
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Development and testing of an embedded control system
for the levitation of a Hyperloop vehicle using

Reinforcement Learning.

End of Degree Project

Bachelor's Degree in Data Science

AUTHOR: Albert Bonet, Hugo

Tutor: Onaindia de la Rivaherrera, Eva

Cotutor: Aso Mollar, Ángel

Experimental director: GARCIA BOHIGUES, MIGUEL

ACADEMIC YEAR: 2023/2024





Acknowledgements

First, I would like to thank Dr. Eva Onaindía, Ángel Aso, and Miguel García for their
help during the process and for introducing me to the world of investigation. Without
their knowledge, kindness, and interest in innovation, this project would not have been
possible.

Thanks also to the whole team of Hyperloop UPV for their efforts to bring Vèsper to
reality, for supporting me as a second family, and for an unforgettable year. Especially,
thanks to Álvaro Pérez and Stefan Costea for being the best company during this trip.

Apart from the technical aspects of the project, I would like to thank Aitana Palacios
for her unconditional support not only during this project but the whole degree. I cannot
and do not want to imagine where I would be if it were not for you.

Lastly, thanks to my family for believing in me, for understanding the relevance of
the project, and for taking care of me after long working days. I love all of you.

iii



iv

Resum
Hyperloop és el ja anomenat ’transport del futur’, un nou mitjà de transport que uti-

litza la combinació de levitació i buit per evitar la fricció durant tot el trajecte. Aquest
aspecte el fa més ràpid, sostenible i eficient. Hyperloop UPV proposa un sistema de le-
vitació basat en la unió d’imants permanents i electroimants que minimitza el consum
energètic si es compta amb un control precís. El present Treball de Fi de Grau desenvolu-
pa un sistema de control de la levitació del vehicle hyperloop que l’equip de Hyperloop
UPV presentarà a la competició de l’European Hyperloop Week, mitjançant aprenentatge
per reforç. Per a aconseguir-ho, es programa un simulador de la dinàmica del moviment
del vehicle i l’entorn d’entrenament de l’agent. Posteriorment, s’entrena l’agent per a
aquesta tasca i s’analitza la qualitat de les seues accions i el seu rendiment en un sistema
empotrat que utilitza un microcontrolador STM32H723ZGT6.

Paraules clau: Intel·ligència Artificial, Aprenentatge per Reforç, Sistema de Control, Le-
vitació, Hyperloop, Xarxes Neuronals, Sistemes Empotrats

Resumen
Hyperloop es el denominado “transporte del futuro”, un nuevo medio de transporte

que emplea la combinación de levitación y vacío para evitar el rozamiento en su trayecto,
lo que lo convierte en un medio más rápido, sostenible y eficiente. Hyperloop UPV pro-
pone un sistema de levitación basado en la unión de imanes permanentes y electroimanes
que minimiza el consumo de corriente si se cuenta con un sistema de control preciso. El
presente Trabajo de Fin de Grado desarrolla un sistema de control de la levitación del
prototipo de hyperloop que el equipo de Hyperloop UPV presentará a la competición de
la European Hyperloop Week, mediante aprendizaje por refuerzo. Para ello, se programa
un simulador de la dinámica de movimiento del vehículo y el entorno de entrenamien-
to del agente. Posteriormente, se entrena al agente para esta tarea y se analizan tanto la
calidad de sus acciones como su rendimiento en un sistema empotrado que utiliza un
microcontrolador STM32H723ZGT6.

Palabras clave: Inteligencia Artificial, Aprendizaje por Refuerzo, Sistema de Control, Le-
vitación, Hyperloop, Redes Neuronales, Sistemas empotrados

Abstract
Hyperloop is called the "transport of the future", a new means of transportation that

uses a combination of levitation and vacuum to avoid friction along its path, making it a
faster, more sustainable, and efficient mode of transport. Hyperloop UPV proposes a lev-
itation system based on the combination of permanent magnets and electromagnets that
minimizes current consumption if it is managed with a precise control system. This pa-
per develops a levitation control system for the Hyperloop prototype that the Hyperloop
UPV team will present at the European Hyperloop Week competition, using reinforce-
ment learning. For this purpose, a simulator of the vehicle’s motion dynamics and the
agent’s training environment are programmed. Subsequently, the agent is trained for this
task, and both the quality of its actions and its performance in an embedded system using
an STM32H723ZGT6 microcontroller are analyzed.

Key words: Artificial Intelligence, Reinforcement Learning, Control System, Levitation,
Hyperloop, Neural Networks, Embedded Systems
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CHAPTER 1

Introduction

This chapter serves as an introduction to the work described in the subsequent chapters.
Firstly, the motivation of the project is described in Section 1.1. Section 1.2 lists the ob-
jectives of the project. Then, Section 1.3 briefly introduces the structure of the documents
and the topics related to each of its parts. Finally, Section 1.4 links the content of the
project with the generic student outcomes highly valued in the university.

1.1 Motivation

This project is rooted in the work developed as part of the Hyperloop UPV team and
more specifically, as its Team Captain. Hyperloop UPV is a team of 49 students from
different degrees of Universitat Politècnica de València (UPV) with the aim of developing
the technology of the transport of the future, hyperloop.

Hyperloop consists of a mode of transportation that combines magnetic levitation
with vacuum infrastructures to eliminate friction, thus reaching incredibly high speeds
with a small amount of energy spent.

The work developed at Hyperloop UPV brings two main aspects to the table. On the
one hand, creating the transport of the future provides each member with the possibility
to transform the world. Hyperloop UPV brings the opportunity to work on a faster and
more sustainable means of transport and to approach it to all kinds of audiences. On the
other hand, Hyperloop UPV as part of the initiative of Generación Espontánea provides
its members with an environment where they can develop soft and hard skills while
working on a real-world problem, living the experience of a real engineering and mul-
tidisciplinary project. The aspect that differentiates Hyperloop UPV from other groups
under the same initiative, is the development of something that is not invented yet. This
aspect obliges and offers the opportunity to think outside of the box and create new solu-
tions to unsolved problems with state-of-the-art technologies, such as linear synchronous
motors, supercapacitors, vacuum infrastructures, and, in the context of this Final Degree
Project, levitation.

Besides, a substantial part of this work has been carried out under a collaboration fel-
lowship funded by the Valencian Research Artificial Intelligence Institute (VRAIN). Dur-
ing the 8-month grant, I had the opportunity to work jointly with a group of researchers
who actively investigate Reinforcement Learning (RL), a learning technology that was
deemed suitable to address the levitation of a hyperloop vehicle.

Reinforcement Learning is an Artificial Intelligence (AI) technique not taught in the
bachelor degrees of the UPV and just shallowly explained in some master degrees. There-
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2 Introduction

fore, the possibility of working with a group of experimented investigators on this topic
highly enriched my knowledge and this project.

Considering my three years of experience inside the team of Hyperloop UPV, having
started as a member the first year levitation was implemented, I have been able to per-
ceive the importance of levitation control in terms of efficiency and performance and to
detect issues in the current implementation. Once delved into RL techniques, it was clear
that they could be a suitable solution for said issues. Therefore, the project aims to de-
velop a neural network model trained with RL to control the levitation of the new vehicle
of Hyperloop UPV and to evaluate this approach as a solution in terms of performance
and computational complexity, as the model is run inside an embedded system.

1.1.1. Generación Espontánea

Generación Espontánea (GE) is the paradigm in which Hyperloop UPV exists. GE is an
initiative from the UPV where students from different degrees can form groups with so-
cial, artistic, or engineering objectives. In this paradigm of projects, the UPV provides
economic and material resources, technical advice, and a space to work. However, the
biggest teams like Hyperloop UPV have become almost completely independent, mini-
mizing the required technical advice and counting on more than 90 sponsors.

1.2 Objectives

The main objectives intended to be fulfilled in the project are:

• Investigate the dynamic and physical functioning of the vehicle and create a simu-
lator of its behavior.

• Train a model able to control the vertical levitation of one coil.

• Train a model able to control the levitation of two coils.

• Train a model able to control the levitation of the complete system, with 10 coils.

• Optimize the model in terms of computational complexity.

• Evaluate the performance of the model in its dedicated embedded system.

1.3 Organization of the document

The following section provides a brief explanation of the content of the different parts of
the document.

1. Introduction

This initial chapter includes the motivation of the project, the different objectives to be
accomplished, and the impact of the environment of this thesis on the generic student
outcomes or soft skills.



1.3 Organization of the document 3

2. Related Work

• Hyperloop: Provides sufficient context about the concept of hyperloop to under-
stand the document. The concept is explained in detail, also informing about the
origin of the idea, which emerged earlier than is commonly thought, and the cur-
rent state of the technology.

• Hyperloop UPV: Defines what Hyperloop UPV is, details the trajectory of the team,
and illustrates how it is organized internally. An explanation of how the interna-
tional competition is developed and its relevance to hyperloop technology is also
included.

• Vèsper: Details the functioning of the new vehicle of Hyperloop UPV, focusing on
the systems of major relevance for this project.

3. Control System with Reinforcement Learning

This section provides a technical context of the project, explaining what Reinforcement
Learning (RL) is, why it should be applied to the Control System of Vèsper, and which
requirements are imposed on the Control System by external factors. It also explains the
methodology to be followed and the different concepts regarding the design and training
of the RL system.

4. One degree of freedom

The first step for the design of the Control System is to control a system with just one De-
gree Of Freedom (DOF), consisting of a single levitation unit able to get closer or farther
from the steel plate. This 1 DOF control can be tested on a custom test bench to ensure
the functioning of all systems involved in the levitation of Vèsper.

5. Two degrees of freedom

The 2 DOF control is developed as an intermediate point between the 1 DOF control and
the 5 DOF control. This algorithm is not tested in real-life applications but serves as a
testing point to ensure that the dynamic model of the vehicle is being correctly scaled.

6. Five degrees of freedom

The 5 DOF control is the model that will be running during the competition to allow
Vèsper to levitate. It is the final stage of the development of the system and the most
complex one.

7. Conclusions

This chapter states the conclusions of the project and its functioning, the degree of achieve-
ment of the objectives, and the linkage with the contents of the Data Science Degree.

8. Future Work

The last chapter of the document proposes further improvements to achieve better re-
sults, and the next steps to continue with the project.



4 Introduction

1.4 Generic student outcomes

Apart from technical knowledge, the UPV highlights the relevance of generic student
outcomes or soft skills in the professional development of every student. In the context
of Hyperloop UPV, both technical skills and generic student outcomes are key aspects
of daily activities. This section explains the linkage of each of the differentiated generic
student outcomes with the current project.

• Social and environmental commitment: The concept of hyperloop itself has im-
portant social and environmental benefits. Hyperloop is created to interconnect
cities and cultures, but mainly to enhance sustainability by eliminating friction. In
this aspect, levitation control has a crucial role in bringing efficiency to the system.

• Innovation and creativity: Levitation is an innovative solution for sustainable and
fast mobility. Moreover, applying Reinforcement Learning to levitation control has
never been done before.

• Teamwork and leadership: This project has been developed in the context of two
groups working together, where I have been the link between them. On the one
hand, the group of investigators of VRAIN provided the necessary technical advice
about RL. On the other hand, the team of Hyperloop UPV where I am the leader
and where teamwork is a must. This project accepts the requirements of other de-
partments of the team to create a common system that is more powerful than the
sum of its parts.

• Effective communication: The proper fact of writing a memoir of the project and
presenting it on a tribunal enhances this generic student outcome. Moreover, the
exchange of information between VRAIN and Hyperloop UPV has been a key as-
pect of the success of the project.

• Responsability and decision-making: The methodology followed, the changes to
make at each stage of the process, and the experiments developed along the project
reflect this aspect. Moreover, the use of a new technique that is not taught in the
bachelor’s degree in Data Science enhances this outcome.



CHAPTER 2

Related Work

The following chapter provides context about the environment of the project, offering in-
sights into hyperloop and related technologies. Additionally, it shares information about
the Hyperloop UPV team, their duties, and their new vehicle to ensure a comprehensive
understanding of the context of the project.

2.1 Hyperloop

In this section, hyperloop technology will be explained to provide sufficient understand-
ing to comprehend the thesis. We will delve into the concept of hyperloop and the aspects
that make it different from other means of transport, the origins of this technology, and
the current state of hyperloop both nationally and globally.

2.1.1. Concept

Hyperloop, also referred to as the transport of the future or the fifth means of transport,
consists of a series of capsules, similar to the train, which achieve great speeds by spend-
ing small amounts of energy. Based on levitation and vacuum as its core technology,
hyperloop technology aims to achieve both passenger and cargo interurban transporta-
tion in a faster and more sustainable way.

Regarding levitation, hyperloop relies on electromagnetic forces to avoid friction with
the surface, while near-vacuum environments significantly reduce losses related to air
friction. The combination of those technologies not only allows hyperloop to achieve
speeds of around 1000 km/h but also make it with high efficiency. The efficiency pro-
vided by the lack of friction together with the use of electric sources of energy make
hyperloop a significantly sustainable mode of transportation.

Currently, the main competitors of hyperloop are high-speed trains and planes. On
the one hand, high-speed trains are significantly slower, as shown in Figure 2.1a. The
Spanish AVE travels from Valencia to Madrid at a maximum speed of 231 km/h [1] and
the German ICE 3 travels at a maximum speed of 300 km/h [2]. On the other hand, al-
though planes achieve similar speeds to hyperloop, they produce high amounts of green-
house gasses and their energy consumption per seat is not comparable, as depicted in
Figure 2.1b. Moreover, airlines count on external factors that produce time losses apart
from the journey itself.

5



6 Related Work

(a) Travel time comparison

(b) Energy consumption comparison

Figure 2.1: Comparison in terms of speed and energy consumption among the train, the plane,
and hyperloop

Source: Evacuated-Tube, High-Speed, Autonomous Maglev (Hyperloop) Transport System for
Long-Distance Travel: An overview [4]

Transrapid Maglev is a closer alternative. It consists of a high-speed train that incor-
porates levitation. No hyperloop standards exist in terms of levitation technology, which
makes it difficult to compare the efficiency between Maglev and hyperloop regarding
said aspect. However, Maglev technology does not eliminate friction with the air, which
limits its velocity to a maximum of 431 km/h [3].

2.1.2. Origin

Despite the futuristic look of this technology, the concept of hyperloop was born more
than 200 years ago. The English mechanical engineer George Medhurst described in
1799 a mode of transportation involving tunnels at different pressure levels, which were
constructed during the 19th century and known as “atmospheric railways” [4].

Later, in 1904, Robert Goddard came up with the idea of magnetic levitation in his
publication “The Limit of Rapid Transit”. Both magnetic levitation and vacuum tunnels
were developed in parallel, the first one resulting in maglev trains once combined with
the linear induction motor and the second one in inventions like the Large Hadron Col-
lider. It was not until the 1970s that levitation and vacuum were combined in a single
concept with the proposal of Swissmetro [6]. Swissmetro was conceived as a subway
that was able to levitate inside a 5-meter wide tunnel with an environmental pressure of
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100 mbar. Although it would have achieved a theoretical speed of 500 km/h, it was never
implemented.

2.1.3. Current state

In the current century, the development of more advanced railways and the increasing
impact of mobility on the environment emphasized the need for innovation in the field
of transportation. For that purpose, Elon Musk published in 2013 a whitepaper called
“Hyperloop Alpha”, with a proposal of a hyperloop concept including air bearings for
levitation and linear motors for traction. Nevertheless, instead of patenting this concept,
he left it open source, which resulted in the creation of companies such as Hyperloop
Transportation Technologies or Virgin Hyperloop –later called Hyperloop One–.

Although Elon Musk did not further develop this concept, his company SpaceX cre-
ated the Hyperloop Pod Competition, a student competition for universities around the
world to motivate the development of innovative ideas. The Hyperloop Pod Competition
led to the creation of successful groups of students such as the one from the Technical Uni-
versity of Munchen, which years later accomplished a passenger test as a research group,
or Hyperloop UPV, from Universitat Politècnica de València, which created a spin-off
called Zeleros.

In 2021, after a reflection period caused by the pandemic of 2020, Hyperloop UPV,
together with Swissloop from ETH Zurich, Delft Hyperloop from TU Delft, and Hyped
from the University of Edinburgh, created the European Hyperloop Week (EHW). The
EHW revolutionized the idea of competition, introducing the participation of compa-
nies from the field of hyperloop and other technological fields, and the divulgation to
the general public. At the moment, the EHW has become the most relevant hyperloop
competition around the globe.

2.2 Hyperloop UPV

Hyperloop UPV is a multidisciplinary team linked to the program Generación Espontánea
from Universitat Politècnica de València (UPV) whose purpose is to develop innovative
hyperloop technology. More than 40 students form the team and each year they develop
completely functional vehicles to validate new technologies, demonstrate their applica-
bility to the concept of hyperloop, and divulge this technology to the general public.

Its team members embody student representation from all faculties of the UPV, demon-
strating the wide range of fields committed to innovation and depicting the inherent mul-
tidisciplinarity of hyperloop as a revolution in the world of mobility. Apart from students
from different engineering –Mechanical Engineering, Electrical Engineering, Computer
Science. . . –, business, and artistic degrees, the team counts on two Faculty Advisors;
Tomás Baviera, PhD in Journalism, and Vicente Dolz, PhD in Mechanical Engineering.
This combination allows a close experience to entrepreneurship and real-world problem
solving, giving the opportunity to not only improve on hard skills but also generic stu-
dent outcomes.

2.2.1. History

As mentioned in the previous section, Hyperloop UPV was born thanks to the competi-
tion organized by SpaceX. In 2015, five students from the UPV teamed up to participate in
the SpaceX Design Weekend –a subcompetition inside the Hyperloop Pod Competition–
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that took place in Texas in January 2016. This generation of students is internally re-
ferred to as H1, the first generation of the team, and they received the awards for the Best
Concept Design and the Best Propulsion System.

Figure 2.2: The design of Hyperloop UPV for the SpaceX Design Weekend

Source: Hyperloop UPV (2016)

After such successful participation, Hyperloop UPV was officially created. The team
continued to grow and participate in the Hyperloop Pod Competition in the following
years, settling as one of the top 8 best teams in the world. In the next two years they
created Atlantic II and Valentia, shown in Figure 2.3.

(a) Atlantic II (b) Valentia

Figure 2.3: Atlantic II and Valentia

Source: Hyperloop UPV (2017 & 2018)

In the last year of the Hyperloop Pod Competition, Hyperloop UPV developed a
significantly improved vehicle, Turian. Turian was the most compact one, containing
more than 400 sensors and achieving a maximum speed of 470 km/h. The prototype also
incorporated a highly aerodydnamic carbon fiber fairing. All the aforementioned aspects
made Turian win the Innovation Award in the competition of 2019, becoming the 8th-best
prototype out of more than 700 competitors.



2.2 Hyperloop UPV 9

Figure 2.4: Turian

Source: Hyperloop UPV (2019)

During the season of 2019/2020, the pandemic impeded the development of a new
prototype. Instead, and without certainty about the future of the competition, Hyperloop
UPV decided to improve Turian as much as the safety measures allowed.

This year served as a reflection period. The team deeply thought about their goals as
hyperloop developers and about the final objective of the Hyperloop Pod Competition.

The sixth generation of Hyperloop UPV aimed to reorient the student paradigm around
hyperloop. This generation brought to life the European Hyperloop Week with Delft Hy-
perloop, Hyped, and Swissloop. The EHW awarded scalability and real-world imple-
mentation above speed or compactness without an application to real hyperloops.

In the next two years, Hyperloop UPV developed highly scalable prototypes, culmi-
nating with Kénos and Atlas. Kénos, the vehicle, was able to levitate without friction.
Atlas was the name of the tube, which for the first time in the competition provided
a vacuum environment. Including electronics and sensors, the infrastructure achieved
sufficient relevance to be named, as the vehicle.

Figure 2.5: Kénos & Atlas

Source: Hyperloop UPV (2023)

2.2.2. Organization of the team

The team of Hyperloop UPV develops all the different fields involving hyperloop tech-
nology. To achieve that, the members are divided into working groups called subsystems.
Each subsystem is led by a Project Manager, who is focused on the mid-term objectives of
the project. All Project Managers are supervised and guided by three Technical Directors
in charge of the long-term picture. Of the three Technical Directors, one is selected as the
Team Captain, who is the main reference and the representative of the team.
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The subsystems of the team are explained hereunder:

• Electromagnetics involves the design of all electromagnetic systems, including the
levitation units, the transformers of the chargers, and the motors. Electromagnetics
also develops the control system of each of them.

• Structures & Mechanisms develops all the mechanical systems of the vehicle and
infrastructures, including the chassis, the brakes, and the test benches.

• Hardware designs and validates the electronic boards of the vehicle and infrastruc-
ture.

• Firmware programs all the electronic boards designed by Hardware to make them
able to function properly and communicate with the control station.

• Software designs and programs the control station of the vehicle, allowing the team
to send orders and receive data.

• Partners is in charge of searching for sponsors for the team, bringing the necessary
resources for the project to be successful.

• Outreach works on the external image of the team, which includes graphic design,
social media, and the corporate image of Hyperloop UPV.

• Economics manages the economic resources provided by the UPV and brought by
Partners to achieve an optimized cost distribution.

2.2.3. European Hyperloop Week

As was mentioned before, Hyperloop UPV was consolidated with its participation in the
Hyperloop Pod Competition hosted by SpaceX in Los Angeles. For 4 years, the team took
part in this competition alongside other university teams from Europe and the United
States.

However, at the end of 2019, Hyperloop UPV chose to embark on a huge challenge
with 3 of the best European universities (University of Edinburgh, Delft University of
Technology, and Federal Institute of Technology Zurich): creating a new hyperloop event
to share the most innovative technology and to create a community driven by the vision
of turning hyperloop into a reality.

That is how the European Hyperloop Week was born. It can be defined as an event
that goes beyond mere competition since it is sustained by the insatiable curiosity of very
talented students and their eagerness to learn. During a week, leading companies in the
tech industry and university teams from all over the world share the work and develop-
ment that they carried out regarding hyperloop. The main goal is to foster innovation
through collaboration, as it is stated in the mission of the EHW.
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Figure 2.6: Hyperloop UPV during the first edition of the EHW, developed in Valencia

Source: Las Provincias (2021)

2.3 Vèsper

The edition of the EHW 2024 will take place in Zurich, Switzerland. This year, Hyper-
loop UPV introduces Vèsper, which coupled with Atlas and a revolutionary booster mo-
tor aims to create not just a prototype, not only a vehicle but a complete and scalable
hyperloop transportation system.

Vèsper weighs 246.95 kg. Its external dimensions –including the aeroshell– are 2.4 m
in length, 0.69 m in width and 0.63 m in height. All the systems that integrate the vehicle
can be seen in the exploded view of Figure 2.7.

Figure 2.7: Exploded view of Vèsper

Source: Hyperloop UPV (2024)
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As the team states, “This year, Vèsper is set to not only awaken the world to the im-
mense potential of hyperloop technology but also to illuminate the correct path forward,
guiding us even through the darkest moments of the innovation process”.

2.3.1. Levitation of Vèsper

The Levitation & Guiding System is one of the most relevant systems of Vèsper, as it
allows the vehicle to avoid friction with the surface, thus needing significantly smaller
amounts of force to accelerate.

The Levitation & Guiding System is composed of four Hybrid ElectroMagnetic Sus-
pension units (HEMS) –a combination of an electromagnet with a permanent magnet–
and four ElectroMagnetic Suspension units (EMS) –just the electromagnet–. The former
ones are designed to handle vertical levitation while the latter ones are optimized to con-
trol horizontal levitation.

HEMS

The HEMS units control the vertical levitation of Vèsper, which is the main task while
levitating. In fact, vertical and horizontal levitation are often referred to as “levitation”
and “guiding” respectively. Figure 2.8 shows an HEMS unit designed by Hyperloop
UPV.

(a) HEMS unit (b) Location of the permanent
magnets

(c) Location of the coils

Figure 2.8: HEMS unit designed by Hyperloop UPV

Source: Hyperloop UPV (2024)

Both coils and magnets are joined to a laminated electrical steel core, whose purpose
is to drive magnetic flux in the correct direction.

The principle of the HEMS units is based on using the magnetic forces produced by
permanent magnets to counter the constant force of gravity. As the position where those
forces are equal is unstable, electromagnets control perturbances to maintain the vehicle
in the correct position. Figure 2.9 depicts the functioning of the HEMS units.
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Figure 2.9: Functioning of the HEMS units

Using HEMS units instead of other technologies –e.g., superconductors– brings vari-
ous advantages such as minimizing energy consumption when a proper control system
is incorporated, ease of manufacturing, and cost-effectiveness.

EMS

Horizontal levitation units, or EMS units, follow the same basic principle. Nevertheless,
no permanent magnets are needed as no constant force is being applied to the vehicle
horizontally. Thus, EMS units consist uniquely of electromagnets to correct horizontal
deviations to keep the vehicle in the middle of the infrastructure. Figure 2.10 shows an
EMS unit designed by Hyperloop UPV.

Figure 2.10: EMS unit designed by Hyperloop UPV

Source: Hyperloop UPV (2024)

2.3.2. Electronic System of Vèsper

Apart from the electromagnetic design of the levitation units, the Levitation & Guiding
System relies on a complicated electronic circuit. This circuit includes the Levitation Con-
trol Unit (LCU) and 10 Levitation Power Units (LPU).

The LPU is the board in charge of providing the units with the requested amount of
amperage. However, the board is not capable of providing a concrete value of current,
but a value of voltage which increases or decreases the current flowing through the coil.

The LCU is in charge of executing the control algorithm for the levitation system. For
that purpose, the Firmware and Hardware subsystems decided to include two microcon-
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trollers STM32H723ZGT6 which allow the board to make the appropriate calculations,
and to communicate with other boards.

Figure 2.11: Levitation Control Unit

Source: Hyperloop UPV (2024)

Microcontroller (STM32H723ZGT6)

The selected Micro Controller Unit (MCU) is the STM32H723ZGT6, able to operate at up
to 480MHz and with a dual-bank Flash memory of up to 2 Mbytes, and 1 Mbyte of RAM.

As an STMicroelectronics MCU, the STM32H723ZGT6 needs to be programmed through
the official STM32 Cube IDE and configured through the interface of STM32 Cube MX.
This aspect makes it necessary to use C or C++ as the programming language for the
MCU. However, the lack of long-term memory inside the board makes it necessary to
translate the control algorithm directly to code for the board.

X-CUBE-AI

Luckily, the tool STM32 X-CUBE-AI allows translating from Tensorflow or ONNX Arti-
ficial Intelligence (AI) models to C code to be executed directly inside the MCU. In fact,
this tool provides the necessary methods to profile and optimize the algorithm.

Figure 2.12: Artificial intelligence (AI) software expansion for STM32Cube

Source: Data brief - X-CUBE-AI - Artificial intelligence (AI) software expansion for STM32Cube
[8]



CHAPTER 3

Control System with
Reinforcement Learning

This chapter revolves around the design of the Control System for the levitation of Vèsper
and the use of Deep Reinforcement Learning techniques to control the vehicle. The chap-
ter is organized as follows. Firstly, we present a brief overview of Control System and
Reinforcement Learning notions. Section 3.2 outlines the external requirements imposed
on the Control System and Section 3.3 justifies the selected proposal, describing the ben-
efits compared to the current one. Finally, the last section explains the methodology, the
different pieces of the creation of the system, and the steps followed to develop it.

3.1 Introduction

A control system is, according to the National Institute of Standards and Technology
(NIST), “a system in which deliberate guidance or manipulation is used to achieve a
prescribed value for a variable” [9]. Translated to the specific Control System for the
levitation of Vèsper, it consists of an algorithm to stabilize the vehicle at the equilibrium
height despite the natural perturbations of the dynamics of Vèsper.

An advanced control system is a key aspect of the levitation of the vehicle, as the
efficiency regarding energy consumption directly depends on the optimal use of the elec-
tromagnets. The optimal control system should spend the minimum amount of current
to control the perturbations of the vehicle, keeping the current levels around zero.

A PID control –and all the controls from this family such as the PI or the PD– is a
classical controller widely used in the industry. It includes three actions: proportional
(P), integral (I), and derivative (D).

• P: Outputs a value proportional to the current error; uP(t) = KP · e(t)

• I: Returns a value proportional to the cumulative error, which makes the control
slower; uI(t) = KI

∫ t
0 e(τ) dτ

• D: Predicts future error accelerating the control; uD(t) = KDTD
de(t)

dt , where TD is a
value called derivative time.

The final equation for a PID is:

u(t) = KP · e(t) + KI

∫ t

0
e(τ) dτ + KDTD

de(t)
dt

(3.1)

15



16 Control System with Reinforcement Learning

The control system used for Kénos, the previous vehicle, consisted of a cascade con-
trol for each coil divided into a PID controller to set the objective current given the posi-
tion of the vehicle at each time step and a PI controller to set the target voltage given the
objective current set by the previous controller.

In this document, a Deep Reinforcement Learning agent is proposed as a substitute
for the previous control system. The necessary tools developed for the training process
are explained and the performance of the agent is discussed and evaluated in the docu-
ment.

3.1.1. Reinforcement Learning

Understanding the definition and functioning of Reinforcement Learning (RL) is a key
aspect to achieving a complete comprehension of this thesis.

RL is about figuring out how to act in different situations to maximize a reward, with-
out being directly told which actions to take. Learners must experiment to find the most
rewarding actions. Actions can influence not only immediate rewards but also future
situations and rewards. This trial-and-error learning and the impact of delayed rewards
are key features distinguishing reinforcement learning [10].

Reinforcement Learning is different from supervised learning as the latter is learning
from a training set and trying to generalize for examples not present in it, while the for-
mer one is learning from experience and understanding the interaction with the environ-
ment. RL is also different from unsupervised learning as, although it is not learning from
a labeled dataset, it is not trying to find any hidden structure inside the data but max-
imizing a reward function. Therefore, Reinforcement Learning is considered the third
machine learning paradigm.

RL has been applied to numerous games in the past, for example, Tic-Tac-Toe. Never-
theless, with the sharp increase in autonomous systems being developed in recent years,
this type of learning has been introduced in much more complex environments such as
autonomous driving [11], robotics [12], or even Large Language Models (LLM) [13].

Figure 3.1: ChatGPT training process

Source: OpenAI official website [13]
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Apart from the concept of Reinforcement Learning, it is important to know its ele-
ments; the policy, the reward signal, and the value function.

The policy refers to the function used to decide which action to take given a certain
state. The policy can be a lookup table, a simple mathematic equation, or even a neural
network –Deep Reinforcement Learning–. The policy is the only element used when
using the RL model for inference.

The reward signal can be thought of as the treat or punishment received by the envi-
ronment after each action. After every decision of the agent, a numerical value called the
reward is received. The reward is the main cause of change in the policy, as the agent is
trying to find the policy that maximizes the received reward.

The value function aims to classify the benefit of reaching a certain state. While the
reward signal is the immediate value obtained by an action, the value function maps the
future value that the agent can obtain if it has already reached a certain state.

Let us set an example to enhance comprehension. Imagine a man is trying to return
home to see his family. This person is using Google Maps for better orientation. Google
Maps is the policy because it tells that person which road to take at each intersection. The
main reward is the positive feeling of arriving home and seeing his family, but there can
be negative rewards such as getting his shoes dirty if he steps in the mud. The value
function is the experience of this person once he reaches a place that he knows is closer
or further to his house.

Markov Decision Process (MDP)

A problem, in order to be solved using RL techniques, needs to be mathematically for-
mulated as a Markov Decision Process (MDP), a classical formalization of a process of
decision-making. In an MDP, actions affect immediate rewards and future ones by in-
fluencing the future reachable states. This means that the value of an action is state-
dependent. MDPs are idealized mathematical representations of reinforcement learning
problems to provide tractability and comprehension of the optimal policy.

In an MDP, an agent or decision-maker transitions from a state St, at timestep t, to
another state St+1 by applying an action At, and receives a reward Rt from the environment.
An MDP does not need the history of all the states and actions previously taken, but only
the current state to decide which action to take. The objective of the agent is to maximize
the cumulative reward or expected return.

Figure 3.2: The agent–environment interaction in a Markov decision process

Source: Reinforcement learning : an introduction [10]
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Exploration vs Exploitation

The trade-off between exploration and exploitation is a crucial aspect of the RL process.
This trade-off is based on the problem that exclusively selecting the best actions discov-
ered at a certain moment can prevent the agent from finding better rewards.

For example, if we always travel to the same place during the summer holidays, we
may enjoy our vacations. However, if we sometimes vary our destination, we can have a
horrible vacation but we can also find an even more enjoyable place.

In that example, exploitation refers to visiting the same place where we know we are
going to enjoy. On the other hand, exploration refers to leaving our comfort zone, without
certainty about if we are going to find a better or worst destination.

In formal terms, exploitation refers to looking for the maximum possible expected re-
ward while exploration refers to avoiding getting stuck in a local maximum, exploring
new areas of the multidimensional space of the reward function.

3.2 Requirements

This section enumerates the external requirements imposed on the Control System:

• The Control System must allow its inference at a frequency of 1 kHz –1000 infer-
ences per second– in the microcontroller, meaning that the asymptotic maximum
time consumption of an inference is 1 ms.

• The range of amperage while levitating must be inside the range [-45, 45] A.

• The range of voltage while levitating must be inside the range [-100, 100] V.

• The maximum and minimum distances between the vertical levitation unit and the
steel plate are 22.5 mm and 9 mm respectively, as those are the distances where the
mechanical guidance touches the infrastructure.

• The maximum and minimum distances between the horizontal levitation unit and
the steel plate are 16 mm and 4 mm respectively, as those are the distances where
the mechanical guidance touches the infrastructure.

3.3 Justification

The proposal for the control system of Kénos brings several drawbacks:

• Using two controllers per coil duplicates the parameters to tune per coil and highly
increases the total amount of parameters. Moreover, it does not allow taking into
account the behavior of the rest of the levitation and guiding units.

• The control system needs to be manually adjusted through a trial and error process
every time a change is introduced. For example, this is the case when the experi-
ments performed at Valencia need to be repeated at Zurich.

• The process of translating the measurements of the sensors into the exact position
of the vehicle, required for the control, is highly computationally expensive as it
includes a significant amount of sines and cosines.
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Taking the aforementioned drawbacks into account, an RL Control System has the
following benefits:

• Deep Neural Networks can obtain better results than PID controllers, as they are
more complex, so both PID and PI controllers can be substituted for a single one.

• Deep Neural Networks with fully connected layers provide connections among the
outputs of the different coils.

• The RL Control System can be automatically fine-tuned in case the characteristics
of the control change, such as the forces produced by the coils, the desired height,
or for better adaptation to the real scenario once implemented on the vehicle.

• The RL Control System does not use the position of the vehicle, but the measures
of the sensors to decide which actions to take.

3.4 Methodology

This section explains the methodology followed during this project, including the step-
by-step process and the different components of it.

The methodology of the current Final Degree Project is based on Incremental Learn-
ing. Incremental Learning consists of gradually introducing new information in the
model so that it can reach greater goals without forgetting the basic aspects. This ap-
proach is based on a teaching strategy, which is also called Incremental Learning, which
was then transferred to machine learning. In the case of this project, the complexity of
the environment and the actor progressively increases with two main objectives:

• The number of coils in the simulator progressively increases so that perfect func-
tioning of the modelization can be ensured, detecting errors in the earliest stage
possible and enhancing comprehension of the dynamics of the model.

• The complexity of the environment gradually increases so that the model first learns
the basic control of the vehicle and then it will adapt to more difficult tasks.

Section 3.4.1 describes the progression followed to increase complexity gradually.

3.4.1. Guidelines

The development process of this project is divided into three steps.

First, the simulator of one coil is modelized to accurately mimic the functioning of a
levitation unit. A model is trained to control this unit, first learning to act over the desired
current and then over the voltage of the coil. This step is named the one degree of free-
dom (1 DOF) control and consists of learning how to control the vertical movement of the
levitation. This degree of freedom, or vertical displacement, is the main purpose of the
levitation control, thus being the first to be tested and proven possible to be controlled.

Once the model works properly, the simulator is adapted to take into account two
coils, thus adding the difficulty of the angle between them and multiple outputs. This
step is the 2 DOF control and introduces a new obstacle by adding the necessity to control
the angle. The 2 DOF control is relevant to test the improved simulator, avoiding the
accumulation of errors by allowing to detect them in an earlier stage, and to test the
capabilities of this techniques in a more complex scenario.
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Lastly, all 10 coils are included in the simulator. As the main purpose of slowly adding
more coils is to ensure the correct functioning of the simulator, there is no need to develop
middle steps between two and 10 coils, as there is no significant increase in complexity
between those middle steps. Nevertheless, this last complicated simulator requires grad-
ual progress. Instead of adding more coils, every degree of freedom is blocked at the
beginning and the model is trained to deal with a small amount of them. Then, they are
unlocked progressively until the model can control all of them. This is the 5 DOF con-
trol, the main objective of the project and the control that is included to the levitation of
Vèsper in the end. The control of five out of the total existing six degrees of freedom by
the same system provides robustness and enhances complete integration and efficiency.

3.4.2. Simulator

In this document, the word “simulator” refers to the modelization of the dynamics of
the vehicle. The customization of the Levitation & Guiding System impedes the use
of a commercial, widely used simulator as it is done with car or plane simulators. By
contrast, this aspect obliges the development of a custom modelization of the dynamics
of the vehicle. The simulator acts as the real coils of the vehicle, calculating the next
measurement of the sensors given the action stated by the agent.

The presence of a simulator brings numerous advantages. First, it reduces the time of
experimentation. An experiment that would take a few minutes of development and an
hour of preparation can be massively reproduced in a few nanoseconds. Moreover, the
simulator eliminated the need for physical elements to proceed with the experiments,
saving in costs of material and human resources, saving in space required for it, and
eliminating risks.

The simulator includes a model per type of coil –HEMS and EMS–, and a model of
the complete vehicle –with two coils for 2 DOF and ten coils for 5 DOF–.

The 1 DOF model includes a Resistance-Inductance circuit –commonly called RL
circuit but named RI circuit in this document to avoid confusion with Reinforcement
Learning– to translate from the voltage received to the current flowing through the coil,
two modules to calculate the vertical and horizontal forces produced by the coil, and a
module to calculate the next air gap with the steel plate if it is working alone. This model
is deeply explained in Sections 4.3.1 and 4.4.1.

The model of 2 DOF replaces the module of the coil for the air gap calculations with
trigonometrical calculations to take into account both coils. More details about this sim-
ulator are given in Section 5.1.

The model of 5 DOF replaces the module of air gap calculations of the 2 DOF model
with more complex calculations based on the Newton-Euler Dynamic Equations of Mo-
tion [14] to take into account multiple angles and momentum. Apart from that, the 5 DOF
model calculates both the air gap between the unit and the steel plate and the measures
of the sensors. Section 6.2 delves into the functioning of this dynamic model.

3.4.3. Environment

By contrast with the term simulator, environment refers to the elements that communicate
the agent with the simulator, evaluating the action of the agent at each time step, starting
and finishing the episodes –which are a set of steps with a dependency among them–, and
providing graphical visualization for better understanding of the behavior of the Control
System.
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The environment is built over the library Gymnasium [15], a library based on Gym
from OpenAI which serves as an API for multiple RL environments. Nevertheless, the
environment is also customized for the project, including the following modules:

• The initializer selects the initial state to begin and the variables to be used in the
training process.

• The step module executes the action decided by the agent, computes the reward
corresponding to said action, and stops the episode once the truncated –sudden stop
of the episode– or terminated –the episode came to a natural end because it levitated
for the desired period of time– flag is triggered.

• The render module graphically depicts the evolution of an episode.

• The reset module restarts a new episode, deciding the initial state.

3.4.4. Training process

This section describes the common aspects of the training processes carried out and the
main variations tried among them. For the training process, the library Stable-Baselines3
[16], built over PyTorch [17] which allows for lower-level personalization if necessary.

During the training process, a linear schedule for the learning rate has been imple-
mented. This way, as the training progresses and gets closer to a solution, the weight
changes are less significant.

During the process, a maximum time of five seconds –5000 steps as the frequency of
the Control System is 1 kHz– has been established for each episode, varying between
including or not the possibility of truncating the episode when the system touches the
floor or ceiling. This time must be necessary for the control to stabilize.

Different models have been compared at several stages of the project, all of them
proved to be useful with continuous action and observation spaces, and they are men-
tioned in the section where they were used. Nevertheless, the main aspects that have
varied among the experiments are related to the definition of the MDP –reward, action
space, and observation space–, as these aspects have been demonstrated to be the most
critical ones.

The evolution of the training process has been monitored with the platform Weights
& Biases [18], guaranteeing a clear view of the different parameters involved. Besides,
an EvalCallback from Stable-Baselines3 has been included to validate the functioning of
the agent at a certain frequency of steps, stopping the process if an appropriate expected
return is achieved.





CHAPTER 4

One degree of freedom

This chapter delves into the development of the Control System for One Degree of Free-
dom (1 DOF), the first approximation to the solution to the problem. The 1 DOF control
is the maximum simplification of the system which has complete sense, as well as the
minimal system that can be tested in a real scenario –combining the designed boards, the
levitation units, and the control system–.

First, in Section 4.1 an overview of the functioning of the 1 DOF control is presented,
including a deeper explanation of its importance. Then, Section 4.2 describes the test
bench used to validate this control. Finally, the two developed approaches are explained.

Section 4.3 describes the aspects involved in the first approach for this control. Based
on the philosophy of last year, this first control tries to act over the current flowing in the
coil. This approach simplifies the problem and relies on the existence of a latter control
translating from current to voltage.

Section 4.4 explains the final proposal for one levitation unit, the voltage control. This
approach provides a clear advantage over the proposal of last year, as just one model acts
over the voltage instead of having two models to accomplish it.

4.1 Overview

The one degree of freedom control consists of a single levitation unit that attracts or re-
pels from a steel plate. The only permitted movement, the only degree of freedom, is
the vertical displacement –Z-axis–. This movement is one-dimensional. The rest of the
displacements and rotations are disabled.

Figure 4.1: Allowed displacement in 1 DOF control
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The 1 DOF control is an important step of the process, as it is the minimum unit of
functioning of the control. This first step serves as the base for the rest of the project.
The 1 DOF control aims to check if creating an RL agent capable of maintaining a single
levitation unit at the desired height despite perturbations is possible.

With the 1 DOF control, multiple aspects of the project can be tested. Firstly, the
proper emulation of the functioning of the coil, which is the basic feature of the simulator,
can be ensured. Apart from that, the capabilities of the new technique, the RL agent,
can be checked. We can evaluate the benefits of the new control in a simple first stage.
Moreover, the electromagnetic design of the units can be characterized and compared to
the results of the simulations. Lastly, we can observe if the boards have accomplished the
desired requirements, and if the control meets the margins of computational cost.

The most relevant aspect of this first stage is the possibility of testing a simpler version
of the system in a real scenario. To achieve that, a 1 DOF test bench was designed by the
team, explained in Section 4.2.

4.2 1 DOF test bench

The 1 DOF test bench is the structure built to test the 1 DOF control. This structure is made
of aluminum profiles with linear guides attached to a steel plate. The steel plate incorpo-
rates an appendix where weights can be adhered, making it possible to match this weight
with the kilograms the unit needs to hold during a run. The structure also includes an
extension where the air gap sensor is located. Figure 4.2 shows the appearance of the test
bench.

Figure 4.2: 1 DOF test bench

Source: Hyperloop UPV (2023)

This structure restricts any possible rotation or movement except the vertical displace-
ment, allowing, for example, to validate that the simulator of the dynamics of the coil is
correct.

4.3 Current control

The first approximation to the 1 DOF control consists of substituting the PID of the ap-
proach of the previous year with a Reinforcement Learning agent. In this approach, the
model must decide which current to apply to the coil at each time step, assuming that the
coil can reach that level of amperage instantly. The objective of this simplification of the
first stage is to construct a reliable base for the project.
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4.3.1. Dynamic model

The dynamic model –also called simulator or plant– emulates the behavior of the coil.
Table 4.1 shows the parameters conditioning the behavior of the plant, based on the levi-
tation units of the eighth generation of the team –as the new parameters were not known
yet.

Parameter Value

Maximum air gap (mm) 23
Minimum air gap (mm) 10
Objective height (mm) 19.5
Frequency (kHz) 1
Current range (A) ±45
Vehicle weight (kg) 200

Table 4.1: Plant characteristics

This plant includes the following modules:

• Force Module: It consists of a regression model trained on a dataset of experimental
data. The model is a multilayer perceptron with five hidden layers containing the
following number of neurons: 16, 32, 64, 32, and 16, each followed by a ReLU
activation function. The model receives the air gap and current as the input and
outputs the resultant force of the coil, FC.

• Position Computation: Knowing the vertical force exerted by the coil and the grav-
ity force corresponding to a quarter part of the vehicle, g, the total force is com-
puted, FT. Once the total force is divided by a quarter of the mass of the vehicle, m,
the acceleration, a, is obtained. Once the acceleration is integrated, the velocity, v,
is obtained, which is integrated again to calculate the position, p. This last value is
multiplied by 1000 to be converted from meters to millimeters.

The complete algorithm of the model is shown in Algorithm 4.1:

Algorithm 4.1 Plant - Simple coil

Require: airgap ∈ [10, 23]
Require: I ∈ [−45, 45]

FB = vertical f orce(airgapt, It)
P = (m/4)g
FT = P− FC
a = FT

m

v =
∫ T=t

T=0 aTdT
p =

∫ T=t
T=0 vTdT

airgapt+1 = 1000p
return airgapt+1

Note that the position is measured as the distance between the levitation unit and the
steel plate. If the air gap is close to 10, the unit is at the top, while if it is close to 23, it is
close to the floor.
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4.3.2. MDP

The next step is to define the Markov Decision Process of the problem, consisting of the
observation space –or set of states–, the action space, and the reward function.

Observation space

The observation space is composed of the air gap, the error with the reference height, the
velocity, and the current at a certain time step, St ∈ IR4.

The presence of the velocity is essential as it is the only reference for the model to
detect if it is going up or down. If the state only contained measures about the position,
it would perceive as beneficial a position a bit under the reference height even if it was
approaching extremely fast to the floor, not producing enough force to stop the unit from
crashing.

Action space

The action space contains only a value representing the amperage the coil needs to apply
in the next step, At ∈ IR, At ∈ [−45, 45]. It can be observed that the action space is
continuous, as the observation space, an aspect that conditions the RL algorithms can be
applied.

Reward function

Lastly, the reward function divides the space into different zones with different values.
The reward function is defined as follows.

Rt =



−500 i f the vehicletouches the f loor or ceiling

−100 ∗ |error| i f error ≥ 0.5

−50 ∗ |error| i f error ≥ 0.1

100 otherwise

(4.1)

4.3.3. Results

To check the viability of approaching this problem using Reinforcement Learning, a Soft
Actor-Critic (SAC) [19] algorithm was used. The SAC algorithm is divided into two train-
able models: the Actor and the Critic. The Actor is in charge of deciding which action
to take based on the current state, whereas the Critic evaluates the decision taken by the
Actor. At inference time, only the Actor is used.

The models used in this approach are two neural networks, both with 2 hidden layers
of 256 neurons each, with ReLU as the activation function. For the output, the actor
counts on two neurons to return the mean and standard deviation of a distribution from
which the action is extracted. At inference time, the standard deviation is eliminated to
make the model deterministic. During the training process, the learning rate has been set
to 0.001, with a linear schedule to reduce its value with each episode. Adam [28] was the
optimizer method used. The training process has been carried on in a machine with the
following specifications:
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Processor 11th Gen Intel(R) Core(TM) i5-11400F @ 2.60GHz 2.59 GHz
Kernels 6
Threads 12
RAM 16 GB
GPU NVIDIA GeForce GTX 1650

Table 4.2: Machine specifications

The results of the training process are shown below. Figure 4.3 depicts a take off from
the floor –remember that high values of air gap mean that the coil is close to the floor–,
while Figure 4.4 illustrates a take off from the ceiling, starting with the coil magnetically
attached to the steel plate.

Figure 4.3: Air gap at each time step during 5 seconds, take off from the floor

Figure 4.4: Air gap at each time step during 5 seconds, take off from the ceiling

The coil reaches the desired height after approximately a quarter of a second in both
cases, evidencing the viability of approaching the problem using Reinforcement Learn-
ing.
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4.4 Voltage control

The next step towards a more realistic control is to assume that it is not possible to select
the exact value of current flowing through the copper coil at each time step. On the con-
trary, the applied voltage is going to alter the value of current, similar to speed varying
the position of a corps.

4.4.1. Dynamic model

Now, the plant grows including a RI circuit, calculating the current flowing through the
coil from the voltage applied. Moreover, the parameters of the dynamic model have been
updated to match the design of the ninth generation.

Parameter Value

Maximum air gap (mm) 22.5
Minimum air gap (mm) 9
Objective height (mm) 16.3
Frequency (kHz) 1
Current range (A) ±45
Voltage range (V) ±100
Vehicle weight (kg) 250

Table 4.3: Plant characteristics

Including the computation of the current, the new plant is described in Algorithm 4.2:

Algorithm 4.2 Plant - Complex coil

Require: airgap ∈ [9, 22.5]
Require: I ∈ [−45, 45]
Require: V ∈ [−100, 100]

I =
∫ T=t

T=0

Vt
R −It

Lt
R

dT

FC = vertical f orce(airgapt, It)
P = (m/4)g
FR = P− FB
a = FR

m

v =
∫ T=t

T=0 aTdT
p =

∫ T=t
T=0 vTdT

airgapt+1 = 1000p
return airgapt+1

The maximum and minimum levels of current and voltage are established by the
Hardware subsystem based on the requirements of the boards.
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4.4.2. MDP

As the dynamic model changes, the MDP of the problem must be reformulated.

Observation space

The observation space has been simplified by eliminating the air gap, maintaining the
error, velocity, and current, St ∈ IR3.

Action space

The action space now represents the voltage applied to the coil, At ∈ IR, At ∈ [−100, 100].
The action space is still continuous.

Reward function

Two different reward functions have been used in this approach. The first is the same as
in Equation 4.1. The second one is defined as follows.

Rt = −|error| (4.2)

Simpler reward functions tend to perform better, so function 4.2 follows this idea.

4.4.3. Results

This time, with the aim of optimizing the model for the microcontroller by minimizing the
amount of FLOating Point Operations (FLOPS) inside the board, the two hidden layers of
the Actor network varied from 256x256 to 4x4 neurons. The process followed for training,
as the model faces a more complex situation, is divided into three steps:

• Learn how to maintain the position at the objective height.
• Increase the range of heights where the episode can start from 14.3 mm to 18.3 mm.
• Increase the range of possible beginnings to [9, 22.5].

The best results were obtained with a model of 8x8 neurons and with reward func-
tion 4.1. The training process is the same as in Section 4.3.3 –learning rate, linear decay...–,
except during the fine-tuning stage, where the learning rate starts at 10−5. These spec-
ifications obtain the best results at every stage –1 DOF, 2 DOF, and 5 DOF–, except the
number of neurons that is increased for the 5 DOF control. The results are shown in
Figures 4.6 and 4.5.

Figure 4.5: Air gap at each time step during 5 seconds, take off from the floor
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Figure 4.6: Air gap at each time step during 5 seconds, take off from the ceiling

It can be observed that the agent oscillates around a suboptimal zone –note that SAC
is a method that obtains a suboptimal result to avoid overfitting–. Once the reward func-
tion is simplified as 4.2, the Critic better evaluates the actions of the Actor, being able to
reduce the Actor network up to 8x8 neurons with the results shown in Figures 4.8 and 4.7

Figure 4.7: Air gap at each time step during 5 seconds, take off from the floor

Figure 4.8: Air gap at each time step during 5 seconds, take off from the ceiling

The simplification of the reward function reduces the oscillation and the gap with the
objective height once the controller is stabilized. With the aim of comparing different
models, two other algorithms have been compared: Proximal Policy Optimization (PPO)
[20] and Twin Delayed DDPG (TD3) [21]. TD3 is able to obtain similar results as in Figure
4.6 and 4.5, being outperformed by SAC. PPO, however, is not able to stabilize the system.
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4.4.4. Performance analysis in the microcontroller

A key aspect of the 1 DOF control, as stated at the beginning of the chapter, is the pos-
sibility of testing the performance inside the boards as a starting point. To validate the
computational resources needed to execute the inference of the model, the Actor is ex-
ported as ONNX file. Then, the STM X-CUBE-AI package of STM32CubeMX is used to
translate the model into C++ code for the STM32H723ZGT6 microcontroller. This pro-
gram offers different levels and options of compression in case it is necessary.

Table 4.4 depicts the time spent on inference with the translated model. As the infer-
ence is applied at a frequency of 1 kHz, the asymptotic maximum time spent on inference
can be 1 ms –assuming no other operations are performed inside the microcontroller,
which is too optimistic but serves as a baseline–.

Comp. Level Comp. Type RMSE Inference time (ms)

None None 0 0.042
Low Time 0.000001 0.005
Low RAM 0.000001 0.005
High Time 0.003664497 0.006
High RAM 0.0036645 0.006

Table 4.4: Performance of the model inside the microcontroller

It can be noted that the model spends only 4.2% of the maximum available time for
inference. This percentage is reduced to 0.5% with the lowest level of compression and
insignificant loss in performance.





CHAPTER 5

Two degrees of freedom

This chapter revolves around the next step of the project, the 2 DOF control. The impor-
tance of this step is not linked to real-world testing but as a middle point in the increase
of complexity of both the dynamic and the inference model.

In this stage, the dynamic model significantly increases its difficulty, and the fact that
two coils have to coordinate themselves to achieve satisfactory results complicates the
task. Achieving proper results in this stage reduces the gap in complexity between the 1
DOF and 5 DOF controls, ensuring having achieved a reliable step in the middle with a
simplification of the new concepts that need to function in the 5 DOF.

Section 5.1 describes the new dynamic model, composed of two coils which introduce
a new dimension. Section 5.2 illustrates the new MDP for the problem, introducing the
concept of frame-stacking. Finally, Section 5.3 shows the obtained results.

5.1 Dynamic model

The new dynamic model perceives the vehicle as a two-dimensional corps, as a segment
with a coil at each side. Therefore, now the possible movements are the displacement on
the Z-axis, and the rotation on the Y-axis, as shown in Figure 5.1.

Figure 5.1: Allowed movements in 2 DOF control

This new setup requires an adaptation of the simulator, considering the effect of the
action of a coil on the other. To make this possible, the momentum M of the force is
computed to calculate the angle generated by the application of both forces. Then, using
trigonometry, the air gap of each coil is deduced. Algorithm 5.1 shows the mathematical
operations applied in this process.

33
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Algorithm 5.1 Plant - 2 DOF

Require: airgap1, airgap2 ∈ [9, 22.5]
Require: I1, I2 ∈ [−45, 45]
Require: V1, V2 ∈ [−100, 100]

inertia = 70; Dcm = 0.7

I1 =
∫ T=t

T=0

V1t
R −I1t

Lt
R

dT

I2 =
∫ T=t

T=0

V2t
R −I2t

Lt
R

dT

FC1 = vertical f orce(airgap1t, I1t)
FC2 = vertical f orce(airgap2t, I2t)
M = FC1Dcm − FC2Dcm
α = M

inertia

ω =
∫ T=t

T=0 αTdT
θ =

∫ T=t
T=0 ωTdT

P = (m/2)g
FT = P− FC1 − FC2
a = FT

m/2

v =
∫ T=t

T=0 aTdT
p =

∫ T=t
T=0 vTdT

zpost+1 = 1000p
airgap1t+1 = zpos + 1000Dcm sin θ
airgap2t+1 = zpos− 1000Dcm sin θ
return airgap1t+1, airgap2t+1

Some important details are that Dcm refers to the distance of the coils to the center of
mass of the vehicle and that the reference system selected takes the vertical force towards
the steel plate –up– as negative. In contrast, the force of the gravity is positive. The latter
aspect can be seen in Figure 5.1.

5.2 MDP

The modelization of the MDP for the 2 DOF problem is based on the successful results
on the 1 DOF control.

Observation space

As it was noted with the 1 DOF control, the state needs to contain a feature referencing
the direction in which the system is moving. However, the Firmware Lead of the previ-
ous year stated that the calculations to provide the velocities and positions on each axis
once the 5 DOF was applied brought a significant number of operations that the micro-
controller had trouble dealing with.

This experience led to the search for other representations for the state, finding the
concept of frame-stacking [22].
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5.2.1. Frame stacking

The concept of frame-stacking is often used on sequential problems such as time series
or videos. It consists of stacking the last N values of the state to provide sequential
knowledge to the representation. For example, if applied to the context of video data, N
frames –images– would be concatenated as an array as the input for the model.

In the context of this project, the observation space concatenates the air gap measures
of the last two time steps, and the current measures of the last step –as for the current
there is no need to control the variation but just the previous value–. Considering this
explanation, St ∈ IR6.

Figure 5.2: Frames forming the state of the MDP

Action space

The action space is duplicated as it depicts the voltage applied to each coil, At ∈ IR2,
∀i ∈ {1, 2} At[i] ∈ [−100, 100].

Reward function

Four different reward functions have been used during the experiments due to the rise
in complexity:

R1 = −|error1| − |error2| (5.1)

R2 = alive− |error1| − |error2| (5.2)

R3 = −|error1| − |error2| − 10000crash (5.3)

R4 = −(( error1

max(error1)
)2 + (

error2

max(error2)
)2)− 0.4crash + Rbonus (5.4)

Rbonus =


−0.2, if errort−1 < errort

0.2, if errort−1 > errort

0, otherwise

(5.5)
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The reward function 5.1 follows the principle of the successful 1 DOF representation.
Functions 5.2 and 5.3 incorporate a new element to prevent the system from crashing –
touching the floor or ceiling–. The former uses a positive parameter alive with the value of
20 –as it will always be higher in absolute value than the maximum sum of errors in a time
step– to give the agent a positive reward if it is able to maintain the vehicle levitating for
the maximum amount of time. The latter uses the opposite strategy, penalizing the agent
with a big negative reward if it crashes. This way, the accumulated reward is always
worse if it crashes than if it is able to levitate during the whole episode.

The reward function 5.4 follows the idea of [23]. In this last reward function, the errors
are normalized to fit the range [0, 1] and it includes a penalization in case of crashing.
Moreover, a penalization or a positive reward is added if the error increases or decreases
respectively, accelerating convergence.

5.3 Results

Given the demonstrated superiority of SAC in the previous step and the advantages pro-
vided by the Actor-Critic structure, as the combination of a simple Actor with a complex
Critic provides high performance and fast inference at the same time, no other algorithms
have been tested in this step.

The Actor-network includes two hidden layers of eight neurons each, with ReLU as
the activation function. For the output, the actor counts on two neurons to return the
mean and standard deviation of a distribution from which the action is extracted. At
inference time, the standard deviation is eliminated to make the model deterministic.
The Critic-network counts on two hidden layers of 256 neurons each, with ReLU as the
activation function.

During the training process, the learning rate has been set to 0.001, with a linear
schedule to reduce its value with each episode. Nevertheless, for the fine-tuning stages,
the starting learning rate is diminished to 10−5. Adam [28] was the optimizer method
used. The training process has been carried on in a machine with the following specifica-
tions:

Processor 11th Gen Intel(R) Core(TM) i5-11400F @ 2.60GHz 2.59 GHz
Kernels 6
Threads 12
RAM 16 GB
GPU NVIDIA GeForce GTX 1650

Table 5.1: Machine specifications

The reward function 5.1 did not achieve a desirable result, as shown in Figure 5.3.
The result of this first reward function led to the definition of function 5.2, which finds a
way to keep levitating during the whole episode but without a satisfactory performance.
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Figure 5.3: Evolution of the reward with reward function 5.1

Reward 5.3 achieves acceptable performance at the objective height but is unable to
adapt to other initialization with variations of the initial height and angle. However, after
introducing function 5.4, the results obtained are finally successful. Figure 5.4 shows the
evolution of the reward function along the episodes of the training process..

Figure 5.4: Evolution of the reward with reward function 5.4

The performance of the best model, obtained with reward function 5.4 are shown in
Figures 5.5, 5.6, and 5.7.
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Figure 5.5: Performance initializing from equilibrium position

Figure 5.6: Performance initializing from below the equilibrium position

Figure 5.7: Performance initializing from above the equilibrium position

The agent is not only able to maintain the equilibrium position but also to correct its
position from different positions and angles.



CHAPTER 6

Five degrees of freedom

The 5 DOF control is the last stage of the process, the final goal of the project. The aim is to
create a control system able to manage 10 different coils to stabilize the angles in the X, Y,
and Z-axis, and the position in the Y and Z-axis. In other words, the control system needs
to stabilize the vehicle from all possible perturbations and keep it at the desired height
and centered inside the infrastructure. The level of complexity significantly increases
from the previous experiments, although important learned concepts can be applied to
it.

In this chapter, the development of the 5 DOF control is described. Section 6.1 in-
troduces the main aspects to understand what the 5 DOF control is. Then, Section 6.2
provides the details of the dynamic model, clearing the reference system established, de-
scribing the calculations of the angles and positions, and explaining how the real air gap
measures are computed from the previous results. By including these last calculations,
the vehicle does not need to calculate the position and angle from the air gap measures,
eliminating computationally expensive operations during inference.

Section 6.3 defines the new mathematical formulation of the problem, the Markov
Decision Process involving all five degrees of freedom. After that, Section 6.5 describes
the experiments performed. As this stage is significantly more complex than the previ-
ous ones, it needs to be divided into substages consisting of blocking some degrees of
freedom but allowing the model to control all the coils already. Therefore, the model
can progressively adapt the control to the new obstacles included in the training process.
After every substage, Section 6.6 illustrates the results with the complete control system
functioning.

This control system is the final one, the control system that is being incorporated into
Vèsper for the competition. Therefore, it also needs to be tested inside the microcon-
troller, with the same requirements as in Section 3.4.4. Considering this situation, Section
6.7 evaluates the performance of the vehicle inside the microcontroller and the possibility
of running at the desired requirements.

6.1 Overview

The 5 DOF control is in charge of maintaining the vehicle at the desired height and lat-
erally centered inside the infrastructure, mitigating the perturbations generated by the
system. The system controls five out of the six total degrees of freedom, leaving just the
longitudinal movement to the motor.

The 5 DOF control is the final version, the system that is incorporated in Vèsper to
achieve the best possible levitation. An accurate control system minimizes current con-
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sumption and eliminates friction with the ground, being the key aspect for the sustain-
ability and efficiency of the vehicle. Moreover, an optimized control system in terms of
computational complexity allows for incorporating redundant firmware protections and
prevents the electronics from being saturated because of high amounts of operations.

Specifically, the 5 DOF control acts over the voltage of 10 coils, divided into four
HEMS units for vertical levitation and six EMS units for horizontal levitation, arranged
as depicted in Figure 6.1.

Figure 6.1: Location and numeration of each coil in Vèsper

Source: Hyperloop UPV (2024)

By coordinating all 10 coils, the 5 DOF control must be able to maintain the minimum
possible rotation in all three axes, as well as keeping the vehicle at the desired vertical and
horizontal positions. Moreover, the control system must achieve this objective with min-
imum consumption. Lastly, the control system needs to be run inside the microcontroller
at a frequency of 1 kHz.

6.2 Dynamic model

The new dynamic model involves the addition of three main changes. The first change is
that the dynamic model introduces a new type of coil, the EMS. The EMS model is built
over the structure of the HEMS. Nevertheless, instead of vertically, the EMS produces
forces horizontally. Moreover, the forces produced have a different characterization for
the same current value. The last change is that the current flowing through the EMS units
is always positive.

The second change is motivated by the duration of the training process. Given the
frequency of execution of the inference and the sequential nature of the episodes, minimal
time spent on each time step computation significantly increases the temporal length of
the training process. Therefore, the prediction models have been replaced with a lookup
table as the one extracted from the simulations, but with a 10x increase in precision.
This method avoids running computationally and temporally expensive simulations and
achieves a 4x increase in training speed.
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The last change is the process followed to compute the air gaps of the coils and the
air gap measures of the sensors. With the rise of complexity of the dynamic model, some
trigonometric calculations are not enough for this task. Thus, the new computations are
based on the Newton-Euler Dynamic Equations of Motion [14]. The process is explained
in Sections 6.2.1, 6.2.2, and 6.2.3.

6.2.1. Definition of the degrees of freedom and the reference system

The first concept that needs to be clarified is the definition of the degrees of freedom and
the reference system for the measures. The reference system, the definition of the axes, is
shown in Figure 6.2.

Figure 6.2: Definition of the axes in Vèsper

Source: Hyperloop UPV (2024)

The defined axes lead to six different degrees of freedom:

• X-axis movement: Corresponding to the longitudinal movement, the direction in
which the track is built. This degree of freedom is controlled by the motor, which
makes the vehicle move forward and backward.

• X-axis rotation: Corresponding to the roll. This degree of freedom is controlled by
the vertical units, depending on the coordination of units 1 and 3 with 2 and 4.

• Y-axis movement: Corresponding to the lateral movement. This degree of freedom
depends on the EMS units, whose aim is to maintain the vehicle centered.

• Y-axis rotation: Corresponding to the pitch. This degree of freedom is controlled
by the vertical units, depending on the coordination of units 1 and 2 with 3 and 4.

• Z-axis movement: Corresponding to the vertical movement, the direction in which
the vehicle levitates. This degree of freedom is controlled by the HEMS units, whose
aim is to maintain the vehicle at the objective height.

• Z-axis rotation: Corresponding to the jaw. This degree of freedom is controlled by
the EMS units, depending on the coordination of units 5 and 10 with 6 and 9.
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Figure 6.3: Definition of the degrees of freedom

6.2.2. Position and angle calculations

Once the reference system is clear, the next step is describing the first stage of the dynamic
model: the calculation of the positions –X and Y-axis– and angles –X, Y, and Z-angles–.

This process is similar to the dynamic model of the 2 DOF control but increases the
angles, positions, and coils calculated. Algorithm 6.1 formalizes this first stage.

Algorithm 6.1 Positions and angles calculations - 5 DOF

Require: ∀i ∈ [1, 10], airgap[i] ∈ [9, 22.5]
Require: ∀i ∈ [1, 10], I[i] ∈ [−45, 45]
Require: ∀i ∈ [1, 10], V[i] ∈ [−100, 100]

for i← 1 to 10 do
I[i] =

∫ T=t
T=0

V[i]t
R −I[i]t

Lt
R

dT

F[i]V = vertical f orce(airgap[i]t, I[i]t)
F[i]H = horizontal f orce(airgap[i]t, I[i]t)

end for
for ax ∈ [”x”, ”y”, ”z”] do

M[ax] = momento(ax, FV , FH)
end for
zpost+1 = get_zpos(FV)
ypost+1 = get_ypos(FH)
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Note that the abstraction of the functions momento, get_zpos, and get_ypos is since the
internal calculations follow the same steps as in the 2 DOF control.

6.2.3. Transformation to air gap measures

The last stage of the dynamic model consists of transforming the position and angle of the
vehicle into the air gap measures of the sensors. As stated before, this process allows for
the agent to directly receive as input the measures of the sensors, relevantly reducing the
number of calculations at inference time. The measures of the sensors depend not only
on the distance to the steel plates but also the angle with it. Algorithm 6.2 formalizes this
first stage.

Algorithm 6.2 Air gap calculations - 5 DOF

Require: ∀i ∈ [1, 10], airgap[i] ∈ [9, 22.5]
for i← 1 to 4 do

airgap_sensor[i] = −zpos − 1000(pos_sensory[i] ·
sin(θx) + pos_sensorz[i] · cos(θx) + pos_sensorx[i] ·
sin(θy))− width_L

end for
for i← 5 to 8 do

if i%2 == 0 then
airgap_sensor[i] = −ypos − 1000(pos_sensorx[i] ·
sin(θz) + pos_sensory[i] · cos(θx) + pos_sensorz[i] ·
sin(θx))

else
airgap_sensor[i] = −total_distancey − (ypos −
1000(pos_sensorx[i] · sin(θz) + pos_sensory[i] · cos(θx) +
pos_sensorz[i] · sin(θx))

end if
end for

Note that, even though there are six EMS units, only four lateral sensors are used in
the control system.

6.3 MDP

The mathematical formulation of the problem is similar to the 2 DOF control, especially
regarding the observation and action space.

Observation space

The observation space makes use of the frame-stacking technique, concatenating the air
gap measures of the last two time steps and the current measures of the last step. Con-
sidering this approach and the fact that the complete system includes eight sensors and
10 coils, St ∈ IR26.
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Action space

The action space continues to be an array of the voltage applied to each coil at the given
time step, At ∈ IR10.

Reward function

The reward function is a compound function of the different degrees of freedom to be
controlled, varying the weights depending on the last included step of the progress. The
main function is shown in Equation 6.1.

Rt = 1− α|θ̂x| − β|θ̂y| − γ|θ̂z| − δ| ˆposz| − ϵ| ˆposy| − ζ

∣∣∣∣∣∑4
i=1 Îi

4

∣∣∣∣∣+ Rbonus (6.1)

In Equation 6.1, α, β, γ, δ, ϵ and ζ are the weights of each variable and their sum is
equal to one. Symbol θ refers to each angle and pos to the position. The last value of the
function aims to minimize the power consumption of the system. The symbol X̂ indicates
that variable X is normalized as follows:

X̂ =
X− Xmin

Xmax − Xmin
(6.2)

After the experiments, the values at each step of the process are applied as stated in
Table 6.1.

Parameter θX & θY posZ posY & θZ

α 0.4 0.4 0.15
β 0.6 0.3 0.25
γ 0 0 0.15
δ 0 0.3 0.2
ϵ 0 0 0.15
ζ 0 0 0.1

Table 6.1: Parameter values at each stage

Lastly, Rbonus serves to accelerate convergence. It acquires the value of 0.1 in case the
error –regarding the degree of freedom which is the focus of the training stage– decreases,
and −0.1 if it increases in respect to the previous time step.

6.4 Neural Network

The neural networks involved in the training process have been an object of experimenta-
tion to optimize the inference process. In the SAC algorithm, there are mainly two neural
networks involved: the Actor and the Critic. As explained in Chapter 3, only the Actor
affects the process of inference, being the only one critical to be optimized.

In that sense, the Actor-network has been simplified as much as possible without
compromising its effectiveness while controlling levitation. Throughout the experiments,
there have been mainly three aspects varying to find the best combination.
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• The number of layers and neurons per layer have been reduced to the minimum
possible, achieving the final results with a neural network of 2 hidden layers of
64x64 neurons.

• The representation of the states has been established as explained in the previous
section, Section 6.3, as a combination of two frames of the sensor measures and just
the last frame of the currents of the coils, to minimize the input shape. Moreover,
the sensor measures have been represented as the error from the objective height
instead of the measure itself, which limits the range to smaller numbers around 0.

• The final architecture is a simple Feed-Forward neural network. Although LSTM
and Transformer architectures usually provide better results on sequential data, the
difference in computational complexity is not worth the improvement in the case
of Transformers and the experiments evidenced that LSTM architectures add com-
putational complexity without a performance improvement.

To enhance the trade-off between exploration and exploitation, the final layer outputs
the mean and standard deviation of a normal distribution from which the action value
is extracted. Nevertheless, during the validation and test process, the model becomes
deterministic, meaning that for a state the action is always the same.

The final architecture of the model is illustrated in Figure 6.4.

Figure 6.4: Final architecture of the Actor-network

6.5 Experiments & results

This section describes the different experiments performed in this project and illustrates
the obtained results. Each stage is linked to a column of Table 6.1. Each of them consists
of either fine-tuning the previous model or training an agent from scratch –in the case
of the first stage– to control the newly incorporated degree of freedom together with the
ones introduced during the previous steps.
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The Actor-network includes two hidden layers of 64 neurons each, with ReLU as the
activation function. For the output, the actor counts on two neurons to return the mean
and standard deviation of a distribution from which the action is extracted. At inference
time, the standard deviation is eliminated to make the model deterministic. The Critic-
network counts on two hidden layers of 256 neurons each, with ReLU as the activation
function.

During the training process, the learning rate has been set to 0.001, with a linear
schedule to reduce its value with each episode. Nevertheless, for the fine-tuning stages,
the starting learning rate is diminished to 10−5. Adam [28] was the optimizer method
used. The training process has been carried on in a machine with the following specifica-
tions:

Processor 11th Gen Intel(R) Core(TM) i5-11400F @ 2.60GHz 2.59 GHz
Kernels 6
Threads 12
RAM 16 GB
GPU NVIDIA GeForce GTX 1650

Table 6.2: Machine specifications

6.5.1. X & Y angles

The first stage consists of training an agent from scratch to control the angles θX and
θY. They are introduced together in the first stage because they can be understood as
the same task, teaching the vertical levitation units to stabilize the vehicle without fo-
cusing on elevating it to the desired height. Moreover, this task has the best simplicity-
importance ratio, which leads to its selection as the first stage. To achieve it, the simulator
restricts every degree of freedom but those angles.

In this stage, the vehicle is kept at the objective distance and centered in the infras-
tructure. The simulator of Vèsper eliminates the vertical and horizontal displacement
and the jaw rotation from the calculations, simplifying the scenario of states. As the Z-
axis rotation and the horizontal displacement are eliminated, the EMS units are useless
at this moment, and the training process is focused on the HEMS units.

As can be seen in Table 6.1, γ = δ = ϵ = 0, avoiding giving a reward for behavior
not caused by the agent but by the restrictions introduced. Therefore, the agent first
develops the ability to control the selected degrees of freedom. The training process
results, finished after the agent accomplished a mean episode reward higher than 5000 in
the validation callback, are shown hereunder in Figure 6.5.
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Figure 6.5: Results controlling the angles θX and θY

The agent is capable of controlling the two degrees of freedom with an impressive
performance, with less than 1 mm of difference between the measures of the different
sensors during the whole episode. It is important to highlight that, even though ζ = 0,
the agent found that the best possible behavior entails spending the minimum possible
current during levitation.

Note that the duration of the testing episode is 10 seconds, which is twice the duration
of the episodes of training, and the agent maintains the same level of performance.

6.5.2. Z position

Regarding vertical levitation, the other independent task is to maintain the vehicle at
the desired height, controlling posZ. This aspect incorporated is the same as the 1 DOF
control. Nevertheless, the increased number of read values and decided actions, together
with the need to maintain the behavior learned in the previous step, raise the complexity
of the process.

For this stage, the vertical displacement is unlocked in the simulator, allowing the
vehicle to fall down or up. For that reason, δ > 0, which means that the agent obtains
results from maintaining a correct height while still stabilizing the angles θX and θY.

For that purpose, the model from the previous step has been fine-tuned with the new
reward function to acquire this new capability. The results are shown in Figure 6.6.
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Figure 6.6: Results controlling the angles θX and θY, and the position in the Z-axis

The agent is capable of maintaining not only a stable angle as before but also the
correct height. Nevertheless, it can be observed that angle θY has worsened concerning
the previous step, as it is the most difficult angle to control and now the agent has to
focus on more aspects of the levitation. However, the oscillations have been mitigated.

By achieving the control of the vehicle at this stage, the principal function of the levi-
tation control, the control of the HEMS, is dominated.

6.5.3. Y position & Z angle

The last stage is the control of the horizontal levitation, the EMS units, which corresponds
to the angle θZ and position posY. The EMS control is significantly easier and less impor-
tant than the vertical control.

It is easier as there are no constant horizontal forces induced on the vehicle, in contrast
to the gravity and magnetic forces in the vertical levitation control. Therefore, moving
away from the objective position does not aggravate the situation, whereas in vertical
control, the further Vèsper is from the desired height, the more complicated it is to return.

The horizontal control is less important because the friction created by horizontal
fluctuations has a smaller effect on the performance of the vehicle than the friction created
by the weight of the vehicle with the ground.

To achieve control over all five degrees of freedom, the new two degrees of freedom
are unlocked on the simulator, and parameters γ and ϵ are changed to be greater than
0. Thus, the agent obtains a reward by controlling them. Once again, the model is fine-
tuned after these changes to acquire the new capabilities needed to control every degree
of freedom. The results are shown in Figure 6.7.
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Figure 6.7: Results controlling the angles θX , θY, and θZ, and positions posY and posZ

The final model is capable of stabilizing Vèsper in all five degrees of freedom, with
minimal perturbances and controlling all 10 coils at the same time.

6.6 Discussion of results

The training process has achieved the objective with impressive performance, with os-
cillations smaller than 0.5 mm in the measures –note that the sensors include a random
noise in a range of ±0.1 mm–. However, Figure 6.7 evidences the lack of efficiency of the
system as each coil consumes a mean current of around 20 A.

To solve the problem of efficiency, the parameter ζ is introduced, ζ > 0. This com-
ponent of the reward function leads the agent to minimal consumption, without losing
control over the five degrees of freedom. The final results are shown in Figure 6.8.

Figure 6.8: Results controlling the angles θX , θY, and θZ, and positions posY and posZ with mini-
mal consumption
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The new component of the reward function solves the issue detected. Therefore, the
control system maintains the vehicle at the desired position with stability and minimal
energy consumption.

6.7 Performance in the microcontroller

Once the model works as required, it needs to be validated inside the control boards to
ensure that it is possible to be executed at a frequency of 1 kHz. It is important to re-
member that implementing the inference at that frequency would be impossible if each
computation lasted for 1 ms or more, being this the maximum available time for infer-
ence.

The procedure to profile the neural network is the same as in Section 4.4.4. First, the
model is exported as an ONNX file. Then, the STMCubeMX is configured according to
the electronics system of Vèsper –selecting the model of MCU, the pinout distribution,
the frequency of the clock...–. After that, the X-CUBE-AI package is used to translate the
ONNX model into C++ code for the board, and different compression levels are com-
pared in terms of performance inside the microcontroller. The results are illustrated in
Table 6.3

Comp. Level Comp. Type RMSE Inference time (ms)

None None 0 0.069
Lossless RAM 0.0000001 0.069
Lossless Time 0.0000001 0.069

Low RAM 0.0042485 0.1
Low Time 0.0042485 0.1

Table 6.3: Performance of the model inside the microcontroller

Again, the compression of the program does not reduce the inference time, even in-
creasing sometimes, but deteriorates the performance in terms of error. Thus, the selected
model is the original one.

The model can execute the inference of an observation in 0.069 ms, which corresponds
to 6.9% of the maximum available time for inference. The model not only can control the
levitation of the vehicle but is also highly capable of being executed at a frequency of 1
kHz inside the STMH723ZGT6.



CHAPTER 7

Conclusions

This chapter shares the conclusions drawn after the development of the project. First, the
fulfillment of the objectives of the project is analyzed in Section 7.1, and then Section 7.2
describes the relation of the project with different courses from the Bachelor’s Degree in
Data Science.

7.1 Fulfillment of objectives

After finishing the project, it can be stated that all the objectives were fulfilled. The part
of the document where each is accomplished is shown hereunder.

• The simulator of the vehicle has been successfully created, starting in Chapter 4 and
ending in Chapter 6 with the complete dynamic model.

• The model for the control of the vertical levitation of one coil is explained in Chapter
4.

• The model for the control of the levitation of two coils is explained in Chapter 5.
• The model for the control of the levitation of the complete system, with 10 coils, is

explained in Chapter 6.
• The model was optimized at each stage of the process by reducing the size of the

neural network and utilizing the simplest architecture possible, especially in Chap-
ters 4 and 6.

• The performance of the model in its dedicated embedded system is evaluated at
two stages, in Section 4.4.4 and 6.7.

All statements considered, it can be concluded that Reinforcement Learning is a suit-
able substitute for classical control methods, achieving energy savings and great perfor-
mance.

7.2 Applicable theory

This section relates the contents of the project with the knowledge acquired from the
different courses of the bachelor’s degree in Data Science.

• Continuous modeling and simulation (14023): The course consists of the develop-
ment of mathematical models to simulate real-life processes, especially via differ-
ential equations. This course has a direct link to the dynamic model of the vehicle
developed in this project.

• Evaluation, deployment, and monitorization of models (14028): This course in-
cludes information about many different AI techniques, such as the Random Forests
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used to predict the inductance of the coil in the first dynamic models. Moreover,
the course provides knowledge about CD/CI techniques used to work as a team.

• Infrastructure for data processing (14016): This course provided the necessary
hardware base to understand the functioning of the embedded system in which
the model develops the process of inference.

• Predictive and descriptive models II (14011) & Scalable Machine Learning tech-
niques (14009): Both courses provided information about the functioning of neural
networks, different architectures such as Feed-Forward or Long Short-Term Mem-
ory (LSTM), and different ways of optimizing the process of inference and training.

• Programming Fundamentals (14002), Programming (14003) & Algorithmics (14007):
The courses which provided the necessary knowledge for successful programming,
especially in Python –the main language used in this project– but transferrable to
other languages –such as C++–.

• Project management (14018): Both during the planning of the Final Degree Project
and as the Team Captain of Hyperloop UPV, the Project management techniques
learned have been a crucial aspect of the process.



CHAPTER 8

Future work

This chapter describes the work proposed as a continuation of this project, with ideas for
improvement both already implemented but unfinished or not yet applied.

The first proposal is to create a more robust control system. Although the control
system developed can maintain the vehicle at the desired height, it is unable to deal
with highly detrimental positions or angles, thus crashing before reaching the objective
position.

The process of implementing this first proposal has already started. To achieve it, the
5 DOF model is being trained from the beginning with random initialization of angles
and positions. As the current model cannot deal with these situations some adjustments
have been made.

• The stack of frames of the sensor measures has been changed from two time steps
to four. This way, the model has a longer temporal perspective and can perceive
phenomena as acceleration.

• The action space has been normalized to the range [-2.5, 2.5] as it is the range where
the gradient of the hyperbolic tangent –the last activation function of the model– is
significantly greater than 0, as shown in Figure 8.1.

• The negative bonuses received once the measure is worsening have been elimi-
nated. This has been removed because, with highly detrimental initialization, re-
ducing the speed of the vehicle once it is approaching the floor or ceiling to change
the direction of movement produced worse cumulative rewards than letting the
vehicle crash.

Figure 8.1: Hyperbolic tangent gradient

Source: Extracted from [24]
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At the moment, the new model has been able to learn how to control the angles θX
and θY, and the position posZ from the most detrimental situations, with both changes
implemented. The results are shown in Figure 8.2.

Figure 8.2: Example of the results controlling angles θX and θY, and position posZ

The model successfully stabilizes the vehicle. There is a difference of two millimeters
between the front and back measures, which is a small difference taking into account that
the length of Vèsper is two meters. Moreover, although there is no restriction in terms of
current spending, it can be observed that the model gathers the values of current around
0 once the vehicle is stabilized. Note that the EMS units are not taking part in the control
at this stage, thus spending high amounts of current without any effect on the control.

The next step consists of including the horizontal control and the component of the
reward that focuses on minimizing the energy spent.

The second proposal for further work is to incorporate the code generated by X-
CUBE-AI into the boards of Vèsper, thus validating the functioning of the control system
in real-life scenarios. This proposal is directly dependent on the timeline of the team,
having to wait until the control and power boards are ready to perform levitation, and
the vehicle and infrastructure are completely assembled. Once the control system is vali-
dated in real life, it is time to compete against internationally known universities such as
MIT, TU Delft, or ETH Zurich in the EHW.
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[5] Janić, M. Estimation of direct energy consumption and CO2 emission by high speed
rail, transrapid maglev and hyperloop passenger transport systems. International
Journal of Sustainable Transportation, 15:9:696–717, 2021. https://doi.org/10.1080/
15568318.2020.1789780.

[6] Michele Mossi and Pierre Rossel. Swissmetro: a revolution in the high-speed pas-
senger transport systems. Swiss Transport Research Conference, March, 2001. https:
//www.strc.ch/2001/mossi.pdf.

[7] Musk, E. Hyperloop Alpha. SpaceX/Tesla Motors, August, 2013. https://www.tesla.
com/sites/default/files/blog_images/hyperloop-alpha.pdf.

[8] STMicroelectronics Data brief - X-CUBE-AI - Artificial intelligence (AI) software expan-
sion for STM32Cube. https://www.st.com/resource/en/data_brief/x-cube-ai.
pdf.

[9] National Institute of Standards and Technology (NIST). Consulted at https://csrc.
nist.gov/glossary/term/control_system.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement learning : an introduction. Sec-
ond edition. Cambridge, MA : The MIT Press, [2018]. Series: Adaptive computation
and machine learning series.

[11] Kiran, B Ravi and Sobh, Ibrahim and Talpaert, Victor and Mannion, Patrick and Sal-
lab, Ahmad A. Al and Yogamani, Senthil and Pérez, Patrick. Deep Reinforcement
Learning for Autonomous Driving: A Survey. IEEE Transactions on Intelligent Trans-
portation Systems, 23:6:4909–4926, 2022. https://ieeexplore.ieee.org/document/
9351818.

55

https://www.renfe.com/es/es/grupo-renfe/comunicacion/renfe-al-dia/sala-de-prensa/valencia/Aniversario-Ave-Valencia-22millones#:~:text=En%20cuanto%20a%20la%20velocidad,hora%2C%20ha%20afirmado%20el%20ministro
https://www.renfe.com/es/es/grupo-renfe/comunicacion/renfe-al-dia/sala-de-prensa/valencia/Aniversario-Ave-Valencia-22millones#:~:text=En%20cuanto%20a%20la%20velocidad,hora%2C%20ha%20afirmado%20el%20ministro
https://www.renfe.com/es/es/grupo-renfe/comunicacion/renfe-al-dia/sala-de-prensa/valencia/Aniversario-Ave-Valencia-22millones#:~:text=En%20cuanto%20a%20la%20velocidad,hora%2C%20ha%20afirmado%20el%20ministro
https://www.renfe.com/es/es/grupo-renfe/comunicacion/renfe-al-dia/sala-de-prensa/valencia/Aniversario-Ave-Valencia-22millones#:~:text=En%20cuanto%20a%20la%20velocidad,hora%2C%20ha%20afirmado%20el%20ministro
https://int.bahn.de/es/trenes/trenes-de-larga-distancia/ice_3
https://int.bahn.de/es/trenes/trenes-de-larga-distancia/ice_3
https://www.maglevboard.net/en/facts/26-transrapid-maglev-shanghai
https://www.maglevboard.net/en/facts/26-transrapid-maglev-shanghai
https://ieeexplore.ieee.org/document/9632845
https://doi.org/10.1080/15568318.2020.1789780
https://doi.org/10.1080/15568318.2020.1789780
https://www.strc.ch/2001/mossi.pdf
https://www.strc.ch/2001/mossi.pdf
https://www.tesla.com/sites/default/files/blog_images/hyperloop-alpha.pdf
https://www.tesla.com/sites/default/files/blog_images/hyperloop-alpha.pdf
https://www.st.com/resource/en/data_brief/x-cube-ai.pdf
https://www.st.com/resource/en/data_brief/x-cube-ai.pdf
https://csrc.nist.gov/glossary/term/control_system
https://csrc.nist.gov/glossary/term/control_system
https://ieeexplore.ieee.org/document/9351818
https://ieeexplore.ieee.org/document/9351818


56 BIBLIOGRAPHY

[12] Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: A sur-
vey. The International Journal of Robotics Research, 32:11:1238–1274, 2013.
https://journals.sagepub.com/doi/pdf/10.1177/0278364913495721?casa_
token=lLPSKuIzXqMAAAAA:srxbftSU6P7zh1_Ys5cn94oV8xGnDgXFEl5ahDHyV_
uyuyp2k_JFVT5HoijSkqiYXpjnrz-sWiDssw.

[13] Introducing ChatGPT by OpenAI. Consulted at https://openai.com/blog/
chatgpt.

[14] Eric Stoneking. Newton-Euler Dynamic Equations of Motion for a Multi-body
Spacecraft. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. https:
//ntrs.nasa.gov/api/citations/20080044854/downloads/20080044854.pdf.

[15] Gymnasium Documentation. Consulted at https://gymnasium.farama.org/.

[16] Stable-Baselines3 Documentation. Consulted at https://stable-baselines3.
readthedocs.io/en/master/.

[17] PyTorch Documentation. Consulted at https://pytorch.org/.

[18] Weights & Biases Webpage. Consulted at https://wandb.ai/site.

[19] Tuomas Haarnoja and Aurick Zhou and Pieter Abbeel and Sergey Levine. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. arXiv, 1801.01290, 2018. https://arxiv.org/pdf/1801.01290.

[20] John Schulman and Filip Wolski and Prafulla Dhariwal and Alec Radford and Oleg
Klimov. Proximal Policy Optimization Algorithms. arXiv, 1707.06347, 2017. https:
//arxiv.org/pdf/1707.06347.

[21] Scott Fujimoto and Herke van Hoof and David Meger. Addressing Function Ap-
proximation Error in Actor-Critic Methods. arXiv, 1802.09477, 2018. https://arxiv.
org/pdf/1802.09477.

[22] Xu Tian and Jun Zhang and Zejun Ma and Yi He and Juan Wei. Frame Stacking and
Retaining for Recurrent Neural Network Acoustic Model. arXiv, 1705.05992, 2017.
https://arxiv.org/pdf/1705.05992.

[23] Passalis, N., Tefas, A. Continuous drone control using deep reinforcement learn-
ing for frontal view person shooting. Neural Comput & Applic, 32, 4227–4238, 2020.
https://doi.org/10.1007/s00521-019-04330-6.

[24] Activation Functions with Derivative and Python code: Sigmoid vs
Tanh Vs Relu. Consulted at https://medium.com/@omkar.nallagoni/
activation-functions-with-derivative-and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4.

[25] The 17 Goals. United Nations. Consulted at https://sdgs.un.org/goals.

[26] Linear Motor Aircraft Launch System Takes the Steam Out of Cata-
pults. Consulted at https://insights.globalspec.com/article/1365/
linear-motor-aircraft-launch-system-takes-the-steam-out-of-catapults.

[27] Pulling together: Superconducting electromagnets. Con-
sulted at https://www.home.cern/science/engineering/
pulling-together-superconducting-electromagnets.

[28] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv, 1412.6980, 2017. https://arxiv.org/abs/1412.6980.

https://journals.sagepub.com/doi/pdf/10.1177/0278364913495721?casa_token=lLPSKuIzXqMAAAAA:srxbftSU6P7zh1_Ys5cn94oV8xGnDgXFEl5ahDHyV_uyuyp2k_JFVT5HoijSkqiYXpjnrz-sWiDssw
https://journals.sagepub.com/doi/pdf/10.1177/0278364913495721?casa_token=lLPSKuIzXqMAAAAA:srxbftSU6P7zh1_Ys5cn94oV8xGnDgXFEl5ahDHyV_uyuyp2k_JFVT5HoijSkqiYXpjnrz-sWiDssw
https://journals.sagepub.com/doi/pdf/10.1177/0278364913495721?casa_token=lLPSKuIzXqMAAAAA:srxbftSU6P7zh1_Ys5cn94oV8xGnDgXFEl5ahDHyV_uyuyp2k_JFVT5HoijSkqiYXpjnrz-sWiDssw
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://ntrs.nasa.gov/api/citations/20080044854/downloads/20080044854.pdf
https://ntrs.nasa.gov/api/citations/20080044854/downloads/20080044854.pdf
https://gymnasium.farama.org/
https://stable-baselines3.readthedocs.io/en/master/
https://stable-baselines3.readthedocs.io/en/master/
https://pytorch.org/
https://wandb.ai/site
https://arxiv.org/pdf/1801.01290
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1802.09477
https://arxiv.org/pdf/1802.09477
https://arxiv.org/pdf/1705.05992
https://doi.org/10.1007/s00521-019-04330-6
https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4
https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4
https://sdgs.un.org/goals
https://insights.globalspec.com/article/1365/linear-motor-aircraft-launch-system-takes-the-steam-out-of-catapults
https://insights.globalspec.com/article/1365/linear-motor-aircraft-launch-system-takes-the-steam-out-of-catapults
https://www.home.cern/science/engineering/pulling-together-superconducting-electromagnets
https://www.home.cern/science/engineering/pulling-together-superconducting-electromagnets
https://arxiv.org/abs/1412.6980


APPENDIX A

Sustainable Development Goals

Degree in which the work is related to the Sustainable Development Goals (SDGs):

Sustainable Development Goals High Medium Low
Not

applicable

Goal 1. No Poverty. X

Goal 2. Zero Hunger. X

Goal 3. Good Health and Well-being. X

Goal 4. Quality education. X

Goal 5. Gender Equality. X

Goal 6. Clean Water and Sanitation. X

Goal 7. Affordable and Clean Energy. X

Goal 8. Decent Work and Economic Growth. X

Goal 9. Industry, Innovation and Infrastructure. X

Goal 10. Reduced Inequalities. X

Goal 11. Sustainable Cities and Communities. X

Goal 12. Responsible Consumption and Production. X

Goal 13. Climate Action. X

Goal 14. Life Below Water. X

Goal 15. Life on Land. X

Goal 16. Peace, Justice and Strong Institutions. X

Goal 17. Partnerships for the goals. X
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Reflection on the relationship between the TFG and the SDGs:

The SDGs are a group of 17 goals developed by the General Assembly of the United
Nations in 2015 to tackle the main problems of the world before 2030. Among those
problems, there can be found topics such as sustainability, biodiversity, equality, global-
ization...

The description of each goal is shared at [25], showing the description and objectives
of each of them.

The current project has accomplished the development of a control system for the
levitation of a hyperloop vehicle using Reinforcement Learning, minimizing energy con-
sumption. Therefore, the most related SDGs are the following:

• Goal 7. Affordable and Clean Energy: The use of levitation with the developed
levitation control minimizes the energy spent. The system spends less than 2 A per
levitation unit to maintain the position of stability.

• Goal 9. Industry, Innovation and Infrastructure: The development of innovations
like hyperloop brings several new technologies to the table that can be used in
many different fields. Linear motors are already being used to launch aircraft [26].
Electromagnets are being used at CERN to guide the particles through a precise
path [27]. Reinforcement Learning can also be applied to the control of different
systems in other industries to achieve automation.

• Goal 11. Sustainable Cities and Communities: The main goal of hyperloop as a
mode of transportation is to provide more sustainable mobility. By reducing the
friction with the air and the ground it outperforms the current alternatives for its
optimal range of distances, connecting cities with a faster and more sustainable
means of transport.

• Goal 13. Climate Action: Hyperloop is a fully electric means of transport, with
zero emissions. Therefore, as shown in Chapter 2, this mode of transportation is
significantly less pollutant than the train or plane.

Moreover, this project is also related, in a less significant way, with Goal 8. Decent
Work and Economic Growth, as hyperloop intends to allow global connection by reduc-
ing commuting time and allowing to expand the limits of mobility.

The project, although at a lower level, is also related to the following SDGs:

• Goal 4. Quality education: The initiative of Generación Espontánea aims to achieve
a greater level of education, approaching real-world engineering scenarios to the
students.

• Goal 12. Responsible Consumption and Production: The developed control sys-
tem minimizes electricity consumption. Moreover, hyperloop is thought to trans-
port multiple people in a fast and sustainable way, with minimal energy spending.

ETS Enginyeria Informàtica

Camí de Vera, s/n. 46022. València

T +34 963 877 210

F +34 963 877 219

etsinf@upvnet.upv.es - www.inf.upv.es


	Contents
	List of Figures
	List of Tables
	List of algorithms
	Introduction
	Motivation
	Generación Espontánea

	Objectives
	Organization of the document
	Generic student outcomes

	Related Work
	Hyperloop
	Concept
	Origin
	Current state

	Hyperloop UPV
	History
	Organization of the team
	European Hyperloop Week

	Vèsper
	Levitation of Vèsper
	Electronic System of Vèsper


	Control System with Reinforcement Learning
	Introduction
	Reinforcement Learning

	Requirements
	Justification
	Methodology
	Guidelines
	Simulator
	Environment
	Training process


	One degree of freedom
	Overview
	1 DOF test bench
	Current control
	Dynamic model
	MDP
	Results

	Voltage control
	Dynamic model
	MDP
	Results
	Performance analysis in the microcontroller


	Two degrees of freedom
	Dynamic model
	MDP
	Frame stacking

	Results

	Five degrees of freedom
	Overview
	Dynamic model
	Definition of the degrees of freedom and the reference system
	Position and angle calculations
	Transformation to air gap measures

	MDP
	Neural Network
	Experiments & results
	X & Y angles
	Z position
	Y position & Z angle

	Discussion of results
	Performance in the microcontroller

	Conclusions
	Fulfillment of objectives
	Applicable theory

	Future work
	Bibliography
	Sustainable Development Goals

