a more informative
hierarchy, represented as a single-root directed acyclic connected
graph, which includes plan steps, task decomposition, and the
expected order of execution. Unlike other approaches, it sup-
ports the observation of actions and predicates. These works
use abductive, Bayesian probabilistic and decision-tree meth-
ods of machine learning to generate a probability model and
a mapping of observations for matching plan steps. [1,11] do
not support unreliable observations, but [21] supports missing
observations without noise. The overall idea is that the rec-
ognizer matches observations, as atomic instantaneous actions,
to specific plan steps within the library in order to infer an-
swers to plan recognition queries. This idea is also applied in
other works. [12] deals with ordinary deductive inference based
on observations, an action taxonomy, and simplicity constraints.
In [27], the interpretation of observations is considered as a
parsing task wherein observations are lexical tokens and plan
libraries are grammars. Different types of grammars can be used,
such as context-sensitive, context-free and plan tree grammars.
Similarly, [28] uses Bayesian inference and abdicative proba-
bilistic theory to map the observations onto an interpretation,
together with the likelihood of the interpretation. [16] assembles
the most likely observations into a Bayesian network, which is a
representation of a probability distribution over the set of pos-
sible explanations or plans. [29] faces recognition as a symbolic
syntactic recognition task.

Despite the success of the above systems, most of them typi-
cally focus on single-agent plan recognition. On the contrary, [22]
follows a pattern recognition approach where the input plans
are partial team traces, without noise, and are associated with
a utility function or cost. Hence, the multi-agent plan recognition
task is solved as a MAX-SATisfiability problem that tries to find
the model with the maximal utility. This work addresses a maxi-
mization problem like ours. However, we look for the plans that
most satisfy the observations without needing additional utilities.

Although most of the previous cited works infer a kind of
graph representation of the domain in absence of noise, in terms
of hierarchies or rules [1,11,12,16,21,30], and despite the impor-
tance of learning causality to understand and identify goals [31,
32], they do not learn an action model to be exploited from a
planning perspective. On the contrary, our approach: (i) uses a
POCL planning formulation to extract causal relationships into
an approximate action model from a library of multi-agent flat
6

(PDDL) plans, notably simpler than hierarchical plans; (ii) does
not require the definition of artificial plan utilities; and (iii) sup-
ports unreliable observations.

In other approaches, plan/goal recognition is considered as
the inverse problem of plan synthesis [3] or, loosely speaking,
it is planning in reverse [4,5]: the objective in planning is to
seek the actions to achieve the goals, whereas the objective in
plan recognition is to seek the top-level goal that explains the
observations. Hence, such recognition requires a full knowledge
on the agent’s planning model to be able to exploit it. Under this
premise, some authors transform plan recognition into a planning
task, which is solved by planning algorithms. [4,5] replace the
need for the plan library by an action model together with a set
of candidate goals. That is, the planning model must be known
by the recognizer, and the goals to be recognized are selected
from an input candidate set. These works require the definition of
action costs and use optimal or approximate planning algorithms
to calculate the probability distribution over the candidate goals.
The idea here is to find an action sequence that is a (sub-)
optimal plan, in terms of the cost, for both the candidate goal
and that goal extended with the observations. In [15], this model
is extended to a POMDP (Partially Observable Markov Decision
Process) model, where the actions are stochastic and states are
partially observable. These works support partial observations,
but no noise. [3] moves a step forward in the exploitation of
the action model and uses a modification of a classical planning
graph, as a basis to recognize the goals incrementally, where
input observations can be incomplete. [7] uses the ideas of [3]
to extend the work in [4] by computing cost estimates over a
plan graph to infer a probability distribution over the candidate
goals. [14] performs goal recognition by using event logs, where
each log consists of a sequence of timestamped actions, analogous
to the plan library used in our approach. Particularly, it uses
process mining techniques for discovering models that describe
the observed behavior and diagnosing deviations between the
discovered models and observations. Unfortunately, noise is not
supported in these works. [13] uses planning techniques with
an emphasis on the extraction of landmarks to develop goal
recognition heuristics. It supports partial observations and, al-
though no explicit noisy observations are managed, they can be
addressed as spurious actions within it. The use of landmarks may
look similar to the use of causal relationships in our approach.
However, landmarks and causal graphs contain different informa-
tion: landmarks represent properties (or actions) that cannot be
avoided to achieve a goal, whereas causal graphs represent the
causal dependencies between actions. Also, the extraction and
ordering of landmarks is more complex than creating a causal
graph. Finally, a causal graph is never empty, but a graph formed
only by conjunctive landmarks could be empty. [8] also requires
artificial action costs and defines operator-counting constraints,
solved by linear programming models that minimize plan costs
when the observations are included. It supports partial and noisy
observations.

Unlike our approach, which establishes a clear distinction
between plan and goal recognition, the works in the literature
typically mix these two tasks and really face a plan recognition
task. However, there are two approaches that try to differentiate
both tasks [6,10]. [6] introduces the idea of recognizing plans in
addition to goals when dealing with unreliable observations. It
assumes observations over predicates and argues that in many
applications the actual actions of an agent may not be observ-
able. It requires the action model, where actions have costs, and
the set of candidate goals to assign a posterior probability to
the true goal. Although this resembles a goal recognition task,
it really looks for a unique true (hidden) goal, rather than for
individual goals. This essentially is like plan recognition. [10]
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Table 1
Plan and goal recognition in literature (references appear in chronological order).
Reference Input Method PR/GR Unreliable obs Obs Quality indicators Domains

tested

Goldman et al. [11] HTN plan lib Abductive &
Probabilistic
methods

PR None Acts – 1

Avrahami & Kaminka
[1]

HTN plan lib Decision trees PR None Acts & preds – 1

Jigui & Minghao [3] Action model +
candidate set

Planning graphs PR Partial Acts Accuracy 3

Geib & Goldman [21] HTN plan lib Bayesian model PR Partial Acts – 1

Ramirez & Geffner [4] Action model +
candidate set

Planning algorithms PR Partial Acts Accuracy, AR, FP &
FN rates

4

Ramirez & Geffner [5] Action model +
candidate set

Planning algorithms PR Partial Acts Q, spread 6

Pattison & Long [10] Action model +
candidate set

Planning algorithms GR None Acts Precision, TP rate 5

Ramirez & Geffner [15] Action model +
candidate set

Planning algorithms
and POMDP model

PR Partial Acts Accuracy, precision,
ROC: TP vs. FP rates

4

E-Martin et al. [7] Action model +
candidate set

Plan graph &
planning algorithms

PR Partial Acts Q, spread 4

Sohrabi et al. [6] Action model +
candidate set

Planning algorithms GR Partial &
noise

Preds Accuracy, spread 4

Polyvyanyy et al. [14] Event logs Process mining
techniques

PR Partial Acts Precision, TP rate 5

Pereira et al. [13] Action model +
candidate set

Landmark reasoning
& planning
algorithms

PR Partial &
spurious noise

Acts Accuracy, spread,
ROC: TP vs. FP rates

15

Santos et al. [8] Action model +
candidate set

Linear programming GR Partial &
noise

Acts Boolean accuracy,
spread, AR

4

This work PDDL plan lib (like
event logs)

Constraint
optimization &
causality reasoning

PR & GR Partial &
noise

Acts & preds Accuracy, spread,
ROC: TP vs. FP rates,
TN vs. FN rates
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places plan recognition before goal recognition. It also requires
the action model and the set of candidate goals, and uses planning
techniques to calculate the probability distribution over subsets
of goals. Moreover, it assumes full observations without noise.
However, it looks for the true agent’s goal that is hidden to the
observer which, again, is like plan recognition. On the contrary,
our approach does not require: (i) a planning action model;
(ii) an artificial definition of action costs; and (iii) a candidate
set of plans/goals (beyond those which can be automatically ex-
tracted from the library). Additionally, our approach: (i) addresses
plan and goal recognition separately; and (ii) supports unreliable
observations, in the form of predicates and/or actions that can be
interleaved.

To sum up this related work compilation, Table 1 depicts a
ummary of the main features of the most relevant works in
lan and goal recognition. For comparison, the last row presents
he features of our work. The features are shown in these eight
olumns of the table:

1. Reference of the work.
2. Source of input knowledge about the agents under obser-

vation: a plan library or an action model plus a candidate
set.

3. Method used in the work.
4. If the work solves a plan recognition (PR) or a goal recog-

nition (GR) task.
5. If the work supports unreliable observations (partial obser-

vations, observations with noise, or none).
6. If the observations are over actions, predicates or both.
7. Quality indicators, as discussed in Section 2.3. Some works

ignore quality evaluation and only focus on performance,
giving the number of nodes calculated, branching factors,
7

propagation results, etc. This situation is represented by
symbol ‘‘-’’.

8. Number of tested domains given in the work.

As can be seen in Table 1, works in the literature show some
limitations. First, most works focus on plan recognition, and those
that establish a difference between plan and goal recognition
do not look for individual goals. Second, partial observations are
supported in most works, but noisy observations are infrequent.
However, noise is common in the real world, and can be seen
as a measure of uncertainty. Third, the observations are mostly
on actions, and only [1] supports observations on actions and
predicates. Our work, as depicted in the last row, addresses all
these limitations.

3. Plan and goal recognition

Our recognition method is a 4-step sequence. First, we learn a
planning model from the plan library Πn. Second, we model the
observations in Θ . Third, we recognize the plans in Πn that most
satisfy the observations. Fourth, we analyze the goals of those
plans to recognize the most promising goals.

3.1. Step 1. Learning a planning model

We create a POCL constraint-based formulation as a CSP to
solve a learning task Ln = ⟨δ, Πn,O?⟩. Using a POCL represen-
tation allows us to explicitly model the causal relationships and
the branching schemes, and to inherit the POCL completeness and
soundness formal properties.

It is important to highlight that learning in AI usually refers
to machine learning, which typically relies on artificial neural
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Table 2
Formulation of variables.
Id. Variable X Domain D

X1 pre(p, o) {false, pre}
X2 eff(p, o) {false, add, del}

X3 sup(pπ , oπ ) ∅ ∪ {o′π } ∈ π

X4 start(oπ ) [0..length(π )]

networks, supervised learning, deep learning, or reinforcement
learning among others. In this paper, we address the learning
task by solving a CSP, which conducts a search process to find
the action model to be learned. This way to cope with learning
is not strange, as learning action models has been addressed in
the planning community by using different approaches, such as
Markov logic networks, probabilistic models, MAX-SAT problems,
finite state machines, genetic algorithms, constraint satisfaction
and even automated planning [20].

Our formulation is inspired by [19,20], but it shows impor-
ant differences and extensions. First, it is a more compact and
implified representation as we now work with a classical (non-
urative) action model. Second, it is a generalization as it now
earns from multiple plans, rather than just from one single
lan [19]. Third, its learned model is more approximate and less
recise, but it builds up faster. Fourth, it now needs to model se-
uences of observations at unknown times. Fifth, the observations
ight be noisy or incorrect, which is unsupported in [19,20].
The formulation is automatically generated from Πn and O?.

or each π ∈ Πn, let oπ be an action in π that is mapped onto
he operator o ∈ O?. It is important to recall that actions and
perators share the same name, so this mapping is trivial. Let
be defined as a predicate of o, which can be potentially used
s a precondition/effect, that is grounded for any action oπ , and
enoted as pπ . Since we define the formulation as a CSP, we need

to encode variables and constraints for every operator o with its
reconditions/effects p, and the grounded versions oπ and pπ in
ach plan π .

.1.1. Variables
The variables are shown in Table 2. X1 and X2 represent

he variables for each o ∈ O?, whereas X3 and X4 are for the
rounded actions, which must be repeated per each plan π ∈ Πn.
X1 represents whether p is, or not, a precondition in o, iden-

tified as pre (true) and false, respectively. X2 models the type of
effect, and it represents if p is learned as a positive or negative
effect in o (add or del, in an exclusive way); false means that p is
not an effect of o. X3 models the supporter for the POCL causal
relationship ⟨o′π , pπ , oπ ⟩: o′π supports pπ , which is required by oπ .
If pre(p, o) = false, p is not a precondition of o and, consequently,
pπ will not be a precondition of oπ ; thus, sup(pπ , oπ ) = ∅, i.e., the
empty supporter. Finally, X4 is the time when action oπ happens
in π .

As an example, let us assume the empty operator (pick-up ?x
- block), the predicate (clear ?x) and the grounded versions (pick-
up A) and (clear A). The variables are X1 = pre((clear ?x), (pick−
up ?x − block)), X2 = eff((clear ?x), (pick − up ?x − block)),
X3 = sup((clear A), (pick − up A)) and X4 = start((pick − up A)).
A solution to the corresponding CSP will learn the preconditions
+ effects of O?, thus creating solLn . In our formulation, we only
need to focus on the result of variables X1 and X2 for this
learning. In this example, if X1 = pre then (clear ?x) is learned
as a precondition of pick-up. If X2 = add then (clear ?x) is an add
effect; and a delete effect if X2 = del. If the value of X1 and X2
is false, (clear ?x) is not learned as a precondition and effect of
pick-up, respectively. As can be seen, learning the action model
once the CSP is solved is straightforward.
8

Table 3
Formulation of constraints.
Id. Constraint C

C1 if (eff(p, o) = del) then pre(p, o) = pre
C2 if (pre(p, o) = pre) then eff(p, o) ̸=add
C3 ∀ o: (∃ pre(p, o) ̸=false) and (∃ eff(p, o) ̸=false)

C4 iff (pre(p, o) = false) then sup(pπ , oπ )=∅
C5 if (eff(p, o) = false) then ∀ o′π that requires pπ : sup(pπ , o′π ) ̸= oπ

C6 if (eff(p, o) = add) and (eff(p, o′) = del) then start(oπ ) ̸= start(o′π )
C7 if (sup(pπ , oπ ) = o′π ) then start(o′π ) < start(oπ )
C8 if (sup(pπ , oπ ) = o′π ) and (∃othreat | eff(p, othreat ) = del) and

(oπ ̸= othreatπ ) then
(start(othreatπ ) < start(o′π )) or (start(othreatπ ) > start(oπ ))

C9 ∀ o′π : (∃ sup(pπ , oπ ) = o′π )

In addition to actions in π , we include two dummy actions
nd operators per plan. First, init represents I (start(init) = 0),

and has no pre and sup variables because it has no preconditions.
init has as many eff(pi, init) = add as pi ∈ I and eff(pj, init) =
el for the false predicates ¬pj ∈ I, as I is a full state. Second,
oal represents G (start(goal) = length(π )). goal has as many

pre(pi, goal) = pre as pi ∈ G. goal has no eff variables because
it has no effects.

3.1.2. Constraints
The constraints are shown in Table 3 for all variables defined

in Table 2. C1–C3 represent the constraints for each operator, and
C4–C9 combine constraints for operators and actions. Note that
every instantiated action needs to be consistent with its mapped
operator, and vice versa. In more detail, the semantics of the
constraints is:

• C1 and C2 represent the classical assumption that negative
effects are required as preconditions, and preconditions do
not act as positive effects, respectively. These constraints are
not indispensable, but they are commonly used in learning
action models [25,26].
• C3 models that every operator has no empty preconditions

and effects. The underlying idea is that an operator requires
at least one precondition and one effect. Otherwise, it could
be applied indiscriminately.
• C4 is an if and only if constraint that models the necessary,

or unnecessary, supporter of a precondition. If p is not a pre-
condition in o (pre(p, o) = false), it will no be supported in
any of its grounded actions (no precondition means no need
for supporter); and vice versa (every precondition needs to
be supported). Clearly, if pre((clear ?x), (pick − up ?x −
block)) = pre, sup((clear A), (pick− up A)) cannot be empty.
• C5 models which are the only predicates that can be used as

supporters. In particular, if p is not an effect in o (eff(p, o) =
false), then no grounded action oπ will be a supporter of
pπ for any other action o′π . Clearly, if eff((clear ?x), (pick −
up ?x − block)) = false, (pick-up A) cannot appear as a
supporter of (clear A).
• C6 models that if two operators have contradictory/inter-

fering effects, their grounded actions cannot happen at the
same time. This avoids contradictions, because p and ¬p
cannot happen simultaneously.
• C7 represents the precedence defined by a causal link. It

models that the supporter o′π of pπ must happen before
the requirer oπ , which is essential to satisfy the causal
relationship ⟨o′π , pπ , oπ ⟩.
• C8 encodes the POCL complete way to solve a possible

threat to ⟨o′π , pπ , oπ ⟩. If there exists a threatening operator
othreat , its grounded action othreatπ cannot break the causal
relationship, and it must be promoted or demoted. In other
words, a threatening action othreat cannot start between the
π
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supporter o′π and the requirer oπ , and must be moved
forward (before the supporter) or backward (after the re-
quirer).
• C9 represents that every action in the plan is used as a sup-

porter at least once. This means that if an action appears in
a plan, it is used in such a plan. This does not imply the plan
is optimal, but it prevents actions to appear indiscriminately
if they are not used.

It is important to note that C3 and C9 are not strictly part
of the PDDL semantics. Although they can be easily removed if
not desired, we include them in our formulation to learn more
informative operators.

3.1.3. Solving the learning task
Constraint programming, CSP, COP and SATisfiability are

highly related frameworks [33]. Constraint formulations can be
mapped into SAT ones and vice versa. However, non-boolean
variables like X2, X3 and X4 make the SAT encodings more
complex, e.g., we need specific clauses to ensure that a SAT
variable is given one and only one value [33]. Despite modern SAT
solvers are very efficient, we are mainly interested in a flexible
formulation to represent all the constraints required by Ln, so we
opt for a constraint satisfaction based solver.

We solve the learning task by using Choco (www.choco-
solver.org), an open-source Java library for constraint pro-
gramming. We deal with a satisfaction problem, so different
solutions are possible. Although defining a metric over the vari-
ables in Table 2 to deal with an optimization problem is possible,
we have not found a conclusive metric that leads to the best so-
lution, i.e., the best planning action model. We have investigated
different metrics, such as maximizing or minimizing the use of
causal relationships and/or side effects, but the learned model
is not better because of this. In other words, a more realistic
action model cannot be simulated by a simple metric, which is
unable to substitute the real semantics understood by the domain
expert. Moreover, defining a metric has not a direct impact in
reducing the variance of the learned models, as this depends
on the solver and computer performance. On the contrary, we
use variable+value ordering heuristics to accelerate the solv-
ing process. This is not only solver-independent, but also easily
reproducible.

The variable ordering we use is X1, X2, X3, X4. The value
ordering for X1 is first the pre value and then false. This tries to
learn as many preconditions as possible. The value ordering for X2
is false, add and del, which tries to learn the minimal number of
effects. For X3 and X4 we do not require a specific value ordering.
These orderings give priority to a model with more preconditions
and just the indispensable effects, thus returning a model solLn
that tends to have more preconditions and fewer effects than the
original operators in δ.

3.1.4. A brief sketch on formal properties
Our formulation presents some interesting properties as al-

ready proved in [20]: polynomial size and, inherited from POCL
planning, soundness and completeness.

First, the number of variables in the formulation is polynomial
in the number of predicates and actions in the plans of Ln. Let
n be the number of plans in Ln, and |A| and |V| be the max
number of actions and predicates in these plans. The max number
of variables is bounded by X3 and given by O(|V| ∗ |A| ∗n), which
akes the number of decision variables polynomial.
Second, by soundness of the formulation, we refer to the prop-

rty that it allows us to find a sound plan, where all constraints
re satisfied. A plan π is sound w.r.t. a planning model solLn if

all preconditions of all actions, including the dummy ones, are
9

satisfied when the actions happen, and no contradictions appear.
This is guaranteed by the POCL [18] branching scheme of the
formulation that: (i) avoids contradictory effects, which guaran-
tees they cannot happen simultaneously (C6); (ii) encodes all the
sound alternatives that support causal relationships, which guar-
antees that any precondition is supported before it is required
(C7); and (iii) solves the possible threats by imposing an ordering,
which prevents the model from breaking a causal relationship
(C8). Note that this soundness means that solLn represents a
model that is consistent with any model able to generate the plan
library.

Third, by completeness of the formulation, we mean that any
possible solution can be found by solving the POCL formulation.
The formulation creates a CSP that encodes the set of constraints
for all plans in Ln that any solution solLn must satisfy, and it
does not discard any possible model unless it violates any of
the constraints of Table 3. By the definition of the CSP and by
performing a complete exploration of all its variables, a CSP solver
will not discard any evaluation of values to variables unless it
is inconsistent. Therefore, if a solution exists it can be found,
thus guaranteeing completeness. Note that completeness means
that solLn represents a model that is consistent not only with
any model able to generate the plan library, but also with the
particular model that generated the plan library.

3.2. Step 2. Formulating observations

Once the action model solLn has been learned, we deal with
the observations over an unknown plan π?. Modeling the se-
quence of observations Θ = {θ1 . . . θm} of π? is straightforward in
our formulation, no matter if we observe an action or a predicate.
Our formulation supports mixed observations:

• If θi is an action, we only need to create the X3 and X4
variables like for any other action, i.e., sup(pπ , θi) for its
potential preconditions pπ and start(θi).
• If θi is a predicate, we simply need to create a dummy

action+operator obsθi with variables X1, X3 and X4, i.e.,
pre(θi, obsθi ), sup(θi, obsθi ) and start(obsθi ), as obsθi has only
one precondition (the observed predicate θi) and no eff
variables at all.

Since we do not know the time when observations happen,
we need to formulate an extra constraint C10 to preserve their
chronological ordering: start(θi) ≤ start(θi + 1) ∀i = 1..m− 1.

3.3. Step 3. Plan recognition

The plan recognition task PR = ⟨Πn, solLn , Θ⟩ uses the action
model solLn learned in step 1 all over the plans in Πn and finds
those that most satisfy the observations in Θ .

For every observation θi ∈ Θ and plan πj ∈ Πn, we create
a new Boolean variable X5, namely sat(θi, πj), which represents
whether θi is satisfied, or not, in plan πj (we assume true = 1 and
false = 0). We need to formulate a new constraint C11. Since we
support mixed observations:

• If θi is an action, mapped onto the operator o, X5 is satisfied
when the following conditional constraint holds:
if pre(p, o) = pre then sup(pπj , θi) ̸= ∅ for all the potential
preconditions p (C11.1).
• If θi is a predicate, X5 is satisfied when the following con-

straint holds:
sup(θi, obsθi ) ̸= ∅ (C11.2).

Intuitively, thanks to constraints C11.1 and C11.2, an obser-
vation is satisfied in πj if it is consistently supported (i.e., it has

a non-empty supporter) w.r.t. the model solLn . Consequently,
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Fig. 4. Example of a causal graph used for goal recognition.

PR involves solving the general problem that maximizes the
expression:

solPR = argmax
πj∈Πn

∑
∀θi∈Θ

sat(θi, πj),

being |solPR | ∈ [1..n]. Note that solPR requires solving n-maxi-
ization problems, one per πj ∈ Πn, where each of them
aximizes the number of observations satisfied in πj.
In absence of noise in Θ , the plan π? that produces Θ always

satisfies all the observations and, hence, maximizes the previous
expression. Therefore, if π? ∈ Πn then π? ∈ solPR . In other
words, π? is always a solution for PR. However, other plans in
the library can also maximize that expression, particularly when
the number of observations is small. This means that solPR can
contain multiple plans, returning a non-optimal solution. On the
contrary, in presence of noise in Θ , if π? ∈ Πn then π? is not
necessarily a solution, as other plans can satisfy more (noisy)
observations than π?.

3.4. Step 4. Goal recognition

The goal recognition task GR = ⟨Πn, solLn , Θ⟩ analyzes the
goals of the plans in solPR of step 3 to find those that are
sufficiently supported by the observations in Θ w.r.t. the model
of causal relationships learned in solLn . Causal graphs identify
the plan structure that satisfies the goals. Therefore, reasoning on
causal graphs seems appealing to discover if a goal is sufficiently
supported.

3.4.1. Motivating example. Use of causal graphs
Causal graphs can be easily generated from our formulation,

as we only need to focus on the result of variables X3 of Table 2.
As a motivating example, let us assume a plan π ∈ solPR ,
with actions {a1, a2, a3} and goals {g1, g2}, and its causal graph
depicted in Fig. 4. Building the causal graph is trivial after solving
the CSP. We just need to iterate all over the X3 variables. A
non-empty value for X3 (i.e., sup(pπ , oπ ) = o′π ) represents the
causal relationship ⟨o′π , pπ , oπ ⟩ and the arc o′π → oπ shown in
the figure. For example, we assume sup(p1, a1) = init, which
represents the causal relationship ⟨init, p1, a1⟩. We also assume
sup(g1, goal) = a1 and sup(g2, goal) = a3, which represent the
causal relationships ⟨a1, g1, goal⟩ and ⟨a3, g2, goal⟩, respectively.
Other causal relationships are shown in the figure. For simplicity,
every action in π has one precondition and only a1 and a3 have
two effects: {p2, g1} and {p4, g2}, respectively.

If we just observe Θ = {p4}, most existing approaches will fail
to recognize any goal due to the lack of evidence. However, the
causal graphs for the observation of p4 (a1 → a2 → a3) and for
the goal g2 (a1 → a2 → a3) overlap entirely: there are 3 over-
lapping actions. If we focus on g1, only a1 overlaps. If Θ = {p3}
(or equivalently, a3), its causal graph is a1 → a2. There are 1 and
2 overlapping actions for g1 and g2, respectively. If Θ = {p2} (or
a2), its causal graph is simply a1, and there is 1 overlapping action
for both g1 and g2. Intuitively, higher overlapping suggests that a
goal is certainly explained by the observations. This way, we need

to define a threshold to decide whether a goal is recognized or

10
not. In this example, if the threshold is 0.5, both g1 and g2 will be
recognized for any of the three observations, as the overlapping
actions exceed the threshold. If the threshold is 1, only g2 will be
recognized when p3 or p4 are observed. If the threshold is 2, only
g2 will be recognized when p4 is observed. If the threshold is 3,
no goal will be recognized under these observations.

3.4.2. Calculating the threshold
Deciding the perfect threshold is not simple: high values

are too restrictive and might reject real goals (false negatives),
whereas low values are too loose and might recognize wrong
goals (false positives). In our approach, we define the threshold
as threshold = |sups_observations|/|sups_goals|, being the quo-
tient between the number of supporters for the observations Θ ,
stored in the set sups_observations, and the goals G, stored in the
set sups_goals. These sets are automatically generated from the
values of X3 after solving the CSP.

Since we support mixed observations with noise, sups_obser-
vations is the set of supporters that hold:

• sup(pπ , θi) ̸= ∅, if θi is an action, and being pπ a potential
precondition of θi,
• sup(θi, obsθi ) ̸= ∅, if θi is a predicate,

for all θi ∈ Θ . On the other side, sups_goals is the set of supporters
that hold sup(pi, goal) ̸= ∅ for all pi ∈ G. In the example of
Fig. 4, with just one observation (either p4, p3 or p2) and two
goals (g1 and g2), sups_observations = 1, sups_goals = 2, and
threshold = 1/2 = 0.5. We can easily provide more elaborate
thresholds that also take into account the size of the causal graph,
but ours returns a proportion of the observations per goal, in
terms of the number of supporters, and has proved very easy to
calculate and adequate enough in our experiments.

3.4.3. Solving the goal recognition task
Once we have the causal graphs and the value of the threshold,

we need to discover if a goal is sufficiently supported by the ob-
servations. As mentioned above, this depends on the overlapping
actions for such a goal and the observations. We cannot use algo-
rithms for graph isomorphism detection because observations are
unreliable, which might provoke gaps when matching the causal
graph of the goals. We have implemented a recursive procedure
that counts the number of overlapping actions for the goals in G
and the observations Θ , as shown in Algorithms 1 and 2.

We use three structures. First, pending_sups_obs is a set with
the supporters for Θ , which is initialized with the same
sups_observations used for the calculus of the threshold. Sec-
ond, visited_sups_obs[] is a vector with the number of over-
lapping actions per supporter, which is initially empty. Third,
overlapping_acts[] is a vector with the result, that is, the number
of overlapping actions per goal.

Algorithm 1 initializes the structures and initiates the recur-
sive procedure per goal by invoking Algorithm 2. The idea of
Algorithm 2 is to recursively traverse the causal graph of each
goal while updating the visited supporters (in visited_sups_obs[])
and removing them from pending_sups_obs. More precisely, if the
supporter act has not been visited yet (line 3), we initialize the
max number of possible overlapping actions (line 4). After updat-
ing pending_sups_obs in lines 5–7 (which means an overlapping
has been found), we proceed recursively with the supporters of
all preconditions of act (lines 8–11). After this recursion, line 12
calculates the number of visited_sups_obs[act] with the number
of overlapping actions (broadly speaking, the max number of
supporters minus the pending ones). Lines 14 and 16 finish the
algorithm.

The temporal complexity of both algorithms is polynomial.

Algorithm 1 is linear in the number of goals in G. Algorithm 2 is
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Algorithm 1 Calculates the overlapping actions for all goals.

1: procedure CalculatesOverlappingActions
equire: causal graph for G and Θ (like in Fig. 4)
nsure: overlapping_acts[] with the overlapping actions per goal, given Θ

2: for all g | g is a precondition of goal do ▷ g ∈ G
3: pending_sups_obs← sups_observations
4: visited_sups_obs[] ← ∅
5: sup← sup(g, goal) ▷ variable X3
6: overlapping_acts[g] ← RecCount(sup, pending_sups_obs, visited_sups_obs[])
7: end for
8: end procedure
Algorithm 2 Recursively counts the number of overlapping actions.

1: procedure RecCount(act, pending_sups_obs, visited_sups_obs[])
2: if act ̸= init then
3: if act ̸∈ visited_sups_obs[] then ▷ act has not been visited yet
4: max_size← |pending_sups_obs|
5: if act ∈ pending_sups_obs then
6: remove act from pending_sups_obs ▷ overlapping found
7: end if
8: for all p | p is a precondition of act do
9: new_sup← sup(p, act) ▷ variable X3
0: RecCount(new_sup, pending_sups_obs, visited_sups_obs[])
1: end for
2: visited_sups_obs[act] ← max_size− |pending_sups_obs|
3: end if
4: return visited_sups_obs[act] ▷ act already visited here
5: else
6: return 0 ▷ base case: init is a dummy action
7: end if
8: end procedure
s
Θ
c
i
c
b
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linear in the number of actions in the causal graph, as every action
in the graph is expanded only once (the first time it is visited in
line 3).

Now that we have the overlapping actions, the goal recogni-
ion task is easy to solve. Note that in our 4-step approach, we do
ot need to analyze all goals in Πn, but only those in the plans in

solPR of step 3, thus reducing the complexity of the task. For each
goal, if the overlapping value for such a goal and the observations
is higher than the threshold, such a goal is marked as recognized
in solGR .

3.5. A complete application example

Let us recall the motivating example used in Section 1 with
Π5 = {π1 = SAY, π2 = TRAY, π3 = TRAYS, π4 = TYRES, π5 =
YEAR}. Although in our approach the initial state does not need
to be the same in all plans, for simplicity, we consider here
that all blocks are initially on the table. The plans do not need
to be optimal but, also for simplicity, we assume they are the
shortest. This means that only pick-up and stack are used in Π5.
For instance, π1 = {⟨1, (pick-up A) ⟩, ⟨2, (stack A Y) ⟩, ⟨3, (pick-up
S) ⟩, ⟨4, (stack S A) ⟩}.

Step 1 creates the learning task L5 and obtains solL5 , as the
planning model of Fig. 3. This model is not the only one that can
be learned. As discussed in Section 3.1.3, we cannot foresee that
one model is better than another, so we use the first model found.
Since put-down and unstack do not appear in Π5, they cannot
be learned. Moreover, in absence of negative preconditions/goals,
there is no need to learn negative effects, so they are missing
in solL5 .

3 Although this could be a limitation in some scenarios,

3 Note that negative effects are learned when negative preconditions/goals
re necessary in the actions of the library.
11
the model learned from just 5 plans is expressive enough and
captures the essence of holding one block (pick-up) and placing it
on top of another (stack).

Let us now consider an unknown plan π? = RAY and the
observations Θ = {θ1 = (holding A), θ2 = (holding R)}, which are
formulated according to step 2. The plan recognition task of step
3 solves 5 maximization problems, one per plan in Π5, to return
olPR = {π2, π3}, as both plans satisfy the two observations in
, while the other plans in Π5 satisfy just one observation. The
onclusion here, provided the two observations, is that the agent
s executing π2 or π3. In this example, if the plan library would
ontain π?, it would also satisfy the two observations and would
e present in solPR .
The number of candidate goals in ∪GΠ5

is 18: {(clear S),(on S
),(on A Y),(ontable Y),(clear T),(on T R),(on R A),(on Y S),(ontable
),(on T Y),(on Y R),(on R E),(on E S),(clear Y),(on Y E),(on E A),(on
R),(ontable R)}. However, we will analyze 5 goals in π2 and 6

in π3, which means only 7 distinct goals: {(clear T),(on T R),(on R
A),(on A Y),(ontable Y),(on Y S),(ontable S)}.

The causal graph for π2 that is created in step 4 is shown in
Fig. 5. The number of supported observations and goals is 2 and
5, respectively. Thus, threshold = 2/5 = 0.4. The number of
overlapping actions is 0 for each goal in {(on T R),(clear T),(ontable
Y)} and 1 for both {(on A Y),(on R A)}. Consequently, the only
goals that are marked as recognized are {(on A Y),(on R A)}.
The causal graph for π3 is created analogously. The number of
supported observations and goals is now 2 and 6, respectively,
and threshold = 0.33. The six goals are analyzed, but no new goals
exceed the threshold; (on A Y) and (on R A) are recognized again.
Note that two real goals of π? are not recognized: (clear R) and
(ontable Y). (clear R) cannot be recognized, as it does not appear
in Π5: R always has another block on top of it. (ontable Y) is a
false negative that is not recognized when it should.
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Fig. 5. Causal graph for π2 = TRAY. obsθ1 and obsθ2 are the dummy actions
for the observed predicates. Only the relevant causal relationships with init are
epresented. The goals and observations are shown as underlined text.

. Experimental evaluation

This section provides a thorough evaluation of our approach.
irst, we evaluate our plan and goal recognition tasks in some IPC
omains. Second, we evaluate our plan recognition task vs. other
odel-based approaches, whose results are taken from [13].

.1. Plan and goal recognition evaluation

.1.1. Setup
We use 12 well-known IPC domains, such as blocksworld,

riverlog, elevator, floortile, grid, hanoi, etc. We have selected
hese domains because they can be parsed in our approach;
ther domains do not use types or use constants, which are
nsupported functionalities in our parser. We have randomly
hosen 50 problems per domain and solved them by LPG [34].
he problems do not necessarily have the same objects (e.g., in
locksworld the blocks can be different in every problem) and
ave different initial/goal states. Thus, the problems are unrelated
nd independent. The plans (up to 30 actions) are parallel, involve
ultiple agents and are not required to be optimal.
We use an Intel i5-6400 @ 2.70 GHz with 8 GB of RAM. The

olving time in Choco is limited to 300 s for the satisfaction
roblem of the learning task (step 1), and to 60 s for formulating
he observations and solving each maximization problem of the
lan recognition task (steps 2 + 3). If no solution is found in that
imit, that task is considered unsolvable. The goal recognition task
step 4) does not require the use of Choco and its solving time
ever exceeds 15 s.
The unreliable observations are also random. Since observing

ctions requires a deeper knowledge on the planning domain to
nderstand what the agent is really doing, we always observe
redicates, which is less informative but much more realistic.
fter all, observing an action would imply the indirect obser-
ation of its preconditions+effects. More precisely, we observe
ndividual predicates within the sequence of states induced by the
bserved plan. We analyze six observability degrees, 0.05, 0.15,
.25, 0.50, 0.75 and 1. A value of 0.05 means that the observations
ontain 5% of the positive predicates of the 5% of the states,
.e., we just observe the 0.25% of the predicates throughout the
lan (observations on the remaining predicates are missing). A
alue of 1 means that all positive predicates in all the states are

bserved. We also consider noise in the observations, as a level

12
Table 4
Information on the domains, library plans and formulation size. In every domain,
the first line reports the results for Π20 and the second line for Π10 .
Domain |O| |P| |A| |I| |G| |X | |C|

blocksworld 4 27 126 355 48 940 182969
77 180 26 594 146554

driverlog 6 28 262 912 101 1755 653805
124 436 59 900 314319

elevator 4 16 590 4817 151 2897 210975
223 1889 59 1132 59475

floortile 7 44 68 862 34 691 12107
31 440 18 420 5181

grid 5 31 158 722 28 1539 269778
76 349 13 818 116228

hanoi 1 8 101 850 40 704 59660
28 310 17 229 7173

logistics 6 24 312 470 57 1323 94256
148 222 28 646 50592

openstacks 3 19 159 767 75 1210 232983
57 359 31 457 34559

pathways 5 24 157 1771 27 955 38015
54 688 13 393 8362

sokoban 3 33 295 5538 44 3105 203996
191 2658 23 2066 184220

visitall 1 5 424 2242 279 2509 106924
240 1151 142 1431 64984

zenotravel 5 28 101 409 53 588 22721
50 186 22 335 16125

of uncertainty due to a faulty read of the sensor. In particular,
we analyze three values for noise, 0.0, 0.1 and 0.2. A value of 0.0
means that all the observations are flawless, but 0.1 means that
10% of the observations are faulty.

We run a two-fold cross-validation evaluation, where plans
are distributed into two sets: the plan library used for learning
and the observed plans used for testing. We use two sizes for plan
libraries, Π20 and Π10 of size 20 and 10, respectively. The size of
the tests is given in each experiment. To have more meaningful
results, we repeat each experiment 5 times. Every experiment
uses a different plan library and observations to learn 5 different
planning models and to extract average results. In order to have
a clear picture on the complexity of the domains and the plans
in the library, and the size of the formulation (which depends
on the library), Table 4 shows the number of operators (|O|) and
predicates (|P|, as preconditions+effects) used in each domain,
and the average values for the actions (|A|), the predicates in
the initial and goal states (|I| and |G|), and the variables and
constraints in the formulation (|X | and |C|). We manage a wide
range of scenarios to increase the reliability of the results: from
simple domains with just 1 operator (hanoi and visitall) and a few
predicates (visitall), to more complex domains with 6–7 operators
(driverlog, logistics and floortile) and dozens of predicates (floor-
tile, sokoban, grid, etc.); and from library plans with 28 actions
on average (hanoi) to 240 (visitall) in Π10, and from 68 actions
(floortile) to 590 (elevator) in Π20.

4.1.2. Plan recognition
In order to assess the quality of our approach for plan recog-

nition we run two experiments. The former uses Π20 and 5 plans
for testing or observation. In the latter we use a smaller library,
Π10, and again 5 plans for testing. In both experiments, the
observed plan is present in the library. The rationale for these
experiments is to assess the accuracy, as defined in Section 2.3,
in plan recognition when answering the question which is the

plan that is being executed provided the observations? We are also
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Table 5
Accuracy, spread and execution time (in seconds) for plan recognition for Π20 with different observability degrees (0.05. . .1) and
noise (0.0, 0.1 and 0.2). The average and standard deviation (σ ) results are shown in the last two blocks of rows.
Domain Obs Noise 0.0 Noise 0.1 Noise 0.2

Acc Spread Time Acc Spread Time Acc Spread Time

blocksworld

0.05 0.26 15.84 4.16 0.29 15.12 3.88 0.37 13.68 3.97
0.15 0.39 13.24 4.03 0.34 14.12 3.96 0.37 13.64 3.90
0.25 0.42 12.56 4.02 0.51 10.80 4.02 0.41 12.76 3.94
0.50 0.63 8.40 3.99 0.60 9.08 3.96 0.52 10.56 4.12
0.75 0.68 7.36 3.98 0.56 9.76 4.01 0.73 6.36 3.90
1 0.76 5.88 3.95 0.80 4.92 3.99 0.77 5.52 4.00

driverlog

0.05 0.55 10.08 14.54 0.42 12.52 13.83 0.38 13.44 13.96
0.15 0.68 7.40 14.24 0.57 9.52 13.92 0.51 10.84 14.40
0.25 0.60 9.08 14.24 0.71 6.72 13.88 0.55 10.04 14.01
0.50 0.82 4.68 14.14 0.85 3.92 13.84 0.74 6.16 13.84
0.75 0.82 4.52 14.20 0.88 3.40 14.00 0.84 4.20 13.83
1 0.87 3.60 14.14 0.91 2.80 14.13 0.88 3.36 14.16

elevator

0.05 0.39 13.28 4.78 0.45 12.00 4.60 0.35 14.08 4.57
0.15 0.61 8.84 4.79 0.58 9.36 4.93 0.71 6.88 4.74
0.25 0.65 7.96 4.73 0.70 6.92 4.80 0.72 6.52 4.78
0.50 0.78 5.48 4.77 0.82 4.60 4.60 0.64 8.20 5.10
0.75 0.84 4.24 4.81 0.85 4.08 4.62 0.93 2.40 4.62
1 0.75 5.96 4.75 0.93 2.36 4.60 0.84 4.28 4.73

floortile

0.05 0.66 7.80 0.28 0.73 6.32 0.30 0.59 9.12 0.27
0.15 0.70 7.08 0.28 0.68 7.32 0.27 0.71 6.76 0.27
0.25 0.72 6.52 0.29 0.67 7.52 0.25 0.76 5.84 0.26
0.50 0.83 4.48 0.30 0.81 4.80 0.29 0.73 6.40 0.26
0.75 0.89 3.28 0.29 0.83 4.36 0.29 0.83 4.44 0.30
1 0.92 2.68 0.28 0.89 3.16 0.29 0.87 3.56 0.28

grid

0.05 0.60 8.92 6.09 0.61 8.72 6.11 0.56 9.88 6.19
0.15 0.50 10.96 6.09 0.63 8.40 6.02 0.67 7.68 5.99
0.25 0.67 7.60 6.23 0.53 10.48 6.06 0.65 7.92 6.07
0.50 0.87 3.60 6.30 0.85 4.08 5.95 0.85 3.92 6.07
0.75 0.91 2.84 6.21 0.95 1.92 5.98 0.94 2.24 6.23
1 0.97 1.60 6.36 0.97 1.52 5.97 0.95 2.08 6.18

hanoi

0.05 0.47 11.56 1.25 0.47 11.52 1.27 0.50 11.00 1.25
0.15 0.55 9.96 1.33 0.51 10.76 1.19 0.51 10.84 1.26
0.25 0.59 9.12 1.25 0.57 9.64 1.23 0.51 10.80 1.23
0.50 0.69 7.12 1.27 0.61 8.72 1.24 0.68 7.32 1.25
0.75 0.70 6.92 1.25 0.74 6.28 1.29 0.72 6.68 1.25
1 0.85 3.92 1.25 0.80 5.00 1.22 0.78 5.36 1.22

logistics

0.05 0.56 9.80 2.22 0.60 9.00 2.27 0.55 10.08 2.33
0.15 0.68 7.32 2.29 0.77 5.52 2.30 0.71 6.84 2.23
0.25 0.79 5.28 2.30 0.75 6.00 2.27 0.73 6.40 2.37
0.50 0.85 4.04 2.18 0.87 3.52 2.26 0.84 4.28 2.40
0.75 0.93 2.44 2.20 0.87 3.68 2.18 0.91 2.80 2.20
1 0.89 3.20 2.24 0.92 2.64 2.18 0.93 2.44 2.23

openstacks

0.05 0.61 8.80 4.90 0.52 10.64 4.65 0.56 9.76 4.76
0.15 0.72 6.52 4.93 0.70 7.08 4.92 0.69 7.24 4.74
0.25 0.74 6.28 5.00 0.76 5.72 4.76 0.74 6.16 4.90
0.50 0.89 3.20 5.09 0.89 3.16 4.92 0.81 4.72 4.84
0.75 0.93 2.40 4.98 0.91 2.88 4.69 0.89 3.16 5.01
1 0.95 2.08 5.20 0.93 2.40 4.81 0.94 2.16 4.82

pathways

0.05 0.92 2.52 0.87 0.88 3.48 0.88 0.76 5.84 0.86
0.15 0.76 5.80 0.88 0.73 6.48 0.86 0.68 7.36 0.87
0.25 0.82 4.60 0.87 0.74 6.12 0.84 0.78 5.48 0.87
0.50 0.86 3.76 0.87 0.87 3.68 0.88 0.87 3.60 0.86
0.75 0.92 2.68 0.86 0.93 2.44 0.83 0.87 3.52 0.87
1 0.95 1.92 0.86 0.96 1.72 0.83 0.96 1.84 0.86

(continued on next page)
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interested in the spread, as the number of plans recognized in
solPR . The optimal value for both accuracy and spread is 1.

For each experiment, we learn a planning model from Π20/
Π10, as defined in step 1. For each of the 5 observed plans in
the testing set, we model its observations (step 2). Then, we
solve the plan recognition task of step 3, which means solving
a maximization problem for every plan in the library. Hence,
the number of maximization problems that are solved is 5 ∗
20 = 100 in Π20 (and 5 ∗ 10 = 50 in Π10). We repeat each
experiment 5 times, with different data, to obtain the average
and the standard deviation (σ ). Obviously, we are interested in
low values of deviation to verify the reliability of the results.
13
Tables 5 and 6 depict the results for Π20 and Π10, respec-
ively. Focusing on Table 5, the accuracy is particularly good
between 0.50–0.75) in almost all domains for observability de-
rees between 0.15–0.25. It is even over 0.75 in some domains,
uch as logistics, pathways and sokoban. An accuracy of 0.75
eans that we successfully recognize 75% of the plans, both
ositive and negatively. If we increase the observability degree,
he accuracy is over 0.9 in some domains, such as floortile,
rid, openstacks, pathways and sokoban. The spread results are
s expected: when the observability degree is low (<0.50) the

spread is high because there is no enough evidence to recog-
nize the unique observed plan, and sol contains many plans
PR
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Table 5 (continued).
Domain Obs Noise 0.0 Noise 0.1 Noise 0.2

Acc Spread Time Acc Spread Time Acc Spread Time

sokoban

0.05 0.68 7.36 4.48 0.69 7.20 4.45 0.71 6.88 4.45
0.15 0.82 4.64 4.57 0.81 4.72 4.45 0.72 6.56 4.31
0.25 0.89 3.24 4.39 0.87 3.56 4.32 0.87 3.60 4.54
0.50 0.95 1.96 4.43 0.94 2.20 4.29 0.94 2.24 4.35
0.75 0.97 1.56 4.41 0.97 1.56 4.44 0.98 1.48 4.37
1 0.96 1.72 4.37 0.97 1.52 4.45 0.95 1.92 4.40

visitall

0.05 0.30 14.92 2.42 0.29 15.12 2.49 0.31 14.88 2.47
0.15 0.51 10.80 2.58 0.56 9.88 2.43 0.47 11.68 2.51
0.25 0.48 11.40 2.51 0.58 9.36 2.37 0.66 7.72 2.43
0.50 0.80 5.08 2.41 0.83 4.32 2.32 0.76 5.72 2.32
0.75 0.84 4.28 2.38 0.87 3.56 2.34 0.82 4.60 2.28
1 0.76 5.76 2.39 0.87 3.64 2.33 0.95 2.08 2.34

zenotravel

0.05 0.51 10.88 0.53 0.49 11.12 0.54 0.51 10.76 0.50
0.15 0.61 8.76 0.51 0.68 7.40 0.49 0.58 9.32 0.52
0.25 0.75 6.04 0.54 0.66 7.76 0.50 0.71 6.76 0.51
0.50 0.76 5.88 0.51 0.74 6.12 0.52 0.64 8.12 0.52
0.75 0.78 5.48 0.51 0.75 5.96 0.51 0.79 5.28 0.53
1 0.79 5.28 0.51 0.86 3.80 0.52 0.80 5.00 0.52

Average

0.05 0.54 10.15 3.88 0.54 10.23 3.77 0.51 10.78 3.80
0.15 0.63 8.44 3.88 0.63 8.38 3.81 0.61 8.80 3.81
0.25 0.68 7.47 3.86 0.67 7.55 3.78 0.67 7.50 3.83
0.50 0.81 4.81 3.86 0.81 4.85 3.76 0.75 5.94 3.83
0.75 0.85 4.00 3.84 0.84 4.16 3.77 0.85 3.93 3.78
1 0.87 3.63 3.86 0.90 2.96 3.78 0.89 3.30 3.81

σ (std dev)

0.05 0.18 3.60 3.88 0.18 3.47 3.69 0.14 2.83 3.73
0.15 0.12 2.46 3.80 0.13 2.56 3.73 0.12 2.39 3.83
0.25 0.14 2.73 3.81 0.11 2.17 3.72 0.13 2.55 3.75
0.50 0.09 1.76 3.80 0.11 2.12 3.70 0.12 2.35 3.71
0.75 0.09 1.83 3.81 0.11 2.27 3.74 0.08 1.63 3.72
1 0.08 1.71 3.81 0.06 1.19 3.78 0.07 1.42 3.79
Table 6
Accuracy, spread and execution time (in seconds) for plan recognition for Π10 with different observability degrees (0.05. . .1) and
noise (0.0, 0.1 and 0.2). The average and standard deviation (σ ) results are shown in the last two blocks of rows.
Domain Obs Noise 0.0 Noise 0.1 Noise 0.2

Acc Spread Time Acc Spread Time Acc Spread Time

blocksworld

0.05 0.25 8.52 3.56 0.36 7.36 2.99 0.31 7.92 3.19
0.15 0.34 7.60 3.17 0.42 6.80 3.10 0.44 6.64 3.09
0.25 0.47 6.32 3.19 0.48 6.20 3.10 0.47 6.28 3.27
0.50 0.64 4.56 3.20 0.55 5.48 3.25 0.60 5.00 3.29
0.75 0.75 3.52 3.19 0.68 4.24 3.17 0.70 4.04 3.30
1 0.78 3.20 3.18 0.80 3.04 3.09 0.89 2.12 3.28

driverlog

0.05 0.35 7.48 6.49 0.39 7.08 6.64 0.43 6.72 6.53
0.15 0.42 6.76 6.46 0.49 6.12 6.47 0.44 6.56 6.50
0.25 0.55 5.48 6.46 0.56 5.36 6.48 0.52 5.80 6.47
0.50 0.66 4.44 6.50 0.61 4.88 6.46 0.62 4.76 6.56
0.75 0.76 3.36 6.53 0.82 2.80 6.57 0.74 3.64 6.51
1 0.75 3.52 6.49 0.68 4.20 6.56 0.68 4.24 6.53

elevator

0.05 0.45 6.48 1.38 0.38 7.24 1.36 0.47 6.32 1.36
0.15 0.61 4.92 1.40 0.54 5.60 1.41 0.59 5.12 1.43
0.25 0.73 3.68 1.45 0.68 4.20 1.45 0.63 4.72 1.36
0.50 0.75 3.52 1.39 0.62 4.84 1.38 0.68 4.24 1.43
0.75 0.66 4.36 1.46 0.66 4.40 1.39 0.69 4.12 1.39
1 0.78 3.20 1.44 0.75 3.48 1.36 0.71 3.92 1.39

floortile

0.05 0.76 3.36 0.12 0.68 4.24 0.12 0.66 4.44 0.10
0.15 0.77 3.32 0.11 0.74 3.56 0.09 0.73 3.72 0.10
0.25 0.76 3.36 0.10 0.76 3.36 0.09 0.74 3.60 0.11
0.50 0.80 2.96 0.10 0.83 2.68 0.10 0.80 3.04 0.09
0.75 0.89 2.08 0.10 0.83 2.72 0.10 0.84 2.56 0.09
1 0.92 1.80 0.10 0.84 2.56 0.11 0.86 2.40 0.09

grid

0.05 0.51 5.88 3.76 0.62 4.84 3.67 0.56 5.40 3.77
0.15 0.59 5.12 3.75 0.66 4.40 3.69 0.62 4.76 3.72
0.25 0.68 4.16 3.68 0.72 3.76 3.70 0.74 3.56 3.68
0.50 0.84 2.56 3.81 0.90 2.04 3.65 0.90 2.04 3.73
0.75 0.94 1.56 3.86 0.92 1.80 3.67 0.91 1.88 3.69
1 0.96 1.36 3.78 0.98 1.24 3.69 0.97 1.32 3.69

(continued on next page)
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Table 6 (continued).
Domain Obs Noise 0.0 Noise 0.1 Noise 0.2

Acc Spread Time Acc Spread Time Acc Spread Time

hanoi

0.05 0.56 5.44 0.16 0.63 4.72 0.14 0.58 5.16 0.15
0.15 0.57 5.32 0.16 0.54 5.64 0.15 0.52 5.84 0.16
0.25 0.63 4.68 0.18 0.56 5.44 0.16 0.52 5.76 0.14
0.50 0.62 4.84 0.16 0.59 5.12 0.15 0.66 4.40 0.14
0.75 0.76 3.44 0.15 0.75 3.52 0.15 0.69 4.08 0.15
1 0.82 2.76 0.16 0.82 2.84 0.15 0.79 3.08 0.13

logistics

0.05 0.64 4.64 2.30 0.58 5.24 2.31 0.58 5.16 2.29
0.15 0.69 4.12 2.33 0.70 4.04 2.30 0.63 4.72 2.30
0.25 0.69 4.08 2.28 0.65 4.48 2.32 0.76 3.36 2.30
0.50 0.80 3.04 2.32 0.88 2.24 2.30 0.86 2.36 2.26
0.75 0.85 2.48 2.29 0.86 2.40 2.28 0.83 2.72 2.24
1 0.90 2.00 2.32 0.87 2.28 2.26 0.91 1.92 2.27

openstacks

0.05 0.66 4.36 0.72 0.61 4.88 0.73 0.64 4.56 0.79
0.15 0.62 4.84 0.81 0.66 4.40 0.76 0.62 4.76 0.71
0.25 0.68 4.24 0.84 0.62 4.80 0.77 0.62 4.80 0.75
0.50 0.79 3.12 0.84 0.77 3.28 0.73 0.70 3.96 0.72
0.75 0.88 2.20 0.76 0.92 1.84 0.73 0.90 2.04 0.73
1 0.91 1.88 0.78 0.92 1.76 0.72 0.92 1.80 0.75

pathways

0.05 0.84 2.56 0.19 0.76 3.36 0.20 0.78 3.24 0.20
0.15 0.86 2.44 0.18 0.87 2.32 0.18 0.85 2.52 0.20
0.25 0.86 2.40 0.19 0.84 2.56 0.18 0.86 2.40 0.19
0.50 0.89 2.08 0.19 0.91 1.88 0.19 0.85 2.48 0.18
0.75 0.97 1.32 0.17 0.90 1.96 0.18 0.90 2.04 0.19
1 0.97 1.32 0.19 0.96 1.40 0.19 0.92 1.80 0.17

sokoban

0.05 0.67 4.28 4.09 0.65 4.48 3.89 0.66 4.40 3.98
0.15 0.80 2.96 4.04 0.81 2.88 3.95 0.82 2.84 3.94
0.25 0.83 2.72 4.09 0.88 2.24 3.95 0.87 2.32 3.92
0.50 0.92 1.84 3.98 0.90 2.00 3.83 0.90 1.96 3.88
0.75 0.92 1.76 3.99 0.94 1.64 3.88 0.93 1.72 4.00
1 0.93 1.72 3.93 0.94 1.60 3.94 0.94 1.56 3.94

visitall

0.05 0.23 8.68 1.45 0.32 7.76 1.45 0.37 7.28 1.44
0.15 0.46 6.44 1.43 0.49 6.08 1.44 0.58 5.20 1.51
0.25 0.43 6.72 1.40 0.60 5.04 1.45 0.70 4.00 1.46
0.50 0.70 3.96 1.42 0.82 2.84 1.42 0.88 2.20 1.43
0.75 0.85 2.48 1.41 0.86 2.40 1.40 0.94 1.56 1.38
1 0.88 2.24 1.44 0.93 1.68 1.41 0.96 1.36 1.41

zenotravel

0.05 0.45 6.52 0.38 0.46 6.44 0.41 0.30 7.96 0.38
0.15 0.46 6.40 0.36 0.37 7.28 0.37 0.45 6.48 0.35
0.25 0.46 6.44 0.38 0.52 5.80 0.34 0.50 6.04 0.35
0.50 0.60 5.04 0.37 0.62 4.76 0.34 0.49 6.12 0.35
0.75 0.62 4.80 0.35 0.74 3.64 0.37 0.70 4.00 0.33
1 0.70 4.00 0.36 0.66 4.36 0.34 0.73 3.68 0.35

Average

0.05 0.53 5.68 2.05 0.54 5.64 1.99 0.53 5.71 2.01
0.15 0.60 5.02 2.02 0.61 4.93 1.99 0.61 4.93 2.00
0.25 0.65 4.52 2.02 0.66 4.44 2.00 0.66 4.39 2.00
0.50 0.75 3.50 2.02 0.75 3.50 1.98 0.75 3.55 2.01
0.75 0.82 2.78 2.02 0.82 2.78 1.99 0.81 2.87 2.00
1 0.86 2.42 2.01 0.85 2.54 1.99 0.86 2.43 2.00

σ (std dev)

0.05 0.19 1.95 2.03 0.15 1.46 2.00 0.15 1.52 2.00
0.15 0.16 1.61 1.99 0.16 1.57 1.98 0.14 1.37 1.99
0.25 0.14 1.44 1.99 0.13 1.26 1.98 0.14 1.39 1.99
0.50 0.11 1.07 2.00 0.14 1.40 1.98 0.14 1.38 2.01
0.75 0.11 1.11 2.02 0.10 0.96 2.00 0.10 1.03 2.01
1 0.09 0.89 1.99 0.11 1.07 2.00 0.10 1.03 2.01
(over-recognition). The spread gets lower, but still higher than 1,
when the observability degree increases. The fact of using random
observations sometimes produces odd results; e.g., an increase in
the observability degree may deteriorate a little the accuracy and
spread. This happens punctually in a few domains, but it does not
happen on average. Regarding the standard deviation, the results
are very good for the accuracy. The accuracy is always bounded
by 1, so the deviation is small here. In other words, the data
are very little dispersed in relation to the average. The standard
deviation for the spread is good, taking into consideration that
the results are not bounded. The standard deviation for the time
is more variable, because the execution time highly depends on
the domain: the values range from less than 1 s (e.g., floortile,
pathways and zenotravel) to almost 15 s (e.g., driverlog).
15
The inclusion of noise in the observations has no significant
impact in the results. Plan recognition involves maximization
problems where some observations are not finally satisfied and,
therefore, simply ignored and useless. We have detected that
most of the ignored observations are the noisy ones. In conse-
quence, a higher value of noise does not necessarily deteriorate
the accuracy and spread. Actually, we have realized that when
the observability degree is high, noisy observations can help
better discern the observed plan and discard other plans in some
domains, which slightly leads to better results. We have noted
that our approach is specially useful to discard the plans that do
not satisfy the induced constraints. Due to the constraint-based
approach, we are better discarding plans that are not being exe-
cuted,rather than returning in sol the only plan that is being
PR
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xecuted. In other words, our approach tends to be somewhat
onservative and returns non-optimal solutions, i.e., solPR has
ore than one plan. In any case, the difference in accuracy for
ifferent values of noise is around 0.05 on average, which can be
onsidered irrelevant given the random unreliable observations.
he tendency in the spread is similar. As for the standard devia-
ion, the values for the accuracy and time are barely affected by
he noise, whereas the values for the spread are just a little more
ffected.
Finally, as for hypothesis testing, we have conducted the ANal-

sis Of VAriance (ANOVA) to test whether there exists a statis-
ically significant difference between the results when different
alues of noise are used. Three ANOVAs have been calculated (ac-
uracy, spread and time), in which three populations have been
ested (with noise 0.0, 0.1 and 0.2) per ANOVA. In all cases, there
re no differences in the population means with a confidence
nterval of 99%, which means the value of noise is no significant.

If we focus on Table 6, the accuracy results are very similar
o Table 5. This means that our approach does not need large
lan libraries for good accuracy, and Π10 is enough to get high
alues of accuracy. Actually, the accuracy obtained with Π20 is

not significantly better than with Π10 (0.03 on average and 0.06
t most). From a statistical perspective, we have calculated the
NOVA for the accuracy with two populations (Π20 and Π10)

and there are no differences in the population means with a
confidence interval of 99%. The results for the spread and time in
Π10 follow similar tendencies to Π20. But, obviously, the values
for Π10 are not comparable in absolute terms to those for Π20: the
spread and time are now smaller because there are fewer plans in
the library. The nature of the random observations still produces
some punctual inconsistent results, but the average tendency
is very consistent: when the observability degree increases, the
accuracy and spread results are monotonically better.

The standard deviation follows the same tendency shown in
Table 5: it is very small for the accuracy, a bit higher for the
spread and even higher for the time. The deviation in the accuracy
is very similar in both Π20 and Π10, as the accuracy remains
bounded. The deviation for the spread and time are better in Π10
than in Π20. Clearly, using now a smaller plan library with only
10 plans helps reduce the dispersion of the data.

The inclusion of noise is no significant, and the results remain
very similar under noisy observations. The use of a smaller plan
library means that the results are less affected by the noise in
terms of the standard deviation. Again, we have calculated three
ANOVAs (accuracy, spread and time) with three populations each
(noise 0.0, 0.1 and 0.2). In all cases, there are no differences in
the population means with a confidence interval of 99%, which
verifies the value of noise is no significant.

Finally, in both tables, the optimal value of 1 for accuracy
and spread is highly unlikely. From the accuracy perspective, the
TN are usually incomplete: we fail to discard some plans. From
the spread perspective, there are FP: we are conservative and
recognize some plans that we should not. On the contrary, the
TP values are very good. In all our experiments, the observed
plan is always recognized, i.e., it belongs to solPR , in absence of
noise. When noise is considered, it is recognized in over 97% of
the experiments. This corresponds with 1 and 0.97 values for the
boolean accuracy used in some works [8,13].

ROC analysis. In Tables 5 and 6 we mainly focus on positive
predictions, but in a recognition task we also need to assess the
false predictions, in particular the comparison of TP vs. FP rates
and TN vs. FN rates to analyze the trade-off between true–false
positive results and true–false negative results. We do this by
adapting the notation of a ROC curve as a representation for
binary classification. More specifically, we combine the results

of the 12 domains into a cloud of 24 points (12 of Π20 and 12

16
Fig. 6. Comparative ROC curve for plan recognition with different observability
degrees: TP rate vs. FP rate with the three values of noise.

of Π10) per each observability degree (0.05. . .1) and plot them
in the ROC space, which graphically shows the performance of
the plan recognition task by evaluating TP vs. FP rates (Fig. 6)
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nd TN vs. FN rates (Fig. 7). In the ROC curve, the diagonal line
epresents a random guess to recognize (positive or negatively) a
lan from observations. The points above the diagonal represent
successful classification or better than random, whereas points
elow the diagonal represent bad results or worse than random.
onsequently, we want to have points above the diagonal. The
ptimal recognition is a point in the upper left corner, that is,
oordinate X = 0 (no false rate) and Y = 1 (a true rate). The
closer a point to that corner is, the better the plan recognition
task is.

Focusing on Fig. 6, the results are good: the TP rate (recall) is
very close to 1, no matter the observability degree, whereas the
FP rate remains low and only increases for observability degrees
between 0.05–0.25. This means the cloud of points is closer to the
Y = 1 line. We can note here that increasing the noise has more
impact than in the accuracy/spread of Tables 5 and 6. Particularly,
we can see how the points slightly tend to the diagonal when the
noise value increases.

If we focus on Fig. 7, the results are also interesting: there are
high values of the TN rate (specificity) and low values of the FN
rate, which means the cloud of points are closer to the X = 0 line.
Again, when the noise is increased, the points get slightly close
to the diagonal.

As a summary, all the points in both figures are above the di-
agonal, which is a good result. Also, we can see that this approach
for plan recognition is specially good to detect TP and to reduce
FN, i.e., to recognize the observed plan and to reduce flaws in
recognition.

4.1.3. Goal recognition
In order to assess the quality of our approach for goal recog-

nition we also run two experiments. The former uses Π20 and
0 plans for testing, whereas the latter uses Π10 and 30 plans
or testing. Since we are now only interested in the goals, the
bserved plan used for testing is not present in the plan library.
e assess the accuracy when answering the question which are

he individual goals the agent is trying to achieve provided the obser-
ations? The accuracy is now defined as (TP+TN)/candidate_goals,
here candidate_goals is ∪GΠ20

or ∪GΠ10
in every experiment,

hat is, the union of all distinct goals achieved in Π20 and Π10,
espectively. The size of ∪GΠ20

ranges within [7-28], and within
[6-26] in ∪GΠ10

. We are also interested in the spread. Unlike plan
recognition, where the optimal spread is 1, the number of real
goals to be recognized in the goal recognition task is variable
and higher than 1. Therefore, the original definition of spread
is not really useful now. Instead, we define a new indicator:
%Spread=Spread/real goals. If %spread is lower than 1, some real
goals are not recognized (under-recognition). If it is higher than
1, the task has recognized more goals than the real ones (over-
recognition). If it is 1, the task has recognized the same number
of goals than the real ones, although this does not mean the goals
are always well recognized (recall that the spread is given by
TP+FP). The optimal value for both accuracy and %spread is 1.

For each experiment, we learn a planning model from Π20/
Π10, as defined in step 1. For each of the 20/30 observed plans in
the testing set, we model its observations (step 2). The number of
maximization problems that are necessary in step 3, previously to
goal recognition (step 4), is 20 ∗ 20 = 400 in Π20 (and 30 ∗ 10 =
300 in Π10). We repeat each experiment 5 times, with different
data, to obtain average results.

Tables 7 and 8 depict the results for Π20 and Π10, respectively.
Focusing on Table 7, the accuracy is specially good (greater than
0.7) in almost all domains from the minimal observability degree
of 0.05. It is around 0.85, and even more, in some domains, such
as blocksworld, grid, hanoi, pathways and zenotravel. An accuracy
of 0.85 means that we successfully recognize 85% of the goals,
17
Fig. 7. Comparative ROC curve for plan recognition with different observability
degrees: TN rate vs. FN rate with the three values of noise.

both positive and negatively. The %spread is, on average, close
to 1 but in a few domains it is lower (floortile and pathways) or
higher (grid, hanoi and visitall). We have analyzed these punctual
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Table 7
Accuracy, %spread and execution time (in seconds) for goal recognition for Π20 with different observability degrees (0.05. . .1) and
noise (0.0, 0.1 and 0.2). The average and standard deviation (σ ) results are shown in the last two blocks of rows.
Domain Obs Noise 0.0 Noise 0.1 Noise 0.2

Acc %Spread Time Acc %Spread Time Acc %Spread Time

blocksworld

0.05 0.85 0.48 3.68 0.84 0.54 3.59 0.84 0.63 3.62
0.15 0.83 1.00 3.53 0.82 0.87 3.63 0.83 0.81 3.66
0.25 0.85 0.88 3.45 0.84 0.78 3.76 0.82 0.91 3.63
0.50 0.85 0.81 3.59 0.85 0.89 3.68 0.85 0.82 3.73
0.75 0.85 0.90 3.68 0.84 0.74 3.82 0.85 0.80 3.63
1 0.84 0.85 3.63 0.85 0.90 3.65 0.85 0.80 3.74

driverlog

0.05 0.73 0.25 12.44 0.71 0.32 12.81 0.72 0.30 12.87
0.15 0.69 0.52 12.43 0.69 0.56 12.83 0.68 0.53 12.88
0.25 0.67 0.75 12.57 0.65 0.80 12.76 0.66 0.76 12.86
0.50 0.62 1.06 12.69 0.64 0.96 12.72 0.64 0.94 12.82
0.75 0.64 1.06 12.50 0.65 1.05 12.87 0.65 0.96 12.88
1 0.65 1.00 12.32 0.64 1.01 12.78 0.66 0.98 12.88

elevator

0.05 0.50 0.49 4.11 0.52 0.52 4.24 0.52 0.51 4.39
0.15 0.79 0.80 4.40 0.79 0.80 4.45 0.78 0.79 4.39
0.25 0.86 0.87 4.18 0.87 0.87 4.35 0.83 0.84 4.33
0.50 0.90 0.91 4.16 0.88 0.89 4.20 0.87 0.88 4.26
0.75 0.89 0.90 4.12 0.90 0.90 4.38 0.88 0.89 4.29
1 0.91 0.92 4.15 0.91 0.92 4.37 0.92 0.93 4.35

floortile

0.05 0.77 0.11 0.24 0.77 0.07 0.26 0.77 0.08 0.24
0.15 0.78 0.21 0.24 0.77 0.14 0.25 0.78 0.14 0.26
0.25 0.78 0.19 0.26 0.77 0.16 0.23 0.77 0.13 0.26
0.50 0.78 0.17 0.25 0.79 0.16 0.28 0.78 0.17 0.26
0.75 0.79 0.17 0.27 0.79 0.14 0.26 0.78 0.14 0.24
1 0.79 0.10 0.25 0.79 0.13 0.26 0.78 0.13 0.26

grid

0.05 0.96 0.59 5.47 0.96 0.84 5.64 0.96 0.50 5.50
0.15 0.94 1.80 5.47 0.94 1.75 5.72 0.95 0.95 5.60
0.25 0.93 2.18 5.38 0.91 2.64 5.69 0.94 1.80 5.62
0.50 0.91 3.55 5.39 0.91 3.07 5.51 0.91 2.84 5.60
0.75 0.89 3.91 5.53 0.91 3.25 5.72 0.91 3.23 5.64
1 0.88 4.34 5.54 0.88 4.09 5.57 0.91 3.14 5.66

hanoi

0.05 0.85 1.01 1.18 0.85 1.11 1.14 0.88 0.59 1.14
0.15 0.75 2.46 1.13 0.80 1.85 1.12 0.81 1.60 1.19
0.25 0.74 2.48 1.11 0.76 2.45 1.14 0.77 2.00 1.15
0.50 0.69 3.32 1.12 0.72 2.93 1.13 0.73 2.54 1.15
0.75 0.70 2.97 1.10 0.70 2.83 1.12 0.71 2.98 1.12
1 0.71 2.72 1.07 0.70 2.86 1.10 0.72 2.68 1.10

logistics

0.05 0.77 0.51 1.94 0.77 0.44 2.02 0.77 0.43 2.01
0.15 0.72 0.89 1.98 0.75 0.78 2.01 0.77 0.74 2.02
0.25 0.74 0.87 2.03 0.75 0.78 2.02 0.76 0.66 2.10
0.50 0.77 0.74 1.94 0.76 0.76 2.03 0.77 0.66 1.98
0.75 0.77 0.76 2.01 0.76 0.74 2.00 0.77 0.76 2.01
1 0.79 0.68 1.96 0.77 0.75 2.01 0.77 0.73 2.06

openstacks

0.05 0.63 0.65 4.24 0.63 0.45 4.40 0.63 0.44 4.42
0.15 0.74 1.02 4.25 0.74 0.90 4.41 0.71 0.84 4.52
0.25 0.81 0.99 4.25 0.77 0.92 4.56 0.74 0.96 4.47
0.50 0.83 0.80 4.29 0.77 0.74 4.46 0.78 0.77 4.62
0.75 0.79 0.63 4.24 0.81 0.66 4.57 0.80 0.64 4.40
1 0.76 0.53 4.24 0.77 0.55 4.49 0.75 0.54 4.50

pathways

0.05 0.95 0.20 0.74 0.94 0.46 0.76 0.95 0.15 0.75
0.15 0.93 0.61 0.71 0.93 0.54 0.75 0.94 0.43 0.75
0.25 0.93 0.82 0.73 0.92 0.85 0.75 0.93 0.54 0.73
0.50 0.94 0.49 0.72 0.93 0.61 0.77 0.93 0.70 0.74
0.75 0.94 0.49 0.72 0.94 0.32 0.76 0.94 0.41 0.77
1 0.94 0.41 0.73 0.94 0.37 0.75 0.94 0.34 0.76

sokoban

0.05 0.69 0.40 3.95 0.68 0.36 4.07 0.68 0.40 4.02
0.15 0.62 0.92 3.92 0.65 0.80 4.05 0.63 0.84 3.92
0.25 0.62 0.98 4.07 0.60 1.14 4.02 0.62 1.08 3.88
0.50 0.64 1.04 4.01 0.63 1.06 3.92 0.64 1.00 3.91
0.75 0.65 0.96 3.99 0.61 0.96 4.04 0.64 1.03 4.10
1 0.65 0.90 4.01 0.64 0.93 4.02 0.62 0.96 4.07

visitall

0.05 0.63 1.30 2.16 0.64 1.01 2.15 0.65 1.22 2.14
0.15 0.51 2.28 2.26 0.56 2.09 2.13 0.61 1.80 2.29
0.25 0.47 2.61 2.19 0.54 2.30 2.33 0.58 2.11 2.21
0.50 0.47 2.66 2.10 0.50 2.52 2.24 0.54 2.34 2.29
0.75 0.46 2.73 2.14 0.52 2.47 2.25 0.58 2.25 2.23
1 0.48 2.68 2.19 0.56 2.38 2.30 0.61 2.17 2.30

(continued on next page)
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Table 7 (continued).
Domain Obs Noise 0.0 Noise 0.1 Noise 0.2

Acc %Spread Time Acc %Spread Time Acc %Spread Time

zenotravel

0.05 0.87 0.23 0.45 0.87 0.21 0.47 0.87 0.33 0.46
0.15 0.83 0.79 0.43 0.83 0.68 0.47 0.83 0.72 0.47
0.25 0.82 0.89 0.45 0.82 0.82 0.49 0.82 0.88 0.44
0.50 0.81 1.21 0.46 0.81 1.14 0.45 0.82 0.97 0.46
0.75 0.82 1.04 0.45 0.83 1.02 0.45 0.82 1.09 0.45
1 0.83 1.02 0.44 0.83 1.00 0.45 0.83 1.03 0.45

Average

0.05 0.77 0.61 3.38 0.77 0.54 3.46 0.77 0.57 3.46
0.15 0.76 1.11 3.40 0.77 1.02 3.48 0.78 0.93 3.49
0.25 0.77 1.22 3.39 0.77 1.15 3.51 0.77 1.08 3.47
0.50 0.77 1.28 3.39 0.77 1.22 3.45 0.77 1.15 3.49
0.75 0.77 1.26 3.40 0.77 1.19 3.52 0.78 1.14 3.48
1 0.77 1.22 3.38 0.77 1.17 3.48 0.78 1.11 3.51

σ (std dev)

0.05 0.14 0.35 3.33 0.13 0.31 3.43 0.14 0.29 3.45
0.15 0.12 0.70 3.34 0.11 0.59 3.45 0.11 0.46 3.45
0.25 0.13 0.77 3.36 0.12 0.79 3.43 0.11 0.61 3.45
0.50 0.14 1.12 3.40 0.13 0.96 3.40 0.12 0.85 3.44
0.75 0.13 1.16 3.35 0.13 1.01 3.46 0.11 1.00 3.45
1 0.13 1.24 3.31 0.12 1.17 3.43 0.11 0.94 3.46
Table 8
Accuracy, %spread and execution time (in seconds) for goal recognition for Π10 with different observability degrees (0.05. . .1) and
noise (0.0, 0.1 and 0.2). The average and standard deviation (σ ) results are shown in the last two blocks of rows.
Domain Obs Noise 0.0 Noise 0.1 Noise 0.2

Acc %Spread Time Acc %Spread Time Acc %Spread Time

blocksworld

0.05 0.82 0.37 3.02 0.81 0.54 3.17 0.82 0.49 3.23
0.15 0.80 0.86 3.13 0.79 0.78 3.22 0.80 0.74 3.24
0.25 0.78 1.11 3.09 0.78 1.14 3.20 0.78 0.92 3.21
0.50 0.78 1.24 3.22 0.75 1.29 3.19 0.78 1.04 3.24
0.75 0.78 1.28 3.11 0.80 1.01 3.26 0.79 1.08 3.30
1 0.80 1.12 3.20 0.80 1.05 3.18 0.79 0.94 3.26

driverlog

0.05 0.73 0.40 6.31 0.74 0.35 6.56 0.75 0.35 6.50
0.15 0.69 0.93 6.26 0.72 0.74 6.67 0.73 0.72 6.61
0.25 0.67 1.15 6.07 0.68 1.07 6.52 0.69 1.01 6.60
0.50 0.66 1.32 6.27 0.67 1.25 6.55 0.66 1.33 6.48
0.75 0.64 1.54 6.40 0.64 1.44 6.58 0.64 1.46 6.55
1 0.63 1.57 6.34 0.63 1.56 6.61 0.65 1.48 6.51

elevator

0.05 0.43 0.42 1.40 0.44 0.44 1.45 0.39 0.38 1.40
0.15 0.71 0.74 1.36 0.66 0.70 1.38 0.66 0.70 1.40
0.25 0.75 0.81 1.39 0.73 0.79 1.36 0.73 0.77 1.41
0.50 0.80 0.86 1.38 0.76 0.81 1.43 0.77 0.81 1.38
0.75 0.80 0.85 1.37 0.79 0.83 1.41 0.77 0.82 1.38
1 0.82 0.87 1.36 0.81 0.86 1.42 0.79 0.84 1.40

floortile

0.05 0.77 0.07 0.11 0.76 0.10 0.11 0.76 0.10 0.11
0.15 0.76 0.23 0.11 0.77 0.19 0.12 0.77 0.18 0.13
0.25 0.74 0.31 0.11 0.77 0.17 0.11 0.75 0.17 0.11
0.50 0.76 0.33 0.12 0.76 0.28 0.10 0.76 0.20 0.10
0.75 0.76 0.22 0.11 0.76 0.26 0.11 0.76 0.22 0.12
1 0.75 0.25 0.11 0.75 0.25 0.11 0.75 0.25 0.11

grid

0.05 0.97 0.40 3.84 0.96 0.84 3.86 0.96 0.84 3.75
0.15 0.95 1.96 3.77 0.95 1.48 3.87 0.95 1.96 3.86
0.25 0.94 2.52 3.74 0.94 2.56 3.73 0.94 2.68 3.72
0.50 0.92 3.64 3.78 0.92 3.36 3.72 0.92 3.64 3.87
0.75 0.90 4.52 3.75 0.91 3.96 3.88 0.93 3.40 3.91
1 0.90 4.72 3.78 0.90 4.40 3.87 0.92 3.92 3.89

hanoi

0.05 0.85 0.67 0.16 0.86 0.57 0.15 0.87 0.47 0.14
0.15 0.83 1.13 0.14 0.80 1.30 0.14 0.83 0.96 0.14
0.25 0.79 1.51 0.13 0.77 1.86 0.17 0.81 1.13 0.16
0.50 0.77 1.70 0.14 0.79 1.53 0.14 0.80 1.51 0.17
0.75 0.78 1.59 0.14 0.77 1.61 0.14 0.77 1.57 0.15
1 0.76 1.64 0.15 0.77 1.70 0.17 0.77 1.66 0.16

logistics

0.05 0.78 0.42 2.26 0.78 0.44 2.32 0.79 0.30 2.30
0.15 0.76 0.78 2.25 0.79 0.63 2.33 0.78 0.57 2.31
0.25 0.79 0.66 2.24 0.79 0.71 2.30 0.79 0.66 2.31
0.50 0.80 0.64 2.31 0.80 0.61 2.27 0.81 0.60 2.31
0.75 0.80 0.67 2.28 0.81 0.59 2.30 0.81 0.59 2.28
1 0.81 0.62 2.25 0.81 0.64 2.28 0.81 0.56 2.30

(continued on next page)
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Table 8 (continued).
Domain Obs Noise 0.0 Noise 0.1 Noise 0.2

Acc %Spread Time Acc %Spread Time Acc %Spread Time

openstacks

0.05 0.64 0.65 0.75 0.67 0.69 0.77 0.67 0.40 0.77
0.15 0.62 1.15 0.74 0.64 1.08 0.74 0.62 1.11 0.78
0.25 0.64 1.24 0.73 0.63 1.20 0.74 0.64 1.24 0.75
0.50 0.68 1.12 0.75 0.66 1.17 0.76 0.65 1.05 0.73
0.75 0.71 0.94 0.76 0.71 0.90 0.75 0.69 0.96 0.75
1 0.71 0.94 0.73 0.71 0.96 0.81 0.70 0.92 0.74

pathways

0.05 0.96 4.14 0.18 0.97 4.00 0.19 0.96 3.71 0.20
0.15 0.91 11.00 0.19 0.92 10.29 0.21 0.93 8.29 0.20
0.25 0.89 13.71 0.20 0.91 11.43 0.20 0.92 10.14 0.22
0.50 0.86 17.86 0.20 0.91 12.14 0.20 0.92 9.57 0.20
0.75 0.89 14.57 0.21 0.90 12.57 0.19 0.88 15.14 0.20
1 0.90 13.43 0.21 0.89 14.43 0.20 0.91 12.29 0.20

sokoban

0.05 0.69 0.38 4.00 0.67 0.53 4.06 0.65 0.48 4.07
0.15 0.63 0.78 3.99 0.63 0.99 4.10 0.61 0.97 4.07
0.25 0.63 1.08 4.03 0.61 1.18 4.03 0.63 1.08 4.02
0.50 0.64 1.09 3.94 0.63 1.18 3.88 0.63 1.21 4.00
0.75 0.65 1.09 3.98 0.61 1.14 4.04 0.63 1.20 3.93
1 0.65 1.12 3.98 0.64 1.16 3.92 0.61 1.20 3.89

visitall

0.05 0.63 0.88 1.43 0.64 0.90 1.42 0.62 0.90 1.43
0.15 0.60 1.76 1.44 0.59 1.66 1.48 0.57 1.66 1.49
0.25 0.58 1.97 1.46 0.57 1.86 1.47 0.61 1.71 1.50
0.50 0.54 2.17 1.43 0.60 1.93 1.50 0.62 1.79 1.49
0.75 0.57 2.10 1.44 0.62 1.89 1.50 0.63 1.81 1.53
1 0.60 2.05 1.40 0.63 1.92 1.48 0.65 1.83 1.52

zenotravel

0.05 0.89 0.37 0.35 0.89 0.23 0.35 0.89 0.30 0.38
0.15 0.85 0.99 0.37 0.85 0.83 0.37 0.85 0.74 0.37
0.25 0.81 1.48 0.35 0.80 1.65 0.37 0.81 1.32 0.35
0.50 0.82 1.51 0.36 0.79 1.96 0.35 0.77 2.11 0.34
0.75 0.79 2.10 0.35 0.79 2.04 0.35 0.79 2.07 0.35
1 0.80 2.06 0.34 0.79 2.01 0.37 0.78 2.18 0.37

Average

0.05 0.76 0.55 1.99 0.77 0.57 2.03 0.76 0.52 2.02
0.15 0.76 1.08 1.98 0.76 1.01 2.05 0.76 1.00 2.05
0.25 0.75 1.24 1.96 0.75 1.20 2.02 0.76 1.11 2.03
0.50 0.75 1.33 1.99 0.75 1.25 2.01 0.76 1.19 2.03
0.75 0.76 1.32 1.99 0.76 1.23 2.04 0.76 1.22 2.04
1 0.76 1.31 1.99 0.76 1.27 2.03 0.76 1.22 2.03

σ (std dev)

0.05 0.15 1.08 1.96 0.15 1.03 2.02 0.16 0.97 2.01
0.15 0.11 2.91 1.95 0.11 2.73 2.05 0.12 2.18 2.04
0.25 0.11 3.64 1.91 0.11 2.99 2.00 0.11 2.67 2.02
0.50 0.11 4.82 1.95 0.10 3.20 2.00 0.10 2.52 2.01
0.75 0.10 3.92 1.97 0.10 3.36 2.03 0.10 4.06 2.02
1 0.10 3.62 1.97 0.09 3.88 2.02 0.10 3.28 2.00
situations and there are several reasons for this behavior. First,
the use of random observations leads again to unexpected results,
where less observability returns better accuracy and %spread than
higher observability. Also, observations on common predicates
are counted in many goals and hinder goal recognition. Second, if
wrong plans are recognized in step 3, the candidate goals for goal
recognition grow unnecessarily and make this task more volatile.
Third, we have noted the use of causal graphs is less informative
in domains where the goals to recognize are very independent,
have little interaction, or belong to very different plans. For in-
stance, let us consider the visitall domain, where there are many
many places to visit and many different connections (recall that
the initial state and goals do not need to be the same in the plan
library). In such a case, the number of overlapping actions in the
causal graphs tends to be more limited and less profitable.

If we focus on the standard deviation, the results for the
ccuracy are very good, as the deviation always remains below
.15. The deviation of %spread and time show worse behavior
ecause of the difference between domains, as it also happens
n plan recognition.

Analogously to plan recognition, using noisy observations is
ot specially significant in goal recognition. The average section
rovides a clear picture here: the accuracy barely changes and the
ifferences in the %spread are little. From the standard deviation
erspective, the noise barely affects the accuracy and the time,
20
whereas the changes in %spread are not very significant. This
claim is also supported from a statistical perspective. We have
calculated three ANOVAs (accuracy, %spread and time) with three
populations each (noise 0.0, 0.1 and 0.2), and no differences exist
in the population means with a confidence interval of 99%.

If we focus on Table 8, the results are very similar to Table 7.
The differences in accuracy, on average, are 0.01–0.02 at most.
Again, our approach does not need large plan libraries to get
good accuracy in goal recognition, and Π10 seems sufficient. From
a statistical standpoint, we have calculated the ANOVA for the
accuracy with two populations (Π20 and Π10) and there are no
differences in the population means with a confidence interval of
99%. The tendencies for %spread and time are similar to Table 7,
but the %spread and time for Π10 are smaller than in Π20 because
the plan library is now smaller. The standard deviation is very
good for the accuracy as well.

Using noisy observations is not problematic. In the table, we
can see that the noise does not affect the standard deviation
of the accuracy and time; noise only affects very slightly the
%spread. The calculation of the three ANOVAs (accuracy, %spread
and time) with three populations each (noise 0.0, 0.1 and 0.2)
shows that there are no differences in the population means with
a confidence interval of 99%.

As a conclusion for both tables, reaching an accuracy of 1 is

highly unlikely because some real goals are missing in TP. This
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lso affects %spread because it shows less precision; and this
appens with and without noise.

OC analysis. We now graphically show the performance of the
oal recognition task by means of ROC curves. Figs. 8 and 9
ompare the TP vs. FP rates and TN vs. FN rates, respectively.
e use a cloud of 24 points (12 of Π20 and 12 of Π10) per
bservability degree. The optimal recognition is a point in the
pper left corner and we want points above the diagonal.
When we focus on Fig. 8, the TP rate (recall) is clearly higher

han the FP rate: most points have a FP rate below 0.35, although
he TP rate is not particularly high either. Regarding Fig. 9, the TN
ate (specificity) is higher than the FN rate: most points have a TN
ate higher than 0.65, although the FN rate is also somewhat high.
wo important consequences can be noted in both figures: noisy
bservations are not very significant, and almost all the points are
bove the diagonal, which is a desired result.

.1.4. Discussion and lessons learned
We have learned several lessons, mainly from the point of

iew of the plan library (number and quality of the plans), the
earned model and impact of the number of observations and
oise:

• The plan library does not require optimal plans. The quality
of the plans is not particularly relevant in our approach: we
learn common structures based on the constraints imposed
by the plans, no matter their quality. A straightforward con-
sequence of our constraint-based approach is that it better
learns what is impossible w.r.t. these constraints rather than
what is conservatively possible. This means that, in some
cases, our approach shows limitations to disambiguate plans
or goals that might be possible.
• Having a library where the plans share few objects (e.g.,

blocks, floors, cities, trucks, etc.), where the initial/goal
states are very different among plans, and where actions/
goals have little interaction among them is a handicap,
particularly in the detection of overlapping in causal graphs,
which is key for goal recognition. All in all, the main lim-
itation of using causal graphs in step 4 is similar to the
limitation of landmark-extraction for goal recognition [13].
When there are many unrelated alternatives to support the
goals, the odds of observing one of the landmarks are very
low and the amount of overlapping in the causal graphs is
drastically reduced.
• The size of the plan library has not a deep impact in the 3
+ 4 recognition tasks, and the ANOVA tests confirm this in
terms of the accuracy. Unlike other approaches, we do not
need a large library, as it is not compulsory to learn the exact
original planning model. It is sufficient to learn the essential
relationships between actions. More particularly, once we
have captured the essence of the planning model in step 1,
having more plans is not crucial whatsoever. Our results for
Π10 show the same tendencies of Π20. The only limitation
here is that we cannot recognize plans or goals that are not
in the library.
• There is a subtle limitation in the learned model of step

1 w.r.t. negative predicates. Using classical PDDL domains
and problems without negative preconditions/goals results
in a model that ignores the negative effects, as they are
unnecessary. In such a situation, the learned model always
differs from the original one, as the negative information
is not learned. This limitation can be addressed by sim-
ply including plans with negative preconditions or goals in
the library, or by reasoning on mutex (mutually exclusive)
constraints that infer negative effects [19]. However, the
success of our approach does not depend on learning the
exact original planning model.
21
Fig. 8. Comparative ROC curve for goal recognition with different observability
degrees: TP rate vs. FP rate with the three values of noise.

• To what extent does the approximate learned action model

in step 1 represent the original model, and how does this



A. Garrido Knowledge-Based Systems 278 (2023) 110895
Fig. 9. Comparative ROC curve for goal recognition with different observability
degrees: TN rate vs. FN rate with the three values of noise.

affect the recognition tasks? These two are interesting ques-

tions. To be answered, and to assess the importance of the

22
learned model, we have repeated the experiments skipping
the step 1. Rather than calculating an approximate solu-
tion solLn , we use the original operators in O, which now
include the negative effects. In the new experiments, the
accuracy is nearly identical, with increments that do not
exceed 0.06 and the differences in the spread are minimal.
In other words, if the observations of step 2 only observe
what it does happen (positive information) and not what it
does not happen (negative information), the negative part
of the action model is not essential. This means that the real
difficulty of the recognition tasks relies on steps 3 and 4.
• Increasing the number of observations in step 2 means

having a higher observability degree, which is more useful
in plan recognition than in goal recognition. In plan recog-
nition, a higher observability degree allows us to better
discern among plans, thus providing better accuracy and
spread (although there are some punctual exceptions be-
cause of the random observations). On average, the accuracy
and spread monotonically improve when such a degree
increases, both in Π20 and Π10. In goal recognition, a higher
observability degree improves the %spread, which is more
precise both in Π20 and Π10, but the accuracy remains
more or less the same. In our approach, goal recognition
is more complex and trickier than plan recognition, as the
goals of the observed plan might not be the goals of one
plan in the library, but a combination of goals of multiple
plans. For instance, if we have to recognize goal g1 and g2,
it might be possible that no plan in the library achieves
both goals, so recognizing the right plan in step 3 is not
vital. Consequently, our approach for goal recognition is less
observation-dependent than plan recognition.
• If we just aim at goal recognition we might decide to skip

the step 3. In order to assess this claim, we have repeated
the goal recognition of step 4 without the plan recognition
of step 3. The new results are just slightly worse, but the
goal recognition task is now more costly because the set of
candidate goals is much larger. That is, the accuracy follows
the same tendency, but the execution time is increased.
The main difficulty in goal recognition is to find a right
threshold, and reducing the candidate goals thanks to the
plans in solPR of step 3 proves useful to reduce the cost and
the number of potential false positives in step 4. Therefore,
skipping step 3 is not a fully convincing decision.
• Noisy observations do not significantly affect the success

of the recognition tasks. We have not detected relevant
differences when noise ranges from 0.0 to 0.2. In fact, our
ANOVA tests show that, no matter this range of noise, there
are no statistically differences with a confidence interval of
99%. The main reason is that a noisy observation that cannot
be satisfied is simply not considered and does not affect the
task.
• The execution time in all experiments is clearly affordable.

Plan recognition depends more on the library size than goal
recognition, but even in such a case the times do not exceed
15 s in Π20.
• The ROC curves, in which we show the true–false trade-off

for recall and specificity, provide good results (above the
diagonal). The behavior is better in plan recognition than in
goal recognition, although goal recognition is more tolerant
to noise than plan recognition.

4.2. Comparison with other state-of-the-art model-based approaches

4.2.1. Setup
We now compare our approach with other model-based ap-

proaches. Since we do not have access to their binaries, we use



A. Garrido Knowledge-Based Systems 278 (2023) 110895

t
r
p
o
e
o
u
o
a
0
a
t

H
o
o
o

A
r
p
G
u
i
D
p
n
w
o
c

s
b
i
d
l
t

4

s

d

he results provided in [13] and their dataset4 for goal and plan
ecognition. There are 15 domains in the dataset, but we can only
arse 7 (the remaining domains do not use types or parameters,
r use constants): blocksworld, depots, dwr, intrusion-detection,
tc. The dataset contains thousands of experiments, which consist
f a PDDL domain, an initial state, a set of candidate goals, a
nique hidden goal in this set, and an observation sequence
f actions that represent an optimal or sub-optimal plan that
chieves the hidden goal. Five observability degrees are defined,
.10, 0.30, 0.50, 0.70 and 1. A value of 0.10 means that 10% of the
ctions in the plan are observed. No predicates are observed in
he dataset.

There is an additional version of the dataset to deal with noise.
owever, this version only includes two noisy observations per
bservation sequence that, on average, means that 12% of the
bservations are faulty [13]. In this version, there are only four
bservability degrees, 0.25, 0.50, 0.75 and 1.
Fig. 10 shows an input example of the dataset for blocksworld.

ccording to the authors, the dataset is intended for goal and plan
ecognition. However, despite its name, it focuses essentially on
lan recognition. As can be seen, there are 10 candidate goals
1,G2 . . .G10, but the recognition task only needs to recognize a
nique hidden aggregate goal. In other words, the objective here
s to recognize the atomic goal G1, but no goals like (clear D), (on
R) or (on R A) are individually recognized in the experiments
rovided in [13]. Consequently, this is equivalent to a plan recog-
ition task PR with 10 candidate plans Π10 = {π1, π2 . . . π10},
hich respectively achieve the goals {G1,G2 . . .G10}, where the
ptimal solution for the task is solPR = {π1}. Therefore, this
omparison requires to use our plan recognition task.
The number of experiments depends on the domain and ob-

ervability degree. For each experiment, we populate a plan li-
rary with the plans that achieve each candidate goal from the
nitial state. This is possible because the domain is part of the
ataset. In the example of Fig. 10, we simply need to create a
ibrary with 10 candidate plans and the objective is to recognize
he plan that achieves the hidden goal. Plans are solved by LPG.

.2.2. Evaluated approaches and comparison
We compare our plan recognition task vs. some of the most

uccessful approaches in literature:

• Ramirez & Geffner [4] (denoted as RG09), which uses heuris-
tic estimators to approximate relaxed plans when the obser-
vations are included.
• Ramirez & Geffner [5] (denoted as RG10), which calculates

the probability distribution over a set of goals, where the
probability of the observations given a goal is defined in
terms of the cost difference of achieving the goal when
satisfying with the observations vs. not satisfying with them.
• E-Martin et al. [7] (denoted as ERS15), which propagates

cost and interaction information in a plan graph, and uses
this information to estimate goal probabilities over the can-
didate goals.
• Pereira et al. [13] (denoted as POM20), which defines two

heuristic estimators by using landmarks. First, the goal com-
pletion heuristic hgc estimates the percentage of completion
of a goal based on the number of landmarks that have
been detected and are required to achieve it. Second, the
uniqueness heuristic huniq computes a value for every land-
mark and recognizes which candidate goal is being pursued
from the observations. Both heuristics require a threshold to
return the candidates with the highest estimate within that
threshold. The authors use three values, 0, 10 and 20. In our
comparison, we show the median threshold, i.e., 10.

4 https://github.com/pucrs-automated-planning/goal-plan-recognition-
ataset.
23
Fig. 10. Fragment of the dataset for blocksworld. The input for the recognition
task includes: (i) the domain, as in Fig. 1; (ii) the initial state; (iii) the candidate
goals; (iv) the hidden goal; and (v) the observations.

Table 9 depicts the results for the comparison when observa-
tions are noiseless. For each domain and observability degree, we
present the number of experiments. Then, we present the average
values for accuracy and spread for our approach and the five
evaluated approaches. The optimal value for both accuracy and
spread is 1. Since the computer used in [13] is faster than ours,
a comparison of the execution times is unfair. For the interested
reader, we also show the average solving time in seconds of our
approach, which is now limited to 100 s for steps 1 + 2 + 3.

Our accuracy results are specially remarkable for low-medium
observability degrees (up to 0.50–0.70). They are comparable to
other approaches and even better in several domains, such as
depots, ipc-grid, logistics and sokoban. When the plan is fully
observed, the other approaches show better accuracy, except
RG10. If we focus on the spread, our results are slightly worse
on average, but a little better in depots and logistics.

Table 10 depicts the results for the comparison with noisy
observations. Surprisingly, the results of other approaches for
most domains are not provided in [13]. If we focus on intrusion-
detection and ipc-grid, our accuracy for the intrusion-detection
is better for low observability degrees but worse when the ob-
servability increases. In ipc-grid, our accuracy is clearly better,
specially in comparison with RG09 and RG10. Our values for the
spread are worse in intrusion-detection but better in ipc-grid.

If we compare Table 10 with the results of Table 9, we can
see that including noise does not affect significantly to our ac-
curacy, although the spread is a bit worse now. Summing up,
our approach is sensibly more tolerant to noisy observations than
the other approaches, specially with low-medium observability
degrees. It also shows comparable results (better in some do-
mains but worse in others), particularly in terms of accuracy
and low observability degrees. This is very valuable when the
observations are limited and/or noisy, taking into consideration
that our approach does not need the planning action model as an
input.

5. Conclusions

Recognition from observations is traditionally addressed by
using large plan libraries or by using a planning model. The idea
is to match observations over the plans, or match plans over
the observations. Traditionally, authors that propose the use of a

library claim that knowing a planning action model in advance is

https://github.com/pucrs-automated-planning/goal-plan-recognition-dataset
https://github.com/pucrs-automated-planning/goal-plan-recognition-dataset
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Table 9
Comparison of our plan recognition task vs. other approaches in terms of accuracy and spread. Average results with different observability degrees and without noise.
Domain Obs Exp Our PR RG09 RG10 ERS15 POM20-hgc POM20-huniq

Acc Spread Time Acc Spread Acc Spread Acc Spread Acc Spread Acc Spread

blocksworld

0.10 222 0.51 10.79 11.77 0.61 3.34 0.68 3.34 0.66 9.11 0.59 4.62 0.53 2.77
0.30 234 0.72 6.59 30.15 0.76 1.79 0.47 1.84 0.78 10.53 0.79 3.96 0.67 2.51
0.50 234 0.84 4.09 51.91 0.87 1.42 0.52 1.78 0.81 10.68 0.86 3.13 0.78 2.24
0.70 234 0.91 2.69 83.10 0.95 1.18 0.59 1.67 0.90 8.63 0.96 2.51 0.91 2.02
1 88 0.95 1.93 93.98 1.00 1.06 0.65 1.71 1.00 1.22 1.00 1.78 1.00 1.61

depots

0.10 77 0.78 2.74 9.05 0.67 2.89 0.50 1.61 a a 0.67 3.42 0.49 2.70
0.30 80 0.94 1.53 21.58 0.76 1.72 0.52 0.90 a a 0.82 2.53 0.71 2.57
0.50 81 0.97 1.26 37.37 0.89 1.33 0.50 0.75 a a 0.94 1.77 0.87 2.10
0.70 84 0.94 1.27 58.93 0.94 1.13 0.62 0.74 a a 0.94 1.35 0.96 1.09
1 28 0.94 1.07 73.78 1.00 1.07 0.75 0.72 a a 1.00 1.05 1.00 1.09

dwr

0.10 42 0.26 2.62 13.73 0.80 2.29 0.56 1.63 0.93 6.38 0.86 4.32 0.70 3.07
0.30 37 0.48 2.03 50.90 0.83 2.89 0.39 0.75 0.98 6.56 0.95 3.61 0.80 2.41
0.50 29 0.74 1.52 63.71 0.86 1.64 0.41 0.62 0.99 6.27 0.98 3.19 0.88 2.16
0.70 30 0.62 1.37 64.26 0.90 1.48 0.49 0.63 0.99 6.00 0.99 2.50 0.99 2.00
1 8 0.83 1.50 92.85 0.93 1.14 0.57 0.64 1.00 1.00 1.00 1.67 1.00 1.60

intrusion-detection

0.10 105 0.82 4.02 4.02 1.00 2.53 0.81 2.37 0.90 3.18 0.96 2.56 1.00 2.54
0.30 105 0.92 2.32 5.77 1.00 1.11 1.00 1.11 0.91 1.88 1.00 1.96 1.00 1.96
0.50 105 0.92 2.17 7.14 1.00 1.00 1.00 1.02 0.94 1.45 1.00 1.19 1.00 1.91
0.70 105 0.93 2.12 9.86 1.00 1.00 1.00 1.00 0.99 1.05 1.00 1.02 1.00 1.67
1 45 0.93 2.11 12.58 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.02 1.00 1.60

ipc-grid

0.10 146 0.86 2.29 0.56 0.86 2.11 0.63 1.35 a a 0.86 3.28 0.82 3.13
0.30 153 0.95 1.37 1.45 0.88 1.25 0.81 0.90 a a 0.88 2.32 0.90 2.34
0.50 152 0.98 1.13 2.84 0.93 1.04 0.90 0.93 a a 0.93 1.26 0.95 1.48
0.70 153 0.98 1.07 3.38 0.97 1.00 0.95 0.95 a a 0.97 1.15 0.97 1.16
1 61 0.97 1.10 4.06 1.00 1.00 1.00 1.00 a a 1.00 1.00 1.00 1.00

logistics

0.10 147 0.83 2.80 0.24 0.91 2.69 0.70 1.52 a a 0.84 3.58 0.77 2.84
0.30 153 0.97 1.30 0.62 0.97 1.35 0.83 0.99 a a 0.95 2.14 0.87 1.96
0.50 153 0.99 1.14 1.29 0.99 1.15 0.89 0.93 a a 0.99 1.92 0.95 1.50
0.70 153 0.99 1.05 2.33 1.00 1.11 0.92 0.94 a a 0.99 1.39 0.99 1.47
1 61 1.00 1.00 8.63 1.00 1.00 0.95 0.95 a a 1.00 1.00 1.00 1.00

sokoban

0.10 15 0.77 2.60 0.77 0.71 2.51 0.71 0.85 0.68 2.98 0.87 2.89 0.68 2.78
0.30 24 0.90 1.75 1.71 0.76 1.67 0.63 0.63 0.83 3.14 0.77 1.81 0.69 1.77
0.50 17 0.94 1.35 3.05 0.86 1.63 0.68 0.74 0.82 2.27 0.88 1.80 0.83 1.80
0.70 25 0.94 1.44 3.67 0.87 1.19 0.86 0.88 0.86 1.84 0.92 1.31 0.93 1.60
1 11 0.85 1.73 4.40 1.00 1.03 0.96 0.96 0.86 1.03 1.00 1.00 1.00 1.03

aMeans that no results are provided for that experiment.
difficult, and even impossible when the model is hidden. Authors
that propose the use of an action model claim that having a
plan library is costly and even impossible in many scenarios;
although knowing the model allows us to indirectly populate plan
libraries. Our approach places in between and uses a small library
to approximate a (non-necessarily complete) action model, which
is learned by a formulation that must satisfy the constraints im-
posed by the plans of the library. More concretely, we contribute
with a unified 4-step approach for plan and goal recognition from
unreliable observations that allows us to easily tune (and even
skip) some individual steps.

Unlike typical approaches in literature, we clearly distinguish
etween plan and goal recognition. In plan recognition, the objec-
ive is to identify the observed plan. This is applicable when we
ant to identify what the agent is executing, specially in systems

or intelligent detection, activity recognition and monitoring. In
oal recognition, we move a step forward and the objective is to
dentify not necessarily one plan but individual goals that might
elong to different plans. This is applicable when we want to
dentify what the agent expects to achieve, specially in proac-
ive systems to foresee future scenarios. A key advantage of our
pproach is that we do not need an input of candidate goals,
s they are filtered from the plan library, nor a large amount of
bservations to obtain good results.
Our approach has a strong practical application in scenarios

ith little information: domain theory unavailable, limited plan
24
library, low observability degree and noisy observations. We are
restricted to what we already know (previous plans) to auto-
matically learn an action model. We get the most information
out of that learned model and what we partially observe, by
correctly ignoring noisy observations that cannot be satisfied, to
recognize the plans that are consistent with the maximal number
of observations. Then, we initialize the candidate goals from the
recognized plans and exploit planning knowledge in the form
of causal graphs and their overlapping to recognize the most
promising goals. An interesting consequence is that the causal
graphs are implicit in our unified constraint-based formulation.

Our formulation can be easily mapped into a SAT encoding.
Although non-boolean variables make the SAT encoding more
tedious, a positive result is that most of the constraints of our
formulation can be turned into SAT clauses and managed by
modern SAT solvers.

In absence of noise, the plan recognition task never under-
recognizes, but when noise is considered it might under-/
over-recognize, which also happens in goal recognition with
and without noise. In other words, we cannot guarantee perfect
recognition but, to our knowledge, no approach guarantees this.
The comparison with other state-of-the-art approaches show that
our results are comparable.

We acknowledge some limitations in our work so far. First, we
are limited to the plans and goals of the plan library, so we cannot
recognize new plans or goals (although this is common to most
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Table 10
Comparison of our plan recognition task vs. other approaches in terms of accuracy and spread. Average results with different observability degrees and with two
oisy observations (around 12% of noise).
Domain Obs Exp Our PR RG09 RG10 ERS15 POM20-hgc POM20-huniq

Acc Spread Time Acc Spread Acc Spread Acc Spread Acc Spread Acc Spread

blocksworld

0.25 31 0.48 11.58 1.83 a a a a a a a a a a

0.50 34 0.63 8.65 3.84 a a a a a a a a a a

0.75 36 0.78 5.50 7.87 a a a a a a a a a a

1 36 0.83 4.50 9.83 a a a a a a a a a a

depots

0.25 34 0.60 4.59 3.33 a a a a a a a a a a

0.50 35 0.83 2.43 8.43 a a a a a a a a a a

0.75 36 0.96 1.25 18.51 a a a a a a a a a a

1 36 0.95 1.39 22.19 a a a a a a a a a a

dwr

0.25 23 0.68 3.26 29.96 a a a a a a a a a a

0.50 24 0.75 2.58 66.49 a a a a a a a a a a

0.75 24 0.81 1.75 78.31 a a a a a a a a a a

1 24 0.85 1.42 89.23 a a a a a a a a a a

intrusion-detection

0.25 90 0.83 3.73 3.81 0.63 2.34 0.39 0.81 0.43 2.31 0.69 4.43 0.59 3.94
0.50 90 0.92 2.27 5.86 0.94 1.27 0.79 0.93 0.81 1.78 0.93 2.04 0.89 2.68
0.75 90 0.93 2.11 8.56 0.99 1.01 0.93 0.94 0.93 1.10 0.99 1.33 0.94 1.182
1 30 0.93 2.10 13.02 1.00 1.00 1.00 1.10 1.00 1.06 1.00 1.10 1.00 1.63

ipc-grid

0.25 84 0.90 1.90 0.19 0.11 2.81 0.10 1.00 a a 0.76 2.95 0.76 2.83
0.50 89 0.96 1.36 0.38 0.04 1.61 0.03 0.98 a a 0.86 1.71 0.87 1.71
0.75 90 0.99 1.12 0.68 0.08 1.10 0.08 0.92 a a 0.94 1.23 0.94 1.15
1 30 1.00 1.00 1.25 0.10 1.00 0.10 1.00 a a 1.00 1.00 1.00 1.00

logistics

0.25 36 0.87 2.25 0.23 a a a a a a a a a a

0.50 36 0.99 1.14 0.60 a a a a a a a a a a

0.75 36 1.00 1.00 1.12 a a a a a a a a a a

1 36 0.99 1.06 2.18 a a a a a a a a a a

sokoban

0.25 19 0.69 3.47 1.11 a a a a a a a a a a

0.50 19 0.90 1.79 2.48 a a a a a a a a a a

0.75 14 0.92 1.57 4.54 a a a a a a a a a a

1 16 0.96 1.25 5.30 a a a a a a a a a a

aMeans that no results are provided for that experiment.
recognition approaches). Second, our approach shows somewhat
conservative: it is good to discard what cannot be recognized,
as it violates the imposed constraints, but too permissive in
recognition if no enough evidences can be extracted. Particularly
in goal recognition, it can recognize two goals that are mutex
(e.g., returning (on S A) and (on R A) in blocksworld). As part of
uture work, we want to include some kind of mutex reasoning
o avoid contradictory goals and discover an ordering among
hem. Third, some careful tuning might help the recognition tasks.
or instance, a large plan library could be detrimental for the
uccess of the recognition tasks since the number of candidate
lans/goals increases. However, tuning the plans in the library
to cover more situations and improve the model learned), or
uning the threshold in goal recognition (to better discern among
oals) is interesting and part of our ongoing work. Finally, we
ecognize a set of plans/goals but we do not provide their score
r probability distribution. A direct extension to reason on the
xisting information, which is future work, is to provide a ranking
f probabilistic or otherwise hypotheses. We could give a weight
o every observation, thus allowing a degree of confidence on
t, and return a list of ranked plans and goals. For instance, we
an extend the maximization problem of the plan recognition
nd the overlapping calculus between causal graphs of the goal
ecognition to deal with these weights.
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