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Abstract: Given an unbounded non-decreasing positive function ϕ, we studied what the relations
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1. Introduction

Our notation is standard and currently used when working with meromorphic func-
tions and Nevanlinna’s value distribution theory [1,2]. Nevertheless, for the sake of
completeness and to facilitate the reading of this paper, we recall some of its fundamentals
in Section 2.

The meromorphic functions, i.e., those that are analytic in the whole complex field, but
in a set of isolated points that are poles of the function, have been widely studies in Complex
Functions Theory. Researchers have gone further by adding insight into their growth order
when they are solutions of linear complex differential, and difference, equations with entire
or meromorphic coefficients, looking at how the possible growth order of the former is
determined by the growth order of the latter ones [3–8].

Firstly, let us recall that an entire function f is said to have finite-order when its
maximum modulus function, M f , is dominated by the exponential of some real power
a > 0, as displayed in the following inequality for r large enough:

M f (r) := max
|z|=r
| f (z)| ≤ exp (ra). (1)

If there is no a such that Equation (1) holds for r large enough, the growth order of f
is said to be infinite. Otherwise, the infimum of all a > 0 that satisfy Equation (1) is called
the order of growth of f . It is represented by σ( f ), and in general, it may be calculated by

σ( f ) = lim sup
r→∞

log log M f (r)
log r

. (2)

If we replace lim sup by lim inf in Equation (2), we obtain the so-called lower order of
growth of f and represent it by σ( f ) [9]. On the other hand, the notions of type-order (τ)
and hyper-order (σ2) [10] are defined, respectively, by

τ( f ) = lim sup
r→∞

log M f (r)

rσ( f )
, σ2( f ) = lim sup

r→∞

log log T(r, f )
log r

. (3)
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lSimilarly, if lim sup is replaced by lim inf in Equation (3), we obtain the so-called
lower type of f and represent it by τ( f ).

In this setting, Laine and Yang [4] obtained the following growth order property
concerning the solutions of any complex linear difference equation with entire coefficients.

Theorem 1 ([4]). Let w1, . . . , wn be distinct complex numbers, and assume that A0(z), . . . , An(z)
are entire functions of finite-order, which are the coefficients of the difference equation:

An(z) f (z + wn) + · · ·+ A1(z) f (z + w1) + A0(z) f (z) = 0. (4)

If there is exactly one Ak0 , 0 ≤ k0 ≤ n, so that σ := σ(Ak0) = max
0≤k≤n

σ(Ak), and f ( 6≡ 0) is

a meromorphic solution of Equation (4), then σ( f ) ≥ σ + 1 holds.

The particular case that arises in Equation (4) when wk = k is considered, 0 ≤ k ≤ n,
has been subject to further study on the relationship between the growth order of its
coefficients and its solution; cf. [6,11,12].

Higher-order complex linear differential equations:

f (n) + An−1(z) f (n−1) + · · ·+ A0(z) f = 0 (5)

have been studied, as well. During the last four decades, the growth order of the solutions of
Equation (5) has been related to the growth order of the coefficients when these are entire
functions and satisfying some given growth conditions; cf. [13–17].

Let us mention that, in fact, there is a significant amount of recent research on dif-
ference equations and their applications, as the ones developed in [18–25]. A number of
authors (cf. [6,26–29]) have studied the growth rate of any meromorphic solution of linear
differential–difference equations defined by

n

∑
i=0

m

∑
j=0

Aij(z) f (j)(z + ci) = 0, (6)

where all the Aij(z), 0 ≤ i ≤ n, 1 ≤ j ≤ m, are meromorphic or entire functions with finite
growth order and the ci, 1 ≤ i ≤ n, are distinct complex constants.

Finally, let us recall that Chyzhykov et al. [30] considered the concept of the ϕ-order
of a function f , meromorphic in the unit disc, where ϕ : [0, ∞)→ (0, ∞) is an unbounded
non-decreasing real function. Later on, this concept was revisited by Shen et al. [31] and
Bouabdelli/Belaidi [32], who extended it and, additionally, explicated the corresponding
ϕ-lower-order definitions that we recall in the following section.

Remark 1. Throughout this paper, we assume that ϕ : [0, ∞) → (0, ∞) is an unbounded non-
decreasing real function that satisfies the following two conditions:

(i) lim
r→+∞

log log r
log ϕ(r) = 0.

(ii) lim
r→+∞

log ϕ(αr)
log ϕ(r) = 1 for some α > 1.

In this context, the following question arises naturally, and it will be the focus of our
attention in this paper.
Research question : Assuming that the coefficients of a homogeneous linear differential–
difference equation defined by Equation (6) are functions of finite-ϕ-order, entire or mero-
morphic, can we infer somehow the growth rate of any of its solutions?

2. Notation and Background

Let us recall some notation concerning the measure and Nevanlinna theory concepts
that will be used throughout this paper.
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Given a subset E ⊂ [0, ∞), its Lebesgue linear measure, m(E), and its upper density,
dens(E), are, respectively, defined by

m(E) =
∫

E
dt, dens(E) = lim sup

r→∞

m(E ∩ [0, r])
r

.

Furthermore, if E ⊂ [1, ∞), then we also consider its logarithmic measure, ml(E), and
its upper logarithmic density, log dens (E), which are, respectively, defined by

ml(E) =
∫

E

dt
t

, log dens (E) = lim sup
r→∞

ml(E ∩ [1, r])
log r

.

Remark 2. Given a subset H ⊂ [1,+∞), the following implications hold:

(i) ml(H) = ∞ =⇒ m(H) = ∞.
(ii) dens(H) > 0 =⇒ m(H) = ∞.
(iii) log dens(H) > 0 =⇒ ml(H) = ∞.

Given a meromorphic function f , let us denote by n(t, f ) the number of its poles,
counting multiplicities, that lie in D(0, t) := {z ∈ C : |z| ≤ t}, t ≥ 0. Then, the Nevanlinna
counting function of poles, N(r, f ), is defined by

N(r, f ) =
∫ r

0

n(t, f )− n(0, f )
t

dt + n(0, f ) log r, r > 0, 0 ≤ t ≤ r.

If log+ : R→ [0,+∞) stands for the real function defined by log+ x := log x for x ≥ 1
and log+x := 0 for x ≤ 1, the proximity function of f , m(r, f ), is defined by

m(r, f ) :=
1

2π

∫ 2π

0
log+

∣∣ f (reiθ)∣∣dθ.

The Nevanlinna characteristic function, represented by T, is the sum of the counting
and proximity functions:

T(r, f ) = N(r, f ) + m(r, f ).

Definition 1 ([1]). Given a ∈ C = C ∪ {∞}, we call the deficiency of a with respect to a given
meromorphic function f , and represent it as δ(a, f ), to the value given by

δ(a, f ) = lim inf
r→∞

m
(

r, 1
f−a

)
T(r, f )

= 1− lim sup
r→∞

N
(

r, 1
f−a

)
T(r, f )

, a 6= ∞,

δ(∞, f ) = lim inf
r→∞

m(r, f )
T(r, f )

= 1− lim sup
r→∞

N(r, f )
T(r, f )

.

Definition 2 ([30,31]). The ϕ− (respectively, lower-) order σ (respectively, σ) of a given meromor-
phic function f is represented as σ( f , ϕ) (respectively, σ( f , ϕ) ) and corresponds to the value given
by

σ( f , ϕ) = lim sup
r→∞

log T(r, f )
log ϕ(r)

, (resp. σ( f , ϕ) = lim inf
r→∞

log T(r, f )
log ϕ(r)

).

When f is entire, then

σ( f , ϕ) = lim sup
r→∞

log log M f (r)
log ϕ(r)

, (resp. σ( f , ϕ) = lim inf
r→∞

log log M f (r)
log ϕ(r)

).
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Definition 3 ([30,32]). Assume that f is a meromorphic function such that 0 < σ( f , ϕ) = σ < ∞,
then the ϕ−type of f is represented as τ( f , ϕ) and corresponds to the value defined as

τ( f , ϕ) = lim sup
r→∞

T(r, f )
ϕ(r)σ .

If f is entire, then

τ( f , ϕ) = lim sup
r→∞

log M f (r)
ϕ(r)σ .

Similarly, if 0 < σ( f , ϕ) = σ < +∞, the corresponding ϕ− lower types are represented and
defined by

τ( f , ϕ) = lim inf
r→∞

T(r, f )
ϕ(r)σ (respectively, τ( f , ϕ) = lim inf

r→∞

log M f (r)
ϕ(r)σ ).

Remark 3. If we take ϕ(r) = r in Definitions 2 and 3, then we generate the order, lower-order,
type, and lower-type standard definitions, respectively.

3. Main Results

In this section, we announce the main findings of this paper, the first of which deal
with coefficients that are entire functions and the last two with meromorphic coefficients.

Theorem 2. Let Aij(z), 0 ≤ i ≤ n, 0 ≤ j ≤ m, be a family of entire functions such that the ϕ−
order of some Al0, 0 ≤ l ≤ n, is finite and dominates the ϕ− order of the rest of them, i.e.,

max
{

σ
(

Aij, ϕ
)

: (i, j) 6= (l, 0)
}
≤ σ(Al0, ϕ) < ∞, (7)

and that the ϕ− type of Al0 also satisfies that

max
{

τ
(

Aij, ϕ
)

: σ
(

Aij, ϕ
)
= σ(Al0, ϕ), (i, j) 6= (l, 0)

}
< τ(Al0, ϕ), (8)

Then, if f ( 6≡ 0) is a transcendental meromorphic solution of Equation (6), σ( f , ϕ) ≥
+σ(Al0, ϕ) + 1.

Theorem 3. Let Aij(z), 0 ≤ i ≤ n, 0 ≤ j ≤ m, be a family of entire functions such that the ϕ−
lower-order of some Al0, 0 ≤ l ≤ n, is finite and dominates the ϕ− order of the rest of them, i.e.,

max
{

σ
(

Aij, ϕ
)

: (i, j) 6= (l, 0)
}
≤ σ(Al0, ϕ) < ∞, (9)

and that the ϕ− lower type of Al0 also satisfies that

max
{

τ
(

Aij, ϕ
)

: σ
(

Aij, ϕ
)
= σ(Al0, ϕ), (i, j) 6= (l, 0)

}
< τ(Al0, ϕ). (10)

Then, if f ( 6≡ 0) is a transcendental meromorphic solution of Equation (6), σ( f , ϕ) ≥
σ(Al0, ϕ) + 1.

Theorem 4. Let Aij(z), 0 ≤ i ≤ n, 0 ≤ j ≤ m, be a family of entire functions such that their ϕ−
orders are finite and smaller than a real number σ ∈ [1,+∞), i.e.,

max
{

σ
(

Aij, ϕ
)

: 0 ≤ i ≤ n, 0 ≤ j ≤ m,
}
≤ σ.
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Assume that there exists some H ⊂ C with log dens{|z| : z ∈ H} > 0, such that, for some
integer 0 ≤ l ≤ n, there exist some constants 0 ≤ β < α and some sufficiently small ε, 0 < ε < σ,
so that as |z| = r → ∞ for z ∈ H,

|Al0(z)| ≥ exp
{

α(ϕ(r))σ−ε
}

, (11)

while for the rest of functions:∣∣Aij(z)
∣∣ ≤ exp

{
β(ϕ(r))σ−ε

}
, (i, j) 6= (l, 0). (12)

Then, if f ( 6≡ 0) is a transcendental meromorphic solution of Equation (6), σ( f , ϕ) ≥
σ(Al0, ϕ) + 1.

Theorem 5. Let Aij(z), 0 ≤ i ≤ n, 0 ≤ j ≤ m, be a family of entire functions of finite ϕ−orders
so that, for some of them, Al0, 0 ≤ l ≤ n, it holds

lim sup
r→∞

∑
(i,j) 6=(l,0)

m
(
r, Aij

)
m(r, Al0)

< 1. (13)

Then, every meromorphic solution f ( 6≡ 0) of Equation (6) satisfies σ( f , ϕ) ≥ σ(Al0, ϕ) + 1.

The following results provide some growth properties of the solutions of Equation (6)
when the coefficients are meromorphic functions.

Theorem 6. Let Aij(z), 0 ≤ i ≤ n, 0 ≤ j ≤ m, be a family of meromorphic functions such that,
for some of them, Al0, 0 ≤ l ≤ n, it holds

max
{

σ
(

Aij, ϕ
)

: (i, j) 6= (l, 0)
}
< σ(Al0, ϕ) and δ(∞, Al0) > 0.

Then, every meromorphic solution f ( 6≡ 0) of Equation (6) satisfies σ( f , ϕ) ≥ σ(Al0, ϕ) + 1.

Theorem 7. Let Aij(z), 0 ≤ i ≤ n, 0 ≤ j ≤ m, be a family of meromorphic functions such that,
for some of them, Al0, 0 ≤ l ≤ n, it holds

lim sup
r→∞

∑
(i,j) 6=(l,0)

m
(
r, Aij

)
m(r, Al0)

< 1 and δ(∞, Al0) > 0.

Then, every meromorphic solution f ( 6≡ 0) of Equation (6) satisfies σ( f , ϕ) ≥ σ(Al0, ϕ) + 1.

4. Preliminary Lemmas

Let us go through some results that will pave the way for the sequel.

Lemma 1 ([33]). Let α > 1 be a real number and (m, n) a pair of integers with 0 ≤ m < n. If f is a
complex transcendental meromorphic function, then there exist some E1 ⊂ (1,+∞) with ml(E1) <
∞ and a real constant B > 0 depending on α and (m, n), so that, for |z| = r 6∈ [0, 1] ∪ E1,∣∣∣∣∣ f (n)(z)

f (m)(z)

∣∣∣∣∣ ≤ B
(

T(αr, f )
r

(logα r) log T(αr, f )
)n−m

.

Taking advantage of this lemma, we deduce the following one.
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Lemma 2. Let ε > 0 , α > 1 be real constants and (m, n) a pair of integers, 0 ≤ m < n. If f is a
complex transcendental meromorphic function with 1 ≤ σ( f , ϕ) = σ < +∞, then there exist some
E2 ⊂ (1,+∞) with ml(E2) < ∞, so that, for |z| = r 6∈ [0, 1] ∪ E2, it holds∣∣∣∣∣ f (n)(z)

f (m)(z)

∣∣∣∣∣ ≤
(
(ϕ(r))σ+α+ε

r

)n−m

.

Proof. By the hypothesis, f has finite ϕ−order σ, so given ε, 0 < ε < 2, for sufficiently
large r > R, it holds that

T(r, f ) < (ϕ(r))σ+ ε
2 . (14)

Having in mind Lemma 1, Equation (14) implies that there exist some E2 ⊂ (1,+∞) with
ml(E2) < ∞, and a real constant B > 0, so that, if |z| = r 6∈ [0, 1] ∪ E2, then∣∣∣∣∣ f (n)(z)

f (m)(z)

∣∣∣∣∣ ≤ B

(
(ϕ(αr))σ+ ε

2

r
(logα r) log(ϕ(αr))σ+ ε

2

)n−m

≤
(
(ϕ(r))σ+α+ε

r

)n−m

.

This proves the lemma.

Remark 4. Goldberg and Ostrovskii ([34], p. 66) showed that the following inequalities hold for
any arbitrary complex number c 6= 0 :

(1 + o(1))T(r− |c|, f (z)) ≤ T(r, f (z + c)) ≤ (1 + o(1))T(r + |c|, f (z)),

as r → ∞ for an arbitrary meromorphic function f . Hence, it follows that

σ( f (z + c), ϕ) = σ( f , ϕ), σ( f (z + c), ϕ) = σ( f , ϕ).

Lemma 3 ([29]). Let η1, η2 be two arbitrary complex numbers, η1 6= η2. If f is a finite ϕ−order
meromorphic function with ϕ−order σ, then for each ε > 0, it holds that

m
(

r,
f (z + η1)

f (z + η2)

)
= O

(
(ϕ(r))σ−1+ε

)
.

Lemma 4 ([5]). Let η be a non-zero complex number and γ > 1, ε > 0 be two real constants. If f
is a meromorphic function, then there exist some subset E3 ⊂ (1,+∞) with ml(E3) < ∞, and a
constant A depending on γ and η, so that, for |z| = r /∈ E3 ∪ [0, 1], it holds that∣∣∣∣log

∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A
(

T(γr, f )
r

+
n(γr)

r
logγ r log+ n(γr)

)
,

where n(t) = n(t, f ) + n
(

t, 1
f

)
.

Lemma 5 ([33]). Let j be a non-negative integer, a be a value in the extended complex plane, and
α > 1 be a real constant. If f is a transcendental meromorphic function, then there exists a constant
R > 0, so that, for r ≥ R, the number n

(
r, f (j), a

)
of zeros of f (j) in Da(r) = {z ∈ C : |z− a| ≤

r} satisfies that

n
(

r, f (j), a
)
≤ 2j + 6

log α
T(αr, f ).

Now, we write down the following result, which comes from fixing p = q = 1 in
Lemma 2.4 of [32].
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Lemma 6 ([32]). If f is a meromorphic function with 1 ≤ σ( f , ϕ) < +∞, then there exists some
E4 ⊂ (1,+∞) with ml(E4) = +∞, so that, for |z| = r ∈ E4,

T(r, f ) < (ϕ(r))σ( f ,ϕ)+ε.

Lemma 7. Let η be a non-zero complex number, and let β > 1 and ε > 0 be given real constants.
If f is a meromorphic function that has finite ϕ− order σ, then there exists some E5 ⊂ (1,+∞)
with ml(E5) < ∞, so that, for |z| = r /∈ E5 ∪ [0, 1], it happens that

exp

{
− (ϕ(r))σ+β+ε

r

}
≤
∣∣∣∣ f (z + η)

f (z)

∣∣∣∣ ≤ exp

{
(ϕ(r))σ+β+ε

r

}
.

Proof. From Lemma 4, it follows that there exist some E5 ⊂ (1,+∞) with ml(E5) < ∞,
and a constant A, depending on γ and η, so that, for |z| = r /∈ E5 ∪ [0, 1] and denoting
n(t) = n(t, f ) + n

(
t, 1

f

)
, it holds that∣∣∣∣log

∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A
(

T(γr, f )
r

+
n(γr)

r
logγ r log+ n(γr)

)
. (15)

Now, Lemma 5 and Equation (15) imply that∣∣∣∣log
∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A
(

T(γr, f )
r

+
12

log α

T(αγr, f )
r

logγ r log+
(

12
log α

T(αγr, f )
))

≤ B

(
T(βr, f )

logβ r
r

log T(βr, f )

)
, (16)

where B > 0 is a positive constant and β = αγ > 1.
Since f has finite ϕ−order σ, given any ε, 0 < ε < 2, for sufficiently large r, it holds

T(r, f ) < (ϕ(r))σ+ ε
2 . (17)

Taking into account the inequality established by Equations (17) and (16), we de-
duce that ∣∣∣∣log

∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ B(ϕ(βr))σ+ ε
2

logβ r
r

log(ϕ(βr))σ+ ε
2 ≤ (ϕ(r))σ+β+ε

r
. (18)

Finally, from Equation (18), it follows that

exp

{
− (ϕ(r))σ+β+ε

r

}
≤
∣∣∣∣ f (z + η)

f (z)

∣∣∣∣ ≤ exp

{
(ϕ(r))σ+β+ε

r

}
.

This proves the lemma.

Lemma 8. Let η1, η2 be two arbitrary complex numbers η1 6= η2 and β > 1, ε > 0 be two real
numbers. If f is a meromorphic function of finite ϕ−order σ, then there exists some E6 ⊂ (1,+∞)
with ml(E6) < ∞, so that for |z| = r /∈ E6, it holds that

exp

{
− (ϕ(r))σ+β+ε

r

}
≤
∣∣∣∣ f (z + η1)

f (z + η2)

∣∣∣∣ ≤ exp

{
(ϕ(r))σ+β+ε

r

}
.
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Proof. Firstly, we write down the identity:∣∣∣∣ f (z + η1)

f (z + η2)

∣∣∣∣ = ∣∣∣∣ f (z + η2 + η1 − η2)

f (z + η2)

∣∣∣∣, η1 6= η2.

By Lemma 7 with the given ε, β, there exists some E5 ⊂ (1,+∞) with ml(E5) < ∞, , so
that, for |z + η2| = R /∈ E5 ∪ [0, 1], we obtain

exp

{
− (ϕ(r))σ+β+ε

r

}
≤ exp

{
− (ϕ(|z|+ |η2|))σ+β+ ε

2

|z + η2|

}

= exp

{
− (ϕ(R))σ+β+ ε

2

R

}
≤
∣∣∣∣ f (z + η1)

f (z + η2)

∣∣∣∣
=

∣∣∣∣ f (z + η2 + η1 − η2)

f (z + η2)

∣∣∣∣ ≤ exp

{
(ϕ(R))σ+β+ ε

2

R

}

≤ exp

{
(ϕ(|z|+ |η2|))σ+β+ε

|z + η2|

}
≤ exp

{
(ϕ(r))σ+β+ε

r

}
,

where |z| = r /∈ E6.

By using Lemmas 4–6, we extend Lemmas 2 and 8 under the ϕ−lower-order setting
in the following two results.

Lemma 9. Let ε > 0 , α > 1 be two real numbers. If f is a transcendental meromorphic function
with 1 ≤ σ( f , ϕ) = σ < +∞, then there exist some E7 ⊂ (1,+∞) with ml(E7) = +∞, and a
pair (m, n) of integers, 0 ≤ m < n, so that, for |z| = r ∈ E7, it holds that∣∣∣∣∣ f (n)(z)

f (m)(z)

∣∣∣∣∣ ≤
(
(ϕ(r))σ+α+ε

r

)n−m

.

Lemma 10. Let η1, η2 be two arbitrary complex numbers, η1 6= η2, and ε > 0, β > 1 be two
real numbers. If f is a meromorphic function of finite ϕ−lower-order σ, then there exists some
E8 ⊂ (1,+∞) with ml(E8) = +∞, such that, for |z| = r ∈ E8, it holds that

exp

{
− (ϕ(r))σ+β+ε

r

}
≤
∣∣∣∣ f (z + η1)

f (z + η2)

∣∣∣∣ ≤ exp

{
(ϕ(r))σ+β+ε

r

}
.

Lemma 11. If f is a meromorphic function with σ( f , ϕ) = σ ≥ 1, then there exists some
E9 ⊂ (1,+∞) with ml(E9) = +∞, so that

lim
r→+∞
r∈E9

log T(r, f )
log ϕ(r)

= σ.

Proof. Taking into account the definition of σ( f , ϕ), we may pick up some sequence {rn}
diverging to +∞, satisfying

(
1 + 1

n

)
rn < rn+1, and

σ( f , ϕ) = lim
rn→∞

log T(rn, f )
log ϕ(rn)

.
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Hence, there exists some integer n1, so that, for n ≥ n1, r ∈
[
rn,
(

1 + 1
n

)
rn

]
,

log T(rn, f )

log ϕ
((

1 + 1
n

)
rn

) ≤ log T(r, f )
log ϕ(r)

≤
log T

((
1 + 1

n

)
rn, f

)
log ϕ(rn)

.

Set E9 =
∞
∪

n=n1

[
rn,
(

1 + 1
n

)
rn

]
. Then, for r ∈ E9, we deduce

lim
r→+∞
r∈E9

log T(r, f )
log ϕ(r)

= lim
rn→+∞

log T(rn, f )
log ϕ(rn)

σ( f , ϕ) = σ,

and ml(E9) =
∞
∑

n=n1

(1+ 1
n )rn∫

rn

dt
t =

∞
∑

n=n1

log
(

1 + 1
n

)
= ∞.

The next lemma comes just from fixing p = q = 1 in Lemma 2.5 of [32].

Lemma 12 ([32]). If f1 and f2 are two meromorphic functions satisfying σ( f1, ϕ) > σ( f2, ϕ),
then there exists some E10 ⊂ (1,+∞) with ml(E10) = +∞, so that, for r ∈ E10, it holds

lim
r→∞

T(r, f2)

T(r, f1)
= 0.

Lemma 13. It f is an entire function with 1 ≤ σ( f , ϕ) = σ < +∞, then there exists some
E11 ⊂ (1,+∞) with ml(E11) = +∞, so that, for r ∈ E11, it holds

τ( f , ϕ) = lim
r→+∞
r∈E11

log M f (r)
ϕ(r)σ .

Proof. By the definition of σ( f , ϕ), we may pick up some sequence {rn} diverging to +∞,
with

(
1 + 1

n

)
rn < rn+1 and

τ( f , ϕ) = lim
rn→+∞

log M f (rn)

ϕ(rn)
σ .

Hence, there exists some integer n1, so that, for n ≥ n1, r ∈
[ n

n+1 rn, rn
]
, it holds

log M f
( n

n+1 rn
)

ϕ(rn)
σ ≤

log M f (r)
ϕ(r)σ ≤

log M f (rn)

ϕ
( n

n+1 rn
)σ .

Therefore,(
ϕ
( n

n+1 rn
)

ϕ(rn)

)σ
log M f

( n
n+1 rn

)
ϕ
( n

n+1 rn
)σ ≤

log M f (r)
ϕ(r)σ ≤

log M f (rn)

ϕ(rn)
σ

(
ϕ(rn)

ϕ
( n

n+1 rn
))σ

.

If we fix E11 =
∞
∪

n=n1

[ n
n+1 rn, rn

]
, then, for r ∈ E11, we obtain that

lim
r→+∞
r∈E11

log M f (r)
ϕ(r)σ = lim

rn→+∞

log M f (rn)

ϕ(rn)
σ = τ( f , ϕ),

and ml(E11) =
∞
∑

n=n1

rn∫
n

n+1 rn

dt
t =

∞
∑

n=n1

log
(

1 + 1
n

)
= ∞.



Axioms 2023, 12, 239 10 of 15

Lemma 14 ([13]). Let g, h : [0, ∞)→ R be two monotone non-decreasing functions with g(r) ≤
h(r) for r /∈ E12 ∪ [0, 1], where E12 ⊂ (1,+∞) satisfies that ml(E12) < ∞, and let γ > 1 be a
real number. Then, there exists some r0 = r0(γ) > 0, so that g(r) ≤ h(γr) for r > r0.

5. Proof of Main Results

Proof of Theorem 7. Assume that f ( 6≡ 0) is a transcendental meromorphic solution of
Equation (6) such that σ( f , ϕ) < σ(Al0, ϕ) + 1 < ∞. Dividing both terms of Equation (6)
by f (z + cl), we obtain

−Al0 =
n

∑
i=0
i 6=l

m

∑
j=0

Aij(z)
f (j)(z + ci)

f (z + ci)

f (z + ci)

f (z + cl)
+

m

∑
j=1

Al j(z)
f (j)(z + cl)

f (z + cl)
. (19)

Let us write down σ = max
{

σ
(

Aij, ϕ
)

: (i, j) 6= (l, 0)
}
≤ σ(Al0, ϕ) and analogously,

τ = max{τ
(

Aij, ϕ
)

: σ
(

Aij, ϕ
)
= σ(Al0, ϕ), (i, j) 6= (l, 0)} < τ(Al0, ϕ). Then, for a suffi-

ciently large r, we have that, if σ
(

Aij, ϕ
)
< σ(Al0, ϕ), (i, j) 6= (l, 0), then∣∣Aij(z)

∣∣ ≤ exp
{
(ϕ(r))σ+ε

}
, (20)

and, if σ
(

Aij, ϕ
)
= σ(Al0, ϕ), (i, j) 6= (l, 0), then∣∣Aij(z)

∣∣ ≤ exp
{
(τ + ε)(ϕ(r))σ(Al0,ϕ)

}
, (21)

Lemma 2 and Remark 4 imply that, given ε > 0, α > 1, there exists some E2 ⊂ (1,+∞)
with ml(E2) < ∞, for |z| = r 6∈ [0, 1] ∪ E2 and 0 ≤ i ≤ n, 0 ≤ j ≤ m; it holds∣∣∣∣∣ f (j)(z + ci)

f (z + ci)

∣∣∣∣∣ ≤
(
(ϕ(r))σ( f (z+ci),ϕ)+α+ε

r

)j

=

(
(ϕ(r))σ( f ,ϕ)+α+ε

r

)j

. (22)

By Lemma 8, there exists some E6 ⊂ (1,+∞) with ml(E6) < ∞, such that, for |z| =
r /∈ E6, ε > 0 and β > 1, it holds that∣∣∣∣ f (z + ci)

f (z + cl)

∣∣∣∣ ≤ exp

{
(ϕ(r))σ( f ,ϕ)+β+ε

r

}
, 0 ≤ i ≤ n, i 6= l. (23)

We chose some ε > 0 small enough to satisfy

τ + 2ε < τ(Al0, ϕ), max{σ, σ( f , ϕ)− 1}+ 2ε < σ(Al0, ϕ). (24)

Carrying (20), (21), (22) and (23) into (19), for |z| = r /∈ [0, 1]∪ E2 ∪ E6, we obtain that

MAl0(r) ≤ exp

{
(ϕ(r))σ( f ,ϕ)+β+ε

r

}
O
(

exp
{
(τ + ε)(ϕ(r))σ(Al0,ϕ)

}
+ exp

{
(ϕ(r))σ+ε

})

·
(
(ϕ(r))σ( f ,ϕ)+α+ε

r

)m

, (25)

where |Al0(z)| = MAl0(r). By (24), (25) and Lemma 14, we obtain that

τ(Al0, ϕ) = lim sup
r→∞

log MAl0(r)

ϕ(r)σ(Al0,ϕ)
≤ τ + ε < τ(Al0, ϕ)− ε,

which is a contradiction. Hence, σ( f , ϕ) ≥ 1 + σ(Al0, ϕ).
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Proof of Theorem 8. Our reasoning will be similar to the one made for Theorem 2. Assume
that f ( 6≡ 0) is a transcendental meromorphic solution of Equation (6), satisfying σ( f , ϕ) <
σ(Al0, ϕ) + 1 < ∞.

Let us set σ1 = max
{

σ
(

Aij, ϕ
)

: (i, j) 6= (l, 0)
}
≤ σ(Al0, ϕ) and on the other hand,

τ1 = max{τ
(

Aij, ϕ
)

: σ
(

Aij, ϕ
)
= σ(Al0, ϕ), (i, j) 6= (l, 0)} < τ(Al0, ϕ). Then, for r large

enough, we have that, if σ
(

Aij, ϕ
)
< σ(Al0, ϕ), (i, j) 6= (l, 0),∣∣Aij(z)
∣∣ ≤ exp

{
(ϕ(r))σ1+ε

}
, (26)

and if σ
(

Aij, ϕ
)
= σ(Al0, ϕ), (i, j) 6= (l, 0), then∣∣Aij(z)

∣∣ ≤ exp
{
(τ1 + ε)(ϕ(r))σ(Al0,ϕ)

}
. (27)

By Remark 4 and Lemmas 9 and 10, given ε > 0 and α, β > 1, there exists some
E8 ⊂ (1,+∞) with ml(E8) = +∞, so that, for |z| = r ∈ E8 and 0 ≤ i ≤ n, 0 ≤ j ≤ m,∣∣∣∣∣ f (j)(z + ci)

f (z + ci)

∣∣∣∣∣ ≤
(
(ϕ(r))σ( f (z+ci),ϕ)+α+ε

r

)j

=

(
(ϕ(r))σ( f ,ϕ)+α+ε

r

)j

(28)

and ∣∣∣∣ f (z + ci)

f (z + cl)

∣∣∣∣ ≤ exp

{
(ϕ(r))σ( f ,ϕ)+β+ε

r

}
, (i = 0, 1, . . . , n, i 6= l) (29)

hold. Let us pick some ε > 0 sufficiently small to satisfy

τ1 + 2ε < τ(Al0, ϕ), max{σ1, σ( f , ϕ)− 1}+ 2ε < σ(Al0, ϕ). (30)

Carrying (26), (27), (28) and (29) into (19), for |z| = r ∈ E8, we obtain

MAl0(r) ≤ exp

{
(ϕ(r))σ( f ,ϕ)+β+ε

r

}
O
(

exp
{
(τ1 + ε)(ϕ(r))σ(Al0,ϕ)

}
+ exp

{
(ϕ(r))σ1+ε

})

·
(
(ϕ(r))σ( f ,ϕ)+α+ε

r

)m

, (31)

where |Al0(z)| = MAl0(r). By (30), (31) and Lemma 13, for |z| = r ∈ E8, we deduce

τ(Al0, ϕ) = lim
r→∞

log MAl0(r)

ϕ(r)σ(Al0,ϕ)
≤ τ1 + ε < τ(Al0, ϕ)− ε,

a contradiction. Hence, σ( f , ϕ) ≥ σ(Al0, ϕ) + 1.

Proof of Theorem 9. Assume that f ( 6≡ 0) is a transcendental meromorphic solution of
Equation (6) satisfying σ( f , ϕ) < σ(Al0, ϕ) + 1 < ∞. By hypothesis, there is some H ⊂ C
with log dens{|z| : z ∈ H} > 0, so that, if z ∈ H, Equations (11) and (12) hold as r → ∞.

Hence, if we set H1 = {|z| = r : z ∈ H}, Remark 2 yields that
∫

H1
dr
r = ∞, it being

immediate that Equations (22) and (23) are true for |z| = r /∈ [0, 1] ∪ E2 ∪ E6.
Carrying (11), (12), (22) and (23) into (19), for |z| = r ∈ H1\ [0, 1] ∪ E2 ∪ E6, and

considering any ε ∈
(

0, σ−σ( f ,ϕ)+1
2

)
, it follows that

exp
{

α(ϕ(r))σ−ε
}
≤ n exp

{
β(ϕ(r))σ−ε

}
· exp

{
(ϕ(r))σ( f ,ϕ)+β+ε

r

}
·
(
(ϕ(r))σ( f ,ϕ)+α+ε

r

)m

.
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Consequently,

exp
{
(α− β)(ϕ(r))σ−ε

}
≤ n exp

{
(ϕ(r))σ( f ,ϕ)+β+ε

r

}(
(ϕ(r))σ( f ,ϕ)+α+ε

r

)m

. (32)

Equation (32) and ε ∈
(

0, σ−σ( f ,ϕ)+1
2

)
are contradictory. Hence, σ( f , ϕ) ≥ σ(Al0, ϕ) +

1.

Proof of Theorem 10. Assume that f ( 6≡ 0) is a meromorphic solution of Equation (6). The
result is trivial if σ( f , ϕ) = ∞; thus, we will suppose that σ( f , ϕ) < +∞.

From Equation (19), it follows that

m(r, Al0) ≤
n

∑
i=0
i 6=l

m

∑
j=0

m
(
r, Aij

)
+

m

∑
j=1

m
(

r, Al j

)
+

n

∑
i=0

m

∑
j=1

m

(
r,

f (j)(z + ci)

f (z + ci)

)

+
n

∑
i=0
i 6=l

m
(

r,
f (z + ci)

f (z + cl)

)
+ O(1). (33)

Let us assume that
∑

(i,j) 6=(l,0)
m
(
r, Aij

)
m(r, Al0)

= σ < λ < 1. (34)

Consequently, for r large enough, it holds that

∑
(i,j) 6=(l,0)

m
(
r, Aij

)
< λm(r, Al0). (35)

By Lemma 3, for r large enough and any ε > 0, we obtain that

m
(

r,
f (z + ci)

f (z + cl)

)
= O

(
(ϕ(r))σ( f ,ϕ)−1+ε

)
, i 6= l. (36)

From the logarithmic derivative lemma and Remark 4, we obtain that

m

(
r,

f (j)(z + ci)

f (z + ci)

)
= O

(
(log(ϕ(r)))σ( f ,ϕ)−1+ε

)
, j = 0, 1, . . . , m. (37)

Taking (35), (36) and (37) into (33), for r large enough and any ε > 0,

m(r, Al0) ≤ λm(r, Al0) + O
(
(ϕ(r))σ( f ,ϕ)−1+ε

)
+ O

(
(log(ϕ(r)))σ( f ,ϕ)−1+ε

)
. (38)

From (38), it follows that

(1− λ)m(r, Al0) ≤ O
(
(ϕ(r))σ( f ,ϕ)−1+ε

)
+ O

(
(log(ϕ(r)))σ( f ,ϕ)−1+ε

)
. (39)

By (39), we deduce σ( f , ϕ) ≥ σ(Al0, ϕ) + 1.

Proof of Theorem 11. Assume that f ( 6≡ 0) is a meromorphic solution of Equation (6). The
result is trivial if σ( f , ϕ) = ∞; thus, we will suppose that σ( f , ϕ) < +∞ and set

δ(∞, Al0) = lim inf
r→∞

m(r, Al0)

T(r, Al0)
= δ > 0. (40)
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From Equation (40), for r large enough, it follows that

m(r, Al0) >
1
2

δT(r, Al0). (41)

Taking (36), (37) and (41) into (33), for r large enough and any ε > 0, we obtain

1
2

δT(r, Al0) < m(r, Al0) ≤
n

∑
i=0
i 6=l

m

∑
j=0

m
(
r, Aij

)
+

m

∑
j=1

m
(

r, Al j

)

+
n

∑
i=0

m

∑
j=1

m

(
r,

f (j)(z + ci)

f (z + ci)

)
+

n

∑
i=0
i 6=l

m
(

r,
f (z + ci)

f (z + cl)

)
+ O(1)

≤
n

∑
i=0
i 6=l

m

∑
j=0

T
(
r, Aij

)
+

m

∑
j=1

T
(

r, Al j

)

+O
(
(ϕ(r))σ( f ,ϕ)−1+ε

)
+ O

(
(log(ϕ(r)))σ( f ,ϕ)−1+ε

)
. (42)

Since max
{

σ
(

Aij, ϕ
)

: (i, j) 6= (l, 0)
}

< σ(Al0, ϕ), Lemma 12 provides some E10 ⊂
(1,+∞) with ml(E10) = +∞, so that, for r ∈ E10 and r → +∞, it holds

max

{
T
(
r, Aij

)
T(r, Al0)

: (i, j) 6= (l, 0)

}
→ 0. (43)

From (42) and (43), for all r ∈ E10 and r → +∞, we have(
δ

2
− o(1)

)
T(r, Al0) ≤ O

(
(ϕ(r))σ( f ,ϕ)−1+ε

)
+ O

(
(log(ϕ(r)))σ( f ,ϕ)−1+ε

)
. (44)

It follows from (44) and Lemma 11 that σ( f , ϕ) ≥ σ(Al0, ϕ) + 1.

Proof of Theorem 12. Assume that f ( 6≡ 0) is a meromorphic solution of Equation (6). The
result is trivial for σ( f , ϕ) = ∞. Thus, we will suppose that σ( f , ϕ) < +∞. As in the proof
of Theorem 5, by taking (35), (36) and (37) into (33), for r large enough and any ε > 0, it
holds

(1− λ)m(r, Al0) ≤ O
(
(ϕ(r))σ( f ,ϕ)−1+ε

)
+ O

(
(log(ϕ(r)))σ( f ,ϕ)−1+ε

)
. (45)

From Lemma 11, it follows that there is some E9 ⊂ (1,+∞) with ml(E9) = +∞, so
that

lim
r→+∞

r∈E9

log T(r, Al0)

log ϕ(r)
= σ(Al0, ϕ), (46)

Since δ(∞, Al0) = lim infr→∞
m(r,Al0)
T(r,Al0)

= δ > 0, we obtain that

lim
r→+∞

r∈E9

log m(r, Al0)

log ϕ(r)
= σ(Al0, ϕ). (47)

Finally, from Equations (45) and (47), it follows that σ( f , ϕ) ≥ σ(Al0, ϕ) + 1.

The results obtained in this paper are true whenever the corresponding hypothesis
requested in each of them holds. The next example shows the way in which their validity
may be checked.
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Example 1. By considering the homogeneous differential–difference equation with entire coeffi-
cients:

A11(z) f
′
(z− 1) + A20(z) f (z + 3) + A00(z) f (z) = 0, (48)

where
A00(z) = 1, A11(z), A20(z) = (4πi(1− z)− exp (4πiz)) exp (−16πiz)

depict the order of growth of the exponential function f (z) = exp (2πiz2).

Proof. Considering the increasing function ϕ(r) = r, the conditions of Theorem 2 and
Theorem 3 are enjoyed. Since the entire function f (z) = exp 2πiz2 is indeed a solution of
the differential–difference Equation (48), f satisfies that σ( f ) ≥ σ(A20) + 1 = 2. In fact, in
this case, σ( f ) = 2 [35].

6. Future Research

Keeping in mind the results already established, it looks interesting to find out what
happens when the coefficients Aij of the differential–difference equation are bi-complex-
valued functions with a finite logarithmic order of growth in the unit disc. Furthermore, it
is worthwhile for interested researchers in this field to study the case that arises when the
above setting is restricted to a sector of the unit disc.
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