
Automation in Construction 149 (2023) 104786

Available online 13 February 2023
0926-5805/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Generating IFC-compliant models and structural graphs of truss bridges
from dense point clouds

Andrés Justo a,*, Daniel Lamas a, Ana Sánchez-Rodríguez b, Mario Soilán a, Belén Riveiro a

a CINTECX, Universidade de Vigo, GeoTECH Group, Campus Universitario de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
b ICITECH, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain

A R T I C L E I N F O

Keywords:
Point cloud
IFC
BIM
Truss bridge
Bounding box

A B S T R A C T

The IFC schema has been evolving towards the infrastructure domain. Furthermore, the use of laser scanning
technologies as means to digitalize and monitor infrastructures has also significantly increased. This work pre-
sents an automated modelling approach for truss bridges that utilizes laser scanning data as its source for
geometrical information. The methodology takes a partially instance-segmented point cloud of a truss bridge and
generates both an IFC-compliant information model of the truss and the corresponding structural graph. This
process uses bounding boxes and their collisions to overcome the missing data from the partial segmentation to
create the truss model, as well as to identify the nodes that connect the different truss members. The method-
ology was tested on a use case made of 272 members and obtained the truss model and structural graph files.

1. Introduction

Infrastructure systems are directly linked to the economy and society
of a nation. In particular, Critical Infrastructure Systems (CIS) such as
water supply, transport or power supply, are driving components of its
development. In addition, CIS also play a central role in the mitigation,
management and recovery from disaster scenarios. The needs of a
population grow along with its size, which means that the infrastructure
backbone that support them must expand as well. This increase in scale
and complexity results in a dependency relationship between CIS that
enables them to function properly. For instance, transport infrastructure
distributes the resources used by other systems, and power supply is
needed in almost every scenario. While this synergy improves the
overall quality and efficiency of CISs, it also increases its vulnerabilities.
The collapse or operational shutdown of a system could create a domino
effect that impacts all related CISs. Therefore, the resilience of these
systems is a key priority, as they should be able to withstand or mitigate
the consequences of these scenarios, protect their users, reduce costs
derived from them, and hasten the recovery from such cases [1–3].

Transport infrastructure is identified as a CIS because the transport of
both goods and people is crucial to the well-functioning of any society.
Similarly to other CIS, the increase in demand is translated into an in-
crease in the size and complexity, while also exceeding expected traffic

values for existing assets. In the case of bridges, many of the 1234 km of
road bridges over 100 m long in the EU were built during the 1950s and
have reached the end of their design life, surpassing the traffic load that
was expected at design [4]. This trend carries the need for efficient and
cost-effective technologies to support infrastructure management
throughout their entire lifecycle [5]. This is particularly accentuated in
bridges, where manual visual inspection is still the most common
method to assess their condition.

Interoperability and digitalization are also key concerns in the con-
struction industry. The use of paper documents or fragmented infor-
mation in different formats results in the loss of information and high
costs and delays [6,7]. Gallaher et al. presented a cost analysis report of
inadequate interoperability in the U.S. capital facilities industry across
the entire life-cycle, estimating a loss of 15.8 billion dollars per year [8].
A digital model of the bridge can serve as a single source of truth, where
all the digital information is centralized in a clear and accessible
manner. The digital model also serves as a foundation for interopera-
bility and integration with other technologies that can harness that data.
In this context, Building Information Modelling (BIM) presents a
collaborative workflow where the interested parties can work together
in a Common Data Environment (CDE) [9]. The different specialized
agents can exchange information using a unique federated model
described using a data model, such as the Industry Foundation Classes

* Corresponding author.
E-mail addresses: andres.justo.dominguez@uvigo.gal (A. Justo), daniel.lamas.novoa@uvigo.gal (D. Lamas), asanrod3@upv.es (A. Sánchez-Rodríguez), msoilan@

uvigo.gal (M. Soilán), belenriveiro@uvigo.gal (B. Riveiro).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2023.104786
Received 27 October 2022; Received in revised form 31 January 2023; Accepted 3 February 2023

mailto:andres.justo.dominguez@uvigo.gal
mailto:daniel.lamas.novoa@uvigo.gal
mailto:asanrod3@upv.es
mailto:msoilan@uvigo.gal
mailto:msoilan@uvigo.gal
mailto:belenriveiro@uvigo.gal
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2023.104786
https://doi.org/10.1016/j.autcon.2023.104786
https://doi.org/10.1016/j.autcon.2023.104786
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2023.104786&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Automation in Construction 149 (2023) 104786

2

(IFC) presented by buildingSMART [10]. This is particularly beneficial
in large scale projects that combine multiple disciplines and domain-
specific teams, such as transport infrastructure.

IFC has been evolving towards the infrastructure domain over the
last years with its 4.X releases [11]. IFC 4.0 first enabled the extension of
IFC to infrastructure and is a full ISO standard (ISO 16739-1:2018 [12]),
while its predecessor IFC 2 × 3 is an ISO/PAS. IFC 4.1 introduced the key
component of an infrastructure information model, the alignment, to
serve as a linear reference system for the positioning of elements and
interlinkage with other infrastructures of the network. IFC 4.2 presented
extensions to the schema that enabled it to describe bridges. However,
buildingSMART decided to harmonize and unify all the infrastructure
domains under a single release, instead of including them in individu-
alized versions. The newly released IFC 4.3 represents that vision, which
encompasses bridges, road, railways, ports and waterways. It introduced
several hierarchy and nomenclature changes, as well as some new
functionalities such as the lateral profile inclination of the alignment. At
the time of writing, IFC 4.3 is under ISO voting and receiving continuous
updates. Also, IFC4.4 is set to be an extension of IFC 4.3 to mainly
include tunnel functionalities [13]. However, since IFC 4.3 is still new
and was subjected to many changes both during development and in its
release, many programming libraries and viewers do not properly sup-
port it yet. Due to this, or because IFC 4.3 is still not an ISO standard,
many existing efforts use pre-existing IFC versions. Koo et al. (2020)
mentioned how, due to the lack of ISO standardization for infrastructure
elements of IFC, these entities needed to be mapped to similar archi-
tectural entities, or to proxy ones [14]. Kwon et al. (2020) presented an
extension to IFC 4.2 to model alignment-based railway tracks [15].

In this setting, point clouds obtained using laser scanning technolo-
gies offer a robust basis for the geometrical definition of information
models for infrastructures. Bariczová et al. (2021) used Terrestrial Laser
Scanning (TLS) data to verify the geometry of walls defined using IFC 4.0
[16]. Barazzetti et al. (2020) states that the integration of geospatial
information along with other data, such as LiDAR (Light Detection And
Ranging) point clouds, is key in the generation of BIM-GIS models of
infrastructure [17]. Ariyachandra et al. (2020) present a method that
detects railway mast from air-borne LiDAR data and delivers an IFC
model of the results [18]. It also serves as means to obtain information
models of the assets, as point clouds can provide the needed geometrical
information. There are several works and reviews that detail the current
state of this technology [19–22] in the transport infrastructure domain.
In the case of bridges, existing works using point clouds and IFC often
deal with non-truss bridges and use meshes for their representation.
Sánchez-Rodríguez et al. (2020) presented the case of a masonry bridge,
where the point cloud was translated into meshes that were then
formatted following the IFC schema [23]. Isailović et al. (2020)
described a procedure to update the as-built IFC models through the
incorporation of damage meshes [24]. As for truss structures, current
works using point clouds often target wooden structures. For instance,
Prati et al. (2019) presented a 3D model of the wooden roofing of St
Peter’s Cathedral, generated from TLS data [25]. Hermida et al. (2020)
proposed an algorithm to obtain 2D models of variable inertia from
LiDAR data of timber trusses [26]. To the author’s knowledge, no
existing works were found that dealt with the fully automated genera-
tion of truss models and the corresponding structural graph from point
cloud data.

Given this context, the core objective of this work is to create an IFC-
compliant model of a truss, as well as a structural graph that represents
it, from partially instance-segmented point cloud data. The key concept
behind it is the use of the bounding boxes that encompass each of the
partially segmented truss members. As will be explained throughout this
work, this representation itself overcomes the partial segmentation,
while bounding box collisions are used to determine the connection
relationships between truss members, obtaining a structural graph.
Therefore, the contribution of this work is threefold:

1. Automated generation of a truss bridge IFC-compliant model.
2. Automated generation of a structural graph representing the truss.
3. Overcoming the missing data from the truss bridge point cloud

segmentation.

This work is the second part of an automated pipeline that takes the
raw point cloud and outputs both the IFC model, and the structural
graph made of nodes and edges. The first part oversees the point cloud
segmentation, while the second deals with the automated generation of
the model and its correction, as well as the obtention of the structural
graph. To better illustrate the workflow, Fig. 1 presents a diagram where
the truss can be seen evolving from the raw point cloud to its segmented
form, and then to the IFC model and the structural graph.

This work is structured as follows: In Section 2, the context of this
work is introduced. It tackles the point cloud segmentation (Section 2.1),
the bounding boxes (Section 2.2), and the IFC entities and relationships
used to build the model (Section 2.3). Section 3 explains the method-
ology used for the truss model (Section 3.1) and for the structural graph
(Section 3.2). Section 4 shows the results of the methodology by pre-
senting both the final IFC model (Section 4.1) and the structural graph
(Section 4.2) in their respective receiving software/viewer. Section 5
discusses the results, addressing the limitations and shortcomings.
Finally, Section 6 offers the conclusions along with future lines of work
to overcome the shortcomings and further improve the methodology.

2. Context

2.1. Point cloud segmentation

The starting point of the methodology is a partially instance-
segmented point cloud of a truss bridge, which is depicted in Fig. 2.
The overall dimensions of this truss are 64 × 5.6 × 4.8 m and is made of
272 members. It was extracted from a 594 m structure that rests on 11
pillars.

This type of truss can be divided into three types of faces: vertical,
horizontal, or interior. The two vertical faces contain the vertical posts,
as well as the diagonals. The bottom horizontal face contains the struts
and bottom lateral braces. The seventeen interior faces, which can be
seen as cross-sections of the truss, contain interior braces and interior
lateral braces. Furthermore, there are four chords that delimit the
bounds of the truss. These are not assigned to a face type since they are
located in the intersection between the horizontal and vertical faces.
This nomenclature can be seen in Fig. 3, where the front view corre-
sponds to a vertical face, the bottom view to a horizontal face, and the
side view shows the projection of all interior faces. Nevertheless, the
methodology only distinguishes between chords, straight members
(vertical posts or struts), and diagonals (bottom lateral brace and di-
agonals), to be as generalized as possible.

In the truss shown in this work, the top horizontal face could not be
properly segmented due to severe occlusions and the density of the point
cloud. This is a common problem when dealing with transport infra-
structure point clouds, since they are usually acquired from long dis-
tances and/or occluded by other structural members. Therefore, the top
horizontal face was deemed unfit for analysis and excluded from the
model.

To process this truss type, the point cloud processing was tailored to
meet a certain input criterion for the methodology:

• There must be at least a labelled set of points for each member.
• The labelled set of points must be aligned with the direction of the

member they belong to.
• The chords are to be segmented as completely as possible since they

delimit the bounds of the truss and are used as reference.
• Unwanted elements must be omitted (e.g., the handrail).

To fulfil those requirements, the point cloud processing assesses the

A. Justo et al.

Automation in Construction 149 (2023) 104786

3

distance between points and the expected direction of each type of
member, since they follow a certain pattern inside their group. For
instance, all diagonals follow either one of two directions, and all the

vertical posts are aligned with the Z axis. By comparing those expected
directions with the main component obtained from applying Principal
Component Analysis (PCA) to a set of points, it is possible to exclude

Fig. 1. Pipeline workflow.

Fig. 2. Truss bridge studied.

Fig. 3. Different types of members.

A. Justo et al.

Automation in Construction 149 (2023) 104786

4

those which are not guaranteed to belong to that element. The use of this
criterion, in return, results in a partially instance-segmented point cloud,
since a lot of the points are excluded through this process, as seen in blue
in Fig. 4.

Once all the members have been processed, the final step is to format
the information to be usable in the next step. This is done via the gen-
eration of a .csv file that feeds the software developed. There are three
columns per member, which represent the X, Y and Z coordinates of its
points, respectively. The headers of the columns provide the identifi-
cation and classification of the member that they are describing. This is
done by following the naming schema of: “TrussName_Face_-
MemberType_MemberName”. This gives information about the face to
which the member belongs (e.g., horizontal bottom face), its type (e.g.,
diagonal, strut…) and its identification (e.g., member ID and truss
name). Since in this scenario there is only one truss, the truss name is
equal for every column.

2.2. Bounding boxes

This section aims to explain what a bounding box is in the context of
this work, and the reason behind its use in the methodology. In general
terms, a bounding box is the box region that delimits a set of objects or
points, in such a way that the entire set is confined inside it. A bounding
box is defined by a centre, a set of orthogonal axes, and the extent along
those axes to reach the face normal to them. In this work, the axis which
has the largest associated extent is called the main axis of the bounding
box. A representation of these parameters can be seen in Fig. 5.

Usually, when referring to a bounding box, what is actually referred
to is the minimum bounding box, which represents the minimum vol-
ume of space that completely contains an object or set of objects. This
box can either be axis aligned, meaning that its edges are parallel to one
of the XYZ axis, or oriented, where their axes are arbitrary orthogonal
vectors. Fig. 6 presents these definitions in a simplified 2D scenario.

For an axis aligned scenario, the minimum bounding box is usually
simple to define. All that it takes is the maximum and minimum coor-
dinate in each axis of each of its contained objects. In an oriented sce-
nario, however, this calculation is much more challenging, since there is
a possible solution for each set of orthogonal axes. Furthermore, this
complexity is accentuated in the 3D space. The calculation of a mini-
mum oriented bounding box is outside of the scope of this paper. On a
first version of the work, the GeometricToolsEngine [27] was used to
compute this minimum oriented bounding box for each of the elements.
However, the iteration nature of the calculation led to complex scenarios
and unexpected behaviours. Fig. 7 presents the main issue using these
minimum oriented bounding boxes, where two boxes with almost
identical volumes present completely different rotations along their
main axis.

To avoid this scenario, an approximation that was consistent in the
rotation along the main axis of the bounding box was used. The gener-
ation of this approximated box, based on Principal Component Analysis
(PCA), is described in Section 3.1.1. Fig. 7 also shows how the bounding
boxes aid to overcome the partial segmentation. Two segmented parts of
the truss member might be disconnected due to noise, occlusions, or
purposely being omitted from the segmentation to avoid conflicting
information in intersections. However, the bounding box formed by the
existing segments includes any possible space that the missing parts in
between might have occupied.

2.3. IFC

The purpose of this section is to describe the different IFC entities and
relationships used to build the model. The first thing to define is the IFC
schema version to be used. As IFC 4.3 is still not widely available in
programming libraries and visualization software, IFC 4.1 was used
instead [28]. Nevertheless, the development took into account existing
documentation about IFC 4.3 in order to make software as upwards
compatible as possible, so that it can be updated in the future. To aid in
the following explanation, Fig. 8 presents a simplified diagram of the
different IFC entities used.

The entity used to model each member is IfcMember. In the case of
the truss in its entirety, it is described using an IfcElementAssembly that
aggregates all the truss members into a single instance using IfcRelAg-
gregates. This assembly is placed in the model world coordinate system
using IfcLocalPlacement. The truss members are also placed using an
IfcLocalPlacement, but relative to the placement of the truss assembly,
instead of the model world coordinate system. This way, in the case of a
full bridge model that uses an alignment, the only element that must
change to linear placement (IfcLinearPlacement) is the truss assembly.
The solid used to represent each member is an IfcExtrudedAreaSolid,
which requires a profile and a length. This representation will be used to
form rectangular prisms that match the shape of the bounding boxes.
The extrusion length is obtained from the biggest dimension of the
bounding box obtained from the member points. The extruded profile is
represented as a IfcRectangleProfileDef that uses the two remaining
bounding box dimensions. A more detailed comment on the members
profiles is given in the discussion, in Section 5.

The model also includes the relationships between members, more
specifically, the connections amongst themselves. This is modelled using
series of IfcRelConnectsElements that are generated through bounding
box collisions, as explained in Section 3.1.3.

Fig. 4. Segmented point cloud. Blue – points omitted from segmentation. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. Bounding box parameters. C – center. A – axis. E – extent. A2 as
main axis.

A. Justo et al.

Automation in Construction 149 (2023) 104786

5

3. Methodology

As mentioned in the introduction, the methodology generates both
the IFC model of the truss and its structural graph. Therefore, this sec-
tion is split following that pattern. Section 3.1 presents the truss model
generation, while Section 3.2 describes the construction of the structural
graph. To aid in the explanation, Fig. 9 presents an overall view of the
methodology following the steps of the different sub-sections.

3.1. Truss model

The aim of this section is to cover the entire model generation of the
truss, represented by “IFC model generation” in Fig. 1. This process can
be split into four steps, resulting in different versions of the truss.

The first step processes the input data described in Section 2.1 and
instantiates the different member objects. These objects contain the
identification data as marked by the headers of the .csv, as well as the

Fig. 6. Axis aligned vs Oriented bounding box.

Fig. 7. Minimum oriented bounding box – Two different rotations.

Fig. 8. IFC entity diagram.

A. Justo et al.

Automation in Construction 149 (2023) 104786

6

bounding boxes created directly from the given points. The second step
deals with the extension of the bounding boxes until they reach the
chords. The third step corrects the edge cases, as they go out of bounds
during this extension. Finally, the fourth step obtains the connection
relationships between members and generates the IFC model. Therefore,
this section is split following that criterion. To illustrate these steps,
Fig. 10 presents a simplified flow from the initial state to the desired end
state. It must be noted that this approach deals with an isolated truss,
and therefore needs to use some parts of it as a reference. As such, the
chords were chosen as the reference, as they delimit the bounds of the
truss and its members. This means that the chords of the truss are
considered as appropriately segmented in terms of length and are
therefore not corrected. In the case of analysing the truss in the context
of a full bridge, the chords could be corrected using the piers as
reference.

3.1.1. First step – Input processing and first bounding boxes
The purpose of this step is to move from the input data to the state A

of the truss as seen in Fig. 10. This means that, for each member, a
bounding box is to be computed from the member points contained in

the input file. As mentioned in Section 2.1, the input data .csv contains
both the member points and the identification information of each
member. Therefore, to proceed with the bounding box generation, the
data contained in the file are to be extracted. For each member, the
identification is obtained by splitting the headers using the predefined
delimiting character, in this case “_”, and the three columns of the co-
ordinates are joined together into a list of points.

Afterwards, the member points are subjected to a Principal Compo-
nent Analysis (PCA). The resulting main component vector will repre-
sent the main axis of the bounding box. To obtain the remaining two
axes, the main axis is used as a guide to rotate a XYZ axis system so that
the Z’ axis matches the main axis. This procedure can be seen in Fig. 11.
At first, the system rotates Az in the +Z axis, which makes X’ parallel to
the projection of the main axis in the XY plane (MAh). Then, the system
rotates Ay’ in the +Y′ axis, resulting in the Z’ axis being parallel to the
main axis (MA). By performing the rotation in this manner, the Y′ axis is
contained in the XY plane. Through this restriction, a consistent
orthogonal system is obtained for each member, and is used as the
bounding box axis system for the member.

Once the orthogonal axis system has been established, the points are
transformed to this new axis system. Then, the coordinate ranges in each
axis are used to obtain the extent of the bounding box in each of the
three directions, as well as its centre. Finally, the centre is transformed
back into the original X, Y, Z coordinate system.

These parameters (centre, axes, and extent) are also used to set the
placement of the member, which is made of translation and rotation.
The translation is obtained using the centre and the extent of the main
axis, since, by our criterion, the member is placed using the centre of one
of the faces normal to the main axis, not the centre of the bounding box
itself. The rotation is directly extracted from the axis system of the
bounding box.

At this point, both the bounding box and the placement of the
member have been defined. The process is then repeated for the rest of
the members. If no further processing is done, the truss is at the first state
(A) of Fig. 10. For better understanding of this state, Fig. 12 shows what
the IFC model of the truss looks like at the end of this step. As it can be
seen, the members are not interconnected due to the use of a partially
instance-segmented point cloud. Nevertheless, since the main axis of the
bounding boxes matches the expected direction of the members, the

Fig. 9. Overall methodology view.

Fig. 10. Correction process overview. A – First state. B – Second state. C – Third
state. D - Final state.

A. Justo et al.

Automation in Construction 149 (2023) 104786

7

following steps are able to correct the lack of data.

3.1.2. Second step – Bounding box extension
The aim of this step is to move the truss from state A to B of Fig. 10.

At the end of the previous step, the members were not interconnected. In
order to solve this scenario and complete the geometry of the truss, the
bounding boxes of the members are extended in the direction of their
main axis. This extension is the reason behind the criterion “The labelled
set of points must be aligned with the direction of the member they belong to”
mentioned in Section 2.1. Through this restriction, the bounding boxes
are aligned with the real direction of the member and, by extending the
bounding box in that direction, they are able to represent the entirety of
the member from just a segment.

Nevertheless, it is necessary to set the boundary conditions that will
delimit their extension. Such boundaries can be described via other
members of the truss, called delimiting members or delimiters. In this
step, the delimiting members for extension are the chords of the truss,
since almost every member has both ends connected to chords. There-
fore, the task at hand is to correctly identify which chords are to be used
as delimiters. This selection is based on the classification of the member.
For example, the members of the bottom face use the two chords with
the lowest Z value in their centre.

This procedure is applicable to all members, with the exception of

those belonging to the interior faces of the truss. Interior lateral braces
can connect to any of the four chords. Therefore, the delimiting chord
selection for interior lateral braces is based on the intersection between
the main axis of the brace, and the main axis of the delimiting candidate
chord. In the case of interior braces, their boundary conditions for
extension are defined by two vertical posts, so the intersection check
must be performed for the vertical posts, instead of chords.

After the delimiting members have been selected, the extension of
the member can be done. Fig. 13 presents the extension scenario using a
vertical post and a chord as example. First, the intersection points be-
tween the main axis of the member (AXM) and the axis of the delimiting
members (AXch1 and AXch2) are calculated (IntM-ch1 and IntM-ch2).
Then, the distance between the centre of the bounding box of the
member (CM) and each of the intersection points is obtained (E1 and
E2). Using these distances, the extent of the bounding box along its main
axis is recalculated (E’). This also prompts a correction of its centre
(CM’), as the extension might not be symmetrical.

It must be noted that the main axis vectors of two bounding boxes
representing members of the same type (e.g., diagonals) might have the
same orientation but different sense. In Fig. 13 this would be seen as the
yellow arrow next to CM to be pointing downwards instead of upwards.
The orientation is the same, but the sense is different. This possibility
must be taken into account to properly calculate the new bounding box
extent (E’). Once these values are obtained, both the bounding box and
the placement are redefined using the new parameters.

If this process is repeated for the rest of the members, the truss
reaches the second state (B) of Fig. 10. Fig. 14 shows what the IFC model
would look like if no further processing was done and the model was to
be generated at this point. As it can be seen, the members are now
interconnected and give a better representation of the truss geometry.
However, some of the members were extended out-of-bounds, and are to
be corrected in the next step.

3.1.3. Third step – Out-of-bounds correction
The objective of this step is to move the truss from state B to C as per

Fig. 10. This is achieved by correcting the overextended members

Fig. 11. Obtention of the bounding box axis system. MA – main axis. A – rotation angle around a given axis.

Fig. 12. First state truss. A - Front view. B - Bottom view. C - Side view.

Fig. 13. Extension scenario.

A. Justo et al.

Automation in Construction 149 (2023) 104786

8

through the truncation of their bounding box using a newly defined
delimiting member.

In the previous step, the delimiting members were set to chords, with
the exception of interior braces. However, this is not the case for all
diagonal members (diagonals and bottom lateral braces, depending on
the face). Fig. 15 presents an example on how some of these members
only connect to one chord, while the others connect to one of the two
straight members situated at opposite ends of the truss face (vertical post
or strut, depending on the face). Since the previous step forced the
extension towards chords, the diagonals were extended outside of the
boundaries of their respective face, as shown in Fig. 14.

This problem is easier to tackle if each face is analysed individually.
To identify which diagonal members need correction, they are sorted
using their bounding box centre coordinates. In the example of Fig. 15,
this would be from left to right. Then, they are looped through both in
ascending (left to right) and descending order (right to left), checking for
intersection with the respective first or last straight members. By per-
forming the loop in this manner, the need to check every diagonal is
removed since once a diagonal which does not intersect is found, the rest
will not intersect either. Through this process, the bounding box of the
diagonals that do intersect with a straight member are truncated at the
point of intersection, effectively correcting their geometry. Once this
process has been completed for all members and faces, the truss has
reached state C as seen in Fig. 10. At this point, the geometrical aspect of
the truss model has been completed, whose result can be seen in Fig. 16.

3.1.4. Fourth step – Element interconnection
The goal of this section is to obtain the final state of the model from

state C, as seen in Fig. 10. This final state is the complete IFC-compliant
model of the truss, including the different relationships between its
members.

The IFC generation of the truss is done following the entities pre-
sented in Section 2.3. For the most part, this model has already been
shown in the previous step, as state C has the same geometry as the final
state of the truss. However, an IFC model goes further than the geom-
etry. It can contain information about the semantics of the object (e.g.,
name and description), relationships between entities, materials, and
other properties (e.g., maintenance history, thermal properties, and
costs).

In this work, the only source of data is the partially instance-
segmented point cloud described in Section 2.1. Therefore, the truss

model contains some semantics (bridge name, brief description, etc.), its
geometry, and the topology relationships that can be extracted from
such data (aggregation and connection). If additional information was to
be present in the form of documentation or other accessible sources, it
would be possible to include it in the model.

The truss as a whole was generated as a single element assembly
which only included the semantics of the truss and a placement. Without
linking the truss with its members, it does not have a representation.
However, when the IfcRelAggregates relationship defines the truss as the
aggregation of all the truss members, both the truss and the members
gain new information. On one side, the truss representation is now
defined as the union of all the representation of its members. On the
other, each member has gained context in the project and a point of
reference for their placement. This implies that if the truss assembly is
moved, all the members follow it, since they are placed relative to it.
Therefore, if the truss is to be placed in a full bridge model which uses a
different placement system or reference, such as the use of an IfcAlign-
ment for linear placement, only the truss assembly placement needs to be
redefined.

The connections between members are a key factor in the structural
analysis of a truss, as they define the different points where the loads are
distributed to the different elements. For two elements to be connected,
they must touch one another. Therefore, a fitting procedure is the use of
bounding box collisions to determine which elements are candidates to
be linked together. The collision of bounding boxes is done through a
mathematical C++ engine, called GeometricToolsEngine [27], that al-
lows to check whether two oriented bounding boxes intersect one
another.

Using this engine, all the members are automatically checked for
collision with other members. To speed up the process, for every
member being examined, all impossible options are not sent to the en-
gine for collision detection. This is done by checking the coordinate
ranges of the vertices of both bounding boxes. If the coordinate ranges
do not overlap, a collision is not possible. Fig. 17 presents this filtering in
a 2D scenario with axis-aligned boxes. Even if two rectangles overlap in
the Y axis, if they do not overlap in the X as well, they will never collide.

At this point, it is possible to relate any member to the members it
collides to. However, another rule is added due to the nature of the truss.
The members are only fixed together at the chords and straight mem-
bers. On the other hand, diagonals often touch each other but are not
fixed to one another. Therefore, all collisions that are not produced by
two diagonals are used to set a IfcRelConnectsElements relationship be-
tween the colliding members.

With the inclusion of these relationships, the model has reached the
final state and can now be used to obtain a structural graph, which will
be explained in Section 3.2.

3.2. Structural graph

The objective of this section is to cover the generation of the struc-
tural graph of the truss, represented by the “Structural graph genera-
tion” in Fig. 1. A graph is a data structure of nodes and edges, where the
edges link nodes to each other. In this work, the nodes are used to

Fig. 14. Second state truss. A - Front view. B - Bottom view. C - Side view.

Fig. 15. Example of straight and diagonal members.

Fig. 16. Third state truss. A - Front view. B - Bottom view. C - Side view.

A. Justo et al.

Automation in Construction 149 (2023) 104786

9

represent the connexion points between members, while the edges are
used to represent the members themselves. The flexibility of this rep-
resentation is a great fit for structural analysis, since is possible to
include any information of interest to these entities. For instance, a
property setting the node as fixed, a distributed load being applied to an
edge, or member properties such as material and profile.

This process is performed after the entire IFC model has been
generated following the procedure explained in Section 3.1. The reason
behind this is that the IFC model itself can be used as an import in some
structural analysis software. Therefore, the obtention of the structural
graph is treated as an optional step in the process and, if adapted, could
be performed on already existing models. The overall idea is to use the
IfcRelConnectsElements relationships present in the models to generate
nodes that are linked together with edges that represent the members
themselves. A simplified example of this can be seen in Fig. 18.
Following this, this section is further divided between the construction
of the graph (Section 3.2.1) and its export as a file compatible with
structural analysis software (Section 3.2.2).

3.2.1. Graph construction
As mentioned, the structural graph is made of nodes and the edges

that connect them. In this case, the nodes carry the spatial coordinates of
the intersection, while the edges contain information about the members
that they represent, such as profile or material. Since the edges are
defined through a start and an end node, the first step is to obtain the
nodes themselves.

To do so, the connection relationships described in Section 3.1.4 are
analysed. By fetching each of the connection relationships and calcu-
lating the intersection between the main axis of the bounding boxes of
the members, the nodes are obtained. However, due to the variability of
the point cloud and therefore, the bounding boxes, the nodes which are
theoretically the same, appear in different positions, as seen in Fig. 19A.
To solve this situation, the nodes are clustered using a Density-Based
Spatial Clustering of Applications with Noise (DBSCAN [29]) algo-
rithm in order to obtain a single node for such occurrences, as shown in
Fig. 19B. The merged node will carry all the information of the previous
nodes. This includes which elements are related in its creation. For
instance, in Fig. 19A, one node might be obtained from the collision of a
diagonal and the chord, while other from the vertical post and the chord.
The merged node is therefore related to the diagonal, the chord, and the
vertical post.

The following step is to generate the edges connecting the nodes.
Since the nodes carry the information of the members they are related
to, the approach taken is to evaluate the node set of each member
individually. Here, the set refers to every node related to the member,
which implies that the node is situated on the member itself. This aids in
the definition of rules for processing since the nodes are almost aligned,
as seen in Fig. 20.

Each node in the set is evaluated, obtaining its two closest nodes of
the set as candidates for the definition of an edge. In the fragment shown
in Fig. 20, this would mean that the chosen nodes for node 2 are node 1
and node 3. These edge candidates can be valid, inversed, or complex.
These types of candidates are represented in Fig. 21 and are defined as
follows:

• Valid. The candidate correctly defines a path between two nodes,
without crossing any other node, and has not been included yet.

• Inversed. The candidate has already been included in its inverse
sense. The edges are non-directed, meaning that the edge that con-
nects node 1 to 2 is the same that connects 2 to 1.

• Complex. The path of the edge crosses an intermediate node.
Therefore, the candidate can be expressed as the sum of two edges. In
the example of Fig. 21, the two closest nodes to node 1 are node 2 and
node 3. However, the edge from node 1 to node 3 can be expressed as
the sum of the edge from node 1 to 2 and the edge from node 2 to 3.

Fig. 17. Coordinate overlapping for collision detection.

Fig. 18. Node and edge example.

A. Justo et al.

Automation in Construction 149 (2023) 104786

10

The node set is indexed and looped through in an ordered manner.
Therefore, it allows the use of the indexes themselves to analyse the
edges. For a given node under study, its two neighbours are checked. If
the edge that would link the studied node to one of its neighbours, or its
inverse, has not been marked as an edge candidate, it is marked. In the
example of Fig. 21, the following would occur:

1. Node 1. Neighbours: Node 2 and Node 3
a. Edge 1–2. It has not been marked, do so.
b. Edge 1–3. It has not been marked, do so.

2. Node 2. Neighbours: Node 1 and Node 3
a. Edge 2–1. Edge 1–2 has already been marked, skip.
b. Edge 2–3. It has not been marked, do so.

3. Node 3. Neighbours: Node 1 and Node 2
a. Edge 3–1. Edge 1–3 has already been marked, skip.
b. Edge 3–2. Edge 2–3 has already been marked, skip.

In this first part of the process, edges 1–2, 1–3, 2–3 has been marked
as possible candidates. However, edge 1–3 is a complex edge, as it can be
expressed by the sum of edge 1–2 and 2–3. One possible solution is to
calculate a member-specific length between nodes and use it to filter
edges that are above that threshold. However, this would only work in a
perfect scenario. If there are any missing members due to the point cloud
acquisition or because it is the actual state of the truss, this method
would fail. Therefore, all edge candidates must be examined to ensure

that they cannot be broken down into simpler candidates. Since only two
neighbouring nodes are explored per node in the set, and the inversed
edges have already been eliminated, the number of checks needed is
greatly reduced.

This evaluation is done in the form of paths branching from the
starting node of the examined edge. The rules for the path-finding are
the following: (i) To not use the examined edge; (ii) To not go backwards
(using the inverse of an already taken path); and (iii) To not create a path
of higher length than the examined edge. If it is possible to reach the end
node in two steps without breaking the aforementioned conditions, the
examined edge is complex and therefore removed. This process can be
seen in Fig. 22 for the edges 1–2 and 1–3 of the previous example. Edge
2–3 is analogous to 1–2 so is therefore not presented.

This process is then repeated for each of the node sets, obtaining all
edges of the graph.

3.2.2. Export
At this point, both the geometrical IFC model and the structural

graph have been generated. Therefore, the final action is their export
towards a structural analysis software. The software chosen is DIANA
[30], since it provides a clear way to input the structural graph as a text
file that can be automatically generated from the graph characteristics.
Furthermore, DIANA also supports the import of the geometrical IFC
model directly and the use of Python commands to generate variables.
As such, there are three available export options in the developed
software:

• Geometrical export. The IFC file itself. Albeit this removes the need
to calculate the structural graph described through Section 3.2, it
also requires the user to manually set the analysis conditions.
Therefore, this option is best fit whenever the user is experienced and
wants to perform a thorough analysis, since it removes the monot-
onous task of manually setting the geometry.

• Text file graph export. Generates a DIANA-compatible text file that
describes the nodes and edges and their properties. It is also possible
to define a mesh-like sectioning of the edges. This option is best fit
when applying an automated pipeline analysis, meaning that the
whole procedure is expected to be performed as automatically as
possible, from point cloud import to structural analysis.

• Python command export. Similarly to the text export, it generates a
.py file that contains series of variable declarations for the nodes and
edges. This is the most minimalistic representation of the graph and

Fig. 19. Collision nodes (Pink). A - Unmerged nodes. B - Merged node. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 20. Fragment of a chord node set.

Fig. 21. Example of types of edge candidates.

A. Justo et al.

Automation in Construction 149 (2023) 104786

11

could be further enriched by adding other commands to set up ma-
terials and profiles. The application scenario is equal to the text file
export. Therefore, in case of using DIANA, it is simply a matter of
preference for the end user. If the structural graph is to be imported
in a different software, or further processed using other tools, a Py-
thon file might be a better option due to its wide adoption.

4. Results

The methodology explained throughout Section 3 was applied to a
partially instance-segmented point cloud of a truss bridge, as described
in Section 2.1. The truss contains 272 members, divided amongst the
analysed faces (two vertical faces, a horizontal bottom face and seven-
teen interior faces). These members can be further broken down into
their classes as per the nomenclature of Fig. 3: 136 diagonals, 4 chords,
34 vertical posts, 16 struts, 32 bottom lateral braces, 33 interior lateral

braces, and 17 interior braces. The software developed in this work uses
the 4.1 version of the IFC schema. It was programmed using C# and used
the xBIM 5.1.323 toolkit [31] for the creation of the model, along with
the GeometricToolsEngine [27] to check whether two bounding boxes
intersect each other. For reference, the viewer used to visualize the IFC
models, and the one from where the figures of Section 3.1 were
extracted, is FZKViewer 6.4 [32].

4.1. Truss model

The truss model generation has been explained in Section 3.1. This
process is able to automatically generate an IFC-compliant model of a
truss bridge using a partially instance-segmented point cloud as the
source of information. Furthermore, it does not only create the model
using the provided data as-is, but actively overcomes missing or faulty
data. The driving factor behind this result is the use of bounding boxes as

Fig. 22. Complex edge evaluation. Left: Edge 1–2. Right: Edge 1–3.

Fig. 23. Full IFC model in FZKViewer.

A. Justo et al.

Automation in Construction 149 (2023) 104786

12

both a way to fill the possible gaps and to further evolve the model while
providing meaningful information using their collisions. The evolution
of the model has been shown throughout Section 3.1, presenting the
coloured geometry of the model in its first state in Fig. 12, and its final
state in Fig. 16. In this section, however, the full IFC model will be
presented through different figures taken from the FZKViewer. Fig. 23
presents a global view of the model, including the hierarchy of the
project. It must be noted that the colouring scheme for the different
members used until now is no longer present. Since this section will
cover the final truss model, all members are represented using IfcMem-
ber, and have the same colour.

As it can be seen, the model is made of 272 objects, in this case Ifc-
Members that are assembled as an IfcElementAssembly called “Truss1” in
the model. Inside the “PointCloudToIFCProject” other three entities
along with the truss: “TrussSite”, “TrussFacility” and “TrussFacility-
Part”. These are instances of IfcSpatialStructureElement and are used to
organize a project. If a single entity is selected, its properties can be
explored, this includes identification and context information, as well as
what kind of geometry and placement it has. Fig. 24 presents the
properties of a vertical post with name “VM77”.

More importantly, the relations tab allows us to explore the different
relations to other entities, such as the aggregation relationship with the
truss assembly. As “VM77” is a vertical post, it has a total of 16
connection relationships to other members. Fig. 25 shows its relations
tab, highlighting some of the members connected through these
relationships.

4.2. Structural graph

The structural graph construction has been described in Section 3.2.
It started off with the node assessment through the bounding box col-
lisions, represented by the IfcRelConnectsElements relationships. Then,

the edges were generated member wise, targeting their node sets in a
way that simulates their alignment.

The software developed outputs two files. The first one is always an
IFC file (.ifc) that describes the truss model. The second is a file that
contains the information of the structural graph. As mentioned in Sec-
tion 3.2.2, this graph information can be expressed through a text file
that follows the DIANA guidelines for imports, or through a Python file
that contains instructions to generate the nodes and edges as variables.
Whichever option is chosen, the amount of data that is possible to be
included in both formats is the same.

To present these exports, the following figures represent all three
types once imported into DIANA. First, Fig. 26 is the direct import of the
IFC file. Then, Fig. 27 is the text file import, which also includes a simple
mesh. Finally, Fig. 28 is the python import with only nodes and edges.

As shown, the graph export, either through text or Python in-
structions, contains much simpler and direct information. This is an
important factor to consider when thinking about scaling the model to
include more elements and details, or include it into an automated
structural analysis pipeline.

5. Discussion

The results described in Section 4 show that the proposed method-
ology is able to fulfil the objective and contributions of this work, which
were presented in Section 1. The purpose of this section is to address the
shortcomings of the paths taken to achieve those contributions.

As first contribution, the software developed outputs an IFC-
compliant file that contains the truss information model, including the
connection relationships between its members. The generation of such
model has been explained in Section 3.1.4, with the final IFC model
being shown in Section 4.1. The information model follows the IFC 4.1
schema instead of IFC 4.3, which is under ISO DIS voting at the time of

Fig. 24. VM77 - Element properties tab.

A. Justo et al.

Automation in Construction 149 (2023) 104786

13

writing. Therefore, some IFC entities related to infrastructure are non-
existing or have a different name. For instance, the”TrussFacility”
mentioned in Section 4.1, which works as a tool to better organize a
project, is expressed with IfcBuilding instead of the IfcFacility of IFC 4.3.

As second contribution, a structural graph representing the truss
geometry is generated and exported. This process has been detailed in
Section 3.2, while the visualization of the imported files was presented
in Section 4.2. The construction of this graph relies on the previously
introduced IfcRelConnectsElements relationship between members whose
bounding boxes collide with one another. Through this work, two ways
of working with the bounding box were used. On one side, the inter-
section between the main axis of two bounding boxes, used in Section
3.1.2–3.1.3. On the other, checking if two bounding boxes collide to one
another, used in Section 3.1.4. The issue with the former is that two lines

almost never intersect to one another in a 3D scenario. Therefore, the
closest point of one line with respect to the other is used instead. The
problem with the latter, on the other hand, is that it only checks whether
two bounding boxes are colliding, it does not provide the shape of
intersection of the bounding boxes. Therefore, if geometrical data is
required, additional operations are needed once it is known that they
collide.

As third contribution, the methodology is able to overcome the
partial segmentation. This is achieved through the use of bounding
boxes and their modification according to the truss frame of reference,
the chords. This has been described in Sections 3.1.1–3.1.3. Since a
partially instance-segmented point cloud is the only source of data, there
are some issues and challenges that are to be addressed. Infrastructure
point clouds are acquired outdoors and from large distances.

Fig. 25. VM77 - Relations tab.

Fig. 26. Direct .ifc import - DIANA.

A. Justo et al.

Automation in Construction 149 (2023) 104786

14

Furthermore, occlusions from vegetation, obstacles, or the asset itself
might be present, as well as unfavourable weather conditions. These
aspects often result in point clouds with suboptimal quality when
compared to indoor point clouds. As the proposed methodology aims to
operate in an automatic manner, any issues with the point cloud are
translated into the model itself. For instance, some members of the same
type and face present slightly different rotations and positions to one
another, which is not the case in the real truss. This is visible in the front
and bottom views of the final truss geometry, in Fig. 16. Another
example is the profile of the members. It was not possible to extract the
profile measurements or shapes from the point cloud, which in turn
resulted in the use of rectangular profiles that took advantage of the
bounding box measures. Also, as stated in Section 2.1, the top horizontal
face was deemed unfit for analysis and excluded from the model. Un-
fortunately, the point cloud quality did not allow for its inclusion. The
occlusions from all the other members, combined with existing noise
and proximity of the girder, made the top section barely recognizable
with the human eye and was therefore excluded from being processed.
Nevertheless, if included as input, the software is ready to correct the top
face members in the same manner as the others. This would increase the
quality of the model, completing the full truss and improving the ac-
curacy of any possible analysis performed on it.

6. Conclusions

This work represents the second part of a fully automated pipeline
that transforms a raw point cloud of a bridge truss into an IFC-compliant
model and a structural graph. In the case presented in this paper, a total
of 272 members were modelled, connected, and processed into a
structural graph that was later exported into DIANA. While the struc-
tural analysis itself falls outside of the scope of this paper, the method-
ology presents the capabilities of the pipeline that is being developed.
Nevertheless, there are still areas that can be improved. The graph
construction, albeit quite generalized and abstract, is still mainly
designed for truss members. The underlying bounding box methodology
is a level higher in abstraction, as it uses the concept of general physical

elements, instead of truss members specifically. Therefore, as the pro-
gram develops, and more types of trusses and elements are included,
some of these aspects are bound to change in order to account for the
flexibility required for such a task. For instance, if piers were to be
added, they could be used as the frame of reference in order to also
correct the chord members. It would also be possible to use the
connection with the piers to set up certain nodes as anchor points.
Nevertheless, the approach presented is focused on the truss, which is
one of the most geometrically complex elements of a truss bridge. If a
different category of elements were to be added, such as elements of the
road situated above the bridge (e.g., guardrails), its inclusion in the
model would follow the approach taken by the authors in a previous
research [33]. Also, as mentioned in the discussion in Section 5, the
point cloud introduced certain issues, such as the slight variations in
position and orientation of the members, as well as no information about
their profile types. The positioning and orientation could be solved by
analysing the entire truss to obtain the dominant orientation vectors, as
well as the distance between the members, since these structures usually
follow a pattern. However, setting this kind of restrictions would
significantly reduce the abstraction capability of the methodology, and
might encounter difficulties when applied in other scenarios. In the case
of the member profiles, the input of an additional document containing
the member types could be used to determine the overall shape of each
member (e.g., IPE), while their bounding box dimensions could be used
to determine their size (e.g., IPE220). As for the IFC model generation,
new iterations of the software developed could target IFC 4.3 instead IFC
4.1 if the programming libraries and viewers adopt it. Nevertheless, the
key component of this work, the bounding boxes, is unaltered by the
change. This is because the IFC formatting is performed at the last stage
of the process. Therefore, if the schema or its nomenclature changes,
only a small fraction of the developed software is to be adapted. The
mentioned bounding boxes were used in two different manners
throughout the work. The first being main axis intersection, and the
second being the check of collision between two bounding boxes. The
main axis intersection performs very well when the members are ex-
pected to intersect, such as diagonals with chords. The bounding box

Fig. 27. Text graph import - DIANA.

Fig. 28. Python graph import - DIANA.

A. Justo et al.

Automation in Construction 149 (2023) 104786

15

collision application is broader and more general, allowing to check
collisions with any entity that has a bounding box, which is ideal for
creation of IfcRelConnectsElements relationships.

The authors believe that the evolution of IFC towards the infra-
structure domain, coupled with the capabilities of point clouds as
geometrical source of information, will bring new developments for
infrastructure information models. The results presented in this work are
promising and set the basis for future work on not only on trusses, but on
other types of structures.

Funding

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement
No. 769255. This work has been partially supported by the Spanish
Ministry of Science and Innovation through the PONT3 project
Ref. PID2021-124236OB-C33. This work has been partially supported
by the University of Vigo through the human resources grant: “Axudas
para a contratación de personal investigador predoutoral en formacion
da Universidade De Vigo 2021” (PREUVIGO-21) and by the Spanish
Ministry of Science and Innovation through the grant FJC2020–046370-
I and the grant RYC2021–033560-I.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This document reflects only the views of the authors. Neither the
Innovation and Networks Executive Agency (INEA) nor the European
Commission is in any way responsible for any use that may be made of
the information it contains.

References

[1] J.J. Magoua, F. Wang, N. Li, High level architecture-based framework for modeling
interdependent critical infrastructure systems, Simul. Modell. Pract. Theory. 118
(2022), https://doi.org/10.1016/J.SIMPAT.2022.102529.

[2] M. Ouyang, Review on modeling and simulation of interdependent critical
infrastructure systems, Reliab. Eng. Syst. Saf. 121 (2014) 43–60, https://doi.org/
10.1016/J.RESS.2013.06.040.

[3] A. Boin, A. McConnell, Preparing for critical infrastructure breakdowns: the limits
of crisis management and the need for resilience, J. Conting. Crisis Manag. 15
(2007) 50–59, https://doi.org/10.1111/J.1468-5973.2007.00504.X.

[4] Keeping European Bridges Safe, (n.d.). https://joint-research-centre.ec.europa.
eu/jrc-news/keeping-european-bridges-safe-2019-04-05_en (accessed June 28,
2022).

[5] A. Costin, A. Adibfar, H. Hu, S.S. Chen, Building Information Modeling (BIM) for
transportation infrastructure – Literature review, applications, challenges, and
recommendations, Autom. Constr. 94 (2018) 257–281, https://doi.org/10.1016/J.
AUTCON.2018.07.001.

[6] A. Borrmann, M. König, C. Koch, J. Beetz, Building Information Modeling: Why?
What? How?, Building Information Modeling: Technology Foundations and
Industry Practice, 2018, pp. 1–24, https://doi.org/10.1007/978-3-319-92862-3_1.

[7] U. Isikdag, G. Aouad, J. Underwood, S. Wu, in: Building information models: a
review on storage and exchange mechanisms, in: Proceedings of 24th W78
Conference: Bringing ITC Knowledge to Work, Maribor, 2007, pp. 135–144
(accessed February 8, 2023), http://itc.scix.net/paper/w78_2007_97.

[8] M.P. Gallaher, A.C. O’connor, J.L. Dettbarn, L.T. Gilday, Cost analysis of
inadequate interoperability in the U.S. Capital Facil. Indus., (n.d.). doi:https://doi.
org/10.6028/NIST.GCR.04-867.

[9] C. Preidel, A. Borrmann, H. Mattern, M. König, S.E. Schapke, Common Data
Environment, Building Information Modeling: Technology Foundations and
Industry Practice, 2018, pp. 279–291, https://doi.org/10.1007/978-3-319-92862-
3_15.

[10] buildingSMART - The International Home of BIM, (n.d.). https://www.buildings
mart.org/ (accessed June 28, 2022).

[11] IFC Release Notes - buildingSMART Technical, (n.d.). https://technical.buildings
mart.org/standards/ifc/ifc-schema-specifications/ifc-release-notes/ (accessed
June 28, 2022).

[12] ISO - ISO 16739-1:2018 - Industry Foundation Classes (IFC) for Data Sharing in the
Construction and Facility Management Industries — Part 1: Data schema, (n.d.).
https://www.iso.org/standard/70303.html (accessed September 15, 2022).

[13] IFC Schema Specifications - buildingSMART Technical, (n.d.). https://technical.
buildingsmart.org/standards/ifc/ifc-schema-specifications/ (accessed December
13, 2022).

[14] B. Koo, R. Jung, Y. Yu, I. Kim, A geometric deep learning approach for checking
element-to-entity mappings in infrastructure building information models,
J. Comput. Design Eng. 8 (2021) 239–250, https://doi.org/10.1093/JCDE/
QWAA075.

[15] T.H. Kwon, S.I. Park, Y.H. Jang, S.H. Lee, Design of railway track model with three-
dimensional alignment based on extended industry foundation classes, Appl. Sci.
10 (2020) 3649, https://doi.org/10.3390/APP10103649.

[16] G. Bariczová, J. Erdélyi, R. Honti, L. Tomek, Wall structure geometry verification
using TLS data and BIM model, Appl. Sci. 11 (2021) 11804, https://doi.org/
10.3390/APP112411804.

[17] L. Barazzetti, M. Previtali, M. Scaioni, Roads detection and parametrization in
integrated BIM-GIS using LiDAR, Infrastructures 5 (2020) 55, https://doi.org/
10.3390/INFRASTRUCTURES5070055.

[18] M.R.M.F. Ariyachandra, I. Brilakis, Detection of railway masts in airborne LiDAR
data, J. Constr. Eng. Manag. 146 (2020) 04020105, https://doi.org/10.1061/
(ASCE)CO.1943-7862.0001894.

[19] M. Soilán, A. Sánchez-Rodríguez, P. del Río-Barral, C. Perez-Collazo, P. Arias,
B. Riveiro, Review of laser scanning technologies and their applications for road
and railway infrastructure monitoring, Infrastructures 4 (2019) 58, https://doi.
org/10.3390/INFRASTRUCTURES4040058.

[20] R. Wang, J. Peethambaran, D. Chen, LiDAR point clouds to 3-D urban models: a
review, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 11 (2018) 606–627,
https://doi.org/10.1109/JSTARS.2017.2781132.

[21] S. Gargoum, K. El-Basyouny, Automated extraction of road features using LiDAR
data: A review of LiDAR applications in transportation, in: 2017 4th International
Conference on Transportation Information and Safety, ICTIS 2017 - Proceedings,
2017, pp. 563–574, https://doi.org/10.1109/ICTIS.2017.8047822.

[22] L. Ma, Y. Li, J. Li, C. Wang, R. Wang, M.A. Chapman, Mobile laser scanned point-
clouds for road object detection and extraction: a review, Remote Sens. 10 (2018)
1531, https://doi.org/10.3390/RS10101531.

[23] A. Sánchez-Rodríguez, S. Esser, J. Abualdenien, A. Borrmann, B. Riveiro, From
point cloud to IFC: a masonry arch bridge case study, EG-ICE 2020 Works. Intell.
Comput. Eng. Proceed. (2020) pp. 422–431.

[24] D. Isailović, V. Stojanovic, M. Trapp, R. Richter, R. Hajdin, J. Döllner, Bridge
damage: detection, IFC-based semantic enrichment and visualization, Autom.
Constr. 112 (2020), 103088, https://doi.org/10.1016/J.AUTCON.2020.103088.

[25] D. Prati, G. Zuppella, G. Mochi, L. Guardigli, R. Gulli, wooden trusses
reconstruction and analysis through parametric 3d modeling, ISPRS Ann.
Photogram. Remote Sens. Spat. Inform. Sci. 42 (2019) 623–629, https://doi.org/
10.5194/ISPRS-ARCHIVES-XLII-2-W9-623-2019.

[26] J. Hermida, M. Cabaleiro, B. Riveiro, J.C. Caamaño, Two-dimensional models of
variable inertia from LiDAR data for structural analysis of timber trusses, Constr.
Build. Mater. 231 (2020), 117072, https://doi.org/10.1016/J.
CONBUILDMAT.2019.117072.

[27] Geometric Tools, (n.d.). https://www.geometrictools.com/index.html (accessed
September 29, 2022).

[28] buildingSMART, IFC 4.1 Documentation, (n.d.). https://standards.buildingsmart.
org/IFC/RELEASE/IFC4_1/FINAL/HTML/ (accessed October 13, 2022).

[29] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering
clusters in large spatial databases with noise, in: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, AAAI Press,
1996, pp. 226–231. https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
(accessed January 17, 2023).

[30] DIANA FEA, (n.d.). https://dianafea.com/ (accessed October 26, 2022).
[31] S. Lockley, C. Benghi, M. Černý, Xbim., Essentials: a library for interoperable

building information applications, J. Open Source Softw. 2 (2017) 473, https://
doi.org/10.21105/joss.00473.

[32] KIT - IAI - Downloads - FZKViewer, (n.d.). https://www.iai.kit.edu/english/1648.
php (accessed July 11, 2022).

[33] A. Justo, M. Soilán, A. Sánchez-Rodríguez, B. Riveiro, Scan-to-BIM for the
infrastructure domain: generation of IFC-compliant models of road infrastructure
assets and semantics using 3D point cloud data, Autom. Constr. 127 (2021),
103703, https://doi.org/10.1016/j.autcon.2021.103703.

A. Justo et al.

https://doi.org/10.1016/J.SIMPAT.2022.102529
https://doi.org/10.1016/J.RESS.2013.06.040
https://doi.org/10.1016/J.RESS.2013.06.040
https://doi.org/10.1111/J.1468-5973.2007.00504.X
https://joint-research-centre.ec.europa.eu/jrc-news/keeping-european-bridges-safe-2019-04-05_en
https://joint-research-centre.ec.europa.eu/jrc-news/keeping-european-bridges-safe-2019-04-05_en
https://doi.org/10.1016/J.AUTCON.2018.07.001
https://doi.org/10.1016/J.AUTCON.2018.07.001
https://doi.org/10.1007/978-3-319-92862-3_1
http://itc.scix.net/paper/w78_2007_97
https://doi.org/10.6028/NIST.GCR.04-867
https://doi.org/10.6028/NIST.GCR.04-867
https://doi.org/10.1007/978-3-319-92862-3_15
https://doi.org/10.1007/978-3-319-92862-3_15
https://www.buildingsmart.org/
https://www.buildingsmart.org/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-release-notes/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ifc-release-notes/
https://www.iso.org/standard/70303.html
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://doi.org/10.1093/JCDE/QWAA075
https://doi.org/10.1093/JCDE/QWAA075
https://doi.org/10.3390/APP10103649
https://doi.org/10.3390/APP112411804
https://doi.org/10.3390/APP112411804
https://doi.org/10.3390/INFRASTRUCTURES5070055
https://doi.org/10.3390/INFRASTRUCTURES5070055
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001894
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001894
https://doi.org/10.3390/INFRASTRUCTURES4040058
https://doi.org/10.3390/INFRASTRUCTURES4040058
https://doi.org/10.1109/JSTARS.2017.2781132
https://doi.org/10.1109/ICTIS.2017.8047822
https://doi.org/10.3390/RS10101531
https://doi.org/10.1016/J.AUTCON.2020.103088
https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W9-623-2019
https://doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W9-623-2019
https://doi.org/10.1016/J.CONBUILDMAT.2019.117072
https://doi.org/10.1016/J.CONBUILDMAT.2019.117072
https://www.geometrictools.com/index.html
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://dianafea.com/
https://doi.org/10.21105/joss.00473
https://doi.org/10.21105/joss.00473
https://www.iai.kit.edu/english/1648.php
https://www.iai.kit.edu/english/1648.php
https://doi.org/10.1016/j.autcon.2021.103703

	Generating IFC-compliant models and structural graphs of truss bridges from dense point clouds
	1 Introduction
	2 Context
	2.1 Point cloud segmentation
	2.2 Bounding boxes
	2.3 IFC

	3 Methodology
	3.1 Truss model
	3.1.1 First step – Input processing and first bounding boxes
	3.1.2 Second step – Bounding box extension
	3.1.3 Third step – Out-of-bounds correction
	3.1.4 Fourth step – Element interconnection

	3.2 Structural graph
	3.2.1 Graph construction
	3.2.2 Export

	4 Results
	4.1 Truss model
	4.2 Structural graph

	5 Discussion
	6 Conclusions
	Funding
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

