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A B S T R A C T   

The IFC schema has been evolving towards the infrastructure domain. Furthermore, the use of laser scanning 
technologies as means to digitalize and monitor infrastructures has also significantly increased. This work pre-
sents an automated modelling approach for truss bridges that utilizes laser scanning data as its source for 
geometrical information. The methodology takes a partially instance-segmented point cloud of a truss bridge and 
generates both an IFC-compliant information model of the truss and the corresponding structural graph. This 
process uses bounding boxes and their collisions to overcome the missing data from the partial segmentation to 
create the truss model, as well as to identify the nodes that connect the different truss members. The method-
ology was tested on a use case made of 272 members and obtained the truss model and structural graph files.   

1. Introduction 

Infrastructure systems are directly linked to the economy and society 
of a nation. In particular, Critical Infrastructure Systems (CIS) such as 
water supply, transport or power supply, are driving components of its 
development. In addition, CIS also play a central role in the mitigation, 
management and recovery from disaster scenarios. The needs of a 
population grow along with its size, which means that the infrastructure 
backbone that support them must expand as well. This increase in scale 
and complexity results in a dependency relationship between CIS that 
enables them to function properly. For instance, transport infrastructure 
distributes the resources used by other systems, and power supply is 
needed in almost every scenario. While this synergy improves the 
overall quality and efficiency of CISs, it also increases its vulnerabilities. 
The collapse or operational shutdown of a system could create a domino 
effect that impacts all related CISs. Therefore, the resilience of these 
systems is a key priority, as they should be able to withstand or mitigate 
the consequences of these scenarios, protect their users, reduce costs 
derived from them, and hasten the recovery from such cases [1–3]. 

Transport infrastructure is identified as a CIS because the transport of 
both goods and people is crucial to the well-functioning of any society. 
Similarly to other CIS, the increase in demand is translated into an in-
crease in the size and complexity, while also exceeding expected traffic 

values for existing assets. In the case of bridges, many of the 1234 km of 
road bridges over 100 m long in the EU were built during the 1950s and 
have reached the end of their design life, surpassing the traffic load that 
was expected at design [4]. This trend carries the need for efficient and 
cost-effective technologies to support infrastructure management 
throughout their entire lifecycle [5]. This is particularly accentuated in 
bridges, where manual visual inspection is still the most common 
method to assess their condition. 

Interoperability and digitalization are also key concerns in the con-
struction industry. The use of paper documents or fragmented infor-
mation in different formats results in the loss of information and high 
costs and delays [6,7]. Gallaher et al. presented a cost analysis report of 
inadequate interoperability in the U.S. capital facilities industry across 
the entire life-cycle, estimating a loss of 15.8 billion dollars per year [8]. 
A digital model of the bridge can serve as a single source of truth, where 
all the digital information is centralized in a clear and accessible 
manner. The digital model also serves as a foundation for interopera-
bility and integration with other technologies that can harness that data. 
In this context, Building Information Modelling (BIM) presents a 
collaborative workflow where the interested parties can work together 
in a Common Data Environment (CDE) [9]. The different specialized 
agents can exchange information using a unique federated model 
described using a data model, such as the Industry Foundation Classes 
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(IFC) presented by buildingSMART [10]. This is particularly beneficial 
in large scale projects that combine multiple disciplines and domain- 
specific teams, such as transport infrastructure. 

IFC has been evolving towards the infrastructure domain over the 
last years with its 4.X releases [11]. IFC 4.0 first enabled the extension of 
IFC to infrastructure and is a full ISO standard (ISO 16739-1:2018 [12]), 
while its predecessor IFC 2 × 3 is an ISO/PAS. IFC 4.1 introduced the key 
component of an infrastructure information model, the alignment, to 
serve as a linear reference system for the positioning of elements and 
interlinkage with other infrastructures of the network. IFC 4.2 presented 
extensions to the schema that enabled it to describe bridges. However, 
buildingSMART decided to harmonize and unify all the infrastructure 
domains under a single release, instead of including them in individu-
alized versions. The newly released IFC 4.3 represents that vision, which 
encompasses bridges, road, railways, ports and waterways. It introduced 
several hierarchy and nomenclature changes, as well as some new 
functionalities such as the lateral profile inclination of the alignment. At 
the time of writing, IFC 4.3 is under ISO voting and receiving continuous 
updates. Also, IFC4.4 is set to be an extension of IFC 4.3 to mainly 
include tunnel functionalities [13]. However, since IFC 4.3 is still new 
and was subjected to many changes both during development and in its 
release, many programming libraries and viewers do not properly sup-
port it yet. Due to this, or because IFC 4.3 is still not an ISO standard, 
many existing efforts use pre-existing IFC versions. Koo et al. (2020) 
mentioned how, due to the lack of ISO standardization for infrastructure 
elements of IFC, these entities needed to be mapped to similar archi-
tectural entities, or to proxy ones [14]. Kwon et al. (2020) presented an 
extension to IFC 4.2 to model alignment-based railway tracks [15]. 

In this setting, point clouds obtained using laser scanning technolo-
gies offer a robust basis for the geometrical definition of information 
models for infrastructures. Bariczová et al. (2021) used Terrestrial Laser 
Scanning (TLS) data to verify the geometry of walls defined using IFC 4.0 
[16]. Barazzetti et al. (2020) states that the integration of geospatial 
information along with other data, such as LiDAR (Light Detection And 
Ranging) point clouds, is key in the generation of BIM-GIS models of 
infrastructure [17]. Ariyachandra et al. (2020) present a method that 
detects railway mast from air-borne LiDAR data and delivers an IFC 
model of the results [18]. It also serves as means to obtain information 
models of the assets, as point clouds can provide the needed geometrical 
information. There are several works and reviews that detail the current 
state of this technology [19–22] in the transport infrastructure domain. 
In the case of bridges, existing works using point clouds and IFC often 
deal with non-truss bridges and use meshes for their representation. 
Sánchez-Rodríguez et al. (2020) presented the case of a masonry bridge, 
where the point cloud was translated into meshes that were then 
formatted following the IFC schema [23]. Isailović et al. (2020) 
described a procedure to update the as-built IFC models through the 
incorporation of damage meshes [24]. As for truss structures, current 
works using point clouds often target wooden structures. For instance, 
Prati et al. (2019) presented a 3D model of the wooden roofing of St 
Peter’s Cathedral, generated from TLS data [25]. Hermida et al. (2020) 
proposed an algorithm to obtain 2D models of variable inertia from 
LiDAR data of timber trusses [26]. To the author’s knowledge, no 
existing works were found that dealt with the fully automated genera-
tion of truss models and the corresponding structural graph from point 
cloud data. 

Given this context, the core objective of this work is to create an IFC- 
compliant model of a truss, as well as a structural graph that represents 
it, from partially instance-segmented point cloud data. The key concept 
behind it is the use of the bounding boxes that encompass each of the 
partially segmented truss members. As will be explained throughout this 
work, this representation itself overcomes the partial segmentation, 
while bounding box collisions are used to determine the connection 
relationships between truss members, obtaining a structural graph. 
Therefore, the contribution of this work is threefold:  

1. Automated generation of a truss bridge IFC-compliant model.  
2. Automated generation of a structural graph representing the truss.  
3. Overcoming the missing data from the truss bridge point cloud 

segmentation. 

This work is the second part of an automated pipeline that takes the 
raw point cloud and outputs both the IFC model, and the structural 
graph made of nodes and edges. The first part oversees the point cloud 
segmentation, while the second deals with the automated generation of 
the model and its correction, as well as the obtention of the structural 
graph. To better illustrate the workflow, Fig. 1 presents a diagram where 
the truss can be seen evolving from the raw point cloud to its segmented 
form, and then to the IFC model and the structural graph. 

This work is structured as follows: In Section 2, the context of this 
work is introduced. It tackles the point cloud segmentation (Section 2.1), 
the bounding boxes (Section 2.2), and the IFC entities and relationships 
used to build the model (Section 2.3). Section 3 explains the method-
ology used for the truss model (Section 3.1) and for the structural graph 
(Section 3.2). Section 4 shows the results of the methodology by pre-
senting both the final IFC model (Section 4.1) and the structural graph 
(Section 4.2) in their respective receiving software/viewer. Section 5 
discusses the results, addressing the limitations and shortcomings. 
Finally, Section 6 offers the conclusions along with future lines of work 
to overcome the shortcomings and further improve the methodology. 

2. Context 

2.1. Point cloud segmentation 

The starting point of the methodology is a partially instance- 
segmented point cloud of a truss bridge, which is depicted in Fig. 2. 
The overall dimensions of this truss are 64 × 5.6 × 4.8 m and is made of 
272 members. It was extracted from a 594 m structure that rests on 11 
pillars. 

This type of truss can be divided into three types of faces: vertical, 
horizontal, or interior. The two vertical faces contain the vertical posts, 
as well as the diagonals. The bottom horizontal face contains the struts 
and bottom lateral braces. The seventeen interior faces, which can be 
seen as cross-sections of the truss, contain interior braces and interior 
lateral braces. Furthermore, there are four chords that delimit the 
bounds of the truss. These are not assigned to a face type since they are 
located in the intersection between the horizontal and vertical faces. 
This nomenclature can be seen in Fig. 3, where the front view corre-
sponds to a vertical face, the bottom view to a horizontal face, and the 
side view shows the projection of all interior faces. Nevertheless, the 
methodology only distinguishes between chords, straight members 
(vertical posts or struts), and diagonals (bottom lateral brace and di-
agonals), to be as generalized as possible. 

In the truss shown in this work, the top horizontal face could not be 
properly segmented due to severe occlusions and the density of the point 
cloud. This is a common problem when dealing with transport infra-
structure point clouds, since they are usually acquired from long dis-
tances and/or occluded by other structural members. Therefore, the top 
horizontal face was deemed unfit for analysis and excluded from the 
model. 

To process this truss type, the point cloud processing was tailored to 
meet a certain input criterion for the methodology:  

• There must be at least a labelled set of points for each member.  
• The labelled set of points must be aligned with the direction of the 

member they belong to.  
• The chords are to be segmented as completely as possible since they 

delimit the bounds of the truss and are used as reference.  
• Unwanted elements must be omitted (e.g., the handrail). 

To fulfil those requirements, the point cloud processing assesses the 
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distance between points and the expected direction of each type of 
member, since they follow a certain pattern inside their group. For 
instance, all diagonals follow either one of two directions, and all the 

vertical posts are aligned with the Z axis. By comparing those expected 
directions with the main component obtained from applying Principal 
Component Analysis (PCA) to a set of points, it is possible to exclude 

Fig. 1. Pipeline workflow.  

Fig. 2. Truss bridge studied.  

Fig. 3. Different types of members.  
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those which are not guaranteed to belong to that element. The use of this 
criterion, in return, results in a partially instance-segmented point cloud, 
since a lot of the points are excluded through this process, as seen in blue 
in Fig. 4. 

Once all the members have been processed, the final step is to format 
the information to be usable in the next step. This is done via the gen-
eration of a .csv file that feeds the software developed. There are three 
columns per member, which represent the X, Y and Z coordinates of its 
points, respectively. The headers of the columns provide the identifi-
cation and classification of the member that they are describing. This is 
done by following the naming schema of: “TrussName_Face_-
MemberType_MemberName”. This gives information about the face to 
which the member belongs (e.g., horizontal bottom face), its type (e.g., 
diagonal, strut…) and its identification (e.g., member ID and truss 
name). Since in this scenario there is only one truss, the truss name is 
equal for every column. 

2.2. Bounding boxes 

This section aims to explain what a bounding box is in the context of 
this work, and the reason behind its use in the methodology. In general 
terms, a bounding box is the box region that delimits a set of objects or 
points, in such a way that the entire set is confined inside it. A bounding 
box is defined by a centre, a set of orthogonal axes, and the extent along 
those axes to reach the face normal to them. In this work, the axis which 
has the largest associated extent is called the main axis of the bounding 
box. A representation of these parameters can be seen in Fig. 5. 

Usually, when referring to a bounding box, what is actually referred 
to is the minimum bounding box, which represents the minimum vol-
ume of space that completely contains an object or set of objects. This 
box can either be axis aligned, meaning that its edges are parallel to one 
of the XYZ axis, or oriented, where their axes are arbitrary orthogonal 
vectors. Fig. 6 presents these definitions in a simplified 2D scenario. 

For an axis aligned scenario, the minimum bounding box is usually 
simple to define. All that it takes is the maximum and minimum coor-
dinate in each axis of each of its contained objects. In an oriented sce-
nario, however, this calculation is much more challenging, since there is 
a possible solution for each set of orthogonal axes. Furthermore, this 
complexity is accentuated in the 3D space. The calculation of a mini-
mum oriented bounding box is outside of the scope of this paper. On a 
first version of the work, the GeometricToolsEngine [27] was used to 
compute this minimum oriented bounding box for each of the elements. 
However, the iteration nature of the calculation led to complex scenarios 
and unexpected behaviours. Fig. 7 presents the main issue using these 
minimum oriented bounding boxes, where two boxes with almost 
identical volumes present completely different rotations along their 
main axis. 

To avoid this scenario, an approximation that was consistent in the 
rotation along the main axis of the bounding box was used. The gener-
ation of this approximated box, based on Principal Component Analysis 
(PCA), is described in Section 3.1.1. Fig. 7 also shows how the bounding 
boxes aid to overcome the partial segmentation. Two segmented parts of 
the truss member might be disconnected due to noise, occlusions, or 
purposely being omitted from the segmentation to avoid conflicting 
information in intersections. However, the bounding box formed by the 
existing segments includes any possible space that the missing parts in 
between might have occupied. 

2.3. IFC 

The purpose of this section is to describe the different IFC entities and 
relationships used to build the model. The first thing to define is the IFC 
schema version to be used. As IFC 4.3 is still not widely available in 
programming libraries and visualization software, IFC 4.1 was used 
instead [28]. Nevertheless, the development took into account existing 
documentation about IFC 4.3 in order to make software as upwards 
compatible as possible, so that it can be updated in the future. To aid in 
the following explanation, Fig. 8 presents a simplified diagram of the 
different IFC entities used. 

The entity used to model each member is IfcMember. In the case of 
the truss in its entirety, it is described using an IfcElementAssembly that 
aggregates all the truss members into a single instance using IfcRelAg-
gregates. This assembly is placed in the model world coordinate system 
using IfcLocalPlacement. The truss members are also placed using an 
IfcLocalPlacement, but relative to the placement of the truss assembly, 
instead of the model world coordinate system. This way, in the case of a 
full bridge model that uses an alignment, the only element that must 
change to linear placement (IfcLinearPlacement) is the truss assembly. 
The solid used to represent each member is an IfcExtrudedAreaSolid, 
which requires a profile and a length. This representation will be used to 
form rectangular prisms that match the shape of the bounding boxes. 
The extrusion length is obtained from the biggest dimension of the 
bounding box obtained from the member points. The extruded profile is 
represented as a IfcRectangleProfileDef that uses the two remaining 
bounding box dimensions. A more detailed comment on the members 
profiles is given in the discussion, in Section 5. 

The model also includes the relationships between members, more 
specifically, the connections amongst themselves. This is modelled using 
series of IfcRelConnectsElements that are generated through bounding 
box collisions, as explained in Section 3.1.3. 

Fig. 4. Segmented point cloud. Blue – points omitted from segmentation. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 5. Bounding box parameters. C – center. A – axis. E – extent. A2 as 
main axis. 
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3. Methodology 

As mentioned in the introduction, the methodology generates both 
the IFC model of the truss and its structural graph. Therefore, this sec-
tion is split following that pattern. Section 3.1 presents the truss model 
generation, while Section 3.2 describes the construction of the structural 
graph. To aid in the explanation, Fig. 9 presents an overall view of the 
methodology following the steps of the different sub-sections. 

3.1. Truss model 

The aim of this section is to cover the entire model generation of the 
truss, represented by “IFC model generation” in Fig. 1. This process can 
be split into four steps, resulting in different versions of the truss. 

The first step processes the input data described in Section 2.1 and 
instantiates the different member objects. These objects contain the 
identification data as marked by the headers of the .csv, as well as the 

Fig. 6. Axis aligned vs Oriented bounding box.  

Fig. 7. Minimum oriented bounding box – Two different rotations.  

Fig. 8. IFC entity diagram.  
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bounding boxes created directly from the given points. The second step 
deals with the extension of the bounding boxes until they reach the 
chords. The third step corrects the edge cases, as they go out of bounds 
during this extension. Finally, the fourth step obtains the connection 
relationships between members and generates the IFC model. Therefore, 
this section is split following that criterion. To illustrate these steps, 
Fig. 10 presents a simplified flow from the initial state to the desired end 
state. It must be noted that this approach deals with an isolated truss, 
and therefore needs to use some parts of it as a reference. As such, the 
chords were chosen as the reference, as they delimit the bounds of the 
truss and its members. This means that the chords of the truss are 
considered as appropriately segmented in terms of length and are 
therefore not corrected. In the case of analysing the truss in the context 
of a full bridge, the chords could be corrected using the piers as 
reference. 

3.1.1. First step – Input processing and first bounding boxes 
The purpose of this step is to move from the input data to the state A 

of the truss as seen in Fig. 10. This means that, for each member, a 
bounding box is to be computed from the member points contained in 

the input file. As mentioned in Section 2.1, the input data .csv contains 
both the member points and the identification information of each 
member. Therefore, to proceed with the bounding box generation, the 
data contained in the file are to be extracted. For each member, the 
identification is obtained by splitting the headers using the predefined 
delimiting character, in this case “_”, and the three columns of the co-
ordinates are joined together into a list of points. 

Afterwards, the member points are subjected to a Principal Compo-
nent Analysis (PCA). The resulting main component vector will repre-
sent the main axis of the bounding box. To obtain the remaining two 
axes, the main axis is used as a guide to rotate a XYZ axis system so that 
the Z’ axis matches the main axis. This procedure can be seen in Fig. 11. 
At first, the system rotates Az in the +Z axis, which makes X’ parallel to 
the projection of the main axis in the XY plane (MAh). Then, the system 
rotates Ay’ in the +Y′ axis, resulting in the Z’ axis being parallel to the 
main axis (MA). By performing the rotation in this manner, the Y′ axis is 
contained in the XY plane. Through this restriction, a consistent 
orthogonal system is obtained for each member, and is used as the 
bounding box axis system for the member. 

Once the orthogonal axis system has been established, the points are 
transformed to this new axis system. Then, the coordinate ranges in each 
axis are used to obtain the extent of the bounding box in each of the 
three directions, as well as its centre. Finally, the centre is transformed 
back into the original X, Y, Z coordinate system. 

These parameters (centre, axes, and extent) are also used to set the 
placement of the member, which is made of translation and rotation. 
The translation is obtained using the centre and the extent of the main 
axis, since, by our criterion, the member is placed using the centre of one 
of the faces normal to the main axis, not the centre of the bounding box 
itself. The rotation is directly extracted from the axis system of the 
bounding box. 

At this point, both the bounding box and the placement of the 
member have been defined. The process is then repeated for the rest of 
the members. If no further processing is done, the truss is at the first state 
(A) of Fig. 10. For better understanding of this state, Fig. 12 shows what 
the IFC model of the truss looks like at the end of this step. As it can be 
seen, the members are not interconnected due to the use of a partially 
instance-segmented point cloud. Nevertheless, since the main axis of the 
bounding boxes matches the expected direction of the members, the 

Fig. 9. Overall methodology view.  

Fig. 10. Correction process overview. A – First state. B – Second state. C – Third 
state. D - Final state. 
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following steps are able to correct the lack of data. 

3.1.2. Second step – Bounding box extension 
The aim of this step is to move the truss from state A to B of Fig. 10. 

At the end of the previous step, the members were not interconnected. In 
order to solve this scenario and complete the geometry of the truss, the 
bounding boxes of the members are extended in the direction of their 
main axis. This extension is the reason behind the criterion “The labelled 
set of points must be aligned with the direction of the member they belong to” 
mentioned in Section 2.1. Through this restriction, the bounding boxes 
are aligned with the real direction of the member and, by extending the 
bounding box in that direction, they are able to represent the entirety of 
the member from just a segment. 

Nevertheless, it is necessary to set the boundary conditions that will 
delimit their extension. Such boundaries can be described via other 
members of the truss, called delimiting members or delimiters. In this 
step, the delimiting members for extension are the chords of the truss, 
since almost every member has both ends connected to chords. There-
fore, the task at hand is to correctly identify which chords are to be used 
as delimiters. This selection is based on the classification of the member. 
For example, the members of the bottom face use the two chords with 
the lowest Z value in their centre. 

This procedure is applicable to all members, with the exception of 

those belonging to the interior faces of the truss. Interior lateral braces 
can connect to any of the four chords. Therefore, the delimiting chord 
selection for interior lateral braces is based on the intersection between 
the main axis of the brace, and the main axis of the delimiting candidate 
chord. In the case of interior braces, their boundary conditions for 
extension are defined by two vertical posts, so the intersection check 
must be performed for the vertical posts, instead of chords. 

After the delimiting members have been selected, the extension of 
the member can be done. Fig. 13 presents the extension scenario using a 
vertical post and a chord as example. First, the intersection points be-
tween the main axis of the member (AXM) and the axis of the delimiting 
members (AXch1 and AXch2) are calculated (IntM-ch1 and IntM-ch2). 
Then, the distance between the centre of the bounding box of the 
member (CM) and each of the intersection points is obtained (E1 and 
E2). Using these distances, the extent of the bounding box along its main 
axis is recalculated (E’). This also prompts a correction of its centre 
(CM’), as the extension might not be symmetrical. 

It must be noted that the main axis vectors of two bounding boxes 
representing members of the same type (e.g., diagonals) might have the 
same orientation but different sense. In Fig. 13 this would be seen as the 
yellow arrow next to CM to be pointing downwards instead of upwards. 
The orientation is the same, but the sense is different. This possibility 
must be taken into account to properly calculate the new bounding box 
extent (E’). Once these values are obtained, both the bounding box and 
the placement are redefined using the new parameters. 

If this process is repeated for the rest of the members, the truss 
reaches the second state (B) of Fig. 10. Fig. 14 shows what the IFC model 
would look like if no further processing was done and the model was to 
be generated at this point. As it can be seen, the members are now 
interconnected and give a better representation of the truss geometry. 
However, some of the members were extended out-of-bounds, and are to 
be corrected in the next step. 

3.1.3. Third step – Out-of-bounds correction 
The objective of this step is to move the truss from state B to C as per 

Fig. 10. This is achieved by correcting the overextended members 

Fig. 11. Obtention of the bounding box axis system. MA – main axis. A – rotation angle around a given axis.  

Fig. 12. First state truss. A - Front view. B - Bottom view. C - Side view.  

Fig. 13. Extension scenario.  
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through the truncation of their bounding box using a newly defined 
delimiting member. 

In the previous step, the delimiting members were set to chords, with 
the exception of interior braces. However, this is not the case for all 
diagonal members (diagonals and bottom lateral braces, depending on 
the face). Fig. 15 presents an example on how some of these members 
only connect to one chord, while the others connect to one of the two 
straight members situated at opposite ends of the truss face (vertical post 
or strut, depending on the face). Since the previous step forced the 
extension towards chords, the diagonals were extended outside of the 
boundaries of their respective face, as shown in Fig. 14. 

This problem is easier to tackle if each face is analysed individually. 
To identify which diagonal members need correction, they are sorted 
using their bounding box centre coordinates. In the example of Fig. 15, 
this would be from left to right. Then, they are looped through both in 
ascending (left to right) and descending order (right to left), checking for 
intersection with the respective first or last straight members. By per-
forming the loop in this manner, the need to check every diagonal is 
removed since once a diagonal which does not intersect is found, the rest 
will not intersect either. Through this process, the bounding box of the 
diagonals that do intersect with a straight member are truncated at the 
point of intersection, effectively correcting their geometry. Once this 
process has been completed for all members and faces, the truss has 
reached state C as seen in Fig. 10. At this point, the geometrical aspect of 
the truss model has been completed, whose result can be seen in Fig. 16. 

3.1.4. Fourth step – Element interconnection 
The goal of this section is to obtain the final state of the model from 

state C, as seen in Fig. 10. This final state is the complete IFC-compliant 
model of the truss, including the different relationships between its 
members. 

The IFC generation of the truss is done following the entities pre-
sented in Section 2.3. For the most part, this model has already been 
shown in the previous step, as state C has the same geometry as the final 
state of the truss. However, an IFC model goes further than the geom-
etry. It can contain information about the semantics of the object (e.g., 
name and description), relationships between entities, materials, and 
other properties (e.g., maintenance history, thermal properties, and 
costs). 

In this work, the only source of data is the partially instance- 
segmented point cloud described in Section 2.1. Therefore, the truss 

model contains some semantics (bridge name, brief description, etc.), its 
geometry, and the topology relationships that can be extracted from 
such data (aggregation and connection). If additional information was to 
be present in the form of documentation or other accessible sources, it 
would be possible to include it in the model. 

The truss as a whole was generated as a single element assembly 
which only included the semantics of the truss and a placement. Without 
linking the truss with its members, it does not have a representation. 
However, when the IfcRelAggregates relationship defines the truss as the 
aggregation of all the truss members, both the truss and the members 
gain new information. On one side, the truss representation is now 
defined as the union of all the representation of its members. On the 
other, each member has gained context in the project and a point of 
reference for their placement. This implies that if the truss assembly is 
moved, all the members follow it, since they are placed relative to it. 
Therefore, if the truss is to be placed in a full bridge model which uses a 
different placement system or reference, such as the use of an IfcAlign-
ment for linear placement, only the truss assembly placement needs to be 
redefined. 

The connections between members are a key factor in the structural 
analysis of a truss, as they define the different points where the loads are 
distributed to the different elements. For two elements to be connected, 
they must touch one another. Therefore, a fitting procedure is the use of 
bounding box collisions to determine which elements are candidates to 
be linked together. The collision of bounding boxes is done through a 
mathematical C++ engine, called GeometricToolsEngine [27], that al-
lows to check whether two oriented bounding boxes intersect one 
another. 

Using this engine, all the members are automatically checked for 
collision with other members. To speed up the process, for every 
member being examined, all impossible options are not sent to the en-
gine for collision detection. This is done by checking the coordinate 
ranges of the vertices of both bounding boxes. If the coordinate ranges 
do not overlap, a collision is not possible. Fig. 17 presents this filtering in 
a 2D scenario with axis-aligned boxes. Even if two rectangles overlap in 
the Y axis, if they do not overlap in the X as well, they will never collide. 

At this point, it is possible to relate any member to the members it 
collides to. However, another rule is added due to the nature of the truss. 
The members are only fixed together at the chords and straight mem-
bers. On the other hand, diagonals often touch each other but are not 
fixed to one another. Therefore, all collisions that are not produced by 
two diagonals are used to set a IfcRelConnectsElements relationship be-
tween the colliding members. 

With the inclusion of these relationships, the model has reached the 
final state and can now be used to obtain a structural graph, which will 
be explained in Section 3.2. 

3.2. Structural graph 

The objective of this section is to cover the generation of the struc-
tural graph of the truss, represented by the “Structural graph genera-
tion” in Fig. 1. A graph is a data structure of nodes and edges, where the 
edges link nodes to each other. In this work, the nodes are used to 

Fig. 14. Second state truss. A - Front view. B - Bottom view. C - Side view.  

Fig. 15. Example of straight and diagonal members.  

Fig. 16. Third state truss. A - Front view. B - Bottom view. C - Side view.  
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represent the connexion points between members, while the edges are 
used to represent the members themselves. The flexibility of this rep-
resentation is a great fit for structural analysis, since is possible to 
include any information of interest to these entities. For instance, a 
property setting the node as fixed, a distributed load being applied to an 
edge, or member properties such as material and profile. 

This process is performed after the entire IFC model has been 
generated following the procedure explained in Section 3.1. The reason 
behind this is that the IFC model itself can be used as an import in some 
structural analysis software. Therefore, the obtention of the structural 
graph is treated as an optional step in the process and, if adapted, could 
be performed on already existing models. The overall idea is to use the 
IfcRelConnectsElements relationships present in the models to generate 
nodes that are linked together with edges that represent the members 
themselves. A simplified example of this can be seen in Fig. 18. 
Following this, this section is further divided between the construction 
of the graph (Section 3.2.1) and its export as a file compatible with 
structural analysis software (Section 3.2.2). 

3.2.1. Graph construction 
As mentioned, the structural graph is made of nodes and the edges 

that connect them. In this case, the nodes carry the spatial coordinates of 
the intersection, while the edges contain information about the members 
that they represent, such as profile or material. Since the edges are 
defined through a start and an end node, the first step is to obtain the 
nodes themselves. 

To do so, the connection relationships described in Section 3.1.4 are 
analysed. By fetching each of the connection relationships and calcu-
lating the intersection between the main axis of the bounding boxes of 
the members, the nodes are obtained. However, due to the variability of 
the point cloud and therefore, the bounding boxes, the nodes which are 
theoretically the same, appear in different positions, as seen in Fig. 19A. 
To solve this situation, the nodes are clustered using a Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN [29]) algo-
rithm in order to obtain a single node for such occurrences, as shown in 
Fig. 19B. The merged node will carry all the information of the previous 
nodes. This includes which elements are related in its creation. For 
instance, in Fig. 19A, one node might be obtained from the collision of a 
diagonal and the chord, while other from the vertical post and the chord. 
The merged node is therefore related to the diagonal, the chord, and the 
vertical post. 

The following step is to generate the edges connecting the nodes. 
Since the nodes carry the information of the members they are related 
to, the approach taken is to evaluate the node set of each member 
individually. Here, the set refers to every node related to the member, 
which implies that the node is situated on the member itself. This aids in 
the definition of rules for processing since the nodes are almost aligned, 
as seen in Fig. 20. 

Each node in the set is evaluated, obtaining its two closest nodes of 
the set as candidates for the definition of an edge. In the fragment shown 
in Fig. 20, this would mean that the chosen nodes for node 2 are node 1 
and node 3. These edge candidates can be valid, inversed, or complex. 
These types of candidates are represented in Fig. 21 and are defined as 
follows:  

• Valid. The candidate correctly defines a path between two nodes, 
without crossing any other node, and has not been included yet.  

• Inversed. The candidate has already been included in its inverse 
sense. The edges are non-directed, meaning that the edge that con-
nects node 1 to 2 is the same that connects 2 to 1.  

• Complex. The path of the edge crosses an intermediate node. 
Therefore, the candidate can be expressed as the sum of two edges. In 
the example of Fig. 21, the two closest nodes to node 1 are node 2 and 
node 3. However, the edge from node 1 to node 3 can be expressed as 
the sum of the edge from node 1 to 2 and the edge from node 2 to 3. 

Fig. 17. Coordinate overlapping for collision detection.  

Fig. 18. Node and edge example.  
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The node set is indexed and looped through in an ordered manner. 
Therefore, it allows the use of the indexes themselves to analyse the 
edges. For a given node under study, its two neighbours are checked. If 
the edge that would link the studied node to one of its neighbours, or its 
inverse, has not been marked as an edge candidate, it is marked. In the 
example of Fig. 21, the following would occur:  

1. Node 1. Neighbours: Node 2 and Node 3  
a. Edge 1–2. It has not been marked, do so.  
b. Edge 1–3. It has not been marked, do so.  

2. Node 2. Neighbours: Node 1 and Node 3  
a. Edge 2–1. Edge 1–2 has already been marked, skip.  
b. Edge 2–3. It has not been marked, do so.  

3. Node 3. Neighbours: Node 1 and Node 2  
a. Edge 3–1. Edge 1–3 has already been marked, skip.  
b. Edge 3–2. Edge 2–3 has already been marked, skip. 

In this first part of the process, edges 1–2, 1–3, 2–3 has been marked 
as possible candidates. However, edge 1–3 is a complex edge, as it can be 
expressed by the sum of edge 1–2 and 2–3. One possible solution is to 
calculate a member-specific length between nodes and use it to filter 
edges that are above that threshold. However, this would only work in a 
perfect scenario. If there are any missing members due to the point cloud 
acquisition or because it is the actual state of the truss, this method 
would fail. Therefore, all edge candidates must be examined to ensure 

that they cannot be broken down into simpler candidates. Since only two 
neighbouring nodes are explored per node in the set, and the inversed 
edges have already been eliminated, the number of checks needed is 
greatly reduced. 

This evaluation is done in the form of paths branching from the 
starting node of the examined edge. The rules for the path-finding are 
the following: (i) To not use the examined edge; (ii) To not go backwards 
(using the inverse of an already taken path); and (iii) To not create a path 
of higher length than the examined edge. If it is possible to reach the end 
node in two steps without breaking the aforementioned conditions, the 
examined edge is complex and therefore removed. This process can be 
seen in Fig. 22 for the edges 1–2 and 1–3 of the previous example. Edge 
2–3 is analogous to 1–2 so is therefore not presented. 

This process is then repeated for each of the node sets, obtaining all 
edges of the graph. 

3.2.2. Export 
At this point, both the geometrical IFC model and the structural 

graph have been generated. Therefore, the final action is their export 
towards a structural analysis software. The software chosen is DIANA 
[30], since it provides a clear way to input the structural graph as a text 
file that can be automatically generated from the graph characteristics. 
Furthermore, DIANA also supports the import of the geometrical IFC 
model directly and the use of Python commands to generate variables. 
As such, there are three available export options in the developed 
software:  

• Geometrical export. The IFC file itself. Albeit this removes the need 
to calculate the structural graph described through Section 3.2, it 
also requires the user to manually set the analysis conditions. 
Therefore, this option is best fit whenever the user is experienced and 
wants to perform a thorough analysis, since it removes the monot-
onous task of manually setting the geometry.  

• Text file graph export. Generates a DIANA-compatible text file that 
describes the nodes and edges and their properties. It is also possible 
to define a mesh-like sectioning of the edges. This option is best fit 
when applying an automated pipeline analysis, meaning that the 
whole procedure is expected to be performed as automatically as 
possible, from point cloud import to structural analysis.  

• Python command export. Similarly to the text export, it generates a 
.py file that contains series of variable declarations for the nodes and 
edges. This is the most minimalistic representation of the graph and 

Fig. 19. Collision nodes (Pink). A - Unmerged nodes. B - Merged node. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 20. Fragment of a chord node set.  

Fig. 21. Example of types of edge candidates.  
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could be further enriched by adding other commands to set up ma-
terials and profiles. The application scenario is equal to the text file 
export. Therefore, in case of using DIANA, it is simply a matter of 
preference for the end user. If the structural graph is to be imported 
in a different software, or further processed using other tools, a Py-
thon file might be a better option due to its wide adoption. 

4. Results 

The methodology explained throughout Section 3 was applied to a 
partially instance-segmented point cloud of a truss bridge, as described 
in Section 2.1. The truss contains 272 members, divided amongst the 
analysed faces (two vertical faces, a horizontal bottom face and seven-
teen interior faces). These members can be further broken down into 
their classes as per the nomenclature of Fig. 3: 136 diagonals, 4 chords, 
34 vertical posts, 16 struts, 32 bottom lateral braces, 33 interior lateral 

braces, and 17 interior braces. The software developed in this work uses 
the 4.1 version of the IFC schema. It was programmed using C# and used 
the xBIM 5.1.323 toolkit [31] for the creation of the model, along with 
the GeometricToolsEngine [27] to check whether two bounding boxes 
intersect each other. For reference, the viewer used to visualize the IFC 
models, and the one from where the figures of Section 3.1 were 
extracted, is FZKViewer 6.4 [32]. 

4.1. Truss model 

The truss model generation has been explained in Section 3.1. This 
process is able to automatically generate an IFC-compliant model of a 
truss bridge using a partially instance-segmented point cloud as the 
source of information. Furthermore, it does not only create the model 
using the provided data as-is, but actively overcomes missing or faulty 
data. The driving factor behind this result is the use of bounding boxes as 

Fig. 22. Complex edge evaluation. Left: Edge 1–2. Right: Edge 1–3.  

Fig. 23. Full IFC model in FZKViewer.  
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both a way to fill the possible gaps and to further evolve the model while 
providing meaningful information using their collisions. The evolution 
of the model has been shown throughout Section 3.1, presenting the 
coloured geometry of the model in its first state in Fig. 12, and its final 
state in Fig. 16. In this section, however, the full IFC model will be 
presented through different figures taken from the FZKViewer. Fig. 23 
presents a global view of the model, including the hierarchy of the 
project. It must be noted that the colouring scheme for the different 
members used until now is no longer present. Since this section will 
cover the final truss model, all members are represented using IfcMem-
ber, and have the same colour. 

As it can be seen, the model is made of 272 objects, in this case Ifc-
Members that are assembled as an IfcElementAssembly called “Truss1” in 
the model. Inside the “PointCloudToIFCProject” other three entities 
along with the truss: “TrussSite”, “TrussFacility” and “TrussFacility-
Part”. These are instances of IfcSpatialStructureElement and are used to 
organize a project. If a single entity is selected, its properties can be 
explored, this includes identification and context information, as well as 
what kind of geometry and placement it has. Fig. 24 presents the 
properties of a vertical post with name “VM77”. 

More importantly, the relations tab allows us to explore the different 
relations to other entities, such as the aggregation relationship with the 
truss assembly. As “VM77” is a vertical post, it has a total of 16 
connection relationships to other members. Fig. 25 shows its relations 
tab, highlighting some of the members connected through these 
relationships. 

4.2. Structural graph 

The structural graph construction has been described in Section 3.2. 
It started off with the node assessment through the bounding box col-
lisions, represented by the IfcRelConnectsElements relationships. Then, 

the edges were generated member wise, targeting their node sets in a 
way that simulates their alignment. 

The software developed outputs two files. The first one is always an 
IFC file (.ifc) that describes the truss model. The second is a file that 
contains the information of the structural graph. As mentioned in Sec-
tion 3.2.2, this graph information can be expressed through a text file 
that follows the DIANA guidelines for imports, or through a Python file 
that contains instructions to generate the nodes and edges as variables. 
Whichever option is chosen, the amount of data that is possible to be 
included in both formats is the same. 

To present these exports, the following figures represent all three 
types once imported into DIANA. First, Fig. 26 is the direct import of the 
IFC file. Then, Fig. 27 is the text file import, which also includes a simple 
mesh. Finally, Fig. 28 is the python import with only nodes and edges. 

As shown, the graph export, either through text or Python in-
structions, contains much simpler and direct information. This is an 
important factor to consider when thinking about scaling the model to 
include more elements and details, or include it into an automated 
structural analysis pipeline. 

5. Discussion 

The results described in Section 4 show that the proposed method-
ology is able to fulfil the objective and contributions of this work, which 
were presented in Section 1. The purpose of this section is to address the 
shortcomings of the paths taken to achieve those contributions. 

As first contribution, the software developed outputs an IFC- 
compliant file that contains the truss information model, including the 
connection relationships between its members. The generation of such 
model has been explained in Section 3.1.4, with the final IFC model 
being shown in Section 4.1. The information model follows the IFC 4.1 
schema instead of IFC 4.3, which is under ISO DIS voting at the time of 

Fig. 24. VM77 - Element properties tab.  
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writing. Therefore, some IFC entities related to infrastructure are non- 
existing or have a different name. For instance, the”TrussFacility” 
mentioned in Section 4.1, which works as a tool to better organize a 
project, is expressed with IfcBuilding instead of the IfcFacility of IFC 4.3. 

As second contribution, a structural graph representing the truss 
geometry is generated and exported. This process has been detailed in 
Section 3.2, while the visualization of the imported files was presented 
in Section 4.2. The construction of this graph relies on the previously 
introduced IfcRelConnectsElements relationship between members whose 
bounding boxes collide with one another. Through this work, two ways 
of working with the bounding box were used. On one side, the inter-
section between the main axis of two bounding boxes, used in Section 
3.1.2–3.1.3. On the other, checking if two bounding boxes collide to one 
another, used in Section 3.1.4. The issue with the former is that two lines 

almost never intersect to one another in a 3D scenario. Therefore, the 
closest point of one line with respect to the other is used instead. The 
problem with the latter, on the other hand, is that it only checks whether 
two bounding boxes are colliding, it does not provide the shape of 
intersection of the bounding boxes. Therefore, if geometrical data is 
required, additional operations are needed once it is known that they 
collide. 

As third contribution, the methodology is able to overcome the 
partial segmentation. This is achieved through the use of bounding 
boxes and their modification according to the truss frame of reference, 
the chords. This has been described in Sections 3.1.1–3.1.3. Since a 
partially instance-segmented point cloud is the only source of data, there 
are some issues and challenges that are to be addressed. Infrastructure 
point clouds are acquired outdoors and from large distances. 

Fig. 25. VM77 - Relations tab.  

Fig. 26. Direct .ifc import - DIANA.  
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Furthermore, occlusions from vegetation, obstacles, or the asset itself 
might be present, as well as unfavourable weather conditions. These 
aspects often result in point clouds with suboptimal quality when 
compared to indoor point clouds. As the proposed methodology aims to 
operate in an automatic manner, any issues with the point cloud are 
translated into the model itself. For instance, some members of the same 
type and face present slightly different rotations and positions to one 
another, which is not the case in the real truss. This is visible in the front 
and bottom views of the final truss geometry, in Fig. 16. Another 
example is the profile of the members. It was not possible to extract the 
profile measurements or shapes from the point cloud, which in turn 
resulted in the use of rectangular profiles that took advantage of the 
bounding box measures. Also, as stated in Section 2.1, the top horizontal 
face was deemed unfit for analysis and excluded from the model. Un-
fortunately, the point cloud quality did not allow for its inclusion. The 
occlusions from all the other members, combined with existing noise 
and proximity of the girder, made the top section barely recognizable 
with the human eye and was therefore excluded from being processed. 
Nevertheless, if included as input, the software is ready to correct the top 
face members in the same manner as the others. This would increase the 
quality of the model, completing the full truss and improving the ac-
curacy of any possible analysis performed on it. 

6. Conclusions 

This work represents the second part of a fully automated pipeline 
that transforms a raw point cloud of a bridge truss into an IFC-compliant 
model and a structural graph. In the case presented in this paper, a total 
of 272 members were modelled, connected, and processed into a 
structural graph that was later exported into DIANA. While the struc-
tural analysis itself falls outside of the scope of this paper, the method-
ology presents the capabilities of the pipeline that is being developed. 
Nevertheless, there are still areas that can be improved. The graph 
construction, albeit quite generalized and abstract, is still mainly 
designed for truss members. The underlying bounding box methodology 
is a level higher in abstraction, as it uses the concept of general physical 

elements, instead of truss members specifically. Therefore, as the pro-
gram develops, and more types of trusses and elements are included, 
some of these aspects are bound to change in order to account for the 
flexibility required for such a task. For instance, if piers were to be 
added, they could be used as the frame of reference in order to also 
correct the chord members. It would also be possible to use the 
connection with the piers to set up certain nodes as anchor points. 
Nevertheless, the approach presented is focused on the truss, which is 
one of the most geometrically complex elements of a truss bridge. If a 
different category of elements were to be added, such as elements of the 
road situated above the bridge (e.g., guardrails), its inclusion in the 
model would follow the approach taken by the authors in a previous 
research [33]. Also, as mentioned in the discussion in Section 5, the 
point cloud introduced certain issues, such as the slight variations in 
position and orientation of the members, as well as no information about 
their profile types. The positioning and orientation could be solved by 
analysing the entire truss to obtain the dominant orientation vectors, as 
well as the distance between the members, since these structures usually 
follow a pattern. However, setting this kind of restrictions would 
significantly reduce the abstraction capability of the methodology, and 
might encounter difficulties when applied in other scenarios. In the case 
of the member profiles, the input of an additional document containing 
the member types could be used to determine the overall shape of each 
member (e.g., IPE), while their bounding box dimensions could be used 
to determine their size (e.g., IPE220). As for the IFC model generation, 
new iterations of the software developed could target IFC 4.3 instead IFC 
4.1 if the programming libraries and viewers adopt it. Nevertheless, the 
key component of this work, the bounding boxes, is unaltered by the 
change. This is because the IFC formatting is performed at the last stage 
of the process. Therefore, if the schema or its nomenclature changes, 
only a small fraction of the developed software is to be adapted. The 
mentioned bounding boxes were used in two different manners 
throughout the work. The first being main axis intersection, and the 
second being the check of collision between two bounding boxes. The 
main axis intersection performs very well when the members are ex-
pected to intersect, such as diagonals with chords. The bounding box 

Fig. 27. Text graph import - DIANA.  

Fig. 28. Python graph import - DIANA.  
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collision application is broader and more general, allowing to check 
collisions with any entity that has a bounding box, which is ideal for 
creation of IfcRelConnectsElements relationships. 

The authors believe that the evolution of IFC towards the infra-
structure domain, coupled with the capabilities of point clouds as 
geometrical source of information, will bring new developments for 
infrastructure information models. The results presented in this work are 
promising and set the basis for future work on not only on trusses, but on 
other types of structures. 
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damage: detection, IFC-based semantic enrichment and visualization, Autom. 
Constr. 112 (2020), 103088, https://doi.org/10.1016/J.AUTCON.2020.103088. 

[25] D. Prati, G. Zuppella, G. Mochi, L. Guardigli, R. Gulli, wooden trusses 
reconstruction and analysis through parametric 3d modeling, ISPRS Ann. 
Photogram. Remote Sens. Spat. Inform. Sci. 42 (2019) 623–629, https://doi.org/ 
10.5194/ISPRS-ARCHIVES-XLII-2-W9-623-2019. 

[26] J. Hermida, M. Cabaleiro, B. Riveiro, J.C. Caamaño, Two-dimensional models of 
variable inertia from LiDAR data for structural analysis of timber trusses, Constr. 
Build. Mater. 231 (2020), 117072, https://doi.org/10.1016/J. 
CONBUILDMAT.2019.117072. 

[27] Geometric Tools, (n.d.). https://www.geometrictools.com/index.html (accessed 
September 29, 2022). 

[28] buildingSMART, IFC 4.1 Documentation, (n.d.). https://standards.buildingsmart. 
org/IFC/RELEASE/IFC4_1/FINAL/HTML/ (accessed October 13, 2022). 

[29] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering 
clusters in large spatial databases with noise, in: Proceedings of the Second 
International Conference on Knowledge Discovery and Data Mining, AAAI Press, 
1996, pp. 226–231. https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf 
(accessed January 17, 2023). 

[30] DIANA FEA, (n.d.). https://dianafea.com/ (accessed October 26, 2022). 
[31] S. Lockley, C. Benghi, M. Černý, Xbim., Essentials: a library for interoperable 

building information applications, J. Open Source Softw. 2 (2017) 473, https:// 
doi.org/10.21105/joss.00473. 

[32] KIT - IAI - Downloads - FZKViewer, (n.d.). https://www.iai.kit.edu/english/1648. 
php (accessed July 11, 2022). 

[33] A. Justo, M. Soilán, A. Sánchez-Rodríguez, B. Riveiro, Scan-to-BIM for the 
infrastructure domain: generation of IFC-compliant models of road infrastructure 
assets and semantics using 3D point cloud data, Autom. Constr. 127 (2021), 
103703, https://doi.org/10.1016/j.autcon.2021.103703. 

A. Justo et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/J.SIMPAT.2022.102529
https://doi.org/10.1016/J.RESS.2013.06.040
https://doi.org/10.1016/J.RESS.2013.06.040
https://doi.org/10.1111/J.1468-5973.2007.00504.X
https://joint-research-centre.ec.europa.eu/jrc-news/keeping-european-bridges-safe-2019-04-05_en
https://joint-research-centre.ec.europa.eu/jrc-news/keeping-european-bridges-safe-2019-04-05_en
https://doi.org/10.1016/J.AUTCON.2018.07.001
https://doi.org/10.1016/J.AUTCON.2018.07.001
https://doi.org/10.1007/978-3-319-92862-3_1
http://itc.scix.net/paper/w78_2007_97
https://doi.org/10.6028/NIST.GCR.04-867
https://doi.org/10.6028/NIST.GCR.04-867
https://doi.org/10.1007/978-3-319-92862-3_15
https://doi.org/10.1007/978-3-319-92862-3_15
https://www.buildingsmart.org/
https://www.buildingsmart.org/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-release-notes/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-release-notes/
https://www.iso.org/standard/70303.html
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://doi.org/10.1093/JCDE/QWAA075
https://doi.org/10.1093/JCDE/QWAA075
https://doi.org/10.3390/APP10103649
https://doi.org/10.3390/APP112411804
https://doi.org/10.3390/APP112411804
https://doi.org/10.3390/INFRASTRUCTURES5070055
https://doi.org/10.3390/INFRASTRUCTURES5070055
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001894
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001894
https://doi.org/10.3390/INFRASTRUCTURES4040058
https://doi.org/10.3390/INFRASTRUCTURES4040058
https://doi.org/10.1109/JSTARS.2017.2781132
https://doi.org/10.1109/ICTIS.2017.8047822
https://doi.org/10.3390/RS10101531
https://doi.org/10.1016/J.AUTCON.2020.103088
https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W9-623-2019
https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W9-623-2019
https://doi.org/10.1016/J.CONBUILDMAT.2019.117072
https://doi.org/10.1016/J.CONBUILDMAT.2019.117072
https://www.geometrictools.com/index.html
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://dianafea.com/
https://doi.org/10.21105/joss.00473
https://doi.org/10.21105/joss.00473
https://www.iai.kit.edu/english/1648.php
https://www.iai.kit.edu/english/1648.php
https://doi.org/10.1016/j.autcon.2021.103703

	Generating IFC-compliant models and structural graphs of truss bridges from dense point clouds
	1 Introduction
	2 Context
	2.1 Point cloud segmentation
	2.2 Bounding boxes
	2.3 IFC

	3 Methodology
	3.1 Truss model
	3.1.1 First step – Input processing and first bounding boxes
	3.1.2 Second step – Bounding box extension
	3.1.3 Third step – Out-of-bounds correction
	3.1.4 Fourth step – Element interconnection

	3.2 Structural graph
	3.2.1 Graph construction
	3.2.2 Export


	4 Results
	4.1 Truss model
	4.2 Structural graph

	5 Discussion
	6 Conclusions
	Funding
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


