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A B S T R A C T

In recent decades, research on supply chain management (SCM) has enabled companies to improve their
environmental, social, and economic performance.

This paper presents an industrial application of logistics that can be classified as an inventory-route
problem. The problem consists of assigning orders to the available warehouses. The orders are composed
of items that must be loaded within a week. The warehouses provide an inventory of the number of items
available for each day of the week, so the objective is to minimize the total transportation costs and the costs
of producing extra stock to satisfy the weekly demand. To solve this problem a formal mathematical model
is proposed. Then a hybrid approach that involves two metaheuristics: a greedy randomized adaptive search
procedure (GRASP) and a genetic algorithm (GA) is proposed. Additionally, a meta-learning tuning method is
incorporated into our hybridized approach, which yields better results but with a longer computation time.
Thus, the trade-off of using it is analyzed.

An extensive evaluation was carried out over realistic instances provided by an industrial partner. The
proposed technique was evaluated and compared with several complete and incomplete solvers from the state
of the art (CP Optimizer, Yuck, OR-Tools, etc.). The results showed that our hybrid metaheuristic outperformed
the behavior of these well-known solvers, mainly in large-scale instances (2000 orders per week). This hybrid
algorithm provides the company with a powerful tool to solve its supply chain management problem, delivering
significant economic benefits every week.
1. Introduction

In the early stages of supply chain management (SCM), obtaining
an optimized solution for the production of stock and its distribution in
warehouses is essential. A subsequent stage of the SCM tries to find the
optimized set of routes for a fleet of vehicles, satisfying the demands of
a set of customers. This problem is called the vehicle routing problem
(VRP) (Schiffer et al., 2019). In addition, inventory management (IM)
is responsible for ordering, storing, using, and selling a company’s
inventory, including the management of raw materials, components,
and finished goods, as well as the storage and processing of these
items (Zhang et al., 2021). Optimization techniques have made possible
integrated approaches among related sub-problems that compose the
SCM. This has enabled it to combine several problems, such as VRP
and IM (Mara et al., 2021).
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Integrating the SCM’s three sub-problems mentioned above
(location–allocation, routing, and inventory management) gives a holis-
tic view of the system. It considers the supply chain as an integrated
problem (Rafie-Majd et al., 2018). Considering that the warehouse
location is a strategic problem to determine the number and location
of warehouses (Baumol and Wolfe, 1958); inventory management is
a tactical problem to determine the number of orders and safety
stock (Silver, 1981); route planning is an operational problem to
determine the number and succession of deliveries, recently, more and
more research is considering a combination of the above decisions,
including the location-inventory problem (LIP) (Wang et al., 2020),
the location-route problem (LRP) (Nikzamir and Baradaran, 2020), and
the inventory-route problem (IRP) (Coelho et al., 2014). Simultaneous
optimization of routing and inventory decisions will significantly re-
duce costs and thus improve customer service. The inventory routing
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problem (IRP) integrates the operations of manufacturing, storing,
and holding inventories and their transportation. It is an important
and well-studied problem in the supply chain literature (Malladi and
Sowlati, 2018; Cui et al., 2023). It is well known that the problems
that make up the SCM belong to the NP-hard problems. Therefore, the
combination of these problems will give way to a composite NP-hard
problem as well (Malladi and Sowlati, 2018).

In this paper, a real-case industrial problem is addressed, based
on inventory management, and composed of essential operations in
logistics systems that influence the sustainability and performance of
the supply chain logistics of a real company that serves several types
of fruits to a well-known supermarket.

The proposed problem falls within the scope of the IRP. The opti-
mization mainly focuses on transport costs and additional stock pro-
duction costs. The problem has around two thousand orders that are
shipped on a specific date within one week. Each order is loaded and
delivered with a single vehicle and on a single route so that each vehicle
can only deliver a single order each day of the week. The defined
warehouses can produce the additional stock needed to supply the
demand for orders when the current stock is not enough. On the other
hand, they also serve as a depot for the vehicles delivering orders and
storing the stock. The warehouses already have a predefined optimal
location, and each order has a finite set of available warehouses, from
two to fourteen, where the order can be loaded. An optimal solution
to the problem is the assignment of a warehouse to each order so that
the cost of taking the vehicle to the warehouse and delivering it to the
customer, and the cost of producing the required items (if needed) for
the order is minimized. To optimize the solution, the company applies a
multi-layer greedy algorithm that was considered the base algorithm to
develop our hybrid algorithm. Each layer aims to obtain solutions based
on the optimization of an objective function. Deeper layers are assigned
to more general functions so that deeper layers have more specific
objectives. This allows the algorithm to optimize essential aspects of
the company.

This paper proposed the hybridization of two well-known meta-
heuristics for solving and optimizing the above real supply chain prob-
lem. The hybridization of metaheuristics (Alorf, 2023) is often very
successful because, at the beginning of its execution, it obtains a
broad view of the search space and then applies domain-dependent
operations (Gherbi et al., 2019). Thus, taking into account the topology
of the problem and the progress made by the company, this paper
proposes the design and development of a greedy randomized adaptive
search procedure (GRASP) and a genetic algorithm (GA). The structure
of the proposed hybridization method is based on raw input data to the
GRASP algorithm. Primarily, this algorithm sorts the orders concerning
problem characteristics by creating a ranked candidate list. At each
iteration of GRASP, the objective function of 𝑛 number of candidates
is obtained to evaluate which will be the next assigned order. Once the
GRASP execution is completed, the generated solutions are used as the
initial population of the GA. Finally, during a determined number of
iterations and by means of mutation and crossover methods, the genetic
algorithm will search for optimized solutions according to the proposed
objective function: minimizing the total transportation costs and the
costs of producing extra stock.

The evaluation section presents a deep analysis of the proposed
algorithm with real large-scale instances. Randomized instances of the
data sets, as well as the implementation of the mathematical model in
Minizinc are available at https://github.com/GPS-UPV/SCSP. Firstly,
the proposed algorithm was compared against well-known solvers from
the state of the art, including the constraint programming solver:
IBM ILOG CP Optimizer. The results show that the proposed hybrid
algorithm outperformed the state-of-the-art solvers for large-scale real
instances. The difference in total costs obtained is quite significant
(especially in the large-scale instances) and therefore, by using the
hybrid algorithm, the company was able to drastically decrease their
2

logistics cost saving a consistent amount on a weekly basis.
Furthermore, this paper includes an analysis of how the tuning of
the parameters and meta-learning can improve the efficiency of the
proposed approach. The experiments performed on a data set provided
by the industrial partner (data sets ranging from 10 to 2000 orders)
show the scalability of the proposed approach for large-scale instances.
Several different cutoff times were used for analyzing the improvement
that parameter tuning and Machine Learning bring to the convergence
of the algorithms.

The paper is structured as follows. The state-of-the-art is presented
in Section 2. The problem description and its formulation are shown
in Section 3. The proposed algorithms are described in Section 4. The
evaluation of the proposed algorithms compared with the baseline
solvers is performed in Section 5. Finally, Section 6 summarizes the
conclusions and future work.

2. Literature review

This section first describes previous works on IRP, focusing on those
works that use GRASP or GA. Then, some literature review that applies
the hybridization of metaheuristics on IRPs is described.

2.1. Inventory routing problems, GRASP and GA

The inventory routing problem (IRP) represents a set of problems
in which one or more suppliers (warehouses), prepare and deliver
orders to geographically dispersed customers. This set of problems
provides integrated logistics solutions, taking into account the most im-
portant aspects of inventory management, vehicle routing, and delivery
planning (Coelho et al., 2014).

In Archetti et al. (2007), deterministic IRPs were introduced, which
generated stock replenishment policies to avoid stock-out in ware-
houses. The authors used a Branch and Bound algorithm to solve IRP
with a maximum-level replenishment policy, in which the amount of
stock a warehouse can handle in a specific period is limited (Archetti
et al., 2012).

Furthermore, non-deterministic IRPs have been discussed in the lit-
erature. These problems are composed of changing or incomplete data,
making it complex to obtain optimal solutions. They can have some
variability in travel times, vehicle loading, and stock replenishment,
so models are analyzed using fuzzy methods, robust optimization, and
dynamic programming (Arab et al., 2020).

The most popular algorithm for solving IRPs is the Genetic Algo-
rithms (GA) (Avella et al., 2018). GA is a non-deterministic optimiza-
tion technique inspired by the process of natural selection. GA search
is used to explore the problem domain and, together with a population
of individuals configured with the characteristics of the problem, seeks
to represent a set of potential solutions in the search space (Ho et al.,
2008). For instance, Moin et al. (2011) uses GA to improve solutions
for a multi-period IRP. They present a multi-objective solution that
provides a new way of defining mutation and crossover operators. More
recent works focused on developing an adaptive GA, applying different
techniques during different phases of the algorithm to suit better the
problem addressed (Mahjoob et al., 2022). In their approach, they use
the fitness value of parents and offspring to create adaptive operators.
Mutation and crossover rates are adjusted based on the fitness value
returned. In our case, the same technique is used, where the alpha
value that will prune the objective function is modified by the results
obtained in the previous epoch.

The GRASP method is a well-known metaheuristic framework for
sizeable combinatorial optimization problems. This technique is an
iterative metaheuristic consisting of two main phases: the construc-
tion phase, where greedy random solutions are obtained and can be
prepossessed before the next phase is performed. The second phase,
local search, iterates the random solutions to modify the warehouses
assigned to the orders, seeking to obtain better solutions in each

iteration. The local search ends when the list of solutions has been
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𝑂

wholly traversed (Festa et al., 2018). For example, in Jaikishan and
Patil (2019), the authors design a GRASP algorithm to solve an IRP.
The problem handled has a set of orders, and each of the orders has a
release and expiration date. These dates affect the costs of stock storage
and have an additional cost associated with them if the dates are not
met. On the other hand, they use a 𝛼-value to discriminate the solutions
n a subset centered on random solutions (𝛼 = 1) or greedy solutions
𝛼 = 0), adapting the Restricted Candidate List (RCL) to the needs
f the problem as in Feo and Resende (1995). This paper proposes a
odification of the 𝛼-value function to weight the different costs in

he objective function, avoiding greedy solutions and stacking in local
ptima.

To solve this complex IRP, an algorithm that combines the GRASP
nd GA metaheuristics is proposed. By hybridizing these methods,
he aim is to obtain near-optimal solutions that effectively minimize
he costs associated with assigning orders to warehouses. This paper
ddresses a multi-vehicle, multi-product, and single-echelon Inventory
outing Problem (IRP), wherein warehouses have dual functions of
tock storage and stock manufacturing when needed while being a
ehicle deposit hub for the vehicles that transport the stock on specific
eekdays.

It should be noted that a single-echelon IRP is characterized by
ptimizing the appropriate level of inventory for an individual unit
ithin the supply chain network. However, due to the multi-vehicle and
ulti-product nature of the problem, the identification of an optimal

oute for the entire distribution network is required. Therefore, the
roposed hybrid system aims to optimize the set of global variables
y making the problem related to a multi-level supply chain problem,
here the main objectives are to minimize transportation and inventory

osts and satisfy client demand.

.2. Hybridization approaches for IRPs

For years, there has been a rise in the hybridization of different
lgorithms. These works combine several algorithmic ideas that can be-
ong to different branches of artificial intelligence, operations research,
nd computer science in general. Metaheuristics can be combined
ith many types of techniques and methods. Evolutionary algorithms,

abu search, simulated annealing, iterated local search, and optimiza-
ion with ant colonies are commonly hybridized algorithms in the
iterature (Pellerin et al., 2020).

The interest in hybrid metaheuristics has risen considerably in the
ield of optimization and the best results found for many real-life
ptimization problems are often obtained by hybrid algorithms (Talbi,
013). Furthermore, hybrid algorithms can provide more effective
olutions to complex sustainable supply chain management problems
Abualigah et al., 2023). This type of hybridization is usually very
uccessful because, at the beginning of their execution, they obtain a
road view of the search space and then apply problem-dependent op-
rations (Gherbi et al., 2019). This fact has motivated the hybridization
f the two metaheuristics presented in this paper.

Multilevel hybridization is based on combining different types of
lgorithms, either sequential, refining the results of one algorithm with
nother, or parallel, in which the algorithms obtain solutions simulta-
eously and feedback to each other (Gu et al., 2020). In the case of
RPs, the most common hybridization is sequential, which means that
he first metaheuristic generates a set of initial solutions or modifies
nternal operators to adapt them to the specific problem. Then, this is
sed by the second metaheuristic.

For example, in Wu et al. (2021), a two-stage sequential hybridiza-
ion is performed. First, a GA obtains a set of solutions by minimizing
he time windows in the warehouses and the fuel consumption of
he vehicles. Secondly, they focus on reducing the replenishment of
istribution centers and retailers in each period using the gradient
escent algorithm. The solutions obtained by this approach show a
3

ignificant cost improvement over using GA or simulated annealing.
Another hybrid algorithm for solving the IRP is presented in Al-
arez et al. (2020). The authors develop a hybrid system consisting
f two parts. First, a set of feasible solutions is obtained through a
onstruction heuristic to feed the main algorithm. The main algorithm
pplies the nearest neighbor heuristic to the problem to determine the
ptimal value of the continuous variables of the problem, allowing it to
educe the search tree and focus the problem on the most deterministic
ariables. Then a perturbation heuristic is applied to randomize the
roblem variables, such as the route, the number of customers, or
he items delivered by each route, maintaining the values in each
teration of the problem that improve the solutions. Finally, the solution
btained is optimized using mathematical models that exchange routes
r customers between the different solutions.

A sequential hybridization is shown in Oudouar and Zaoui (2022),
here an ant colony (AC) algorithm is used to obtain the number
f routes for collecting each supplier’s stock and transporting it to
n assembly plant in each period. Then, they apply a heuristic that
valuates inventory costs and changes routes to minimize this cost.

This paper uses a hybridization between a GRASP algorithm and
GA. The GRASP algorithm is used as a generator of initial solutions

ince obtaining these initial solutions improves the convergence of the
A algorithm and the results. These solutions are used as input data in
GA to improve them during iterations. The GA focuses on its crossover
nd mutation functions will help to obtain better solutions by extending
he search tree.

. Problem description and model formulation

This section describes the industry problem addressed in this paper.
n addition, a mathematical model is formulated. The problem consists
f assigning each week’s orders to the available warehouses. Each order
ust be assigned to a single warehouse. The orders specify a certain
umber of items needed and the associated day of the week to be
oaded. The warehouses provide an inventory of the number of items
vailable each day of the week. The objective function of the problem
s to minimize the total transportation costs and the costs of producing
xtra stock.

First, the constants of the problem are described and subsequently,
he formal mathematical model is presented.

.1. Constants

The list of all the constants is presented as:

= {0,… , ∣ 𝑂 ∣} ∶ set of orders, indexed by 𝑜 ∈ 𝑂

𝐼 = {0,… , ∣ 𝐼 ∣} ∶ set of items, indexed by 𝑖 ∈ 𝐼

𝑊 = {0,… , |𝑊 |} ∶ set of warehouses, indexed by 𝑤 ∈ 𝑊

𝐴𝑊𝑜 = {𝑎𝑤𝑜1,… , 𝑎𝑤𝑜𝑤}, 𝐴𝑊𝑜 ⊆ 𝑊 : 𝑎𝑤𝑜𝑤

is the 𝑤th available warehouse for the order 𝑜

𝑡𝑐𝑜𝑤 ∈ N: travel cost for shipping the order 𝑜

from the available warehouse 𝑤 ∈ 𝐴𝑊𝑜

𝑜 = {𝑑𝑜1,… , 𝑑𝑜𝑖} ∶ 𝑑𝑜𝑖 is the demand of the 𝑖th item of order 𝑜

𝑤𝑑𝑜 = {1,… , 7}: weekday of order 𝑜 picking
𝛥𝑤 = {𝛥𝑞𝑤1(1),… , 𝛥𝑞𝑤𝑖(𝑡)}: 𝛥𝑞𝑤𝑖(𝑡) is the increment of units of item 𝑖

in the warehouse 𝑤 in the weekday 𝑡, where 𝑡 ∈ {1,… , 7}

𝑝𝑖: price to manufacture one unit of item 𝑖 ∈ 𝐼

The model is composed of a set of orders (𝑂), a set of warehouses
(𝑊 ), and a set of items (𝐼) that can be served in the warehouses. Each
order (𝑜 ∈ 𝑂) can only be assigned to a subset of available warehouses
(𝐴𝑊𝑜) with a transport cost of 𝑡𝑐𝑜𝑤. These warehouses are the only
ones that can serve such orders because they are placed in the same
area as the shop where the order was placed. In addition, each order

has associated a set of a certain number of demanded items (𝑜) to



Engineering Applications of Artificial Intelligence 126 (2023) 107188C. Pérez et al.
Fig. 1. Example of the input data of a toy instance.
be shipped on a specific weekday (𝑤𝑑𝑜). Furthermore, 𝛥𝑄𝑤 represents
the increment of the stock of each item in the warehouse 𝑤 in each
weekday.

For clarity purposes, Fig. 1 shows the input data of a toy instance.
In the figure, there are three warehouses (see three tables on the
right of the figure). The tables’ rows represent the items served in
the warehouse. The columns represent the days of the week. Then,
each value in the table is the number of stock increments for each
weekday. For example, in the warehouse 𝑊3, there is an increment of
25 units of product 𝐼2 on day 1, while on day 2, its increment of 𝐼2
is 10 units. Note that 𝛥𝑄𝑤 only represents the production of the stock
(increment). However, the available stock in the warehouses depends
not only on these increments but also on the orders that have already
been allocated. Therefore, computing these current amounts represents
a challenge. In Section 3.2, the variables for calculating these values
are defined.

Fig. 1 also shows three orders (𝑂𝑜) represented with matrices,
showing the demand and the weekday in which the order has to be
loaded (see tables on the left of the figure). Note that the orders have
a list of available warehouses (𝐴𝑊𝑜). The transport costs (𝑡𝑐𝑜𝑤) are
shown with dashed lines. The central table shows the price of extra
manufacturing for each unit of the items offered (𝑝𝑖).

3.2. The formal mathematical model

This section first presents the formal mathematical model of the
problem. Then, an optimized solution for the example of Fig. 1 is
explained. The mathematical model is represented as:

𝑚𝑖𝑛
∑

(

∑

𝑥𝑜𝑤 ∗ 𝑡𝑐𝑜𝑤 +
∑

𝑝𝑐(𝑤, 𝑡)

)

(1)
4

𝑤∈|𝑊 | 𝑜∈|𝑂| 𝑡∈1,…,7
𝑠.𝑡.
∑

𝑤∈𝐴𝑊𝑜

𝑥𝑜𝑤 = 1,∀𝑜 ∈ 𝑂 (2)

𝑠𝑤𝑖(𝑡 + 1) = 𝑠𝑤𝑖(𝑡) + 𝛥𝑞𝑤𝑖(𝑡 + 1) −
∑

𝑜∈|𝑂|,𝑥𝑜𝑤=1,𝑤𝑑𝑜=𝑡+1
𝑑𝑜𝑖

∀𝑖 ∈ 𝐼,∀𝑤 ∈ 𝑊 ,∀𝑡 ∈ 0,… , 6 (3)

𝑝𝑐(𝑤, 𝑡) =
∑

𝑖∈|𝐼|
𝑝𝑐𝑖(𝑤, 𝑡, 𝑖) (4)

where:

𝑥𝑜𝑤 =

⎧

⎪

⎨

⎪

⎩

1, if order 𝑜 is assigned to its 𝑤th available warehouse (𝑎𝑤𝑜𝑤)
∀𝑜 ∈ 𝑂, ∀𝑤 ∈ 𝐴𝑊𝑜,

0, otherwise

(5)

𝑝𝑐𝑖(𝑤, 𝑡, 𝑖) =

{

|𝑠𝑤𝑖(𝑡)| ∗ 𝑝𝑖, 𝑠𝑤𝑖(𝑡) < 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

The objective function of the problem (Eq. (1)) minimizes the total
sum of the costs of shipping orders (𝑡𝑐𝑜𝑤) for all the orders (𝑂) and
the extra production of stock (𝑝𝑐(𝑤, 𝑡), see Eq. (4)) for all the days of
the week (𝑡 ∈ 1,… , 7) and for all the warehouses (𝑊 ) involved in the
problem. Note that the transportation costs are only summed when an
order has been assigned to a warehouse (𝑥𝑜𝑤 = 1).

Eq. (2) ensures that each order must be only assigned to one of its
available warehouses. Note that all the orders must be assigned. This
is achieved by summing all the boolean variables 𝑥𝑜𝑤 associated with
each order 𝑜 ∈ 𝑂 and ensuring that the result is equal to one.
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Fig. 2. An optimized solution and updated stocks for the toy instance of Fig. 1.
Furthermore, a set of variables 𝑆𝑤 = {𝑠𝑤1(1),… , 𝑠𝑤𝑖(𝑡 + 1)} for
keeping track of the current amount of stock in the warehouses is
defined. They are necessary for being able to correctly assign orders.
Then, a new matrix of variables that has the same size as 𝛥𝑄𝑤 is
created. Recall that 𝛥𝑄𝑤 contains all the daily increments of the stock.
Eq. (3) computes 𝑠𝑤𝑖(𝑡 + 1) based on the current stock of the previous
day 𝑠𝑤𝑖(𝑡) plus the increment units of the same day (𝛥𝑞𝑤𝑖(𝑡 + 1)) minus
the sum of the shipped units of all the orders of this weekday (see the
sum of 𝑑𝑜𝑖 in the equation). If the result is negative, it means that there
is a lack of units of the item 𝑖. This issue is solved by extra producing
these units at a certain cost.

For computing the extra production cost of stock in a warehouse 𝑤
for a specific weekday 𝑡, the variables 𝑝𝑐(𝑤, 𝑡) are defined (see Eq. (4)).
These variables are expressed as the sum of the extra production cost
of each item produced in the warehouse 𝑝𝑐𝑖(𝑤, 𝑡, 𝑖) (see Eq. (6)). They
are computed as the absolute value of extra production units necessary
𝑠𝑤𝑖(𝑡) (only if 𝑠𝑤𝑖(𝑡) is a negative value) multiplied by the production
price per unit of item 𝑖 (𝑝𝑖). Note that if 𝑠𝑤𝑖(𝑡) is positive it means that
there is more stock than demanded units. In this case, there is no extra
production needed and therefore the extra production cost is zero.

As previously mentioned, the solution to the problem consists of as-
signing the orders to available warehouses. Thus, the boolean variables
𝑥𝑜𝑤 (see Eq. (5)) are defined, which take the value one if the order 𝑜 is
assigned to its available warehouse 𝑤 and zero, otherwise.

Fig. 2 shows the optimized solution of the toy instance of Fig. 1.
The orders assigned to a warehouse are shown with solid black arrows.
Note that if it does not entail an extra production cost (𝑝𝑐(𝑤, 𝑡), see
Eq. (4)), the optimal assignment for an order 𝑜 is the warehouse with
lower transportation costs (𝑡𝑐). For example, order 𝑂1 can be assigned
to the warehouses 𝑊1 with a transportation cost of 50 and to 𝑊2
with a transportation cost of 15, in both options, the warehouses can
assume the stock supply without extra producing more units of items.
Therefore, the optimal assignment is to 𝑊 .
5
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In this toy instance, there are only three orders and each one is
assigned to a different warehouse. However, in real applications, there
are thousands of orders and therefore typically the warehouses serve
many orders on the same weekday. Thus, keeping updated the current
stocks (tables 𝑆) each weekday is mandatory. Eq. (3) computes such
values by taking into account the increments and decrements of stock
on the previous weekdays.

For instance, in 𝑊1 for item 𝐼1 on day 3, the total number of units is
the sum of the remaining ones on day 2 (28 units) plus the increment
on day 3 (2 units) minus the demand of such item from 𝑂2 (20 units),
which is equal to 10 units. As previously mentioned, there might be
current stock variables that have a negative value because these units
must be extra-produced. For example, when order 𝑂3 is assigned to 𝑊3
on weekday 1, 𝑠32(1) = −10 (i.e. 25−35 = −10). Note that the total cost
of making this delivery is 5 + (10 ∗ 3) = 35 (the unit production cost of
𝐼2 is 3 (𝑝2)). This option is less costly than assigning 𝑂3 to 𝑊2, which
implies a total cost of 40 + (10 ∗ 5) = 90.

Fig. 2 shows the optimized solution to the toy instance proposed
in Fig. 1. Its objective function value is (15 + 0) + (20 + 0) + (5 +
30) = 70, where each parenthesis corresponds to each warehouse,
being the first number the travel cost of the shipping (𝑡𝑐) and the last
one, the extra production cost of stock (𝑝𝑐), where only is applied in
the third warehouse.

4. Hybridization of GRASP and GA

This section describes the approach presented in this paper that
hybridizes GRASP and GA for solving the industrial problem described
in Section 3.

Fig. 3 shows the flowchart of the proposed hybrid algorithm. First,
the GRASP algorithm sorts all orders according to a set of previously
studied criteria. By iterating over a subset of values from this list, a

local search method is applied to find the best possible assignment.
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Fig. 3. Flowchart of the hybridization of GRASP and GA.
This process is repeated 𝑁 times to obtain good solutions that will
represent the initial population of the GA. Secondly, the GA applies
crossover, mutation, and selection operations to the set of solutions
generated by the GRASP. It will allow the population to evolve toward
better solutions as the algorithm iterates. During the iterations of the
algorithm, solutions that have a fitness value (Eq. (1)) worse than the
best solution found are discarded. For both algorithms, GRASP and GA,
it is developed the learning functions that tune their meta-parameters
over the metaheuristic iterations. In the GRASP algorithm, the function
Alpha tuning is proposed to adapt the objective function to the current
state of the problem. A new method called meta-learning is implemented
in the GA, in which a set of tests is executed to evaluate the changes
in the algorithm’s metadata and to select the best combination for the
following iterations.

4.1. GRASP

One of the most well-known Multi Random Start Local Search
(MRSLS) is the greedy adaptive search procedure (GRASP), which was
introduced by Feo and Resende (Feo and Resende, 1989). Each GRASP
iteration consists of iteratively constructing a solution in a greedy way
and then applying a local search procedure to find a local optimum.

At the beginning of the GRASP (Greedy Randomized Adaptive
Search) algorithm, a solution is obtained by randomly assigning avail-
able warehouses to orders. Note that as an MRSLS, for each iteration of
Algorithm 1, a random solution is generated (see line 3). The orders for
this solution are classified according to their restrictive character. This
type of sorting prioritizes the most restrictive orders by considering
two parameters: the number of available warehouses and the number
of items associated with each order. Once the orders are sorted, a
Restricted Candidate List (RCL) is created, and then, in the iterative part
of GRASP (from line 5 to 21), the local search is performed. In this part,
chunks of the RCL of size 𝑛 = 3 are iterated. This size is chosen because,
after testing with different sizes, it is observed that the allocation is
dominated by sorting. In each of these chunks, the allocations of all
the available warehouses for each order are evaluated. Based on all
these evaluations, the objective function for each order is minimized,
and the solution is modified with the newly allocated warehouse. This
modified order is removed from the Restricted Candidate List (RCL) and
repeated until the list is empty. At the end of each iteration, a tuning
function is performed in which the 𝛼 value is modified (according to
some parameters discussed below), and the quantities of products in
the warehouses affected by the allocation are updated.

Finally, when the RCL list is empty and the costs have been calcu-
lated, the solution is returned. This solution consists of tuples with two
values: the order id and the assigned warehouse id.

4.1.1. RCL ordering:
The RCL list is sorted to search for the optimized solution in a

more flexible way. Before the list is sorted, a preprocess automatically
assign each order where only one warehouse is available, avoiding
unnecessary calculations. The list is ordered according to the number of
warehouses available for each order and the demand to be delivered for
each order. To sort the list, Eq. (7) is used to normalize the number of
6

warehouses and items associated with the order. This equation returns
Algorithm 1 GRASP
1: input: Alpha value 𝛼, RCL list chunk size 𝑛
2: output: Optimized solution 𝑥
3: 𝑥 ⟵ RandomSolution(𝑂,𝐴𝑊 )
4: 𝑅𝐶𝐿 ⟵ RCLordering(𝑥,𝐴𝑊 ,𝐷)
5: while |𝑅𝐶𝐿| > 0 do:
6: 𝑅𝐶𝐿𝐼𝑛𝑑𝑒𝑥𝑠 ⟵ [ ]
7: 𝑅𝐶𝐿𝐶𝑜𝑠𝑡𝑠 ⟵ [ ]
8: 𝑗 ⟵ 0
9: while 𝑗 < 𝑛 do:

10: 𝑖𝑛𝑑𝑒𝑥𝑜𝑤, 𝑐𝑜𝑠𝑡𝑜𝑤 ⟵ LocalSearch(𝛼,𝑅𝐶𝐿𝑗 )
11: 𝑅𝐶𝐿𝐼𝑛𝑑𝑒𝑥𝑠 ⟵ 𝑅𝐶𝐿𝐼𝑛𝑑𝑒𝑥𝑠 ∪ 𝑖𝑛𝑑𝑒𝑥𝑜𝑤
12: 𝑅𝐶𝐿𝐶𝑜𝑠𝑡𝑠 ⟵ 𝑅𝐶𝐿𝐶𝑜𝑠𝑡𝑠 ∪ 𝑐𝑜𝑠𝑡𝑜𝑤
13: 𝑗 ⟵ 𝑗 + 1
14: end while
15: 𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥 ⟵ 𝑚𝑖𝑛(𝑅𝐶𝐿𝐶𝑜𝑠𝑡𝑠)
16: 𝑏𝑒𝑠𝑡𝑊 𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ⟵ 𝑅𝐶𝐿𝐼𝑛𝑑𝑒𝑥[𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥]
17: 𝑥[𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥] ⟵ 𝑏𝑒𝑠𝑡𝑊 𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒
18: 𝑅𝐶𝐿 ⟵ 𝑅𝐶𝐿 ⧵ 𝑅𝐶𝐿𝐼𝑛𝑑𝑒𝑥[𝑏𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥]
19: 𝛼 ⟵ AlphaTuning(𝛼, |𝑅𝐶𝐿|, 𝑏𝑒𝑠𝑡𝑊 𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒, 𝑐𝑜𝑠𝑡𝐵𝑒𝑠𝑡)
20: 𝑆 ⟵ StockUpdate(bestWarehouse, bestIndex)
21: end while

a value between 0 and 2, where 0 is the least restrictive value to assign
the order to a warehouse and 2 is the most restrictive. This range
is obtained because each summation is normalized between 0 and 1.
The first summation measures the availability of warehouses compared
to all possible warehouse options, while the second one evaluates the
demand load of the products relative to other orders. As a result of this
normalization and the combination of these two factors, the equation
produces an overall score that reflects the degree of constraint in the
allocation process, effectively guiding the decision-making process.

|𝐴𝑊𝑜|

|𝑊 |

+

∑

𝑖∈𝐼
𝐷𝑜𝑖

𝑚𝑎𝑥(𝐷𝑜)

|𝐷𝑜|
∀𝑜 ∈ 𝑅𝐶𝐿 (7)

4.1.2. Local search
Once the RCL list is sorted, a local search method (see Algorithm

2) is executed in order to obtain the best possible warehouse for each
order.

This method gives the objective function (line 15) of each available
warehouse for an order. The associated costs between the trip and the
assigned warehouse are added to obtain this value. The transport cost
(𝑡𝑐𝑜𝑤) is a fixed value given by the problem instance between an order 𝑜
and a warehouse 𝑤. The stock cost (𝑠𝑡𝑜𝑐𝑘𝐶𝑜𝑠𝑡) is a calculated value for
each item requested in the order (lines 9–13). This cost is only increased
if the quantity of the item requested by the order is greater than the
current stock in the evaluated warehouse. In this case, the quantity
required by the order (line 10) is multiplied by the item production cost
(𝑃𝑖) to meet the demand. In Perez et al. (2020), it is observed that the
transport cost is higher than the storage cost in the first iterations and
vice versa in the last iterations. Therefore, once all the costs have been
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Algorithm 2 Local Search
1: input: Alpha value 𝛼, Order id 𝑜
2: output: Id of warehouse assigned 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝐼𝑑
3: 𝑡 ⟵ 𝑤𝑑𝑜
4: 𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 ⟵ 0
5: 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝐼𝑑 ⟵ 0
6: For 𝑤 in 𝐴𝑊𝑜:
7: 𝑠𝑡𝑜𝑐𝑘𝐶𝑜𝑠𝑡𝑠 ⟵ [ ]
8: For 𝑖 in 𝐼 :
9: if |𝑑𝑜𝑖 − 𝑆𝑤𝑖𝑡| < 0 then:

10: 𝑠𝑡𝑜𝑐𝑘𝐶𝑜𝑠𝑡𝑠 ⟵ 𝑠𝑡𝑜𝑐𝑘𝐶𝑜𝑠𝑡𝑠 ∪ 𝑃𝑖 ∗ |𝑑𝑜𝑖 − 𝑆𝑤𝑖𝑡|

1: else:
2: 𝑠𝑡𝑜𝑐𝑘𝐶𝑜𝑠𝑡𝑠 ⟵ 𝑠𝑡𝑜𝑐𝑘𝐶𝑜𝑠𝑡𝑠 ∪ 0
3: end if
4: end for
5: 𝑂𝑏𝑗𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ⟵ 𝛼 ∗ 𝑡𝑐𝑜𝑤 + (1 − 𝛼) ∗

∑

𝑠𝑡𝑜𝑐𝑘𝐶𝑜𝑠𝑡𝑠
16: if 𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 == 0 or 𝑂𝑏𝑗𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 < 𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 then:
17: 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝐼𝑑 ⟵ 𝑤
18: 𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 ⟵ 𝑂𝑏𝑗𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
19: end if
20: end for

calculated, an 𝛼 variable is used to adjust the values of the objective
unction.

.1.3. Alpha tuning:
With the best warehouses for each of the orders in the RCL chunk

ist, a tuning method is used to update the 𝛼 value, adapting it to
the current situation of the instance. This method allows making the
objective function dynamic by adjusting the different costs.

Algorithm 3 Alpha tuning
1: input: Alpha value 𝛼, RCL size 𝑛, Order id 𝑜, Warehouse id 𝑤,

Assignment cost 𝑐𝑜𝑠𝑡𝑤
2: output: Alpha value 𝛼
3: 𝐹𝛼 ⟵ (1 − 𝛼)∕𝑛
4: if 𝑐𝑜𝑠𝑡𝑤 − 𝑡𝑐𝑜𝑤 < 0 then:
5: 𝛼 ⟵ 𝛼 + 𝐹𝛼
6: else:
7: 𝛼 ⟵ 𝛼 − 𝐹𝛼
8: end if

As discussed in previous sections, the transport cost is weighted by
he variable 𝛼, and the stock cost is weighted by 1−𝛼. This smooths out
reedy behavior during the middle and final iterations. The Algorithm
returns the remainder of the current alpha value, taking into account

hat 𝛼 ∈ [0,… , 1]. This value is divided by the number of unassigned
rders in RCL to obtain a factor (line 3) by which to increase or
ecrease the variable 𝛼. The increase or decrease of the variable 𝛼
epends on the stock cost of the last assigned order. For instance, if the
rder was assigned to a warehouse where the stock was less than the
emand, the value of 𝛼 will be increased by the previously calculated
actor; otherwise, it will be decreased. Considering that the assigned
arehouse is the one that has lower costs than the other warehouses,

t can be assumed that the other warehouses have less stock than the
emand. This indicates that, generally, the warehouses reduce their
tocks, and the following costs associated with the allocations tend to
ncrease.

.1.4. Stock update:
After evaluating the costs of all orders in the local search method,

he warehouse 𝑤 is obtained for the order 𝑜 with the lowest objective
unction value. To keep the stock values of the warehouses up to date,
7

the Algorithm 4 is used. This algorithm subtracts, for all items 𝑖, the
demand (𝑑𝑜𝑖) used by the order assigned to the solution. Depending on
the day the stock is consumed (𝑡 == 0 𝑜𝑟 𝑡 > 0), the stock of the
revious days will have to be considered. In the line 6, it can be seen
hat, as it is the first day on which the stock is counted, only the demand
s subtracted from the initial stock (𝛥𝑞𝑤𝑖𝑡) where 𝑡 == 0. Otherwise,
he current stock of the previous day (𝑆𝑤𝑖𝑡−1) has to be considered.
he quantity needed for the current allocation (𝛥𝑞𝑤𝑖𝑡 − 𝑑𝑜𝑖) has to be
ubtracted from it, as can be seen in the line 8. In this way, the stock is
pdated after assigning a warehouse to an order. This algorithm allows
s to consider the current stock in each GRASP iteration to obtain actual
bjective function values.

Algorithm 4 Stock update
1: input: Id of assigned warehouse 𝑤, Id of order 𝑜
2: output: Current amount of stock in the warehouses 𝑆𝑤𝑖𝑡
3: 𝑡 ⟵ 𝑤𝑑𝑜
4: For 𝑖 in 𝐼 :
5: if 𝑡 == 0 then:
6: 𝑆𝑤𝑖𝑡 ⟵ 𝑚𝑖𝑛(𝛥𝑞𝑤𝑖𝑡 − 𝑑𝑜𝑖, 0)
7: else:
8: 𝑆𝑤𝑖𝑡 ⟵ 𝑚𝑖𝑛(𝑆𝑤𝑖𝑡−1 + 𝛥𝑞𝑤𝑖𝑡 − 𝑑𝑜𝑖, 0)
9: end if
0: end for

4.2. Genetic algorithm (GA)

This section describes the Genetic Algorithm (GA) proposed in this
paper, including the crossover, mutation, and selection methods. Then,
a learning system for obtaining the best parameters configuration is
described.

GAs are commonly used to generate solutions according to an
optimization criterion using operators inspired by biology. In a GA, a
population of candidate solutions is evolved toward better solutions.
Each of these solutions is represented as a chromosome, which is
composed of a vector in which each position is an order defined in the
problem, and the value of this position or gene is its assigned warehouse
(see Fig. 4 for an example).

Algorithm 5 shows the main structure of the GA proposed in this
paper. The inputs of this algorithm are the 𝑎𝑙𝑝ℎ𝑎 parameter, the muta-
tion ratio, the crossover ratio, the number of offspring in the crossover,
and the number of survivors in each crossover.

First, the initial population and the fitness value are obtained. Over
time, the different techniques are iterated to allow us to extend the
search tree and obtain an optimized solution.

Algorithm 5 Genetic Algorithm
1: input : Initial population 𝐷𝑆, Alpha value 𝛼, Mutation rate

𝑚, Crossover rate 𝑐, Crossover descendants number 𝑑,
Selection survivors number 𝑠 and Number of iterations in
meta-learning 𝑖𝑡𝑒𝑟𝑠

2: output : Best solution 𝑥
3: while !timeout do:
4: 𝑀𝑃 ⟵ [𝛼, 𝑚, 𝑐, 𝑑, 𝑠]
5: 𝛼, 𝑚, 𝑐, 𝑑, 𝑠 ⟵ meta-learning(𝑖𝑡𝑒𝑟𝑠,𝑀𝑃 ,𝐷𝑆)
6: 𝐷𝑆 ⟵ crossover(𝑐, 𝑑,𝐷𝑆)
7: 𝐷𝑆 ⟵ mutation(𝑚,𝐷𝑆)
8: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ⟵ getFitness(𝛼,𝐷𝑆)
9: 𝐷𝑆 ⟵ selection(𝑠, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠,𝐷𝑆)
0: if 𝑥 < 𝑚𝑖𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠) then:
1: 𝑥 ⟵ 𝐷𝑆(𝑚𝑖𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠))
2: end if
3: end while
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Fig. 4. Codification of a chromosome.
The 50% of the initial population is generated by the GRASP algo-
rithm (line 1). The other 50% of the initial population is generated,
from the previous solutions, by applying a randomization method. This
method obtains a random amount of orders in each solution (between
30% and 50%) and changes the assigned warehouses to a different
warehouse from the list of available ones. This method allows us to
extend the search tree, generating various possibilities in the crossover
function. Then, the GRASP solutions and the modified solutions are
passed to the GA as input.

4.2.1. Meta-learning:
Meta-learning is the study of the metadata of learning algorithms

to improve learning. Metadata is the set of algorithm parameters that
provide information about the problem and its state. For our GA,
the metadata are the crossover rates, mutation rates, and the number
of crossover offspring. The goal is to improve the variability of the
population by expanding the search space and to escape from local
optima.

This method results in tests with different configurations of the
above parameters. This set of tests is obtained using the Generalized
Subset Designs (GSD) method explained in Surowiec et al. (2017). The
GSD method efficiently explores parameter configurations in experi-
mental tests. It involves selecting a subset of variables from a larger
set and creating an orthogonal matrix representing different parameter
combinations. Each configuration is evaluated using GA to assess its
performance. GSD helps to identify significant factors, optimize solu-
tions, and reduce the number of tests required, making it valuable in
various domains, including engineering and artificial intelligence.

Algorithm 6 meta-learning
1: input : Number of iterations 𝑖𝑡𝑒𝑟𝑠, Meta-learning parameters 𝑀𝑃 and

Population 𝐷𝑆
2: output : Best parameters 𝛿
3: 𝑜𝑟𝑡𝑜𝑔𝑜𝑛𝑎𝑙 ⟵ getOrtogonalArray(𝑀𝑃𝑚,𝑀𝑃𝑐 ,𝑀𝑃𝑑)
4: 𝑠𝑜𝑙 ⟵ [ ]
5: For o in ortogonal:
6: 𝑠𝑜𝑙𝑜 ⟵ [ ]
7: For i in 𝑖𝑡𝑒𝑟𝑠:
8: 𝑠𝑜𝑙𝑜 ⟵ 𝑠𝑜𝑙𝑜 ∪ GeneticAlgorithm(𝐷𝑆, 𝑜𝛼 , 𝑜𝑚, 𝑜𝑐 ,𝑀𝑃𝑑 ,𝑀𝑃𝑠)
9: end for

10: 𝑠𝑜𝑙 ⟵ 𝑠𝑜𝑙 ∪ 𝑚𝑖𝑛(𝑠𝑜𝑙𝑜)
11: end for
12: 𝛿 ⟵ getBestParam(𝑠𝑜𝑙, 𝑜𝑟𝑡𝑜𝑔𝑜𝑛𝑎𝑙)

As shown in the Algorithm 6, this function receives the number of
iterations, a set of the algorithm’s parameters to improve and actual
population. It then generates the orthogonal matrix (line 3) from a
hypercube containing all possible combinations of the parameters. The
hypercube is transformed into the original space of the parameters by
assigning the values to a Latin square to obtain the set of tests designed.
The function evaluates each configuration by running several iterations
of the GA (line 8), obtaining the normalized standard deviation of the
8

objective function (Eq. (1)). The normalization is performed between
1 and -1, where 1 is the most significant standard deviation, and
−1 is the smallest. To obtain the best configuration, the normalized
deviations are summed where a given value of a parameter is used
in the configuration. Then, the values of each parameter are ordered,
and the values closest to 0 for each parameter are taken to form the
best configuration of the tests. The sum of the deviations closest to
0 is obtained not to open the search space too much (the maximum
deviation) but to avoid local optima (the minimum deviation).

4.2.2. Crossover:
Once the parameters have been obtained, the next objective is to

cross the different current chromosomes to generate a new offspring
population. To perform this crossover, random chromosome pairs are
taken from the entire phenotype, and in the case of an odd phenotype
size, the last chromosome that does not have a pair is reserved for the
next iteration.

As shown in Fig. 5, each of the chromosome pairs obtained is
fractionated according to the parameter 𝑐. This parameter indicates
the size of the fraction of the first chromosome passed on to its first
offspring (see the dark gray color in the figure). The first offspring’s
genes are made up of the (1 − 𝑐) fraction of the second chromosome.
The second offspring is composed of the fractions of both chromosomes
that were not selected for the first offspring (see the light gray color in
the figure).

4.2.3. Mutation:
To avoid local optima, GA performs a mutation process (see line 7 of

Algorithm 5). This process consists of randomly changing the assigned
warehouses in a set of orders in a solution.

The mutation is performed on both ‘‘parents’’, as the offspring are
newly found solutions, and their fitness value has not been reached
and could deteriorate in the mutation process. The variable m is the
percentage of orders to mutate in parent solutions. This method only
considers orders with one available warehouse (|𝐴𝑊𝑜| > 1), to avoid
losing a possible warehouse reassignment in an order. The value of the
variable m is obtained by the function meta-learning and is between
3% and 5%.

Fig. 6 shows the mutation performed on the first chromosome. In
the upper vector, the current solution is shown with the identifier of
the warehouses and the number of warehouses available for each order.
In the first position, it can be seen that the first order with only one
available warehouse does not enter the mutation-selection. Then, the
orders to be modified are chosen, and a random selection is made
among the available warehouses to modify the solution with the new
ones.

4.2.4. Selection:
Once all the chromosomes have gone through the crossover and

mutation process, the value of the objective function is obtained. This
value ranks the chromosomes and their offspring against each other
to decide which will be selected for the next iteration. The number
of chromosomes selected for the next iteration is obtained from the 𝑠

parameter of the algorithm input.
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Fig. 5. Random selection to compose the 𝑛 offspring.
Fig. 6. Example of mutation of a chromosome.
Fig. 7. Example of selection in a family.

For example, Fig. 5 shows how both chromosomes in the crossover
function produce two offspring. Then the fitness value of each of the
four solutions is obtained and ordered from lowest to highest as shown
in Fig. 7 to obtain the set 𝑠 from the list finally.

5. Evaluation

In this section, an empirical evaluation of the proposed hybrid
system is conducted by analyzing its behavior in terms of efficiency,
solution quality, and scalability. All the experiments were performed
on an Intel 2.20 GHz i7-8 gen CPU with 32Gb of RAM. The evaluation
9

was carried out on a set of instances from a statistical study of actual
data obtained from the industrial partner. The dataset contains a set
of orders placed by customers that need to be fulfilled in the following
week (seven-day time frame), including the vehicles available to deliver
the orders (between one and fourteen vehicles per order), the delivery
cost, and the production price of each item. Randomized instances of
the data sets, as well as the implementation of the mathematical model
in Minizinc, can be found in this repository: https://github.com/GPS-
UPV/SCSP.

The evaluation is divided into two comprehensive assessments. In
the first part of the evaluation, the solutions were compared with
the state-of-the-art complete and incomplete solvers. Specifically, two
constraint programming (CP) solvers and two local search solvers.
Then, the solver that obtained the best results was used as a baseline for
comparing it with the proposed approaches. The purpose of this evalu-
ation was to analyze the scalability and performance of the approaches,
starting from small sizes of instances up to actual large-scale instances
(approximately 2000 orders).

In the second part of the evaluation, the focus was on analyzing the
efficiency of the proposed methods for the actual large-scale instances.
The aim was to analyze how the quality of the solution improves
over the computation time and which metaheuristic was more efficient
based on the instance size and time cut-off. Notably, the CP solver
was not used for this evaluation as it did not scale for these instances’
sizes. The emphasis then shifts to comparing the proposed approaches
with a focus on how the quality of the solutions was affected by the
meta-learning.

5.1. Evaluating the performance and scalability

In this section, the mathematical model of the problem (see Sec-
tion 3) was evaluated with several solvers. The sizes of the instances

https://github.com/GPS-UPV/SCSP
https://github.com/GPS-UPV/SCSP
https://github.com/GPS-UPV/SCSP
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Table 1
Total costs divided by the number of orders per week for some state-of-the-art solvers,
in absolute values.

Size Minizinc IBM ILOG

GECODE 6.3.0 YUCK 2023 OR-TOOLS 9.6 CP Optimizer

10 112,4 112,4 112,4 112,4
20 337,6 18248,0 252,8 126,4
50 7709,2 86878,0 710,0 142,0
100 – 489307,8 1562,7 156,3
200 – – 3166,5 158,4
500 – – 8324,9 173,3
700 – – 14669,0 261,4
1000 – – 22893,4 285,9
1500 – – 44259,1 481,0
2000 – – 81806,8 2185,4

indicated the number of orders per week and they ranged from 10 to
2000. The tables show the average results of the total costs divided by
the number of orders (per week). It was fixed as cut-off computation
time (in seconds) as the size of the instances (a.k.a. number of orders
per week).

Table 1 evaluates the following state-of-the-art solvers: GECODE
6.3.0, YUCK 2023, OR-TOOLS 9.6 (all three implemented in Minizinc),
and the IBM ILOG CP optimizer. It is worth noticing that YUCK is
the best local search solver in the Minizinc competitions since 2020
and OR-TOOLS is the best overall solver since 2019. The results of
the evaluation show that CP Optimizer significantly outperformed the
other solvers. Note that Gecode and Yuck were unable to find a solution
in the given time from sizes of 100 and 200, respectively. The bigger
the instances, the more outstanding the improvement of the costs of
the solutions of CP Optimizer over the other solvers. For this reason,
CP Optimizer was selected as the baseline solver for comparing the
approaches presented in this paper.

Tables 2 and 3 show the results of the performance and scalability
of the following algorithms: CP Optimizer, as the baseline solver, and
GRASP, GA, and its hybridization (denoted as HYBRID), where the first
sub-column of our solvers represents the original method (e.g. GRASP)
and the second sub-column represents the original method with meta-
learning, denoted as +T (e.g. GRASP + T). Table 2 shows total costs
divided by the number of orders per week, so it represents the average
cost of each order. It can be observed that CP Optimizer had better
behavior for small instances. However, for bigger instances, the hybrid
approaches outperformed all solvers. It must be taken into account that
the company is working with instances of 1000 and 2000 orders, so CP
optimizer, and therefore the solvers evaluated in Table 1, were unable
to obtain a competitive solution in the given time. The percentage of
improvement of the proposed algorithm over the baseline CP OPTI-
MIZER is shown in Table 3. it is calculated as %𝛥 = (CP Optimizer −
Solver)∕ CP Optimizer)*100. It can be observed that the improvement
for large-scale instances is significant, with a saving of 92% for 2000
orders.

From the analysis of the results, it can be noticed that GRASP
had good results even with smaller size/timeouts, while GA was not
so competitive. However, for large instances, both techniques were
competitive concerning CP Optimizer. Nevertheless, the hybridization
of the two approaches in our HYBRID approach provided superior
performance in both small and large instances, outperforming both
GRASP and GA.

The hybridization of GRASP and GA results in a competitive tech-
nique that takes advantage of the best features of both approaches.
GRASP tends to restrict the initial search space due to its greedy ten-
dency, favoring the discovery of solutions more likely to provide good
performance. On the other hand, the GA opens up the possibility of
escaping from local optima through the mutation operation, exploring
different regions of the solution space. The hybridization of GRASP and
GA leverages the strengths of both techniques, leading to an improved
10

2

search for optimal solutions. In addition, the meta-learning enhances
the results, which translate into significant economic benefits for the
company, saving thousands of euros per week. The hybrid approach
contributes to the discovery of more cost-effective solutions, making it
a valuable tool for the company’s operations and profitability.

5.2. Evaluating the efficiency and solution quality

To analyze the efficiency and solution quality of the proposed
methods, we focused on their performance over time in the three largest
instance sizes. The results are shown in absolute and relative terms
in Tables 4 and 5, respectively, where relative means how far the
solution quality of the method is from the best-performing method for
that instance size and timeout (e.g. in 𝑆𝑖𝑧𝑒 = 1000 and 𝑇 𝑖𝑚𝑒𝑜𝑢𝑡 = 10

RASP+T was the best method and GA+T was the worst with a 60.07%
eterioration in performance).

Analyzing the absolute values from Table 4, it can be observed that
he HYBRID approach produced the best results in almost all the eval-
ated cases. It confirms the hypothesis from the previous evaluation
hat the combination of both GRASP and GA methods would allow the
ybrid system to perform similarly or better than the original method,
hich had the best performance in the analyzed instances. It can be
bserved that the hybrid system produces solutions of good quality in
oth small instances with low timeouts (i.e. maximum deterioration of
6.17% max against GRASP) and the best solution in any size with large
imeouts.

An interesting follow-up to our previous evaluation is a deeper
omparison between GRASP and GA. As observed before, and now
onfirmed with the Table 4, the size of the problem strongly influences
he prediction of which method will perform better; in fact, for the
maller size of 1,000 orders, GRASP had better behavior in all timeouts,
hile for the largest instance of 2,000 orders, GA performed better than
RASP in all timeouts. This provides further confirmation of our insight

nto the exploration versus exploitation trade-off in Section 5.1. An
nteresting case study was the analysis of the instance of size 1500. In
his case, GA outperformed GRASP until the 200 s timeout, after which
RASP outperformed GA. In fact, if the results without meta-learning
re observed, the GA showed a better performance in this problem size,
ut the meta-learning tuning gave a better performance boost to the
RASP (around 10%) than to the GA (around 1%–2%).

In order to better analyze the effect of meta-learning on the pro-
osed method, Table 6 shows the percentage distance from the method
ithout meta-learning. Negative percentages are interpreted as meta-

earning improving the minimization function and therefore generating
better solution. On the other hand, positive percentages mean that

he meta-learning has increased the value of the minimization function
nd therefore worsened the solution. It can be observed that the meta-
earning tuning always improved the solution quality for the highest
imeouts of each size. However, for the GA-based methods (GA and
YBRID) the improvement was usually around 1% or less, while for
RASP the improvement was in double digits for the largest and
edium sizes: 10.09% and 41.68% respectively. One hypothesis for this

ehavior is that the more time is allocated to the method, the more
pportunities the meta-learning tuning has to explore the search space
nd thus escape from a local optimum.

Another interesting result is the fact that the method that received
larger performance boost from the meta-learning tuning was GRASP

double digits in the largest two sizes). Our insight is that the meta-
earning tuning helps the GRASP to escape the early decision, which
ignificantly restricts the search space. It should be noted that in size
f 1000 orders, the meta-learning did not significantly improve the
RASP, however, it should be noted that the GRASP already produced
very good solution from the first timeout of 10 s and then improved

he solution by less than 10% in the remaining 990 s, while in the same
eriod, the HYBRID produced a solution that improved by more than

5%, reaching a better solution quality than the GRASP.
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Table 2
Total costs divided by the number of orders per week of the hybrid approach, in absolute values.
Size IBM ILOG GRASP GA HYBRID

CP Optimizer GRASP GRASP+T GA GA+T HYBRID HYBRID+T

10 112,4 112,4 112,4 308,6 308,2 121,8 116,2
20 126,4 126,4 126,4 309,8 309,3 126,4 126,4
50 142,0 144,7 144,7 309,6 308,6 142,0 142,0
100 156,3 157,7 157,7 308,4 308,3 156,3 156,3
200 158,4 167,1 167,1 305,8 305,5 155,7 155,7
500 173,3 175,7 175,7 261,3 256,5 161,1 160,9
700 261,4 187,8 187,6 240,7 236,1 172,7 170,3
1000 285,9 188,8 188,5 218,4 215,4 174,3 174,2
1500 481,0 228,7 205,6 213,6 212,1 174,2 173,9
2000 2185,4 936,3 546,0 214,0 212,6 171,7 171,2
Table 3
Percentaje of improvement with respect CP Optimizer (calculated as %𝛥 = (CP Optimizer − Solver)∕CP Optimizer)*100.
Size IBM ILOG GRASP GA HYBRID

CP Optimizer GRASP GRASP+T GA GA+T HYBRID HYBRID+T

10 112,4 0,0% 0,0% −174,5% −174,1% −8,3% −3,3%
20 126,4 0,0% 0,0% −145,1% −144,7% 0,0% 0,0%
50 142,0 −1,9% −1,9% −118,0% −117,3% 0,0% 0,0%
100 156,3 −0,9% −0,9% −97,3% −97,2% 0,0% 0,0%
200 158,4 −5,5% −5,5% −93,1% −93,0% 1,7% 1,7%
500 173,3 −1,4% −1,4% −50,8% −48,0% 7,1% 7,2%
700 261,4 28,2% 28,3% 7,9% 9,7% 33,9% 34,9%
1000 285,9 34,0% 34,1% 23,6% 24,7% 39,0% 39,1%
1500 481,0 52,5% 57,2% 55,6% 55,9% 63,8% 63,8%
2000 2185,4 57,2% 75,0% 90,2% 90,3% 92,1% 92,2%
Table 4
Efficiency and solution quality analysis in largest size instances with different timeouts.
Size Timeout GRASP GA HYBRID

GRASP GRASP +T GA GA +T HYBRID HYBRID +T

1.000

10 193.25 193.08 308.93 309.06 292.89 224.31
50 193.17 193.08 308.11 308.38 215.30 217.63
100 193.14 192.98 307.24 307.58 211.95 212.60
200 188.76 188.54 304.24 304.66 212.62 213.17
500 188.76 188.54 258.44 260.43 191.61 188.67
700 188.76 188.54 236.01 236.30 178.86 178.62
1000 188.76 188.54 218.36 215.41 174.29 174.17

1.500

10 513.28 513.31 309.72 308.57 213.35 195.48
50 423.79 449.82 309.83 306.80 213.35 196.40
100 422.46 430.18 309.92 306.36 195.41 196.15
200 408.09 411.39 305.62 303.72 194.48 189.53
500 228.70 205.63 260.21 254.21 193.77 179.88
700 228.70 205.63 237.52 230.53 188.95 173.92
1000 228.70 205.63 219.06 214.95 179.02 173.89
1500 228.70 205.63 213.97 212.13 174.20 173.89

2.000

10 955.91 955.80 309.67 308.90 263.13 262.97
50 955.91 955.80 309.01 307.74 235.28 231.99
100 955.91 955.80 308.64 307.29 193.11 192.71
200 936.25 944.71 304.77 301.97 189.45 188.85
500 936.25 546.02 255.88 255.25 190.36 189.06
700 936.25 546.02 233.37 232.80 188.08 187.42
1000 936.25 546.02 217.55 216.34 180.62 180.47
1500 936.25 546.02 213.97 212.56 173.11 172.56
2000 936.25 546.02 213.97 212.56 171.70 171.22
In conclusion, meta-learning tuning can be considered a very valu-
ble tool to improve the performance of every single method, especially
hen tackling real-size instances. Moreover, the current results pro-
ided an interesting reflection to pursue further experiments and anal-
ses on how to improve the meta-learning tuning in order to increase
he performance boost for GA-based methods (GA and HYBRID).

. Conclusions

This paper deals with an industrial application of a logistic problem
hat has been formulated as a multi-vehicle, multi-product, and single-
chelon in which the warehouses serve two different purposes: storing
11
the stock and manufacturing the required stock to market. To solve
this problem, a formal mathematical model has been proposed, and an
algorithm that hybridizes the GRASP and GA metaheuristics has been
developed, for obtaining near-optimal solutions that minimize the costs
of assigning the orders to the warehouses, i.e. minimizing the total
transportation costs and the costs of producing extra stock. In addition,
a meta-learning tuning method has been developed and embedded into
the hybrid system to improve its performance.

To evaluate the proposed approach, the formal mathematical formu-
lation has been implemented using commercial software (IBM ILOG and
MINIZINC) and it has been compared with the state-of-the-art complete
and incomplete solvers and benchmarked against the real case data
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Table 5
Relative distance from the best performing method calculated as %𝛥 = (𝐴𝑙𝑔 − 𝐴𝑙𝑔−)∕𝐴𝑙𝑔−.
Size Timeout GRASP GA HYBRID

GRASP GRASP + T GA GA + T HYBRID HYBRID + T

1.000

10 0.09% 0.00% 60.00% 60.07% 51.69% 16.17%
50 0.05% 0.00% 59.58% 59.72% 11.51% 12.71%
100 0.08% 0.00% 59.21% 59.39% 9.83% 10.17%
200 0.12% 0.00% 61.36% 61.59% 12.77% 13.06%
500 0.12% 0.00% 37.07% 38.13% 1.63% 0.07%
700 5.68% 5.55% 32.13% 32.29% 0.14% 0.00%
1000 8.38% 8.25% 25.37% 23.68% 0.07% 0.00%

1.500

10 162.58% 162.59% 58.44% 57.86% 9.14% 0.00%
50 115.78% 129.04% 57.76% 56.21% 8.63% 0.00%
100 116.20% 120.15% 58.60% 56.78% 0.00% 0.38%
200 115.31% 117.06% 61.25% 60.25% 2.61% 0.00%
500 27.14% 14.31% 44.66% 41.32% 7.72% 0.00%
700 31.50% 18.23% 36.57% 32.55% 8.64% 0.00%
1000 31.52% 18.26% 25.98% 23.62% 2.95% 0.00%
1500 31.52% 18.26% 23.05% 22.00% 0.18% 0.00%

2.000

10 263.50% 263.46% 17.76% 17.47% 0.06% 0.00%
50 312.05% 312.00% 33.20% 32.65% 1.42% 0.00%
100 396.04% 395.98% 60.16% 59.46% 0.21% 0.00%
200 395.76% 400.24% 61.38% 59.90% 0.32% 0.00%
500 395.22% 188.81% 35.35% 35.01% 0.69% 0.00%
700 399.55% 191.34% 24.52% 24.21% 0.36% 0.00%
1000 418.77% 202.55% 20.54% 19.87% 0.08% 0.00%
1500 442.55% 216.42% 23.99% 23.18% 0.32% 0.00%
2000 446.82% 218.91% 24.97% 24.15% 0.28% 0.00%
Table 6
Meta-learning relative improvement calculated as 𝛥𝑀𝐿 = (𝐴𝑔+𝑇 − 𝐴𝑔−𝑇 )∕𝐴𝑔−𝑇 .

Size Timeout GRASP GA HYBRID
𝛥ML 𝛥ML 𝛥ML

1.000

10 −0.09% 0.04% −23.42%
50 −0.05% 0.09% 1.08%
100 −0.08% 0.11% 0.31%
200 −0.12% 0.14% 0.26%
500 −0.12% 0.77% −1.54%
700 −0.12% 0.12% −0.14%
1000 −0.12% −1.35% −0.07%

1.500

10 0.01% −0.37% −8.38%
50 6.14% −0.98% −7.95%
100 1.83% −1.15% 0.38%
200 0.81% −0.62% −2.54%
500 −10.09% −2.31% −7.17%
700 −10.09% −2.94% −7.96%
1000 −10.09% −1.88% −2.87%
1500 −10.09% −0.86% −0.18%

2.000

10 −0.01% −0.25% −0.06%
50 −0.01% −0.41% −1.40%
100 −0.01% −0.44% −0.21%
200 0.90% −0.92% −0.32%
500 −41.68% −0.25% −0.68%
700 −41.68% −0.24% −0.35%
1000 −41.68% −0.56% −0.08%
1500 −41.68% −0.66% −0.32%
2000 −41.68% −0.66% −0.28%

sets from the industrial partner, with extensive study of large-scale
instances.

The evaluation section shows that the solutions obtained from the
hybrid system with meta-learning significantly improve the results
obtained by the baseline solver (CP Optimizer), with an improvement
in the total cost up to 92.2% for realistic large-scale instances of size
2000 (number of orders per week) and near-optimal solutions for small
size instances.

This paper also evaluates the performance of meta-learning in the
hybrid algorithm. The tuning method provided significant performance
improvements over the single metaheuristics (up to −41.68% improve-
ments) for large-size instances). Thus, the evaluation shows that the
proposed approach significantly outperforms state-of-the-art solvers for
12
large-scale instances, that are close, in size, to instances provided by our
industrial partner. These results confirm the scalability and efficiency
of the hybrid metaheuristic with meta-learning tuning as a very com-
petitive approach to solving real-case instances for the Inventory Route
Problem.
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