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A B S T R A C T

Candida Auris is a pathogen that can express multiple virulence factors and is considered a
significant menace to the Intensive Care Unit environment. In this work, we propose to model
its growth with a computationally randomized Fisher Kolmogorov–Petrovsky–Piskunov partial
differential equation. We calibrate the model using in vitro growth data and provide statistical
features. We also evaluate the efficacy of a regular and uniform cleaning strategy with vaporized
hydrogen peroxide to control Candida Auris’ population in ICUs.

1. Introduction

The antimicrobial resistance (AMR) exhibited by certain strains of pathogens not only hinders the management of their population
through the use of antimicrobial drugs in healthcare facilities but also presents a significant danger to the worldwide population.
Recently, the World Health Organization (WHO), the United Nations General Assembly, and other organizations have recognized
AMR as one of the ten major global public health challenges faced by humanity [1]. For the past five decades, there has been
a persistent lack of action in addressing this issue. In numerous influential scientific studies, researchers recognize the significant
progress made in public health as a result of antibiotic therapies. However, they also caution against the excessive prescription of
antibiotics and their overuse in the food industry, highlighting the need for better control and regulation in these areas [2–4].

Candida Auris (CA) is one of such pathogens. In 2009, Japanese and South Korean patients were the first to be diagnosed with
CA infection [5,6]. It has since rapidly spread around the world and is now present in more than 30 countries. The four major clades
of this yeast are located in Africa, South America, East Asia, and South Asia [7]. Like many of the microorganisms of its family,
CA is able to colonize human body parts such as skin and mucous membranes. Its optimal growth temperature is 37–40 ◦C, but
its population can continue to grow even at temperatures of up to 45 ◦C [5]. This pathogen can cause both superficial candidiasis
and invasive infections such as intra-abdominal candidiasis, chronic otitis media, and bloodstream infections. These complications
are more common in severely ill and immunosuppressed patients who have been admitted to the Intensive Care Unit (ICU) [8]. In
addition, CA can survive on plastic surfaces, which are commonly found in healthcare settings, for at least two weeks, making it
particularly menacing for ICU environments [9].

CA is also capable of expressing various virulence factors, including the creation of biofilms [10], which are communities of
microorganisms. Studies have demonstrated that microorganisms present in biofilms are considerably more resistant to medication,
partly due to the biofilm cells’ capacity to withstand certain antibiotics, such as ampicillin [11]. Moreover, CA is resistant to various
cleaning agents typically utilized in healthcare facilities [12]. Due to these microbiological traits, this recently discovered species of
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yeast has become a significant public health concern in healthcare settings, particularly in the ICU environment on which we focus
in this work [12].

The primary manner CA is transmitted in the ICU is through contact between colonized patients and healthcare workers. Since the
atients are mostly immobile, they do not usually colonize each other directly. Colonized individuals may shed the virus into their
urroundings, but the crucial point lies in the contamination of healthcare workers’ hands and reusable diagnostic and observation
quipment during their interactions with these patients, making them the primary agents for transmitting the pathogen [13–15].

The current literature available about CA is relatively limited, varied, and new, especially regarding mortality rates. The mortality
ates associated with CA vary greatly from one study to the next, depending on both the country and environment in which infected
ubjects were located. However, the overall mortality rate for CA is significant, with a crude mortality rate1 ranging from 30% to

72% [17].
Because the ICU population is particularly vulnerable, an uncontrolled CA population poses a significant threat. If appropriate

preventive measures are not implemented following the colonization of an ICU patient with CA, it is estimated that the entire
ICU would become colonized within a span of 48 hours.2 Consequently, ICU staff must implement expensive measures to contain
the spread of CA, including regular testing of patients, isolating identified colonized patients, and conducting thorough cleaning
procedures. Furthermore, this time period is in accordance with surveillance for healthcare-associated infections by CA in Spanish
hospitals, including the Hospital General de Valencia. In this hospital, surveillance begins upon a patient’s admission and continues
weekly throughout their stay. Samples collected are then incubated for 48 h. This 48-hour incubation period is thus the minimum
duration required to determine whether a patient has become colonized by CA [18].

Mathematical Modeling is a powerful tool to simulate the dynamics of microorganisms, and, in particular, it can be very useful
to model the behavior of CA in the ICU in a cost-efficient manner. Differential equations have been used to model the transmission
of CA and the efficiency of control interventions [19]. In the before-mentioned work, it has been found that the optimal control
strategy for CA spread is a combination of transmission precaution, molecular-based laboratory methods for the identification of
new colonization, and isolation of infected patients. Complementarily, our work will focus on CA’s population and its diffusion in
space and time. New research on microorganism populations with biofilms has revealed that their diffusion patterns resemble the
growth of urban communities [20]. Schematically, an outbreak of a pathogen like CA can be depicted as a bell-shaped surface that
spreads through its surroundings in a wave-like manner. Therefore, since our work will focus on the growth and diffusion of CA’s
population, models used for 2D heat waves seem suitable for representing the extent of contamination in an ICU room at any given
moment.

In this work, we propose to model the dynamics of the biological diffusion of CA within an ICU room with the Fisher Kolmogorov–
Petrovsky–Piskunov (FKPP) model [21]. We use real-world 𝑖𝑛𝑣𝑖𝑡𝑟𝑜 CA growth data from [22] to calibrate our model. However,
when we build a model, we cannot account for all complexities of the physical phenomenon in question. The model remains a
simplification of the proper biological diffusion of CA since this pathogen not only forms an isolated colony in some spatial point
but also is transported by healthcare workers and competes with other microorganisms in its environment. The data also carries
uncertainty due to possible measurement errors and equipment limitations. Hence, this work focuses on randomizing the FKPP model
to account for the before-mentioned uncertainties that a deterministic model cannot capture. To do so, we use a computational
method to describe the FKPP equation as a Random Partial Differential Equation with jumps to model the regular cleaning.

The paper is organized as follows: first, in Section 2, we introduce the FKPP model and the numerical scheme we used to
approximate it. Then, in Section 3, we calibrate the model using in vitro data. Lastly, in Section 4, we describe the randomization
of the model and the corresponding results. The main conclusions of the proposed mathematical modeling are drawn in Section 5.

2. Deterministic model

2.1. Numerical scheme

The FKPP model, a reaction–diffusion equation, can be utilized to depict the progression of population growth over time in
a two-dimensional spatial system [21]. In this model, we assume that the diffusion occurs from the source of the CA outward.
We are also supposing that diffusion takes place over a homogeneous environment over which diffusion is uniform. This model is
independent of the entry and exit of patients in the ICU. The FKPP model is formulated by the following partial differential equation
(PDE):

𝜕𝑢
𝜕𝑡

= 𝐷
(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

+ 𝑟𝑢(1 − 𝑢), (1)

where (𝑥, 𝑦) are the spatial coordinates in the rectangle [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ R2, 0 < 𝑡 < 𝑇 represents the time interval, 𝑢 = 𝑢(𝑥, 𝑦) is the
ensity of the pathogen population at the space–time coordinate (𝑥, 𝑦, 𝑡), 𝐷 > 0 is the diffusion coefficient and 0 ≤ 𝑟 ≤ 1 stands for
he growth rate.

The FKPP model can be viewed as a heat diffusion model with an additional heat-source function. More precisely, in this model,
he variation of the population density 𝑢 through time is driven by both the diffusion term, 𝐷∇2𝑢 where ∇2𝑢 ∶=

(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

is the

1 The crude mortality rate is defined by the Centers for Disease Control and Prevention (CDC) as the ‘‘total number of deaths during a given time interval’’ [16].
2 Private information provided by chief ICU medical personnel (Hospital General de Castellón, Spain).
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Fig. 1. Schematic representation of matrix 𝐴.

Laplacian of 𝑢, which models microorganism’s expansion on a surface, and the population growth term, 𝑟𝑢(1−𝑢), which indicates the
amount of CA at a given time and point. We can observe that the population growth term follows the so-called logistic growth. The
logistic model is widely used to describe the growth of a population with limited carrying capacity. Therefore, it is natural to use this
model for the growth of CA in the ICU environment. We do note that there are alternative growth models, such as linear, Gompertz,
etc., that could also be considered, but the logistic model is a good compromise between difficulty and number of parameters to
calibrate. A more thorough review of different growth models can be found in [23], [24, Ch 1]. As no closed solution to the FKPP
equation is available, one must rely on implementing appropriate numerical schemes to solve it.

We choose to use explicit finite differences with Neumann boundary conditions and adapt the algorithm from [25,26]. We execute
the algorithm using Matlab, and for simplicity, we assume that 𝑎 = 𝑐 = 0 and 𝑏 = 𝑑 = 10. We note that 10 is an arbitrary number
we have chosen, and the plane can be built using any different size. To divide the corresponding [0, 10]2 square representing the
ICU in two dimensions, we build a 101 × 101 mesh-grid, where 𝑥 ∈ {0, 0.1, 0.2,… , 10} and 𝑦 ∈ {0, 0.1, 0.2,… , 10}, with spatial step
ℎ = 0.1 in both directions.

We let the time go from 0 to 48 hours with a time step of 𝑘 = min{0.5, 0.99 ℎ2

4𝐷 } so that 𝑘 < ℎ2

4𝐷 in order to guarantee stability in
the numerical scheme [27].

Our numerical scheme, in matrix form, is given by:

�̂�(𝑗+1) = 𝑘𝐷
ℎ2

𝐴�̂�(𝑗) + �̂�(𝑗) + 𝑘𝑟�̂�(𝑗)◦(1 − �̂�(𝑗)),

�̂�(𝑗)
⊤
=
[

�̂�1,1,𝑗 = 0, �̂�2,1,𝑗 , �̂�3,1,𝑗 ,… , �̂�𝑁,1,𝑗 = 0,… , �̂�1,𝑁,𝑗 = 0,… , �̂�𝑁,𝑁,𝑗 = 0
]

,
(2)

for 𝑗 = 1,… , 𝑇 , where �̂� is the numerical approximation of the solution of (1), 𝐴 is a 𝑁2 ×𝑁2, 𝑁 = 100 matrix with all zeros except
at the main diagonal, 𝐷0, off 1 diagonals, 𝐷−1, 𝐷1 and off 𝑁 diagonals, 𝐷−𝑁 , 𝐷𝑁 as illustrated by Fig. 1. We note that ◦ in (2)
denotes the Hadamard product (also known as the element-wise product). We will later set the initial condition of the algorithm to
be coherent with respect to the data as explained in Section 3.

2.2. Introduction of a cleaning factor

As it is mandatory in ICU settings, trained personnel are assumed to regularly clean the ICU to minimize the spread of pathogens.
In order to estimate the effectiveness of cleaning measures to control the population of CA, we incorporate a cleaning factor into
our model. We assume that the cleaning is homogeneous (CA at all points of the ICU room gets reduced by the same amount) and
regular (it occurs every 𝑡1 hours).

Let �̂� be the approximate solution 𝑢 to the PDE (1) using the above-mentioned numerical scheme (2). Then when cleaning is
introduced to the model, the amount of CA in the ICU at every spatial point (𝑥, 𝑦) ∈ {0, 0.1, 0.2,… , 10}2 on the plane and time instant
𝑡 is

�̂�𝐶 (𝑥, 𝑦, 𝑡) =

{

(1 − 𝑝)�̂�(𝑥, 𝑦, 𝑡), if 𝑡 = 𝑛𝑡1, 𝑛 = 1,… , floor( 𝑇𝑡1 ),

�̂�(𝑥, 𝑦, 𝑡), otherwise,
(3)

where 𝑝 ∈ (0, 1) is the percent by which the CA is reduced and 𝑡1, 0 < 𝑡1 < 𝑇 , represents the period with which the ICU’s cleanings
are carried out. We note that 𝑝 can be viewed as the efficacy of the cleaning and is better the closer it is to 1.
3
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Table 1
Evolution of the growth of Candida Auris (CA) measured in absorbance at 600 nm wavelength (𝐴600 nm), at different time
instants. Observe that 𝑦𝑚𝑎𝑥 = 𝑦34 = 2.88, which is used to normalize the data. The normalized data is calculated as 𝑧𝑖 =

𝑦𝑖
𝑦𝑚𝑎𝑥

,
𝑖 = 1, 2,… , 41.
t (h) 𝐴600 nm t (h) 𝐴600 nm t (h) 𝐴600 nm

𝑡1 = 3.91 𝑦1 = 0.070 𝑡15 = 12.55 𝑦15 = 1.41 𝑡29 = 27.83 𝑦29 = 2.80
𝑡2 = 5.76 𝑦2 = 0.10 𝑡16 = 13.14 𝑦16 = 1.50 𝑡30 = 28.81 𝑦30 = 2.81
𝑡3 = 8.03 𝑦3 = 0.28 𝑡17 = 13.45 𝑦17 = 1.63 𝑡31 = 30.57 𝑦31 = 2.83
𝑡4 = 9.21 𝑦4 = 0.37 𝑡18 = 13.76 𝑦18 = 1.77 𝑡32 = 33.20 𝑦32 = 2.86
𝑡5 = 10.30 𝑦5 = 0.52 𝑡19 = 14.07 𝑦19 = 1.94 𝑡33 = 35.25 𝑦33 = 2.87
𝑡6 = 10.50 𝑦6 = 0.61 𝑡20 = 15.34 𝑦20 = 1.97 𝑡34 = 37.11 𝑦34 = 2.88
𝑡7 = 10.81 𝑦7 = 0.70 𝑡21 = 16.23 𝑦21 = 2.02 𝑡35 = 40.81 𝑦35 = 2.87
𝑡8 = 11.11 𝑦8 = 0.80 𝑡22 = 18.09 𝑦22 = 2.06 𝑡36 = 42.57 𝑦36 = 2.86
𝑡9 = 11.32 𝑦9 = 0.89 𝑡23 = 19.46 𝑦23 = 2.16 𝑡37 = 45.20 𝑦37 = 2.86
𝑡10 = 11.62 𝑦10 = 0.99 𝑡24 = 20.45 𝑦24 = 2.25 𝑡38 = 46.53 𝑦38 = 2.82
𝑡11 = 11.93 𝑦11 = 1.09 𝑡25 = 22.32 𝑦25 = 2.44 𝑡39 = 49.09 𝑦39 = 2.77
𝑡12 = 11.94 𝑦12 = 1.17 𝑡26 = 23.61 𝑦26 = 2.55 𝑡40 = 50.26 𝑦40 = 2.73
𝑡13 = 12.14 𝑦13 = 1.25 𝑡27 = 24.18 𝑦27 = 2.68 𝑡41 = 51.42 𝑦41 = 2.73
𝑡14 = 12.44 𝑦14 = 1.33 𝑡28 = 26.56 𝑦28 = 2.78

3. Model calibration

3.1. Data

The data we use to calibrate our model is 𝑖𝑛𝑣𝑖𝑡𝑟𝑜 growth data from [22]. These measurements come from experimental strains
of CA inoculated onto Sarcocystis dextrose agar. These strains were incubated for 48 hours at a constant temperature of 37 ◦C [22],

hich is the average human body temperature and within the optimal growth temperature of CA. The measurements are given as
he absorbance at 600 nm wavelength (𝐴600 nm). While the data may not fully represent CA’s growth on plastic surfaces, it better
epresents its growth in a colonized human. We can thus view it as an average (although it might be overestimating the true average)
f the growth rates in the ICU room. We note that this data cannot be used to calibrate the FKPP model directly. Rather, we view
t as an estimate of the total amount of CA in the ICU at any given time instant (corresponding to taking the double integral of �̂�,
he numerical solution of Eq. (1), for a fixed 𝑡).

The normalized data is calculated as 𝑧𝑖 =
𝑦𝑖

𝑦𝑚𝑎𝑥
, 𝑖 = 1, 2,… , 41, where 𝑦𝑚𝑎𝑥 = 𝑦34 = 2.88 (see Table 1). Note that the data used

goes up to 𝑡41 = 51.42 hours. However, we run all simulations for 48 hours to study the growth of CA during the first two days,
s this has been indicated (as explained in the Introduction) to be the time it takes for uncontrolled CA to colonize the ICU fully.
e also note that, in this data, the growth of CA is logarithmic for 8 − 24h and stabilizes after 24h [22]. The stabilization after 24h

corresponds to the stationary phase during which there is no net growth that occurs when resources are limited [28].

3.2. Calibration: Logistic growth

The growth data from [22], summarized in Table 1, corresponding to points shown in Fig. 2, approximately follows a logistic
growth and can be modeled through the logistic growth equation:

𝜕𝑢
𝜕𝑡

= 𝑟𝑢(1 − 𝑢). (4)

Note that this equation corresponds to the source term of (1). It has the following closed-form solution:

𝑢(𝑡) =
𝑢0 exp(𝑟𝑡)

𝑢0(exp(𝑟𝑡) − 1) + 1
, (5)

where 𝑢0 is the initial normalized quantity of CA in the ICU, and 𝑟 is the growth rate of CA. Since we have the explicit expression
(5) and data, we can use Nonlinear Least Squares (NLS) to estimate the model parameters 𝑢0 and 𝑟. We note that most non-linear
models cannot be solved analytically [29], and we thus choose to solve it numerically using the R function nls [30] from the stats
ackage [31]. This function uses, by default, a Gauss–Newton algorithm which iteratively finds the value of the model parameters
hat minimize the sum of squares of the differences between data and model values obtained according to expression (5) [32,
. 342–348]. Using this function, we get an estimate of the parameters 𝑟 and 𝑢0 so that Eq. (5) fits the normalized CA growth
ata 𝑧𝑖, 𝑖 = 1, 2,… , 41. Fig. 2 shows that the resulting estimate aligns closely with the data. The resulting estimated parameters

�̂�0 = 0.01507 and �̂� = 0.30955 will allow us to both solve the FKPP numerical scheme and randomize the model.

.3. Calibration: Initial condition of FKPP

In order to obtain a solution for the FKPP equation (1) using the numerical scheme introduced in Section 2.1, and thus be able to
alibrate the model, it is necessary to specify an initial condition (IC) consistent with our previous findings and literature regarding
4
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Fig. 2. Normalized data of CA growth (𝑡𝑖 , 𝑧𝑖), 𝑖 = 1, 2,… , 41, compared with the NLS (Nonlinear Least Square) estimate.

Fig. 3. Initial conditions with varying amounts of peaks.

urbanizations [20]. Based on the definitions provided in [20], we make the assumption that the outbreak of CA is a city (densely
populated microcolonies) and resembles a dome structure enclosed within well-defined boundaries [20]. Therefore, the IC should be
bell-shaped. For the sake of simplicity, we will set the IC to model an outbreak in the ICU’s center. In order for the IC to agree with
previous results of the NLS estimate, 𝑢0 = 0.01507 ≈ 10−2, we set the initial total amount of CA in the ICU, ∫ 10

0 ∫ 10
0 𝑢(𝑥, 𝑦, 0) d𝑥d𝑦, to

be around 10−2.
We choose the IC to be 𝑢(𝑥, 𝑦, 0) = exp{−3

(

(𝑥 − 5)2 + (𝑦 − 5)2
)

}. This function is bell-shaped and centered in the middle of our
[0, 10]2 ICU with

1
𝑀 ∫

10

0 ∫

10

0
exp{−3

(

(𝑥 − 5)2 + (𝑦 − 5)2)
)

d𝑥d𝑦 ≈ 1 × 10−2,

where the normalizing constant 𝑀 ∶= 101.97 = 0.12
∑∑

𝑥,𝑦∈{0.1,0.2,…,10} �̂�(𝑥, 𝑦, 48) corresponds to the maximum amount of CA in the
ICU plane (this maximum occurs at 𝑡 = 48 h) and 3 is the smallest natural number that makes the integral evaluate at approximately
10−2.

Remark 1. We note that for simplicity, we chose to model only one peak located in the center of the ICU, shown in Fig. 3(a), but one
could also decide to generate more peaks that still agree with all the before-mentioned conditions. Two examples are represented
in Figs. 3(b) and 3(c), but many other possible variations of IC setups could be proposed.

Remark 2. Note that the values of 𝐷 and 𝑟 may vary depending on the initial condition. For example, when the initial outbreak is
farther from the center of the ICU plane, it takes slightly longer for the pathogen to grow.

3.4. PSO algorithm to calibrate FKPP parameters

First, we note that the CA growth data [22] gives a total amount of CA at any given time without giving any information about
CA’s population’s distribution in space. It can, therefore, not directly be compared with the FKPP model outputs. We need to define
5
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Fig. 4. 3D plots of the FKPP numeric solutions when �̂� = 0.4141 and �̂� = 0.3539.

a mapping from our 3D model into 2D so we can compare it to data. This function will take the total amount of CA present in the
ICU room at a given time and normalize it so that its range is restricted to [0, 1]. We build it in a few steps. First, let 𝐹 be as follows

𝐹 (𝑡) ∶= ∫

10

0 ∫

10

0
𝑢(𝑡, 𝑥, 𝑦) d𝑥d𝑦,

which we estimate in our numerical scheme by

𝐹 (𝑡) ∶= 0.12
∑∑

𝑥,𝑦∈{0,0.1,…,10}
�̂�(𝑥, 𝑦, 𝑡).

Now we will normalize our transformation as well so that

𝑓 (𝑡) ∶= 1
𝑀

𝐹 (𝑡) (6)

is the function we will use in this work to compare model outputs to CA’s growth data. Now that we have function (6) and the
IC defined, we can find pairs of parameters (𝐷, 𝑟) that represent our data. To do so, we apply Particle Swarm Optimization (PSO),
a bio-inspired optimization algorithm first introduced by Kennedy and Eberhart in 1995 [33]. We define it as the fitness function
for the PSO to minimize the Symmetric Mean Absolute Percentage Error (SMAPE), which has been shown to be a good measure
of relative error [34]. We opted to utilize SMAPE in our simulations because it does not assign greater importance to larger data
values, thus preventing them from excessively influencing the overall solution. The SMAPE we used is defined as:

𝐸 = 1
41

41
∑

𝑖=1

|𝑧𝑖 − 𝑓 (𝑡𝑖)|
|𝑧𝑖|+|𝑓 (𝑡𝑖)|

2

(7)

where {𝑡1, 𝑡2,… , 𝑡41} is the set of times where CA’s 𝐴600 nm was measured, {𝑧1, 𝑧2,… , 𝑧41} are the corresponding normalized 𝐴600 nm
measurements collected in Table 1 and 𝑓 is as defined in (6). The PSO algorithm will provide pairs of (𝐷, 𝑟) that minimize the error
𝐸 as defined in (7). We take the pair of parameters returned from the PSO calibration ran as is later described in Section 4. This
solution is �̂� = 0.4141, �̂� = 0.3539, and it is illustrated in Fig. 4. In this plot, we can see how CA colonized the whole room as time
goes on until it reaches a value of 1 in all the points of the ICU plane, except the corners. We note that the scale in each plot of the
panel of Fig. 4 differs in order to better see the shape of the solution at each time instant illustrated.

4. Random model

4.1. From the deterministic to the random model

So far, we have focused on the dynamics of the growth rate and shape of the pathogen’s population in an ICU room by means
of a deterministic model. Now, we complete the model by considering uncertainties in its mathematical formulation. It is justified
6
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Fig. 5. 591 PSO calibration results with error less than 4. The black line corresponds to the NLS algorithm estimate of (5).

because randomness appears from different sources, such as the lack of knowledge of factors determining the dynamics associated
with CA growth, error measurements to collect datasets or samples, etc. Based on these reasons, we propose a randomized version
of the FKPP model for pathogens. In dealing with stochastic/random models formulated by partial differential equations, besides
calculating, exact or numerically, the solution, the main goal is to compute its statistics, such as the mean and the variance/standard
deviation functions. However, a more desirable objective is to determine the first probability density function (1-PDF) of the solution.
Because the FKPP model does not have a closed-form solution, we cannot use the Random Variable Transformation method [35–37]
to determine the 1-PDF, but we must work with the randomized model computationally.

To do a probabilistic calibration, we perform five calibrations with a maximum of 500 model evaluations in the same way
and with the same error that we used for the deterministic calibration in Section 3. This provides us with a total of 2500 model
evaluations, which is not a high number of evaluations, but we have to consider the computational cost of the numerical solution of
the FKPP model (note that the algorithm has an adaptive time step, 𝑘 = min{0.5, 0.99 ℎ2

4𝐷 }, which can be very small for some values
of 𝐷, making the simulations slower). We order the 2500 evaluations by error.

Now, we are going to select some of the 2500 evaluated sets of parameters such that their model outputs can contain the data
and their errors, which is known as capturing the data uncertainty, and later, we will define it more precisely.

To reduce the potential combinations (search space) for the selection algorithm, we need to set an error threshold; we select the
model outputs whose evaluations have an error less than the threshold, reducing the eligible model outputs and taking only the
closest to the data. To do so, we take the first quantile of all the evaluations previously sorted out by error. We then set the error
threshold to be multiples of the first quantile until we have enough evaluations on each side of the NLS estimate and get around
600 simulations in total. This gave us an error threshold of 4. Restricting the error to 4, allowed us to alleviate the computational
burden for later algorithms. To be precise, we kept 591 of these sets so that the errors associated are all under 4. Fig. 5 shows the
model outputs simulated with the 591 pairs of (𝐷, 𝑟). Note that although there are some evaluations that have a greater distance
from the NLS estimate in the lower half of the plane, there are more evaluations located in the top part.

The objective now is to select from these 591 model parameters/outputs a subset that will capture as accurately as possible the
data uncertainty, that is, when the following two errors are as small as possible at the same time:

(1) The first, denoted as 𝐹CI, will control for the size of the 95% confidence interval (CI) of the selected simulations, penalizing
the CIs that are too wide;

(2) The second, denoted as 𝐹IO, is the so-called inside-outside error and prioritizes simulations where the data lie inside the 95%
CI of the simulations.

These errors are orthogonal in the sense that when 𝐹CI is big (big 95% CI), 𝐹IO will be small (most of the data points will lie
inside the 95% CI), and vice versa [38].

It is important to note that here, we face a multi-objective problem, in which we aim at minimizing both objective functions, 𝐹CI,
and 𝐹IO, simultaneously. As a result, the optimization problem does not yield a single solution but rather a set of Pareto-optimal
solutions that provides us with a Pareto front [39]. These solutions are not dominated by any other solution in terms of both
objectives simultaneously, meaning that any improvement in one objective function would require sacrificing the performance of
the other [39].
7



Physica A: Statistical Mechanics and its Applications 630 (2023) 129254C. Andreu-Vilarroig et al.

w

p

w

c
a

M

At this point, we have 591 pairs of parameters 𝑃𝑖 = (𝐷𝑖, 𝑟𝑖) and their corresponding model outputs 𝑓 (𝑡1)𝑃𝑖 ,… , 𝑓 (𝑡41)𝑃𝑖 , 𝑖 =
1, 2,… , 591, at the time instants 𝑡1,… , 𝑡41, respectively, that is

Index Parameters Output

1 𝑃1 = (𝐷1, 𝑟1) 𝛩(1) = ( 𝑓 (𝑡1)𝑃1 , 𝑓 (𝑡2)𝑃1 , … , 𝑓 (𝑡41)𝑃1 ),
2 𝑃2 = (𝐷2, 𝑟2) 𝛩(2) = ( 𝑓 (𝑡1)𝑃2 , 𝑓 (𝑡2)𝑃2 , … , 𝑓 (𝑡41)𝑃2 ),
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
591 𝑃591 = (𝐷591, 𝑟591) 𝛩(591) = ( 𝑓 (𝑡1)𝑃591 , 𝑓 (𝑡2)𝑃591 , … , 𝑓 (𝑡41)𝑃591 ),

(8)

here function 𝑓 is defined in (6).
If we consider 𝐼ℎ ⊆ 𝐼 = {1,… , 591} a subset of indexes of 𝐼 , taking the rows 𝛩(𝑖), 𝑖 ∈ 𝐼ℎ, for each column we can calculate the

ercentiles 2.5 and 97.5 and denote them as 𝑞𝐼ℎ = (𝑞(𝑡1)𝐼ℎ ,… , 𝑞(𝑡41)𝐼ℎ ) and 𝑄𝐼ℎ = (𝑄(𝑡1)𝐼ℎ ,… , 𝑄(𝑡41)𝐼ℎ ), respectively.
Now, we define here explicitly the errors mentioned above:

𝐹CI(𝐼ℎ) =
41
∑

𝑖=1
|𝑄(𝑡𝑖)𝐼ℎ − 𝑞(𝑡𝑖)𝐼ℎ |, (9)

𝐹IO(𝐼ℎ) =
41
∑

𝑖=1
𝑑
(

𝑧𝑖, [𝑞(𝑡𝑖)𝐼ℎ , 𝑄(𝑡𝑖)𝐼ℎ ]
)

, (10)

here {𝑧1,… , 𝑧41} are the normalized 𝐴600 nm measurements at times {𝑡1,… , 𝑡41} from Table 1, respectively, and

𝑑(𝑝, [𝑎, 𝑏]) =
{

0, if 𝑎 ≤ 𝑝 ≤ 𝑏,
min{|𝑝 − 𝑎|, |𝑝 − 𝑏|}, otherwise. (11)

As we mentioned above, these two errors (9)–(10), measure whether the model captures the data uncertainty. Thus, the goal
onsists of finding a subset 𝐼ℎ∗ ⊆ 𝐼 , such that the pair (𝐹CI(𝐼ℎ∗ ), 𝐹IO(𝐼ℎ∗ )) will be as small as possible and non-dominated. A discussion
bout alternatives to error functions (9)–(10) can be found in [40].

To achieve that, we use a selection algorithm based on the multi-objective particle swarm optimization [41] (MOPSO), called
OPSO-selection. This is a multiobjective version of the selection algorithm presented in [42].

1. Parameters of the algorithm.

• 𝑛, the number of particles in MOPSO-selection.
• 𝑘, the number of elements of each particle.
• 0 < 𝑠 < 𝑘, number of new elements of a particle that will be included when it is updated.
• 𝐼𝑇𝑀𝐴𝑋, the maximum number of iterations of the algorithm.

2. Initialization.

• Let 𝐼1,… , 𝐼𝑛 ⊂ {1,… , 591} be the set of indexes (particles), where |𝐼1| = ⋯ = |𝐼𝑛| = 𝑘 < 591.
• Calculate the particles fitnesses (𝐹CI(𝐼𝑖), 𝐹IO(𝐼𝑖)), 𝑖 = 1,… , 𝑛.
• We define the local best of each particle as 𝐼 𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡𝑖 = {𝐼𝑖}, 𝑖 = 1,… , 𝑛.
• We define the global best 𝐼𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡 as the Pareto front of all the local best.

3. STEP 1 (particle update). For 𝑖 = 1 to 𝑛.

• We define the auxiliary set 𝑆 as the union of the elements of the 𝐼𝑖, the elements of all the 𝐼 𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡𝑖 , and the elements
of all the 𝐼𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡, and remove the repeated elements.

• The updated 𝐼𝑖 will be make up of 𝑘− 𝑠 elements of 𝑆 chosen randomly and 𝑠 elements of {1,. . . ,591} chosen randomly
and different from the 𝑘 − 𝑠 first, totaling, 𝑘 elements in the updated 𝐼𝑖.

4. STEP 2 (particle fitness calculation). For 𝑖 = 1 to 𝑛, calculate the 2-objective errors (𝐹CI(𝐼𝑖), 𝐹IO(𝐼𝑖)) of the updated 𝐼𝑖.
5. STEP 3 (updating the local best and the global best) For 𝑖 = 1 to 𝑛.

• The local best of 𝐼 𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡𝑖 is updated as the Pareto front of the old local best, adding the updated 𝐼𝑖 (with its errors).
• In the same way, if the local best has been updated, the updated 𝐼𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡 is updated as the Pareto front of the old

global best, adding the current updated 𝐼𝑖 (with its errors).

6. STEP 4 (end criterion) The process finishes when ITMAX iterations have been reached, and the algorithm returns 𝐼𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡,
the Pareto front with the best non-dominated solutions. Otherwise, go to STEP 1.

The 𝐼𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡 returned by the algorithm will contain subsets of 𝑘 elements of the set {1,… , 591} whose 2-objective errors, 𝐹CI
and 𝐹IO, are non-dominated.

Because we do not know exactly how many simulations should compose a particle in this algorithm, we let the number of
8
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Fig. 6. MOPSO-selection algorithm results and the selected Pareto front.

30, 50, or 70. This gives us 9 combinations of MOPSO-selection algorithm parameters. We run each of them with 𝑠 = 9 for 𝑘 = 30,
𝑠 = 15 for 𝑘 = 50, and 𝑠 = 21 for 𝑘 = 70 (30% in each case) and 𝐼𝑇𝑀𝐴𝑋 = 100 000 iterations.

We keep the global Pareto-optimal solutions for each of these iterations of the MOPSO-selection algorithm. The results of the 9
Pareto fronts can be seen in Fig. 6. Then out of all these pairs of errors (𝐹CI, 𝐹IO) (defined in (9)–(10)), we select the Pareto front,
which can be seen as green points in Fig. 6. Each one of these points encodes for 𝑘 = 30, 60, 90 simulations that best explain the
uncertainty to produce the Randomized FKPP model based on our algorithmic approach.

Nevertheless, it is convenient to define a criterion to choose only one, although all of them are valid, and the choice of the best
one depends on the needs of the study. We choose to select the so-called knee of the Pareto front [43] as illustrated in Fig. 7(a). The
knee represents an equilibrium between both errors. This knee encoded for 𝑘 = 30 simulations with 30 associated pairs of parameters
(𝐷, 𝑟) representing only a small part of the initial 591 pairs as shown in Fig. 7(b).

In Fig. 7(b), the orange points, which represent all the optimal pairs of 𝐷 and 𝑟, exhibit an inverse dependence structure.
Moreover, in Fig. 7(c), we can see more blue lines above the NLS estimate than below. This observation suggests that our algorithm
tends to favor simulations that exhibit faster growth of CA. Consequently, this preference is likely to shift the distributions of the
solutions we will later discuss towards larger values, as depicted in Fig. 9(b).

Let us from now on denote the set of 30 pairs of parameters encoded in the knee as 𝑃𝐾 ∶= {(𝐷𝑖, 𝑟𝑖)𝑘𝑛𝑒𝑒, 𝑖 = 1,… , 30}. Using this
set 𝑃𝐾 we can visualize how the Randomized FKPP model captures the uncertainty both in 2 and 3 dimensions (later denoted as 2D
and 3D, respectively). To represent the Randomized FKPP model in 3D, we will fix a time point 0 < 𝑡0 ≤ 48 (𝑡 = 0 is excluded since
all evaluations have the same IC). We use 𝑃𝐾 to get 30 �̂�(𝑥, 𝑦, 𝑡0) for each point (𝑥, 𝑦) in the [0, 10]2 ICU plane. Now, let us denote,
for some (𝑥, 𝑦), a point in the ICU plane, this set as 𝑈 (𝑥, 𝑦) = {�̂�𝑃 (𝑥, 𝑦, 𝑡0)}𝑃∈𝑃𝐾 . Because the distributions of each 𝑈 (𝑥, 𝑦) differ from
a normal distribution, we choose not to take the standard 95% CI approximation of [data mean± 1.96 data standard deviation] but
rather a percentile approach, which is more robust making the 95% CI

[

𝑄0.025(𝑈 (𝑥, 𝑦)), 𝑄0.975(𝑈 (𝑥, 𝑦))
]

. The resulting surfaces are
illustrated in Fig. 8 for times 𝑡 = 5 h, 𝑡 = 10 h and 𝑡 = 20 h. We can see that the surface of the upper bound of the 95% CI has a
longer peak than the mean and lower bound surfaces. This confirms, as previously mentioned, that the mass of the distributions of
the solutions for some time 𝑡 is pulled towards faster growth values.

The estimated distributions of 𝑓 (𝑡) for 10 < 𝑡 < 24 can be represented by using the ksdensity function in Matlab. This function
provides us with a kernel, a nonparametric representation of the PDF of 𝑓 (𝑡) at each time point 𝑡. The results obtained are represented
in Fig. 9(b). We do not show the distributions of 𝑓 (𝑡) for 𝑡 < 10 and 𝑡 > 24 because all knee simulations converge to the same values
there, making the distributions extremely tight and thus clouding the visibility of the time points where distributions are wider.
Fig. 9 shows us that most of the data is captured by obtained estimates of the distributions and CIs. Finally, we point out that in
the left panel of Fig. 9, we have included the plot for the mean and 95% CI to better compare the results shown in the right panel
in the same figure.
9
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Fig. 7. Simulations chosen from the Pareto front to represent the randomness of the model.

Fig. 8. CA dynamic surfaces with mean (in red) and 95% CI (in blue and yellow).
10
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Fig. 9. Probability density functions of 𝐴600 nm and 95% CI with mean.

4.2. Inclusion of cleaning

The cleaning, as defined in Section 2.1, is introduced to simulations generated by the use of the set of parameters 𝑃𝐾 that
best capture the uncertainty. We choose a cleaning value of 𝑝 of 0.966 in order to model the efficacy of vaporized hydrogen
peroxide (H2O2) on CA [44]. H2O2 has been recommended in the literature as an efficient cleaning agent to control outbreaks
of pathogens [45–47]. It has been indicated to us by ICU medical personnel of Hospital General de Castellón (Spain) that the ICU
is cleaned every 8 hours. We thus choose to set 𝑡1 = 8 in the cleaning process. We then used the same methodology as mentioned
earlier to produce the CI for 𝑓 (𝑡) values for 0 ≤ 𝑡 ≤ 48. Fig. 10(a) shows the 30 simulations with cleaning using the parameters pairs
from 𝑃𝐾 . Note that every 8 hours, there is a vertical line in the plot rather than a jump, which is just a graphical representation
choice that allows us to see when cleaning happens clearly. We observe that the pathogen remains under control in almost all the
simulations, with its population reaching smaller peaks after each cleaning. However, as can be seen in Fig. 10(a), one simulation
of the 30, just before cleaning, has higher peaks as time goes on, implying that CA might not be completely under control. Fig. 10(c)
shows the estimated 1-PDF for a given 𝑡 = 5,… , 40. Fig. 10(b) shows us 95% CI the built using the 30 selected simulations. We can
observe that when the 95% CI is large, the PDF is very wide (platykurtic), and the probability of the values near the upper bound
of the CI (which indicates that CA is not under control) is small. This can be interpreted as there is a small probability of CA’s
population growing fast enough for the homogeneous cleaning with H2O2 not being enough to control it. In other words, there is
a probability that the pathogen is increasing despite the cleanings. However, the probability that this happens decreases since the
mean of each peak decreases, and the 1-PDF flattens over time (as more cleanings are performed).

Fig. 10(b) displays the CI and mean for 𝑓 (𝑡) obtained by the quantile estimation as mentioned before. It reveals that the
simulations consistently indicate population control of CA as the mean and bounds of the CI do not get passed the first peak. It
is important to remark that cleaning the entire ICU room uniformly is not possible due to the presence of medical equipment that
can only be cleaned with specific cleaning agents that are less efficient against the pathogen in question. Moreover, certain areas
throughout the room are difficult to access, posing challenges in cleaning them with the same level of thoroughness as flat surfaces
such as floors and tables. Considering these factors, it is important to note that the cleaning strategy employed here is an idealized
approach. However, it still serves as a valuable guideline to assess the effectiveness of hydrogen peroxide (H2O2) for controlling the
CA population.

5. Conclusions

In this work, we proposed a mathematical model to capture the spatial growth of Candida Auris through time. Our model is
based on the Fisher Kolmogorov-Petrovky-Piskunov partial differential equation and its numerical solution. To address current health
concerns, we have also proposed to include a homogeneous and regular cleaning to model Candida Auris’ growth under cleaning
pressure.

Then we proposed a computational method to randomize the model. First, we randomized and calibrated the initial model
(without cleaning) using in vitro Candida Auris growth data. Remarkably, our randomized model fits the data well.

We then included cleaning into the randomized model to observe whether vaporized hydrogen peroxide is effective for Candida
Auris population control. We observed that the pathogen’s population diminished with every cleaning in all but one of the selected
simulations, indicating that the population was under control with significant probability. This suggests that cleaning protocols are
11
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Fig. 10. Effect of cleaning the ICU room every 8 hours with vaporized H2O2.

an effective population control measure for CA; however, it may not be sufficient, and outbreaks with rapid growth may occur,
albeit with a very low probability.

The case of uncontrolled growth occurred due to factors that do not impede the pathogen’s growth, be it insufficient cleaning.
The only factors we control in this model are diffusion (𝐷), growth (𝑟), cleaning efficacy (𝑝), and time in between cleanings (𝑡1). The
model does not give us insight into other factors, and the values we have set for the cleaning factors are the standards used in the
Hospital of Castellon and other Spanish Hospitals. Therefore, our goal in this work has been to model what happens in a realistic
Intensive Care Unit. We wanted to show why sometimes there is uncontrolled growth of the Candida Auris population when in
the Intensive Care Unit, there are strict protocols implemented for cleaning and testing. Furthermore, we tried to explain why such
cases happen only sporadically rather than with higher frequency.

There are, however, limitations to this model. First, we used the dataset of in vitro growth and not of Candida Auris growing in
the Intensive Care Unit. Secondly, Candida Auris competes with many other microorganisms in the Intensive Care Unit environment,
and we did not consider this when modeling. Furthermore, it proposes that the Intensive Care Unit is cleaned the same way every
time. There are, however, discrepancies in the cleaning thoroughness due to the equipment’s peculiarities and human factors.
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