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Abstract—Autonomous navigation is a well-studied field in
robotics requiring high standards of efficiency and reliability.
Many studies focus on applying AI techniques to obtain a high-
quality map, a precise localization, or improve the proposed
trajectory to be followed by the agent. As traditional planning
methods need a high-quality map to obtain optimal trajectories,
this paper addresses the problem of multipath map-less planning,
and proposes a novel multipath planning algorithm (Double
Deep Reinforcement Learning - Enhanced Genetic (DDRL-EG))
for mobile robots in an unknown environment. It combines
Double Deep Reinforcement Learning (DDRL) with Heuristic
Knowledge (HK), Experience Replay (ER), Genetic Algorithm
(GA), and Dynamic Programming (DP), allowing the agent
to reach its target successfully without maps. In addition, it
optimizes the training time and the chosen path in terms of
time and distance to the target. A hybrid method is also
used in which Semi-Uniform Distributed Exploration (SUDE) is
employed to determine the probability that the action is decided
based on directed knowledge, hybrid knowledge, or autonomous
knowledge. The performance of DDRL-EG is compared with two
other algorithms in two different environments. The results show
that DDRL-EG is a more robust and powerful algorithm since
with less training, it can provide much smoother and shorter
trajectories to the target.

Index Terms—Reinforcement learning, dynamic programming,
prioritized experience, heuristic knowledge, genetic algorithm.

I. INTRODUCTION

THE Industry 4.0 transforms all sectors, especially robotics
in the field of autonomous navigation. To achieve the

efficiency and reliability requirements necessary for this field,
Artificial Intelligence (AI) plays an essential role in the
automation process of the agents [1].

Over the last few years, AI has moved from “Internet AI”,
whose learning is based on images, videos, and texts from the
Internet, to “Embodied AI,” whose knowledge is based on the
agent’s interaction with its environment [2], [3]. A clear ex-
ample of this type of agent is the “Vecna Robots”, a robot that
combines vision systems with machine learning technologies,
allowing it to navigate safely a ground vehicle [4]. The goal of
equipping agents with AI is to mimic both humans’ adaptive
and intelligent capabilities. This means that agents will be able
to perceive complex environments and make decisions quickly
[5]. Traditional approaches to autonomous navigation of an
agent include detailed mapping of the environment, precise
localization, and optimal path planning [6]–[8], where path
planning is an essential component of autonomous navigation.

Nowadays, the most popular planning methods use Simulta-
neous Localization and Mapping (SLAM) technology. There

are different proposals of SLAM algorithms that allow the
construction of a real-time or offline map from data obtained
from other types of sensors [9], [10]. Vision sensors and laser
or ultrasonic range finders combined with SLAM are widely
used in service robots [11]. Typically, the next phase of route
planning is executed once the location is obtained. Local and
global planners are commonly used to determine the obstacle-
free route. First, the global planner traces a global path from
the starting point to the target point. Then, the local planner
traces minor routes in real-time, trying to follow the global
path but avoiding possible new obstacles not contemplated in
the global route [12]. This method has the disadvantage of
requiring high-end sensors to obtain a high-quality map. Also,
the amount of time used to generate the map increases with the
amount of data used or desired map quality. It is important to
note that the map must be updated to cover all areas in which
the robot must navigate if the environment changes [13].

An alternative to traditional methods is AI subsets, e.g., Ma-
chine Learning (ML), Reinforcement Learning (RL), and Deep
Learning (DL) [14]. Within robotics, AI has demonstrated
remarkable success since it has enabled robots to be equipped
with machine learning capabilities. This learning allows the
agents to make optimal decisions similar to those that a human
would make. ML capability allows the robot to adapt to
different scenarios and situations. This makes it ideal for tasks
in map-free navigation, such as path planning [15], [16].

The techniques of ML are classified into four groups: super-
vised, unsupervised, semi-supervised, and reinforcement [17].
Supervised ML is one in which the output label is defined.
This technique searches for a function that, given an input,
assigns the appropriate label. Moreover, it can be divided into
classification and regression [18]. Unsupervised ML allows the
analysis of raw data sets. In other words, it can generate analyt-
ical knowledge from unlabeled data [19]. Semisupervised can
build a model using both labeled and unlabeled training data.
This technique reduces the cost of training since most of the
data used are not labeled [20]. The RL class allows the agent
to learn based on the data obtained through its interaction
with the environment. It has been successfully applied in
many fields, including robotics, especially in constructing
autonomous systems [21].

Since large amounts of data are needed to achieve an
optimal policy, many studies focus on the time-varying realis-
tic channel optimization problem of next-generation wireless
networks and the exchange of training data in a secure
manner, ensuring privacy and energy consumption minimiza-
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tion [22]–[24].

A. Related work

In recent years, path planning techniques applying ML have
been a very studied topic. Therefore, this subsection presents
a brief summary of some of the most relevant papers.

Hu et al. proposed an exploration strategy using a com-
bination of Prioritized Experience Replay (PER) and Deep
Deterministic Policy Gradients (DDPG) based on a map-free
collision avoidance algorithm. The data used for training were
collected by remotely driving the agent, i.e., a human operator
controlled the agent during the exploration process. Moreover,
the agent was able to regulate both angular velocity and linear
velocity depending on the area in which it is located. Once the
exploration process is completed, the data collected is sampled
according to the priority of each state transition, and finally,
it updates its policy [25].

Yan et al. proposed a Deep Reinforcement Learning (DRL)
for trajectory planning based on global situation informa-
tion. This approach combined the Dueling Double Deep Q-
Networks (D3QN) algorithm with the ϵ−greedy strategy and
heuristic search rules [26]. Xiang et al. proposed a method
for continuous control of the navigation of mobile robots
based on a Long Short-Term Memory (LSTM) neural network
architecture with three neural networks. Two of them acted as
the target Q network, but only the network with the lowest Q
value was used at each step. In addition, this method used Soft
Actor-Critic (SAC) to maximize the entropy in each visited
state and improve the resulting policy [27].

Tai et al. presented an asynchronous extension of DDPG,
where the sample collection process is performed in another
thread, allowing collecting during each step almost four times
more samples than the original DDPG. Working in threads
made it possible to improve the obtained policy [28]. Liu et
al. proposed a method with Decentralized-Recurrent Neural
Network (DS-RNN). In this method, the network used spatial
and temporal relationships for the agent’s decision-making in
crowd navigation [29].

Jiang et al. proposed a method based on Deep Q-Learning
(DQL) with randomization, ER, and HK. The proposed al-
gorithm divided the robot state into safe, unsafe, failure, and
winning states. When the agent was in a safe state, it used the
ϵ − greedy strategy to determine whether the action would
be determined by target-directed knowledge or by a neural
network. It used an obstacle avoidance method to get as far
away as possible from the obstacle in an unsafe state [30].

Maoudj et al. proposed a variation to [30], in which the
states were redefined as an obstacle, target, and last action. To
determine the state in which the agent was located, he divided
the sensor range into five regions that were classified into two
groups safe and unsafe. In the case of the “obstacle state”, it
was only considered an obstacle if it was in the frontal region.
In this proposal, the action to be executed was determined
based on the information of the last step, the target, and the
classification of the regions [31]. Garrido et al. proposed an
algorithm based on DQL combined with ER and ϵ− greedy
strategies in which actions were taken randomly. The learning

policy was designed as a function of distance and angle to the
target [32].

Peng et al. proposed a path planning algorithm to minimize
agent energy consumption using Double Deep Q-Learning
(DDQL) combined with ϵ − greedy and ER strategies [33].
Chen et al. proposed a method to improve the stability of
reinforcement learning in autonomous driving by combining
DDPG with imitation learning. The function of the imitation
network is to act as empirical learning using the least amount
of data, which is obtained manually [34]. He et al. proposed
a novel framework focused on improving the performance
of vehicular networks using deep reinforcement learning,
experience replay buffering, dynamic orchestration of network
resources, and caching [35].

B. Contribution of the paper
This paper focuses on the significant advances of AI in

the subarea corresponding to RL that allows agent learning
through its interaction with the environment. It is also based
on ML applications in autonomous navigation and especially
on the need to develop new methods to accelerate the real-
time learning of an agent, using low computational capacity
and reducing the time of training used in the methods proposed
so far. In this framework, a novel algorithm (DDRL-EG) for
multipath planning is presented, using DDRL based on HK,
ER, GA, and DP.

DDRL-EG enables the agent to avoid obstacles and reach
different destinations without using a preloaded map, as is
the case with traditional navigation algorithms. This requires
RL, which enables the agent to learn from its environment. In
addition, the combination of HK, ER, GA, and DP allows the
network convergence process to be accelerated. At each step,
the algorithm decides based on sensor information, the current
position of the agent, and the position of the target.

The contributions of this paper are:
1) An algorithm for multipath planning with obstacle

avoidance based on DDRL and soft updating.
2) A hybrid strategy to accelerate learning using SUDE.

It is used to calculate the action’s probability based on
directed knowledge, hybrid knowledge, or autonomous
knowledge.

3) A map-free obstacle avoidance navigation algorithm to
generate the data used as HK.

4) A strategy to accelerate network convergence by com-
bining the advantages of ER and GA. This allowed
modifying the batch of random samples with the best
sample sequences based on the best reward obtained.

5) The code source for the algorithm proposed in this
paper was made in open source and is available at
https://github.com/ELIZABETH1611/ddrle ge.

The remaining of the paper is organized as follows: Section
II covers the technical background. Section III proposes the
different phases to obtain a hybrid algorithm using RL, ER,
HK, and GA that allows an agent to plan optimal routes to a
target while avoiding obstacles. Section IV discusses and com-
pares the results obtained from the proposed algorithm with
the algorithms proposed by [25], [32]. Section V presents the
conclusions and future lines.

https://github.com/ELIZABETH1611/ddrle_ge
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II. TECHNICAL BACKGROUND

This section presents a brief introduction to RL, DDQL,
ER, HK, and GA to better illustrate their combined version in
the proposed algorithm.

A. Reinforcement Learning

RL is based on the agent’s learning by interaction with
its environment (Fig. 1). In other words, at each interaction
(action) of the agent with the environment, it receives a reward.
This reward is used to build the agent’s behavioral policy [36].

Fig. 1. The RL learning process starts when the agent observes its current
state (st) in the environment at time (t). Then, the agent executes an action
(at) that takes it to a new position (st+1) and receives a reward (rt+1)
for it. This cyclic process of receiving a positive or negative reward for each
action performed is used to optimize the policy continuously.

As mentioned above, the agent’s behavior is defined by its
optimal policy, whose objective is to maximize the cumulative
reward obtained by the agent. To construct this policy first
the agent observes its current state (st) in the environment
at time (t). Second, the agent executes an action (at) that
takes it to a new position (st+1) in the environment. Third, it
receives a reward (rt+1), which is used to optimize the policy
continuously [36].

The algorithm that will model the agent’s policy is chosen
depending on the complexity of the environment. In simple
and small environments, the Q-Learning (Q-L) algorithm is
used, where the policy is represented in a table. This table
contains all possible states and actions that the agent can
perform in that scenario.

However, in complex or larger scale environments, deep
neural network algorithms are used, whose function is to
approximate a function that models the agent’s policy. This
type of learning is known as DQL and is defined by the
following properties:

1) A set of states S.
2) A set of actions A.
3) A set of reward R(st+1|st, at).
4) Discount factor γ ∈ [0, 1].
The discount factor defines the importance of the reward

within the policy used. When γ has values close to zero, the
agent will give more importance to immediate rewards. This
type of behavior is called myopic behavior since its goal is to
perform the action that has the highest reward at the moment.

On the other hand, the agent will prioritize future rewards
when the values of γ are close to one. In this case, the agent
will try to maximize the cumulative reward obtained until its
target is reached [37], [38].

B. Double Deep Q-learning

The predecessor algorithms of DDQL are the standard DQL
and Q-L algorithms. These two algorithms are susceptible to
overfitting the generated policy because they use the same
neural network to select and evaluate the action. That is, each
of the actions executed by the agent will be based on a different
policy as it is updated at each step.

The update method used by Q-L is defined in the literature
as Eq. (1) [39].

Q(St, At)←(1− α)Q(St, At) + α(Rt+1 + γ b), (1)

b = max
a∈A

Q(St+1, a), (2)

where Q(St, At) represents the value of the expected re-
ward given an action At in current state St at time t and
maxa∈A Q(St+1, a) represents the expected reward in the
future (St+1) if the highest-valued action (a) is taken. The
learning rate (α) allows to control the rate at which the
model learns, as it regulates the weights assigned to the neural
network. The lower the value, the longer it takes to converge,
and the higher the value, the more sub-optimal the results may
be.

The difference between Q-L and DDQL is that DDQL
decouples the selection phase from the evaluation phase, thus
avoiding overestimation and speeding up the convergence time
of the network [40].

In DDQL, two neural networks with a completely identical
architecture are used. One of them has the function of the
primary network, i.e., it is in charge of choosing the action to
be executed. The second neural network is the target network,
whose function is to determine a target Q-value for the action
selected by the first network. The primary network is trained
at each time step, while the target network is only updated
with the weights of the primary network every certain time.
The reduction of constant updates results in a more stable
policy [41].

Mathematically DDQL is expressed as shown in
Eq. (3) [42].

Qa(St, At)←(1− α)Qa(St, At)

+ α(Rt+1 + γ Qb(St+1, a)),
(3)

a = max
a∈A

Qa(St+1, At), (4)

as the agent initially has no information about the environment,
it estimates the value of Q(St, At) and updates it at each
interaction. The update performed varies slightly from Q-L
because DDQL employs two neural networks. Where the
primary neural network that selects the best action to perform
(Eq. (4)) is represented as Qa and the secondary neural
network that evaluates the selected action is represented as
Qb.
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The use of two neural networks allows the values of Qa and
Qb to be equally overestimated and can be seen as a uniform
distribution. As a consequence, overestimates are no longer a
problem, since noise does not affect the difference between
Qb(St+1, a) and Qa(St, At) [43].

C. Experience Replay
Currently, ER is used in DRL to achieve network conver-

gence acceleration. This method has been shown to improve
the efficiency and stability of the network by storing the
last transitions in a fixed-size batch called memory [44]. The
storage of the samples allows them to be used several times
instead of just once, resulting in more stability of the network
in the training phase. In traditional approaches, the training of
the network is performed using random batches of the data
stored in memory [45].

D. Heuristic Knowledge
The performance of a neural network is defined by the

amount of data or knowledge that the agent has about the en-
vironment. However, in traditional ML approaches, the agent
has no prior knowledge. Therefore, knowledge is acquired by
switching from the exploration strategy to the exploitation
strategy. When the agent chooses exploration, it considers
the whole environment as a target to be explored, as it
seeks to maximize the knowledge obtained at the end of the
exploration. Exploitation, on the other hand, assumes that the
agent has some knowledge of the environment, which makes
it capable of exploring promising local areas [21].

Of the exploration strategies, the most famous is ϵ−greedy
strategies, also known as random strategies because the action
to explore the environment is chosen randomly. This strategy
is not the most efficient because the agent moves randomly
within the environment, so it needs long time to complete the
exploration and may explore unnecessary areas or the same
areas several times. Another strategy is SUDE, which has
demonstrated better performance against ϵ−greedy strategies.
The difference between these two methods lies in the fact that
actions are taken based on a probability distribution [46].

E. Genetic Algorithm
GA is a global algorithm whose objective is to find an

optimal solution to optimization problems. In the field of
AI, genetic algorithms present high performance since they
maximize “fitness”. Fitness in path planning is related to the
path length since it represents the function that optimizes
the process of finding the best path in known spaces. The
optimization process by means of GA can be divided into two
steps:

1) It selects a random population of possible solutions
normally encoded in a string known as a “chromosome”.
In the field of path planning, this means that it selects
random data from the training memory.

2) An operator is in charge of searching for promising
areas, and the “crossover” and “mutation” operators are
in charge of generating optimal possible solutions. In
other words, it searches for the best routes and stores
them in memory [47]–[49].

F. A* algorithm

A* algorithm is an algorithm based on heuristic searching
used in path planning. It searches through all possible paths
between the nearest cells but chooses the one with the lowest
cost, i.e., the path with the lowest number of connections.
The algorithm first divides the environment into cells, then
evaluates each cell until it finds the shortest path, this means,
the cell with the lowest f(n) [50].

f(n) = g(n) + h(n), (5)

where g(n) is the length of the path from the origin point to
the target and h(n) represents the distance between the origin
and the current cell.

In the field of robotics, A* has a high computational
burden, especially in environments with a very large number
of cells [51].

III. DOUBLE DEEP REINFORCEMENT LEARNING BASED
ON GENETIC ALGORITHM

A. Observation space

The observation space of the environment (Fig. 2) is com-
posed of: the observation state (st) (sensor data), the angle
of orientation of the robot towards the target (heading), the
distance to the nearest object (obstacle position), and the
current distance relative to the target, calculated in polar
coordinates.

Fig. 2. In environment 2 (“Turtlebot3 plaza”) the blue lines illustrate the
sensor data corresponding to the 24 laser beams, the distance to the nearest
object represents the nearest obstacle (wall). And the red square is the target
to be reached by the agent.

The laser used for obstacle identification and positioning
has a viewing angle of 360 ° divided into 24 beams which
were grouped into four regions, as shown in Fig. 3.
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Fig. 3. The 24 laser beams are divided into 4 regions. The back region
defined in the range of [-90 °,-180 °] and [+90 °,+180 °] corresponds to 12 of
the 24 beams. The remaining 12 beams in the region defined in the range of
[-90 °,0 °] and [+90 °,0 °] are divided between the front, left and right regions.

B. Action space

The agent is able to carry out six actions, as shown in Fig. 4,
where each action corresponds to a given linear and angular
velocity (Table. I).

Fig. 4. The agent can perform six actions, go forward (a2), backward (a5),
turn left (a0 or a1), and turn right (a3 or a4).

C. Reward space

The reward given to the agent at each step is defined in
Eq. (6). It corresponds to the sum of six types of rewards
assigned to the agent. These rewards depend on the route
chosen by the agent, with higher rewards assigned to shorter
routes in terms of distance traveled and time spent.

Rt = Rd +Rθ +Ro +Rp t +Rg +Rc, (6)

The reward obtained at each step by the agent consists of
the reward corresponding to the distance traveled in that step

TABLE I
LINEAR VELOCITY (ν) AND ANGULAR VELOCITY(ω) CORRESPONDING TO

EACH ACTION

type of action # action ν (m/s) ω (rad/s)
turn a0 +1.2 +1.5
turn a1 +1.2 +0.75

forward a2 +1.5 0
turn a3 +1.2 -0.75
turn a4 +1.2 -1.5

backward a5 -1.5 0

(Rd), the reward received if the angle of rotation of the agent’s
path with respect to its target increased or decreased (Rθ), the
reward assigned for avoiding an obstacle such as walls (Ro),
the reward assigned to the time taken by the agent to reach a
target (Rp t), the reward given for reaching the target (Rg),
and the reward (penalty) for collision (Rc). Each of these
rewards is explained below.

The reward corresponding to the distance traveled at each
step, Rd, is defined by Eq. (7). This defines the maximum
reward that the agent could obtain when reaching its target.

Rd =
(e−dt−1 − e−dt)

(e−dt=0 − 1)
·mr. (7)

In order to obtain the maximum reward, a first approach
was proposed in which only the difference between the last
distance and the current distance to the goal was taken into
account. The results showed that the agent tends to take
longer routes to accumulate more rewards. Therefore, this
approach does not work to achieve the goal of reducing the
route distance. So, a new way of calculating the reward was
proposed using negative exponentials and taking into account
the initial distance at t = 0 (dt=0) where the agent has
not executed any action yet and the current distance (dt) to
the target. In addition, an auxiliary variable is used, which
is assigned the value of the current distance in the previous
step (dt−1).

Negative exponentials allow the reward obtained by the
agent to be more significant as it moves closer to the target
and to have the most significant negative values as it moves
away from it. Moreover, it cancels out the rewards received
by the agent when it makes movements that form a looping
trajectory.

Because the value of the reward obtained is in the range
10−1, it was necessary to multiply it by a constant denoted as
mr. This constant sets the maximum cumulative reward as a
function of the distance the agent will receive when it reaches
its target.

As we can see in Fig. 5, there are different rings that
represent the value of the accumulated reward that the agent
will have according to the current distance to its target. For
instance, at the origin point, the agent will have a reward of
zero points because it has not performed any action that brings
it closer or further away from its target. However, the closer
it gets to its target, the more its rewards increase. In case it
starts to move away from its target, the accumulated reward
will be canceled. This is observed when the agent goes from
60 accumulated points to −11 points. But once it reaches the
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target, it will have an accumulated reward equivalent to 300
points. Therefore, given any point of origin and destination, the
agent can only have a maximum reward per distance traveled
equivalent to 300 points.
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Fig. 5. The accumulated reward is displayed according to the heat map.
Furthermore, an example of the agent’s trajectory can be seen as the orange
line. It starts with zero reward points and as it performs actions it accumulates
or decreases rewards until it reaches the target with a maximum accumulated
reward of 300 points.

The reward for the angle of rotation at each step, Rθ, is
given by Eq. (8), where the initial heading is defined at t = 0,
i.e., before the agent executed any action (ht=0). The current
heading is (ht), and ht−1 corresponds to the value of the
current heading in the previous step.

Rθ =
(e−|ht−1| − e−|ht|)

(e−|ht=0−6| − 1)
·mθr, (8)

the reward was designed using the same approach as in the
reward assigned to distance and the fact that the heading has a
range from−180 ◦ to +180 ◦. Therefore, the absolute values of
the different headings were used in order to assign the highest
reward to the action that allows the agent to reach a heading
close to zero (Fig. 6).

The behavior of the reward with respect to the relative
angle between the agent’s position with respect to the target
(heading) is shown in Fig. 7. It is observed that the agent
achieves a maximum cumulative reward equivalent to 100
points when its heading is zero. Before executing an action,
the reward assigned to the agent is zero points, but as the
heading decreases, the agent obtains a higher reward which
may decrease if the heading increases.

The reward assigned for avoiding an obstacle, Ro, is spec-
ified in Eq. (9). It was defined based on a safety distance that
the agent must maintain with respect to an obstacle. In this

Fig. 6. The red arrow represents the direction of the agent, while the red
box depicts the target. The panels show different situations when the agent’s
heading is directed towards the target. The respective direction in each case
is written in the green boxes.
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Fig. 7. The reward obtained by the agent as a function of the heading. The
more the heading decreases, the higher the accumulated reward will be. The
maximum reward equivalent to 30 points is reached when the heading is zero.

case, a safety distance of 0.25m was defined.

Ro =

{
-5 points distance to the obstacle < safe distance,

0 points otherwise.
(9)

The reward assigned to the time used by the agent to achieve
an objective was calculated by Eq. (10). Where the Agent’s
threshold time (Ath) is calculated as the ratio between the
estimated time the agent needs to reach the target (Att), and
the time actually used (Atu). The Atu is calculated as the
difference between the current time (tt) and the time before
it performs its first action (tt=0). As the reward is related to
the agent’s success, it will only be calculated when the target
is reached and will have a maximum value of 100 points (rt),
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otherwise, it will have a value of zero points.

Rpt
=

{
rp if target achieved,

0 if target not achieved,
(10)

where

rp =

{
rt·1 Ath > 1,

rt · (Ath−1) Ath <1,
(11)

Ath =
Att

Atu
, (12)

Att =
dt=0

lv
, (13)

Atu = tt − tt=0. (14)

For a better understanding of the assigned rewards, on
the one hand, Table. II summarizes the main parameters that
influence the calculation of the rewards and their correspond-
ing values. On the other hand, Table. III collects the values
assigned to the actions performed by the agent from the origin
(0.0, 0.0) to the target (−1.9, 1.1) represented in Fig. 8.

TABLE II
SUMMARY OF THE MAIN PARAMETERS INFLUENCING THE CALCULATION

OF REWARDS

Description Parameters Values
Agent’s threshold time Ath -

Agent time to target Att -
Agent time used Atu -

Current time tt -
Initial time tt=0 -

Reward for path rp -
Maximun reward mr 300

Maximun θ reward mθr 30
Reward for time rt 100
Linear velocity lv 0.15m/s

Reward for achieving the target Rg 1000
Collision reward Rc −1000
Safety distance - 0.25m

Distance to reach the goal - 0.30m
Collision distance - 0.18m

D. Multipath planning algorithm

This paper proposes an algorithm that combines ER with the
logic of Genetic Algorithms (GAs). The proposed algorithm is
divided into four phases. In Phase 1, the use of three different
memories was proposed.

The main memory (m D) stores all the transitions (steps)
that will be used for training the network. The second one
(m Optimalt) is also part of the training but it only stores
the trajectories whose target was reached in an optimal time. In
other words, it stores the sequence of steps taken to reach that
target. Finally, the third (m Temp) memory stores temporarily
the transitions until the agent collides or reaches the target.
Once one of these states occurs, the memory is cleared.

Since the policy is determined by how good or bad the
input data is, this paper proposed to increase the probability
of sampling the best data. Each sample represents the status
of the agent at time t and is formed by statet, action, reward,
statet+1, done. Where the statet is composed of scan data

Phase 1 Reward-based data storage (Experience Replay)
1: Initialise max rt = 0, and memories: D,Temp, Optimalt
2: for each step do
3: Save agent status in m D and m Temp

4: for each trajectory do
5: if Process is not “done” and time is optimal then
6: Save data once in m Optimalt
7: Save data three times in m D
8: else
9: Calculate maximum reward in the trajectory

(max rt+1 = average reward of the trajectory)
10: if max rt+1 > max rt then
11: max rt = max rt+1

12: Copy three times from m Temp to m D
13: Reset m Temp

14: else
15: Reset m Temp

16: end if
17: end if
18: end for
19: end for

+ [ headt, headt=0, distt, distance to the obstacle] and done
represents whether the action taken led the agent to a terminal
state (collision) or not.

The probability of training the neural network with specific
data sequences P (D) can be written as Eq. (15), where the
set of all data stored in the main memory is defined as the
sampling space (T ), and the sequence of data with the highest
reward by D.

P (D) =
n(D)

n(T )
. (15)

In order to determine the best data, the third memory was
used. In it, the average reward of a sequence of steps was
calculated and the result was stored in a variable called maxr,
which determines which sequences have the highest reward.
Therefore, to increase n times the probability that the best data
used for training will be sampled, it is necessary to copy n
times in the main memory the sequences corresponding to the
highest values of max rt.

In Phase 2, the batch of data to be used in each step
during the training of the neural network is determined. This
paper proposes to use the concept of GA, not in the classical
sense applied to the weights, but focused on modifying the
batch of data stored by the ER in Phase 1 to obtain a better
batch of data to train the neural network. For this purpose,
firstly, a batch with randomly chosen data (“chromosome”)
is obtained, then the last part of the batch is modified with
a sequence of data corresponding to the optimal trajectory
stored in the m Optimalt memory. This process is equivalent
to the “crossover” and “mutation” operator, respectively. The
combination of these data allowed the prioritization of the best
data sequences while sampling each of them. The result was
a faster convergence of the network.

On the other hand, in Phase 3, the data are obtained
using routing and obstacle avoidance algorithm. This phase
combines the A* algorithm with different processes that allow
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Fig. 8. Each of the subfigures shows the action executed by the agent from the origen position (0.0,0.0) to the target position (-1.9,1.1).

TABLE III
SUMMARY OF REWARD OBTAINED FOR EACH ACTION PERFORMED BY THE AGENT DURING THE ROUTE WITH ORIGIN (0,5,0,5) AND TARGET (0,7,1,9)

Number 1 2 3 4 5 6 7 8 9
dt=0 [m] 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19
dt−1 [m] 2.19 2.13 2.01 1.69 1.35 1.06 0.75 0.60 0.33
dt [m] 2.19 2.11 1.98 1.66 1.33 1.04 0.73 0.56 0.30
R d 0.00 0.91 1.33 2.02 1.63 2.48 4.67 4.88 7.55

ht=0 [◦] -58.27 -58.27 -58.27 -58.27 -58.27 -58.27 -58.27 -58.27 -58.27
ht−1 [◦] -58.27 -36.27 5.71 39.03 44.75 29.37 21.08 -5.31 -9.1
ht [◦] -58.27 -28.06 13.31 39.99 46.96 24.16 21.85 -5.55 -9.2
R θ 0.00 1.93 e -11 -0.098 -2.06 -9.81 e -19 9.61 e-10 -1.13 e -8 -0.03 -0.00
R o 0.00 0.00 0.00 0.00 0.00 0.00 -5.00 -5.00 0.00

Action - 3 2 2 1 1 1 2 2
Ath 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.28/17.86
R p t 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

Phase 2 Modification of the batch with the best sequence of
data (Genetic Algorithm)

1: for each step do
2: mini batch = random sample from m D
3: Choose random sequences from m Optimalt and

save in mini batch1

4: Mutate mini batch with mini batch1

5: end for

the agent to avoid collisions and go directly to its target when
it has a direct vision of it.

In the Phase 4, a hybrid method was proposed using Dpro

to determine the type of knowledge the agent would use in
each episode. For this purpose, it was calculated Pa using
SUDE (Eq. (16)), which defines the level of exploration or
exploitation to be carried out by the agent taking into account
the number of actions (na) and the values of Pbest. Values of
Pbest close to zero correspond to an exploration method, and

those close to one to an exploitation method.

Pa = Pbest +
(1− Pbest)

na
(16)

In this paper the types of knowledge were classified as:
1) Directed knowledge: decisions were determined by

Phase 3.
2) Hybrid knowledge: in this case, the actions were selected

by directed knowledge or by a random choice (ρa).
Where ρa (Eq. (17)) is determined by the probability
associated with each of the Q-values (Qp) (Eq. (18)).

ρa = P (a|Qp), (17)

where

Qp =
E [Q(St|At)]−min(E [Q(St|At)])∑
(E [Q(St|At)]−min(E [Q(St|At)]))

, (18)

and E [Q] represents the expected value of Q.
3) Autonomous knowledge: decisions were made by the

neural network.
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Phase 3 Routing and obstacle avoidance algorithm
1: for each step do
2: Get agent state and check the current process
3: Choice of action according to the process in which the

agent is involved
4: if process is “follow path” then
5: The desired angle is determined by A* algorithm.
6: else if process is “collision” then
7: Go backward
8: Change process to “follow path”
9: else if process is “orientation heading” then

10: Desired angle “zero ”
11: Turn to desired angle
12: Change process to “follow path”
13: else if process is “driving straight” then
14: Go forward
15: if free distance > target distance then
16: Keep going forward
17: else
18: Turn to the target
19: Change process to “follow path”
20: end if
21: else
22: Error, the agent is not found in any of the possible

processes
23: end if
24: end for

Phase 4 Method for determining the type of knowledge to be
used by the agent in each episode

1: The agent calculates Pa

2: if Pa <= 0.25 then
3: Use directed knowledge
4: else if 0.25 < Pa < 0.95 then
5: Use hybrid knowledge
6: else
7: Use autonomous knowledge
8: end if

In summary, to solve the map-free route planning prob-
lem, an off-policy DDRL-EG algorithm was proposed, which
means that the policy that selects the action is different from
the one that evaluates it.

E. Hardware Setup

The hardware used was the MSI-GL75 Leopard notebook,
with an Intel(R) Core(TM) i7-10750H CPU at 2.60 GHz. The
training of the different algorithms was employed only the
Central Processing Unit (CPU).

F. Software Setup

Gazebo was used as the simulator and Robot Operating
System (ROS) as the interface between the agent (Turtlebot3
Burguer) and the simulation interface. In addition, the tests
were performed in two different environments one of them is
Fig. 2 from Gazebo and the other one is Fig. 1.

Algorithm 1 Proposed DDQL-GE algorithm
1: Initialize learning rate (α), discount factor (γ), update

rate (κ), increase factor (δ), tau(τ), time (t)
2: Initialize q network and target network with the same

weights
3: for each episode do
4: Initialize the environment and set the starting point

and target of the agent
5: Call phase 4 (Based on probability Pa choose among

directed knowledge, hybrid knowledge and autonomous
knowledge

6: for each step do
7: Call phase 3 (Routing and obstacle avoidance

algorithm)
8: Call phase 1 (Reward-based data storage)
9: Call phase 2 (Modification of the batch with the

best sequence of data)
10: Network training
11: if t % κ == zero then
12: Update target network weights from

q network using soft update method
13: θ′ ← τθ + (1-τ )θ’ with τ < 1
14: end if
15: end for
16: end for

The sensor used was a laser distance with 24 beams, evenly
distributed over a range of 360 ° and with a range distance from
0.12m to 7m.

G. Network architecture

The implemented network is a fully connected 5-layer deep
neural network. First we have the input layer with 28 neurons
corresponding to the agent state, followed by two hidden layers
each with 528 neurons. Then a dropout layer was added at
20% to reduce the overfitting. And finally the output layer has
6 neurons with different Q values, which determine the action
to be performed by the agent in each step.

TABLE IV
SUMMARY OF THE MAIN PARAMETERS OF THE PROPOSED ALGORITHM

Parameters Values
Hidden Layers 2

Input layer neurons 28
Hidden layer neurons 526
Output layer neurons 6

Dropout 0.2
Replay memories 100000
Mini batch size 96
Update target Soft Mode

Optimizer RSMprop
Loss MSE
α 0.0025
γ 0.9
κ 2000
δ 0.97
τ 0.1
Pa 0.00

Pbest 0.01
Pbest max 0.95
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IV. RESULTS DISCUSSION

In this section, the performance of the proposed algorithm
is compared with two proposals mentioned in the section I-A
using two different environments (see Fig. 1 and Fig. 2). The
first algorithm presented in [32] proposed an approach using
Deep Q-Network (DQN) and the second algorithm presented
in [25] proposed an approach using DDPG. In this paper,
these algorithms were named as DQN-Greedy and DDPG-
PER, respectively.

The first subject of analysis is the area discovered by the
agent in each of the algorithms, which is represented in Fig. 9a
and Fig. 9b for environments 1 and environment 2.

A. Comparison of the area discovered in environment 1

As shown in Fig. 9a the area discovered by the agent using
DQN-Greedy during 25 hours and 30 minutes does not cover
the entire area of interest, i.e., the area where the targets are
located. In addition, based on the colors shown in the heat
map, it is inferred that the agent tends to explore the same area
several times due to the fact that it used a random movement
method to discover the environment. For instance, the central
zone has a yellow color, which means that the agent has been
in that zone at least 103 times. By contrast, DDPG-PER has
a better knowledge of the environment in 12 hours and 50
minutes of training. As can be seen, the strategy uses a main
path in the center of the environment, which leads the agent
from the origin to all targets. Finally, the area discovered over
8 hours and 35 minutes hours using DDRL-EG shows that the
agent has focused knowledge in the area of interest. The heat
map shows that the agent knows several alternatives to reach
the same goal and experienced a lower number of collisions,
making it more robust compared to the others.

B. Comparison of the area discovered in environment 2

As shown in Fig. 9b the agent using DQN-Greedy was able
to know the entire environment in 14 hours and 30 minutes.
Furthermore, it is observed that random exploration has a
better performance in small and delimited areas compared to
large open areas, given that it does not perform explorations
in areas that are not of interest. Using DDPG-PER, the agent
needed 47 hours and 30 minutes of training to view the
environment completely. Moreover, the heat map shows a large
number of collisions throughout the environment because the
agent tends to use high velocities and as it acquires knowledge
of the environment it learns to regulate them. Whereas using
DDRL-EG the agent only needs 6 hours and 30 minutes to
have knowledge of all the areas of interest where the targets
were located.

Therefore, based on the analysis performed for environ-
ments 1 and 2, the algorithm proposed in this work was able to
have a better view of the areas of interest in both environments
using less time than the other two algorithms. Furthermore,
the obtained results show that DQN-Greedy and DDPG-PER
require more time than DDRL-EG to obtain a clear view of
the environment. Since in environment 1 they take a factor of
3.03 and 2.27 more time and in environment 2 a factor of 1.5
and 7.5, respectively.

The second subject of analysis is the time taken by the
agent to reach his goal and the distance it has traveled. But
before starting with the analysis, it is important to mention
that this paper compares the first and the last time the agent
reaches a specific target using the neural network. For that
reason DDRL-EG does not take the value at position zero
since at the beginning the algorithm uses only the directed
knowledge. In addition, in order to have a frequency response
as smooth as possible, a butterworth filter was applied.

C. Comparison of time and distance traveled to reach a target
in environment 1

Of all possible targets, the longest path with coordinates
(0.0,0.0)-(12.0,0.0) as origin and target was chosen. But since
the agent using DQN-Greedy could not reach the chosen
target during the 25 hours and 30 minutes, a new target with
coordinates (3.0,1.0) was chosen. As shown in Fig. 10a the
efficiency of DQN-Greedy has been decreasing over time.
Since the distance and time to reach the target increased
from 4.20m in 29 s to 9.81m in 66 s. This represents a low
efficiency in the algorithm because the chosen route does not
improve as the agent acquires more knowledge and uses more
resources to reach the same objective.

DDPG-PER shows that it also did not improve its perfor-
mance as the distance and time needed to reach the target
was reduced from 3.74m in 14 s to 3.97m in 15 s. This is
also indicated by Fig. 9a which shows the last path compared
to the first one. In contrast, DDRL-EG showed better perfor-
mance in terms of distance traveled than the other algorithms.
Since it reduces the distance needed to reach the target from
4.21m (31 s) to 3.64m (26 s). Furthermore, the last trajectory
shows that the agent offers direct paths to its target, avoiding
unnecessary curves.

D. Comparison of time and distance traveled to reach a target
in environment 2

The coordinates (0.0,0.0) were chosen as the origin and
(0.5,1.8) as the target since it is the target with the farthest
position reached more than once by DDPG-PER.

In the case of DQN-Greedy, the first time the target was
reached, the agent traveled a distance of 5.06m in 36 s but
as it improved its policy it reduced the distance to 4.1m in
28 s. Instead, the performance of DDPG-PER does not improve
over time. Since the first time it reaches the target, it travels a
distance of 3.58m in 19 s and the last time it travels a distance
of 4.17m in 26 s. Finally, DDRL-EG proves to have the best
performance in terms of time and distance traveled, as it is
able to reduce them from 3.23m in 23 s to 3.00m in 21 s.

Therefore, the algorithm proposed in this paper performs
better in both environments. Since it uses less training time,
it can achieve all the objectives and is able to trace short and
smooth paths. However, DDPG-PER obtains the best results
in terms of time in the environment 1 even though the distance
traveled is greater than DDRL-EG. The reason for this is that
the maximum speed set in the DDPG-PER is 39% higher than
in the other two strategies.
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(a)

(b)

Fig. 9. In each subfigure two paths can be observed, one in magenta and the other in yellow, corresponding to the first and the last time the agent reached
the target. The color bar on the right defines the heat map of each algorithm, which shows the number of times the agent was in each position within
the environment. And the red dots define the positions where the agent had a collision. (a) Environment 1: DQN-Greedy, DDPG-PER, DDRL-EG. (b)
Environment 2: DQN-Greedy, DDPG-PER, DDRL-EG.

The third subject of analysis is the number of targets reached
per episode (Fig. 11). An important factor to note prior to
analysis is that since the speed in the DQN-Greedy and
DDRL-EG algorithms is not variable, the maximum number
of targets per episode will be limited to the space traveled by
the agent. Where its maximum distance traveled per episode
is directly proportional to the speed of the agent and the time
duration of an episode. Another aspect to take into account is

that the sequence in which the targets appear is random, so
the farther away they are from the starting point, the lower the
possible number of targets reached during the episode.

E. Comparison of number of targets reached per episode in
environment 1

In this environment DQN-Greedy did not perform well,
since the agent is only able to reach one target per episode
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(b) Target position (0.5,1.8)
Fig. 10. Each subfigure shows the time used by the agent each time it reached a certain target (hit counter). A butterworth filter was applied to the time
obtained in order to have a smoother frequency response. It also shows the distance traveled corresponding to the time spent by the agent when it reached
the target for the first and last time. (a) DQN-Greedy, DDPG-PER, DDRL-EG. (b) DQN-Greedy, DDPG-PER, DDRL-EG.

(500 s). Furthermore, it is only able to reach targets that are
close to the agent’s starting point. Whereas, DDPG-PER was
able to achieve up to two targets per episode, showing better
performance than the previous one. For last, DDRL-EG was
able to achieve up to three targets per episode.

F. Comparison of the number of targets reached per episode
in environment 2

First, DQN-Greedy shows that it can improve its perfor-
mance, as the number of targets reached per episode increased
from one to five. DDPG-PER by contrast achieved one target
per episode. The performance of this algorithm is not the most
suitable in small environments with many obstacles because
the agent tends to perform movements with high velocities,
which causes it to collide constantly. And DDRL-EG can reach

up to five targets per episode. It can be observed that the
number of targets reached is initially high when using directed
knowledge. Then it decreases when using hybrid knowledge
and finally increases with autonomous knowledge.

Based on the upward curve of the number of goals achieved
per episode presented by DDRL-EG in both environments, it
can be inferred that the algorithm improves its performance
over time.

The fourth subject of analysis focuses on the evolution of
the performance of the algorithms, in which the percentage of
achieved targets and collisions are compared throughout their
learning process (Fig. 12).
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Fig. 11. Number of targets achieved per episode (a) DQN-Greedy, DDPG-PER, DDRL-EG. (b) DQN-Greedy, DDPG-PER, DDRL-EG.

G. Evolution of the performance of the algorithms in environ-
ment 1

In large environments such as environment 1, in general,
DQN-Greedy does not perform well. Of the 19 different
targets, it was only able to reach eight of them. Furthermore, it
had a success rate of 20% only for targets whose position was
close to the starting point, the rest of the targets had a success
rate of less than 15%. On the other hand, DDPG-PER showed
better performance in large environments than DQN-Greedy,
as it was able to reach each of the targets but with different
success rates. It had a success rate of over 80% in six of them,
60 % or more in two of them, above 40% or more in three of
them, 20% or more in two of them, 10% or more in one of
them and less than 5% in five of them. However, DDRL-EG
showed better performance than the other two algorithms, as
it was able to reach each of the targets with higher success
rates using less training time. It had a success rate of 100% in

two of them, equal or higher than 100% four of them, above
60% in one of them, above 40% or more in six of them and
20% or more in six of them.

H. Evolution of the performance of the algorithms in environ-
ment 2

In small environments with several obstacles such as envi-
ronment 2, DQN-Greedy performs well because out of the 16
different targets set, it was able to achieve all of them. With a
success rate of 80% or more in two of them, above 60% in
six of them, 40% or more in six of them, above 20% in one
of them, and less than 10% in one of them. On the other hand,
DDPG-PER shows poor performance because it was only able
to achieve seven objectives. The algorithm had a success rate
of 100% on the target that is close to the agent’s starting
point and less than 20% on six of them. However, DDRL-EG
has a success rate higher than 80% in five of them, higher
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(b)
Fig. 12. Each subfigure shows the percentage of success vs. collisions of the agent during the training process of each of the algorithms. (a) DQN-Greedy,
DDPG-PER, DDRL-EG. (b) DQN-Greedy, DDPG-PER, DDRL-EG.

than 60% in four of them, and up to 20% in seven of them.
Therefore, the proposal proposed in this paper presents the
best performance in both large and small environments with
many obstacles.

To conclude the analysis, the training time and the number
of episodes required to obtain the results mentioned above are
summarised (Table V). Furthermore, once the training is com-
pleted, the success rate (sr) of the models for three episodes
has been calculated (Table VI). Each of the algorithms has a
duration of 500 s per episode in addition to the same set of
targets that were chosen at random.

TABLE V
SUMMARY OF TRAINING TIME AND NUMBER OF EPISODES USED IN THE

ANALYSIS

Env Algorithms Episodes Training Time
DQN-Greedy 1089 25:30

1 DDPG-PER 1647 12:50
DDRL-EG 396 8:35

DQN-Greedy 694 14:30
2 DDPG-PER 7713 47:30

DDRL-EG 690 06:30
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TABLE VI
SUCCESS RATE CALCULATED OVER THREE EPISODES

Env Algorithms # Goals # Fails sr [%]
DQN-Greedy 1 2 33

1 DDPG-PER 5 3 63
DDRL-EG 5 1 83

DQN-Greedy 4 1 80
2 DDPG-PER 1 3 25

DDRL-EG 12 2 86

V. CONCLUSIONS

In order to obtain smooth and short trajectories to a target
without the use of a preloaded map, a novel multipath planning
algorithm was proposed for mobile robots in an unknown
environment. The proposed algorithm allowed the agent to
optimize in terms of distance and time the traced paths to
different targets. Another important feature is that the gener-
alization capability of the algorithm can be guaranteed, since a
large diversity of data, including multi-target and multi-source
points, was used for training. Furthermore, the training process
was performed using only the CPU, which demonstrates that
the algorithm achieves high performance without requiring a
high level of computational complexity.

The performance of the proposed algorithm (DDRL-EG)
was evaluated in two different environments and compared
with the DQN-Greedy and DDPG-PER algorithms. The ob-
tained results showed that DDRL-EG provides short and
smooth trajectories in any type of environment and also uses
less training time and number of episodes. In the environ-
ment 1, DDRL-EG requires of DQN-Greedy and DDPG-
PER 36.4% and 24.0% of the episodes, while training time
requires 33.0% and 66.8% respectively. In the environment 2,
DDRL-EG requires of DQN-Greedy and DDPG-PER 99.4%
and 8.9% of the episodes, while training time requires 44.1%
and 13.3% respectively. Therefore, it can be corroborated that
the algorithm presented in this paper has a better performance.

Finally, the success rate of the final model of each algorithm
was evaluated using random targets during three episodes.
Each time a target was reached, a new target was launched
until the end of the episode. The episode could end if the time
was 500 s or also when the agent collided. The result obtained
was a success rate of 33%, 63%, 83% in environment 1 and
80%, 25%, 86% in environment 2 for DQN-Greedy, DDPG-
PER and DDRL-EG respectively. Although DDQN-Greedy
has a high success rate in environment 2, it should be noted
that it has a lower number of targets reached per episode since
it focuses on obstacle avoidance at the expense of providing
long trajectories. Therefore, it can be shown again that the
proposed algorithm provides exemplary performance in any
environment with fixed obstacles.

As a future line, it is proposed to transfer knowledge
between different agents with different sensors incorporated
to create a collaborative policy among agents.
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