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Abstract

Augmented Reality (AR) and its ability to integrate synthetic content over a
real image provides invaluable value in various fields; however, the industry is
one of these fields that can benefit most from it. As a key technology in the
evolution towards Industry 4.0 and 5.0, AR not only complements but also
enhances human interaction with industrial processes. In this context, AR be-
comes an essential tool that does not replace the human factor but enriches it,
expanding its capabilities and facilitating more effective collaboration between
humans and technology. This integration of AR in industrial environments
not only improves the efficiency and precision of tasks but also opens new
possibilities for expanding human potential.

There are numerous ways in which humans interact with technology, with AR
being one of the most innovative paradigms in how users access information;
however, it is crucial to recognize that AR, by itself, has limitations in terms of
interpreting the content it visualizes. Although today we can access different
libraries that use algorithms for image, object, or even environment detection,
a fundamental question arises: To what extent can AR understand the context
of what it sees? This question becomes especially relevant in industrial envi-
ronments. Can AR discern if a machine functions correctly, or is its role limited
to presenting superimposed digital indicators? The answer to these questions
underscores both the potential and the limits of AR, driving the search for
innovations that allow for greater contextual understanding and adaptability
to specific situations within the industry.
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At the core of this thesis lies the objective of not only endowing AR with
"semantic intelligence" capable of interpreting and adapting to context, but
also of expanding and enriching the ways users interact with this technology.
This approach mainly aims to improve the accessibility and efficiency of AR
applications in industrial environments, which are by nature restricted and
complex. The intention is to go beyond the traditional limits of AR, providing
more intuitive and adaptive tools for operators in these environments.

The research unfolds through three articles, where a progressive multimodal
architecture has been developed and evaluated. This architecture integrates
various user-technology interaction modalities, such as voice control, direct
manipulation, and visual feedback in AR. In addition, advanced technologies
based on Machine Learning (ML) and Deep Learning (DL) models are incor-
porated to extract and process semantic information from the environment.
Each article builds upon the previous one, demonstrating an evolution in AR’s
ability to interact more intelligently and contextually with its environment,
and highlighting the practical application and benefits of these innovations in
the industry.

In the first article, an architecture comprising four fundamental layers is pre-
sented and evaluated: the interaction layer, the business layer, the physical
AR layer, and the semantic layer. This architecture is later expanded in the
subsequent articles. The evaluation of this architecture demonstrates its abil-
ity to acquire and analyze visual information from the environment, focusing
on elements like an on/off button or a pressure valve. To carry out the system
evaluation, classic regression and classification models are employed, as well as
convolutional neural networks (CNNs). A step-by-step guidance application
for plant operators is developed, dividing them into two groups: AR standard
application and AR application with semantic layer. Furthermore, this sys-
tem benefits from including Transformers, a highly specialized architecture in
processing textual information. This enables the user to ask questions in nat-
ural language through voice recognition technologies, receiving answers gener-
ated based on available documentary information, such as technical documents
about a specific machine. An essential feature that differentiates this proposal
from other AR use cases in the industry is the ability to verify, through the
semantic layer, the actions undertaken by the user (such as activating a button
or checking the pressure level of a machine) before proceeding to the next step.
Thus, it is possible to reduce operator’s cognitive load compared to traditional
AR applications.

In the second article, the research advances along the lines of the first, delving
deeper into the use of the semantic layer alongside AR, adding the ability to
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guide the user in a more complex environment using Simultaneous Localization
and Mapping (SLAM) techniques. This study is distinguished by its broader
evaluation approach, involving three distinct groups: one with AR and seman-
tic layer with natural language interaction, another with a "blind" AR appli-
cation, and a third without technological assistance, relying solely on technical
documentation. This multiple-evaluation structure allows for a comprehensive
comparison and clearly reveals the advantages of the proposed architecture.
The results underscore a significant increase in comfort and safety, demon-
strating how the semantic layer not only improves user-machine interaction
but also validates and optimizes task execution in industrial environments.

Finally, the third article focuses is on how the knowledge of the Subject Matter
Expert (SME) can be leveraged through the aforementioned technologies and
Large Language Models (LLMs). The research stands out for its approach
in combining, not only the existing technical documentation on machinery
and various processes, but also the knowledge and experience of the SME in
the form of "pills" anchored to specific positions in the environment. Thus,
the operator can either make natural language questions about any element or
consult the SME’s annotations at a specific point. At all times, the information
from the technical documentation and the expert knowledge are used to provide
a response to the operator. The system evaluation was conducted with two
groups of users who had to perform a series of tasks. While group A had only
access to technical documentation and an SME, group B had access to the
developed application. Considering the limitations of having an SME always
available on-site, the system evaluation revealed a marked preference for the
ability to access expert information anchored, highlighting the advantage of
having this immediate expert assistance, as well as a practical and efficient
solution to facilitate the transfer of expert knowledge in the industry.

Throughout and after the development of this thesis, the following conclusions
have been drawn:

• Semantic layers and LLMs integration with AR greatly improved task
efficiency, especially in complex, cognitive tasks, enabling quicker, more
accurate outcomes.

• Semantic AR systems enhanced complex tasks and simpler ones through
automatic validation and guidance, boosting overall efficiency.

• AI-enhanced AR with Natural Language Processing (NLP) features led
to faster information access and more efficient decision-making than tra-
ditional methods like consulting manuals or SMEs.
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• Users of AR systems with semantic layers experienced increased satisfac-
tion and ease of use.

• The effective use of AR systems in various challenging settings, like textile
labs and shop floors, showed their broad applicability in industry.

• The AR applications were user-friendly, allowing even novices to operate
unfamiliar machinery effectively.
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Resumen

La Realidad Aumentada (Augmented Reality, AR) y su capacidad para inte-
grar contenido sintético sobre una imagen real proporciona un valor incalcula-
ble en diversos campos; no obstante, la industria es uno de estos campos que
más se puede aprovechar de ello. Como tecnología clave en la evolución hacia
la Industria 4.0 y 5.0, la AR no solo complementa sino que también potencia la
interacción humana con los procesos industriales. En este contexto, la AR se
convierte en una herramienta esencial que no sustituye al factor humano, sino
que lo enriquece, ampliando sus capacidades y facilitando una colaboración
más efectiva entre humanos y tecnología. Esta integración de la AR en en-
tornos industriales no solo mejora la eficiencia y precisión de las tareas, sino
que también abre nuevas posibilidades para la expansión del potencial humano.

Existen numerosas formas en las que el ser humano interactúa con la tec-
nología, siendo la AR uno de los paradigmas más innovadores respecto a cómo
los usuarios acceden a la información; sin embargo, es crucial reconocer que
la AR, por sí misma, tiene limitaciones en cuanto a la interpretación del con-
tenido que visualiza. Aunque en la actualidad podemos acceder a diferentes
librerías que utilizan algoritmos para realizar una detección de imágenes, ob-
jetos, o incluso entornos, surge una pregunta fundamental: ¿hasta qué punto
puede la AR comprender el contexto de lo que ve? Esta cuestión se vuelve es-
pecialmente relevante en entornos industriales. ¿Puede la AR discernir si una
máquina está funcionando correctamente, o su rol se limita a la presentación
de indicadores digitales superpuestos? La respuesta a estas cuestiones sub-
rayan tanto el potencial como los límites de la AR, impulsando la búsqueda de
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innovaciones que permitan una mayor comprensión contextual y adaptabilidad
a situaciones específicas dentro de la industria.

En el núcleo de esta tesis yace el objetivo de no solo dotar a la AR de una
"inteligencia semántica" capaz de interpretar y adaptarse al contexto, sino
también de ampliar y enriquecer las formas en que los usuarios interactúan
con esta tecnología. Este enfoque se orienta particularmente a mejorar la
accesibilidad y la eficiencia de las aplicaciones de AR en entornos industriales,
que son por naturaleza restringidos y complejos. La intención es ir un paso
más allá de los límites tradicionales de la AR, proporcionando herramientas
más intuitivas y adaptativas para los operadores en dichos entornos.

La investigación se despliega a través de tres artículos de investigación, donde
se ha desarrollado y evaluado una arquitectura multimodal progresiva. Esta
arquitectura integra diversas modalidades de interacción usuario-tecnología,
como el control por voz, la manipulación directa y el feedback visual en AR.
Además, se incorporan tecnologías avanzadas basadas en modelos de apren-
dizaje automática (Machine Learning, ML) y aprendizaje profundo (Deep
Learning, DL) para extraer y procesar información semántica del entorno.
Cada artículo construye sobre el anterior, demostrando una evolución en la
capacidad de la AR para interactuar de manera más inteligente y contextual
con su entorno, y resaltando la aplicación práctica y los beneficios de estas
innovaciones en la industria.

En el primer artículo, se presenta y evalúa una arquitectura compuesta por
cuatro capas fundamentales: la capa de interacción, la capa de negocios, la
capa física de AR y la capa semántica. Esta arquitectura se ve ampliada en
los artículos subsiguientes. La evaluación de esta arquitectura demuestra su
capacidad para adquirir y analizar información visual del entorno, centrándose
en elementos como un botón de encendido/apagado o una válvula de presión.
Para llevar a cabo la evaluación del sistema, se emplean modelos clásicos de
regresión y clasificación, así como redes neuronales convolucionales (Convo-
lutional Neural Networks, CNN). Se desarrolla una aplicación de guía paso a
paso para operarios de planta, dividiéndolos en dos grupos: AR standard appli-
cation y AR application with semantic layer. Además, este sistema se beneficia
de la inclusión de Transformers, una arquitectura altamente especializada en
el procesamiento de información textual. Esto posibilita que el usuario real-
ice preguntas en lenguaje natural mediante tecnologías de reconocimiento de
voz, obteniendo respuestas generadas en función de la información documental
disponible, como por ejemplo, documentos técnicos sobre una máquina especí-
fica. Una característica esencial que diferencia esta propuesta de otros casos
de uso de AR en la industria es la posibilidad de verificar, mediante la capa
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semántica, las acciones que acomete el usuario (como podrían ser activar un
botón o verificar el nivel de presión de una máquina) antes de continuar con el
siguiente paso. De este modo, es posible reducir la carga cognitiva del operario
respecto a aplicaciones de AR tradicionales.

El segundo artículo avanza en la línea de investigación del primero profun-
dizando en el uso de la capa semántica junto a la AR, añadiendo la posibilidad
de realizar una guía al usuario en un entorno más complejo mediante técnicas
de localización y mapeo simultáneo (Simultaneous Localization And Mapping,
SLAM). Este estudio se distingue por su enfoque de evaluación más amplio,
involucrando a tres grupos distintos: uno con AR y capa semántica con inter-
acción en lenguaje natural, otro con una aplicación de AR "ciega", y un tercero
sin asistencia tecnológica, dependiendo únicamente de la documentación téc-
nica. Esta estructura de evaluación múltiple permite una comparación exhaus-
tiva y revela claramente las ventajas de la arquitectura propuesta. Los resulta-
dos subrayan un incremento notable en la comodidad y seguridad, demostrando
cómo la capa semántica no solo mejora la interacción usuario-máquina, sino
que también valida y optimiza la ejecución de tareas en entornos industriales.

Finalmente, en el tercer artículo se analiza cómo el conocimiento del experto
en la materia (Subject Matter Expert, SME) puede ser aprovechado gracias a
las tecnologías anteriormente mencionadas y los modelos de lenguajes masivos
(Large Language Models, LLMs). La investigación destaca por su enfoque en
combinar, no solo la documentación técnica existente sobre la maquinaria y
los diferentes procesos, si no junto a esto, el conocimiento y experiencia del
SME en forma de "píldoras" ancladas a posiciones concretas en el entorno.
De este modo, el operario bien puede realizar consultas en lenguaje natural
de cualquier elemento, bien puede consultar las anotaciones del SME en un
punto en concreto. En todo momento, la información de la documentación
técnica y el conocimiento experto son usados para devolver una respuesta al
operario. La evaluación del sistema se llevó a cabo con dos grupos de usuarios
que deben realizar una serie de tareas. Mientras que el grupo A tenía único
acceso a documentación técnica y a un SME, el grupo B disponía de acceso a
la aplicación desarrollada. Teniendo en cuenta las limitaciones que supone el
disponer de un SME en todo momento en planta, la evaluación del sistema rev-
eló una preferencia marcada por la capacidad de acceder a información experta
anclada, resaltando la ventaja de disponer de esta asistencia experta inmedi-
ata, así como una solución práctica y eficiente para favorecer la transferencia
de conocimiento experto en la industria.

A lo largo y tras el desarrollo de esta tesis, se han extraído las siguientes
conclusiones:
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• La integración de capas semánticas y LLMs con la AR mejoró significa-
tivamente la eficiencia de las tareas, especialmente en tareas complejas y
cognitivas, permitiendo resultados más rápidos y precisos.

• Los sistemas de AR con capa semántica no solo mejoraron tareas comple-
jas sino también tareas más sencillas a través de validación automática y
guiado, aumentando la eficiencia general.

• La AR mejorada con IA y características de procesamiento de lenguaje
natural (Natural Language Processing, NLP) condujo a un acceso más
rápido a la información y a una toma de decisiones más eficiente que los
métodos tradicionales como la consulta de manuales o expertos.

• Los usuarios de sistemas de AR con capas semánticas experimentaron un
aumento en la satisfacción y facilidad de uso.

• El uso efectivo de sistemas de AR en entornos complejos variados, como
laboratorios textiles y plantas industriales, demostró su amplia aplicabil-
idad en la industria.

• Las aplicaciones de AR eran fáciles de usar, permitiendo incluso a inex-
pertos operar maquinaria desconocida de manera efectiva.
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Resum

La Realitat Augmentada (Augmented Reality, AR) i la seua capacitat per
integrar contingut sintètic sobre una imatge real ofereix un valor incalculable
en diversos camps; no obstant això, la indústria és un d’aquests camps que més
pot aprofitar-se’n. Com a tecnologia clau en l’evolució cap a la Indústria 4.0 i
5.0, l’AR no només complementa sinó que també potencia la interacció humana
amb els processos industrials. En aquest context, l’AR es converteix en una
eina essencial que no substitueix al factor humà, sinó que l’enriqueix, ampliant
les seues capacitats i facilitant una col·laboració més efectiva entre humans i
tecnologia. Esta integració de l’AR en entorns industrials no solament millora
l’eficiència i precisió de les tasques, sinó que també obri noves possibilitats per
a l’expansió del potencial humà.

Existeixen nombroses formes en què l’ésser humà interactua amb la tecnolo-
gia, sent l’AR un dels paradigmes més innovadors respecte a com els usuaris
accedeixen a la informació; no obstant això, és crucial reconéixer que l’AR, per
si mateixa, té limitacions quant a la interpretació del contingut que visualitza.
Encara que en l’actualitat podem accedir a diferents llibreries que utilitzen
algoritmes per a realitzar una detecció d’imatges, objectes, o fins i tot entorns,
sorgeix una pregunta fonamental: fins a quin punt pot l’AR comprendre el
context d’allò veu? Esta qüestió esdevé especialment rellevant en entorns in-
dustrials. Pot l’AR discernir si una màquina està funcionant correctament,
o el seu rol es limita a la presentació d’indicadors digitals superposats? La
resposta a estes qüestions subratllen tant el potencial com els límits de l’AR,
impulsant la recerca d’innovacions que permeten una major comprensió con-
textual i adaptabilitat a situacions específiques dins de la indústria.
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En el nucli d’esta tesi jau l’objectiu de no solament dotar a l’AR d’una "in-
tel·ligència semàntica" capaç d’interpretar i adaptar-se al context, sinó també
d’ampliar i enriquir les formes en què els usuaris interactuen amb esta tec-
nologia. Aquest enfocament s’orienta particularment a millorar l’accessibilitat
i l’eficiència de les aplicacions d’AR en entorns industrials, que són de natu-
ralesa restringida i complexos. La intenció és anar un pas més enllà dels límits
tradicionals de l’AR, proporcionant eines més intuïtives i adaptatives per als
operaris en els entorns esmentats.

La recerca es desplega a través de tres articles d’investigació, on s’ha desen-
volupat i avaluat una arquitectura multimodal progressiva. Esta arquitectura
integra diverses modalitats d’interacció usuari-tecnologia, com el control per
veu, la manipulació directa i el feedback visual en AR. A més, s’incorporen
tecnologies avançades basades en models d’aprenentatge automàtic (ML) i
aprenentatge profund (DL) per a extreure i processar informació semàntica
de l’entorn. Cada article construeix sobre l’anterior, demostrant una evolució
en la capacitat de l’AR per a interactuar de manera més intel·ligent i contex-
tual amb el seu entorn, i ressaltant l’aplicació pràctica i els beneficis d’estes
innovacions en la indústria.

En el primer article, es presenta i avalua una arquitectura composta per qua-
tre capes fonamentals: la capa d’interacció, la capa de negocis, la capa física
d’AR i la capa semàntica. Esta arquitectura es veu ampliada en els articles
subsegüents. L’avaluació d’aquesta arquitectura demostra la seua capacitat
per a adquirir i analitzar informació visual de l’entorn, centrant-se en ele-
ments com un botó d’encesa/apagada o una vàlvula de pressió. Per a dur a
terme l’avaluació del sistema, s’emprenen models clàssics de regressió i classi-
ficació, així com xarxes neuronals convolucionals (Convolutional Neural Net-
works, CNN). Es desenvolupa una aplicació de guia pas a pas per a operaris
de planta, dividint-los en dos grups: AR standard application i AR appli-
cation with semantic layer. A més, este sistema es beneficia de la inclusió
de Transformers, una arquitectura altament especialitzada en el processament
d’informació textual. Això possibilita que l’usuari realitze preguntes en llen-
guatge natural mitjançant tecnologies de reconeixement de veu, obtenint re-
spostes generades en funció de la informació documental disponible, com per
exemple, documents tècnics sobre una màquina específica. Una característica
essencial que diferencia esta proposta d’altres casos d’ús d’AR en la indústria
és la possibilitat de verificar, mitjançant la capa semàntica, les accions que
emprén l’usuari (com podrien ser activar un botó o verificar el nivell de pressió
d’una màquina) abans de continuar amb el següent pas. D’aquesta manera,
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és possible reduir la càrrega cognitiva de l’operari respecte a aplicacions d’AR
tradicionals.

El segon article avança en la línia d’investigació del primer, profunditzant en
l’ús de la capa semàntica junt amb l’AR, afegint la possibilitat de realitzar una
guia a l’usuari en un entorn més complex mitjançant tècniques de localització
i mapatge simultani (Simultaneous Localization And Mapping, SLAM). Este
estudi es distingeix pel seu enfocament d’avaluació més ampli, involucrant a
tres grups distints: un amb AR i capa semàntica amb interacció en llenguatge
natural, un altre amb una aplicació d’AR "cega", i un tercer sense assistència
tecnològica, depenent únicament de la documentació tècnica. Esta estructura
d’avaluació múltiple permet una comparació exhaustiva i revela clarament els
avantatges de l’arquitectura proposada. Els resultats subratllen un increment
notable en la comoditat i seguretat, demostrant com la capa semàntica no
sols millora la interacció usuari-màquina, sinó que també valida i optimitza
l’execució de tasques en entorns industrials.

Finalment, en el tercer article s’analitza com el coneixement de l’expert en
la matèria (Subject Matter Expert, SME) pot ser aprofitat gràcies a les tec-
nologies anteriorment mencionades i els models de llenguatge massius (Large
Language Models, LLMs). La recerca destaca pel seu enfocament en combi-
nar, no sols la documentació tècnica existent sobre la maquinària i els diferents
processos, sinó junt amb això, el coneixement i experiència de l’SME en forma
de "píndoles" ancorades a posicions concretes en l’entorn. D’aquesta manera,
l’operari bé pot realitzar consultes en llenguatge natural de qualsevol element,
bé pot consultar les anotacions de l’SME en un punt en concret. En tot mo-
ment, la informació de la documentació tècnica i el coneixement expert són
usats per a tornar una resposta a l’operari. L’avaluació del sistema es va dur
a terme amb dos grups d’usuaris que han de dur a terme una sèrie de tasques.
Mentre que el grup A tenia únic accés a documentació tècnica i a un SME,
el grup B disposava d’accés a l’aplicació desenvolupada. Tenint en compte les
limitacions que suposa el fet de disposar d’un SME en tot moment en planta,
l’avaluació del sistema va revelar una preferència marcada per la capacitat
d’accedir a informació experta ancorada, ressaltant l’avantatge de disposar
d’aquesta assistència experta immediata, així com una solució pràctica i efi-
cient per a afavorir la transferència de coneixement expert en la indústria.

Al llarg i després del desenvolupament d’esta tesi, s’han extret les següents
conclusions:
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• La integració de capes semàntiques i LLMs amb l’AR va millorar signi-
ficativament l’eficiència de les tasques, especialment en tasques complexes
i cognitives, permetent resultats més ràpids i precisos.

• Els sistemes d’AR amb capa semàntica no solament van millorar tasques
complexes sinó també tasques més senzilles a través de validació au-
tomàtica i guiatge, augmentant l’eficiència general.

• L’AR millorada amb IA i característiques de processament de llenguatge
natural (Natural Language Processing, NLP) va conduir a un accés més
ràpid a la informació i a una presa de decisions més eficient que els mè-
todes tradicionals com la consulta de manuals o experts.

• Els usuaris de sistemes d’AR amb capes semàntiques van experimentar
un augment en la satisfacció i facilitat d’ús.

• L’ús efectiu de sistemes d’AR en entorns complexos variats, com labora-
toris tèxtils i plantes industrials, va demostrar la seua àmplia aplicabilitat
en la indústria.

• Les aplicacions d’AR eren fàcils d’usar, permetent fins i tot a inexperts
operar maquinària desconeguda de manera efectiva.
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Chapter 1

Introduction

1.1 Motivation

Augmented Reality (AR) stands at the forefront of a technological renaissance,
blending the digital and physical worlds in a way that enhances real-world
experiences with virtual overlays. Pioneered by researchers such as Caudell
(Caudell and Mizell 1992) and Azuma (R. T. Azuma 1997 and R. Azuma et
al. 2001), AR has evolved from a novel concept into a robust tool with wide-
ranging applications across industries. While Caudell initially introduced AR
in the context of aiding manufacturing processes (see Figure 1.1 for a proto-
type diagram), Azuma’s works provide a comprehensive definition of AR as a
system that combines real and virtual environments, is interactive in real-time,
and aligns virtual with real objects. Milgram et al. have established a com-
prehensive taxonomy that classifies applications across a spectrum extending
from actual reality to Virtual Reality (VR). This continuum also encompasses
AR and Augmented Virtuality (AV), as delineated in their work (Milgram
et al. 1995). The corresponding graphical representation of this continuum is
illustrated in Figure 1.2.

Technologically, AR operates on a spectrum of platforms, leveraging various
libraries and frameworks. Key among these is the Unity 3D engine, renowned
for its versatility in creating immersive AR experiences. Additionally, libraries
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Chapter 1. Introduction

Figure 1.1: Early AR head-mounted display system, showcasing components for visual
display, head tracking, and voice command input. (Caudell and Mizell 1992)

Figure 1.2: Virtual Reality Continuum. (Milgram et al. 1995)

such as ARCore by Google (Google 2018) and ARKit by Apple (Apple 2017)
have democratized AR development, enabling creators to build applications
that are accessible to a broader audience through smartphones and tablets.
These technologies facilitate a more interactive user experience and contribute
significantly to the ease of implementing AR solutions in existing industrial
systems. In the domain of AR content display, Billinghurst et al. identify sev-
eral innovative methods (Mark Billinghurst, Clark, and G. Lee 2015). Video-
see-through technology involves capturing the real world through cameras and
overlaying digital content onto this feed, displayed on a screen, which is ben-
eficial for precise content control but may encounter latency issues. Optical
see-through, another method, employs transparent displays on glasses or head-
mounted displays to overlay digital information directly onto the user’s view
of the real world, offering a more immediate AR experience, though aligning
virtual and real objects can be challenging. Projection-based AR, on the other
hand, projects digital images onto physical surfaces, making any surface an
interactive display suitable for settings like advertising and education, though
its effectiveness varies with lighting and surface properties. Pejsa et al. (Pejsa
et al. 2016) proposed a telepresence system using this technology, as seen in
Figure 1.3. Lastly, eye multiplexed AR introduces a unique layer of augmented
content that is deliberately not aligned with the user’s direct line of sight to
reality, ensuring no interference with their natural vision. This approach re-
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quires users to adjust their gaze away from their immediate view to access and
interact with the augmented content, effectively segregating the AR experience
from the real-world view and enabling a distinct, yet non-intrusive, augmenta-
tion of their surroundings. An example of an application can be seen in Figure
1.4, where the user must look to a side of the screen to access the synthetic,
non-aligned information.

Figure 1.3: Projection-based AR. (Pejsa et al. 2016)

Figure 1.4: Example of and Eye multiplexed AR application. (Google)

The advent of Industry 4.0 marks a transformative era in the realm of manufac-
turing and industrial processes, characterized by an unprecedented integration
of advanced technologies. As Kagermann et al. elucidate (Kagermann et al.
2013), the incorporation of Big Data, the evolution of Digital Twins, and the
advancements in Additive Manufacturing, collectively signify a monumental
shift in operational paradigms. Figure 1.5 illustrates the nine pillars of Indus-
try 4.0. Notably, the integration of AR as a paradigm in Human-Computer
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Interaction (HCI) emerges in the shape of a pivotal aspect, enhancing rather
than replacing the human element in industrial processes and trying to make
the compute "invisible" (Mark Billinghurst, Clark, and G. Lee 2015). Figure
1.6 illustrates the distinct characteristics of the AR paradigm in comparison
to the widely recognized "Desktop metaphor" and VR paradigms, as delin-
eated by Rekimoto et al. (Rekimoto 1995). This symbiosis of human expertise
and technological advancement heralds a promising future for manufacturing
workflows. Research on the application of AR in industrial contexts is exten-
sive. Notable contributions include Shen et al., who developed a collaborative
product design approach utilizing AR (Shen, Ong, and Nee 2010), and Ng et
al., who introduced the GARDE project, an innovative AR system that uses
gesture-based interaction (Ng et al. 2011). In the realm of process design,
Yuan et al. have contributed by developing an AR-based assembly guidance
tool (Yuan, Ong, and Nee 2008), and Ong et al.’s work on bare-hand as-
sisted assembly processes facilitated through AR (Ong and Z. B. Wang 2011).
Furthermore, the advancements in AR for maintenance processes have been
significantly shaped by authors such as Mourtzis et al. (Mourtzis, Siatras, and
Angelopoulos 2020) and Palmarini et al. (Palmarini, Fernández, et al. 2022).

Figure 1.5: The nine pillars of Industry 4.0. (Kadir 2020)

Nevertheless, the rapid automation associated with Industry 4.0 and the prospec-
tive Industry 5.0 raises concerns regarding the displacement of human roles. In
this context, AR plays a crucial role in augmenting human capabilities, offering
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Figure 1.6: HCI paradigms. (Rekimoto 1995)

enhanced operational possibilities and capacities. Despite these technological
strides, the transition to Industry 4.0 is not without challenges, particularly
for existing enterprises. Guerreiro et al. introduces the concept of ’Smart
Retrofitting’, advocating for the adaptation of current machinery and processes
to Industry 4.0 standards, with minimal time and cost implications (Guerreiro
et al. 2018). The challenges of adopting Industry 4.0 are multifaceted. Ing et
al. highlight obstacles in data management and integration, knowledge-driven
processes, security concerns, capital investment, workforce dynamics, and ed-
ucational needs (Ing Tay et al. 2019). Prause identifies market uncertainty,
relative competitive advantage, and top management support as key deter-
minants in the adoption process, especially for small and medium enterprises,
underlining that external factors have a higher impact than internal ones when
adopting the new industry standards (Prause 2019). Furthermore, Sevinç et
al. underscore the unique difficulties small and medium-sized enterprises en-
countered during this transition, suggesting employing multi-criteria decision-
making methods to streamline the process (Sevinç, Gür, and Eren 2018). One
potential strategy for navigating these challenges is the application of Lean
Philosophy, emphasizing incremental changes and continuous improvement,
as articulated by Womack et al. (Womack, Jones, and Roos 1992). Several
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studies suggest that AR plays a significant role in helping small and medium
companies adopt Industry 4.0 (Pierdicca et al. 2017 and Martin, Bohuslava,
and Igor 2018). In line with this, Garza et al. emphasize the value of AR
in circumventing the impracticality of having a Subject Matter Expert (SME)
available on the shop floor at all times (Garza et al. 2013). This perspective
underscores the importance of AR in providing critical expertise and guidance,
essential for the effective implementation of Industry 4.0 technologies.

In the transition towards Industry 4.0, a significant challenge persists in how
technical documentation is provided. Despite technological advancements,
most machinery documentation in industrial settings still relies on traditional
formats such as printed paper, as authors such as Ventura (Ventura 2000) and
Abramovici et al. (Abramovici, Krebs, and Schindler 2013) observe. These
formats are hardly updatable, accessible, or translatable, and they lack porta-
bility, thus leading to inefficiencies in their practical use. The rise of digital
platforms like WikiHow or YouTube illustrates a shift towards more dynamic
and user-friendly documentation methods, addressing the mentioned limita-
tions. However, a more tailored solution for industrial applications is emerging
through the development of AR technologies. As detailed by Gattullo et al.
(Gattullo et al. 2019) and further supported by the research of Quint et al.
(Quint and Loch 2015), and Kollatsch (Kollatsch and Klimant 2021), AR offers
a revolutionary approach to accessing documentation. By overlaying digital in-
formation directly onto the physical machinery, AR reduces the cognitive load
associated with interpreting technical jargon and complex step-by-step tutori-
als. This in-place provision of guidance enhances the understanding of complex
machinery and streamlines maintenance and operational processes, marking a
significant leap forward in the documentation practices for Industry 4.0. Fur-
ther augmenting this technological evolution, the integration of advanced nat-
ural language processing (NLP) tools like Transformers (Vaswani et al. 2017),
exemplified by BERT (Devlin et al. 2018) or Google’s T5 (Raffel et al. 2020),
could revolutionize information retrieval in these settings. These models have
shown exceptional capabilities in tasks such as Question Answering (QA) and
summarization, potentially enabling more efficient and context-aware access to
technical information.

Artificial Intelligence (AI) is rapidly evolving and gaining maturity as it in-
tegrates into various industrial domains. On one spectrum, Machine Learn-
ing (ML) demonstrates exceptional proficiency in both classification and re-
gression tasks across a wide array of applications. These include predictive
maintenance, quality control, supply chain optimization, manufacturing pro-
cess optimization, fraud detection, customer service, and workplace security,
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to name a few. Rai et al. emphasize the impact of ML in the manufactur-
ing industry, enabling smart factories and offering benefits such as predictive
maintenance, process optimization, and supply chain management (Rai et al.
2021). Paolanti et al. focus on using ML, precisely the Random Forest ap-
proach, for predictive maintenance in Industry 4.0. The study demonstrates
high accuracy in predicting different machine states, leading to improved sys-
tem reliability (Paolanti et al. 2018). Karrupusamy discusses the importance
of predictive maintenance in the manufacturing industry and highlights the
extensive application of ML approaches. The paper presents a comparative
study and highlights the superiority of the Random Forest model in accuracy
and precision for predicting machine failures (P 2021). At the same time,
Deep Learning (DL), adept in handling unstructured data such as images,
videos, and audio, is making significant inroads into industrial applications.
Its capabilities are particularly evident in areas such as image analysis, NLP,
speech recognition and generation, facial recognition, and anomaly detection.
Malaiya et al. evaluate DL models for network anomaly detection and find that
models based on Seq2Seq with LSTM structures show promising performance,
achieving high accuracy in identifying network anomalies (Malaiya et al. 2019).
Rushe et al. explore anomaly detection in raw audio and demonstrate that au-
toregressive DL architectures, such as WaveNet, outperform baseline models in
detecting anomalies (Rushe and Mac Namee 2019). Munyua et al. provide a
survey of DL solutions for anomaly detection in surveillance videos, highlight-
ing the superiority of DL over traditional ML methods in this domain (Gatara
Munyua, Wambugu, and Njenga 2021). Zamora et al. use the YOLO archi-
tecture (You Only Look Once, Redmon and Farhadi 2018) for object detection
and classification (Zamora-Hernández et al. 2021). While not exhaustive, this
list underscores the expansive and diverse range of applications where DL is
making a transformative impact. Despite its potential, challenges persist in in-
tegrating AI into industry. Peres emphasizes that although AI shows promise
in aiding manufacturers with the digital transformation of Cyber-Physical Sys-
tems (CPS) (Griffor et al. 2017), its widespread adoption beyond initial pilot
experiments remains limited (Peres et al. 2020). Briefly, a CPS can be con-
ceptualized as an integrated framework consisting of a physical entity, such
as a machine; a corresponding data model, which is network-accessible; and a
dedicated service for data retrieval and management (Drath and Horch 2014).

Integrating AR with ML models presents a transformative approach to per-
ceiving and interacting with our environment. While AR is incapable of un-
derstanding their surroundings, by merging it with ML, shop floor operators
will have the opportunity to access environments where information is not just
overlaid but is contextually embedded, understanding and responding to the

7



Chapter 1. Introduction

subtleties of their surroundings. This innovation paves the way for applica-
tions that will reshape industries, enhancing learning experiences and aiding
operators in their work routines. At the heart of this advancement lies the po-
tential to turn physical spaces into interactive ones. The implications are vast,
offering new paradigms for accessing, processing, learning, and utilizing infor-
mation. Our investigation into this novel integration of AR and environmental
semantics lays the groundwork for a new way of processing and interacting
with information, promising a more integrated and intuitive user experience in
the industry.

1.2 Scientific goals and research hypotheses

This thesis is centered on the innovative concept of enhancing industrial process
interactions by integrating AR, ML, and semantic layers. The main objective
is to explore and develop methodologies that elevate the utility and efficiency
of AR in industrial settings by embedding intelligent, semantic content. This
involves creating a relationship between the physical aspects of industrial envi-
ronments and a semantic layer facilitated by DL techniques. By doing so, the
thesis aims to outdo traditional AR applications, offering a more intuitive and
context-aware interaction within industrial processes. The approach is not just
to overlay digital information onto a physical environment but to ensure that
this information is linked with the environment’s characteristics. This research
posits that by enriching AR with a layer of semantic understanding, we can
significantly improve the accuracy, relevance, and usability of information pre-
sented to users, thereby transforming how industrial processes are monitored,
controlled, and optimized.

This thesis specific objectives are:

• To design and implement an architecture comprising AR and ML to en-
hance situational awareness and interaction in industrial environments.

• To integrate NLP capabilities into the architecture, enabling more intu-
itive and flexible interaction mechanisms, including chatbots and trans-
formers, to facilitate a more natural human-machine dialogue.

• To explore and refine multimodal AR methods in industrial scenarios.
This entails the development of different approaches for integrating data
in physical scenarios and retrieval, such as direct manipulation, Text-to-
speech (TTS), and NLP.
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• To facilitate the contribution of SMEs in the environment by allowing
them to embed "pills" of knowledge within the system. This seeks to
bridge the gap in knowledge transfer, enabling efficient dissemination and
retrieval of expert knowledge in industrial settings.

• To ensure the consistency of the retrieved information, focusing on re-
solving issues such as redundant or contradictory information.

• To evaluate the proposed systems in real-world scenarios and measure
task efficiency, information accessibility, and overall operator performance.

The following three studies were conducted in order to attain the mentioned
objectives:

Study 1 - Towards achieving a high degree of situational awareness and mul-
timodal interaction with AR and semantic AI in industrial applications

This study involved 8 participants, with no distinction on age or gender. The
participants belonged to the company where the evaluations were carried out;
all had prior experience with production line management but needed to gain
experience working on the machines used in the system evaluation and using
AR applications.

Participants were divided into two groups. On the one hand, Group 1 (AR
standard application) had access to a standard AR application for highlight-
ing the elements to interact with. On the other hand, Group 2 (AR appli-
cation with semantic layer) had access to the same application, with addi-
tional features driven by AI models, such as visual automatic action valida-
tion (e.g., machine activation), visual reading of metrics (e.g., pressure levels),
voice-based information retrieval (e.g., from documents or ERP systems) and
anomaly detection (e.g., identifying potential malfunctions based on machine
value anomalies).

The primary objective of this study was to assess the effectiveness of integrating
semantic capabilities into an AR application. This assessment measured the
time each group took to complete five distinct tasks. The key finding of this
study was that while both groups performed similarly in straightforward tasks,
notable differences emerged in more complex tasks, highlighting the enhanced
efficiency offered by the semantic-enhanced AR application.

Study 2 - Environment awareness, multimodal interaction, and intelligent
assistance in industrial augmented reality solutions with deep learning
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As an evolution from the first article, this second article focuses on providing
a guide for implementing the proposed system regardless of the underlying
technology. Additionally, Simultaneous Localization and Mapping (SLAM)
technology allows the application to guide the operator step-by-step through
the shop floor with dispersed machines in the space.

This study included 18 participants without any specific selection based on
age or gender. All participants were employees of the company where the
evaluation took place. While they all had experience managing production
lines, they had yet to gain experience with the specific machines used in this
system evaluation.

The participants were segregated into three distinct groups to ensure a thor-
ough evaluation. The primary difference between Groups A and B lay in
integrating a semantic layer within Group A’s AR application, a feature ab-
sent in Group B’s app. Conversely, Group C did not utilize any application;
instead, they were provided access to electronic documentation, specifically in
PDF format, and a list of tasks to perform.

In assessing the system’s effectiveness, participants performed eight specific
tasks involving an extruder and an injector machine. The evaluation measured
the time taken to complete these tasks across different groups and examined
the efficiency of QA using transformers. Operators were required to respond to
three distinct questions, with their access to information varying according to
their group assignment. Moreover, operators in Groups A and B were provided
with a Likert-scale questionnaire to measure the system’s user-friendliness. The
findings revealed that Group A, which utilized the semantic layer, experienced
a significant reduction in the time taken to perform tasks that demanded higher
cognitive effort. Furthermore, Group A demonstrated superior results and
higher satisfaction levels than the other groups. Notably, the resolution of
queries was markedly quicker in Group A, underscoring the added efficiency of
using the semantic layer for information access.

Study 3 - Large Language Models for in situ knowledge documentation and
access with Augmented Reality

The third article employs a novel approach to effectively leverage expert knowl-
edge dissemination. This method distinctly delineates the roles of SMEs and
operators. It introduces an innovative system where SMEs can embed "knowl-
edge pills" into physical elements within a work environment. These "knowl-
edge pills" are strategically designed for subsequent retrieval and utilization
by shop floor operators, thereby facilitating a more streamlined and efficient
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transfer of expertise. The developed app has a dual-purpose design. It allows
SMEs to embed "knowledge pills" into the work environment. Simultaneously,
it enables operators to easily retrieve this information by either marking out
specific areas of interest directly within their workspace or by asking questions
in natural language, enhancing the interaction with their surroundings.

In this study, thirty participants aged between 22 and 28 cooperated, ensuring
a balanced representation of both men and women. Similar to the method-
ologies in the other articles, these participants were familiar with the general
environment but lacked specific knowledge about the machines used during the
evaluation phase.

Participants were categorized into two groups for the study. Group A was pro-
vided access to technical documentation and direct support from the SME. In
contrast, Group B relied on an AR application that allowed access to expert
knowledge by asking questions in natural language through speech recogni-
tion. If a Group B member encountered task completion challenges, they were
permitted to consult the SME for assistance. Both groups were tasked with
executing three specific activities: dye testing, material cleaning, and emulsion
homogenization.

This study aimed to assess the efficacy of enabling SMEs to embed their ex-
pertise directly into the physical work environment. The findings of this re-
search are encouraging, demonstrating a notable difference in task completion
times between the two groups, independent of task complexity. To further
evaluate the system’s usability, participants in Group B were provided with
a Likert-scale questionnaire. The responses indicated a positive perception of
the system, underscoring its potential benefits.

1.3 Structure of the thesis

This thesis is structured as follows:

Chapter 1 This chapter introduces the thesis, along with its motivation and
goals.

Chapters 2, 3 and 4. These chapters present the selection of research arti-
cles that support this thesis, specifically:

Paper 1. Izquierdo-Domenech, J., Linares-Pellicer, J., & Orta-Lopez, J.
(2023). Towards achieving a high degree of situational awareness
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and multimodal interaction with AR and semantic AI in industrial
applications. Multimedia Tools and Applications, 82(10), 15875-
15901. 10.1007/s11042-022-13803-1

Paper 2. Izquierdo-Domenech, J., Linares-Pellicer, J., & Ferri-Molla, I.
(2023). Environment awareness, multimodal interaction, and intel-
ligent assistance in industrial augmented reality solutions with deep
learning. Multimedia Tools and Applications, 1-28. 10.1007/s11042-
023-17516-x

Paper 3. Izquierdo-Domenech, J., Linares-Pellicer, J., & Ferri-Molla, I.
(2023). Large Language Models for in Situ Knowledge Documen-
tation and Access With Augmented Reality. International Jour-
nal of Interactive Multimedia and Artificial Intelligence, 10.9781/iji-
mai.2023.09.002

Chapter 5 This chapter discusses the thesis results, derived publications, and
future research.
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Chapter 2. Towards achieving a high degree of situational awareness and multimodal interaction

With its various available frameworks and possible devices,
augmented reality is a proven useful tool in various industrial pro-
cesses such as maintenance, repairing, training, reconfiguration,
and even monitoring tasks of production lines in large factories.
Despite its advantages, augmented reality still does not usually give
meaning to the elements it complements, staying in a physical or ge-
ometric layer of its environment and without providing information
that may be of great interest to industrial operators in carrying out
their work. An expert’s remote human assistance is becoming an
exciting complement in these environments, but this is expensive or
even impossible in many cases. This paper shows how a machine
learning semantic layer can complement augmented reality solu-
tions in the industry by providing an intelligent layer, sometimes
even beyond some expert’s skills. This layer, using state-of-the-art
models, can provide visual validation and new inputs, natural lan-
guage interaction, and automatic anomaly detection. All this new
level of semantic context can be integrated into almost any cur-
rent augmented reality system, improving the operator’s job with
additional contextual information, new multimodal interaction and
validation, increasing their work comfort, operational times, and
security.

2.1 Introduction and related work

The use of augmented reality (AR) and its advantages in industrial settings has
been nothing new since the introduction of its possibilities in the field (Caudell
and Mizell 1992). Different AR solutions are currently successfully applied in
nearly any industrial sector in production lines, operation, and work in various
industrial environments, maintenance tasks, reconfiguration, and others.

Several authors have already applied it for assembly tasks (Radkowski, Her-
rema, and Oliver 2015), (Makris et al. 2016), as a step-by-step guide (Scurati
et al. 2018) or maintenance tasks (Garza et al. 2013), (Benbelkacem et al.
2013). The main advantage AR provides in these environments is safety and
comfort to the operator. Using different AR solutions, industrial operators can
be assisted in the diverse maintenance, repair, and control processes through
additional synthetic elements anchored on the physical elements.
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2.1 Introduction and related work

Nowadays, there are solutions that, in addition to the automatic assistance
of traditional AR systems, allow the participation of a real expert to aid the
operator in specific tasks remotely. It is especially interesting when the nature
of the actions cannot be carried out with current AR solutions alone due to
their difficulty, risk, or other issues. In these conditions, the expert can main-
tain bidirectional oral communication with the operator and create indications
about the elements or areas of interest. These indications or synthetic elements
are perfectly anchored in the physical environment using an AR device manip-
ulated by the operator. For example, Mourtzis, Siatras, and Angelopoulos use
the approach of a remote expert and uses the Microsoft Hololens as the AR
device (Mourtzis, Siatras, and Angelopoulos 2020). However, the need for an
expert and depending on their availability and cost limits the general use of
this type of solution.

The evolution of systems based on Deep Learning (DL) in areas such as vi-
sion, image interpretation, and natural language processing (NLP) permits the
development of solutions to the necessity for expert assistance in AR environ-
ments. DL’s new possibilities allow new situational awareness possibilities for
the operator. Situational awareness in this context refers to the perception
of the elements, their meaning, and the projection of their status in the near
future (Endsley 1995). DL also provides potential users with new possibilities,
such as mechanisms for detecting anomalous patterns, a task sometimes be-
yond the reach of an expert through visual inspection and in real-time. Some
examples of the use of Machine Learning (ML) and DL techniques applied to
the detection of anomalies in the industrial field can be found in (Kamat and
Sugandhi 2020) and (Zonta et al. 2020).

The use of architectures such as Convolutional Neural Networks (CNN) can
assist the operator in visual validation tasks with capabilities comparable to an
expert providing remote assistance. For instance, Lai, Tao, Leu, and Yin use
an R-CNN, a network specialized in detecting regions and classifying objects
inside these regions, for the detection of tools in developing a multimodal AR
system for intelligently aiding in assembly tasks (Lai et al. 2020). For this
work, the main focus is on different controls distributed over several machines
the operator interacts with.

The new opportunities, thanks to the evolution in NLP, by architectures based
on transformers such as BERT (Bidirectional Encoder Representations from
Transformers), ((Vaswani et al. 2017) and (Devlin et al. 2018)), can provide
the operator with answers to their questions in a natural language format.
These questions can be asked not only to Supervisory Control And Data Ac-
quisition (SCADA) systems, Enterprise Resource Planning (ERP), or Human-
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machine interface (HMI) but also to extensive technical manuals via Question
Answering (QA). For example, Coli, Melluso, Fantoni, and Mazzei use natural
language to retrieve information from technical documents through a conver-
sational agent (also known as a Chatbot (Coli et al. 2020)) based on Multi-
WordNet (Pianta, Bentivogli, and Girardi 2002), and Yu et al. uses natural
language to retrieve answers based on previous questions to the system (Yu
et al. 2020).

The possible detection of anomalies or unusual patterns by integrating multi-
modal information makes using techniques based on ML and DL conceivable
candidates to overcome the limitations of expert assistants when facing signif-
icantly complex patterns, where the response speed is essential.

The hybridization of AR with the possibilities offered by image understand-
ing through neural networks, NLP systems, and models for anomaly detection
and predictive maintenance allows a semantic AI extension (semantic layer)
by providing meaning and identity to the elements of the 3D geometry of the
environment (physical layer). Providing meaning and identity to the different
elements will allow operators a higher cognitive level of interaction with them.
The present work proposes an architecture based on multimodal interaction.
Combining DL techniques for image interpretation, NLP, and anomaly detec-
tion and using AR as the central axis for integrating these new possibilities
makes it feasible to offer great comfort and assistance to operators in industrial
environments. A general architecture is presented, and particular solutions are
tested in a real production chain.

This article is structured as follows: Section 2.2 gives a detailed explanation
of the proposed architecture, section 2.3 explains the followed approach for
validating the operators’ actions, section 2.4 describes how a chatbot can help
the operator in retrieving industrial data, section 2.5 focuses on the problem of
asking questions on technical documentation, section 2.6 proposes the usage of
AR for indicating the operator the position of an anomaly. Finally, section 2.7
explains the application developed to test the proposed architecture, section
2.8 evaluates the system in an industrial environment, and section 2.9 presents
the conclusions.
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2.2 Architecture overview

Since the concept of Industry 4.0 appeared in 2013 (Kagermann et al. 2013),
the operator’s role has been questioned. Process automation and the commu-
nication between the different industrial elements represent a radical change
and a challenge for those companies that do not have the most modern ma-
chines (Guerreiro et al. 2018). However, thanks to technologies such as AR,
the operator gains protagonism; this happens after going through a process
of adaptation and learning, hence being able to give solutions to more com-
plex problems and providing a more decisive role to the company’s value chain
(Gorecky et al. 2014). Therefore, based on the three key elements that make
up a Cyber-physical system (CPS) (Drath and Horch 2014):

• A physical object, such as a machine or a production line.

• A data model, accessible through the network, for accessing information
from that machine.

• A service to allow accessing the data.

This work proposes an architecture that integrates the operator in an auto-
mated process through AR and combines technologies of different nature, all
ML or DL based, such as NLP to promote a more natural interaction, CNNs to
help the operator understand the environment, and ML techniques for anomaly
detection.

In figure 2.1, a general overview of the architecture is shown, where it is possible
to distinguish four layers that improve the integration and the work of an
operator in an industrial plant.

The main characteristic of the proposed architecture is to achieve a synergy
of the different elements that allow going beyond an isolated use of an AR
system, reading and interpretation of values of industrial components through
CNNs models, interaction through natural language, and anomaly detection.

The AR system acts as a central hub:

• The AR system shows in context, and anchored to the elements in ques-
tion, the information obtained by CNNs (i.e., values and states). In turn,
the AR system provides context and layout of the controls that simplify
the work of the CNNs in providing the necessary elements for a geometric
correction (inverse perspective), greatly simplifying their training.
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Figure 2.1: General architecture overview

• By obtaining values in a vector of features (from the CNNs and the ER-
P/SCADA), the results of the anomaly detection model used can also be
displayed as visual guides in the AR environment for a better interpreta-
tion of the problem by the operator.

• The NLP system also benefits from the feedback provided by the AR
system, which allows knowing the operator’s location and narrowing down
the context of the possible questions asked.

The architecture’s different components, characteristics, and interactions will
be detailed in the following sections. Although some details will be provided
about the implementation used in evaluating this approach, it is worth noting
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2.2 Architecture overview

Figure 2.2: Detailed diagram of the physical and semantic layers

that the system allows the use of different types of components in their different
layers and solutions, always maintaining the advantages of their interaction and
synergy.

2.2.1 Interaction layer

In this layer, all the interaction methods and communication possibilities of
the operator with the machine are centralized, either through natural language,
direct manipulation (e.g., touches on the screen, gesture recognition, and oth-
ers), or through the camera and other sensors (e.g., LIDAR, RGBD cameras
and others) on a mobile device or specific devices such as AR glasses. The
camera and other specific sensors will allow the AR system to analyze the en-
vironment to understand its location and spatial mapping. The AR physical
layer later explored will take care of this detection.

The interaction between the operator and the machine via the AR system is
intended to take place in situ because, in this way, the understanding of the
context, especially in scenarios in which the main objective is learning the
system, is enhanced (Gonzalez et al. 2019).

Additionally, the so far common user interaction styles in AR-based applica-
tions are extended, with three additional elements that allow multimodality:
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1. The interaction in natural language

2. The automatic validation actions that arise from obtaining the spatial
mapping of the environment, typically found in AR systems

3. The ability to give meaning to the captured elements (i.e., what they are
and what their status is) through DL techniques

2.2.2 AR physical layer

One of the essential layers of the proposed system’s architecture is the AR
physical layer. This layer ensures that the user’s device can understand its
environment and superimpose synthetic information over the real environment.
This layer is defined as the standard mechanism in most of the current AR
systems and that, in one way or another, allows a spatial mapping of the
environment and the augmentation of reality with new synthetic elements to
help the operators in their work.

Mobile devices and smart glasses are the most used in the industrial field;
and although the focus of this work is on mobile devices, given their cheap
availability to most companies, they are not the only devices, and it would be
convenient to carry out an evaluation of which device is more suitable according
to the context of use (Elia, Gnoni, and Lanzilotto 2016).

In this layer, it is possible to use any solution based on image tracking (Tsai
1987), surface tracking (Simon, Fitzgibbon, and Zisserman 2000), or even Si-
multaneous Localization and Mapping (SLAM) techniques, which allow the
device to discover its position in an unknown environment, and in real-time
(Jinyu et al. 2019). Any of these approximations are valid; even a mixed im-
plementation would be feasible if it allows for improving the positioning of the
device in space and the geometrical understanding of the environment.

The implemented solution uses the two AR techniques that provide the nec-
essary elements for the semantic layer: image-based tracking and SLAM. The
SLAM possibility is convenient in cases when the industrial panel or machine is
not unique or not easily distinguishable based on its image. In both cases, these
two techniques provide the necessary elements to facilitate the development of
the semantic layer:

• To determine the operator’s position, allowing the generation of helpful
context information in the semantic layer.
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• To provide the necessary parameters to apply a geometric correction to
the captured images that simplify the training of the CNNs and maximize
their accuracy.

The AR physical layer is the main input element of the semantic level, which,
as it will be discussed, will give additional meaning to the elements of the
environment in order to improve the performance of current systems. The
images captured by the AR system need a perspective correction before going
to the semantic level to facilitate their subsequent analysis by a neural network
(e.g., operators are not necessarily facing an orthogonal position in front of
the machine due to some obstacles). This problem is solved by applying the
inverse of the geometric perspective transformation, which is feasible from the
information provided by standard AR systems. This stage is described in figure
2 as the last image adaptation before the semantic layer.

Also, figure 2.2 shows that the Optical value extraction module corresponds
to the sequence of steps necessary for the correct training of a neural network,
either for the classification or regression of possible values from an image;
in this case, the different controls of interest. The AR system can detect
which machine or element the operator is facing, which allows a preliminary
knowledge and location of which controls may be interesting to analyze using
a neural network to obtain their possible status and other values.

As can be seen in figure 2.2, to read the images captured by the device, the
system relies on two elements:

• Data augmentation

• Geometric transformation

Our solution for understanding images is based on using CNN architectures.
These neural networks are widely used and allow image classification (e.g., if a
switch is on/off) and regression (e.g., obtaining a specific value from the image
of an analog control with continuous values).

In the case at hand, and after the perspective correction of the original image,
CNNs with a straightforward architecture to obtain good results and metrics
are the only requirement, without needing more complex CNNs or transfer
learning. It is essential to use image augmentation techniques to generate a set
of variations that allow the CNN a correct generalization and subsequent good
prediction metrics for each control. In particular, the synthetic generation of
variations is based on rotations, zooms, noise, contrast, and lighting changes.
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These alterations are essential for the correct detection of the element to be
interpreted.

The perspective correction and image augmentation process greatly simplify
the necessary preliminary work in preparing the required images of the dif-
ferent controls in the training of the CNNs. In the tests, it has simply been
necessary to capture a single image per control and state, and in the case of
analog controls, several pictures with the range of possible values between the
two extremes. An image augmentation process (e.g., rotations, zooms, noise,
contrast, and lighting) generates the required datasets to give accurate final
results.

2.2.3 Semantic layer

The semantic layer of the proposed architecture couples the information re-
ceived by the previous layers to extract relevant information to transfer to the
operator. This interaction will be given using the AR system and its inherent
benefits.

For this, the information from the AR physical layer and the already trained
CNNs are used for the analysis and extraction of meaning from the visual
information, being able to read the value of one or several analog or discrete
controls, as can be seen in figure 2.8.

The operator also benefits from this semantic layer, given the possibility of
interacting in natural language. Chatbots and NLP advanced QA systems can
work together with any visual information captured by the CNNs or other real
sensors. The visual identification of an element can provide valuable context
for possible queries the operator can send to an ERP system, as observed from
listing 2.1. Furthermore, it is also possible to ask specific questions about tech-
nical documentation, as seen in table 2.1. This synergy with visuals, sensory,
and natural language interaction will be described in further detail later.

2.2.4 Business layer

Today, most industrial plants are partially or fully sensorized and adapted
through ERP, SCADA, or HMI control systems; however, access to this in-
formation usually requires the operator to move to a computer or an HMI
system, which might be inconvenient when accessing the information is peri-
odic or urgent. For this reason, and based on the three key points listed above
for a CPS, this data access service can be derived so that the user can make
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requests in natural language to any device used in the AR solution, such as a
mobile device or some smart glasses.

One of the most significant benefits of this approach is the relief of the operator
from having to learn specific commands or actions in complex menus. This
common way of interacting with SCADA or ERP systems requires essential
training time; otherwise, they are only within reach of experts. In the proposed
approach, the queries the operator wants to make are given in natural language,
a very intuitive way of interacting that reduces the learning time compared to
more traditional approaches. It should be noted that this approach requires the
post-processing of the information to translate the requests into the language
or query expected by the system as it will be described.

2.3 Visual interpretation and validation

The definition of a generic model for reading, interpreting, and extracting val-
ues or states from images of industrial controls is still a challenge to be solved
due to the great variety of elements used in industrial environments, their dif-
ferent features, models, ranges, scales, and manufacturers; however, the use of
the information from the AR system regarding the location and spatial layout
of the control to be interpreted significantly facilitates the necessary training
in the most advanced techniques based on CNNs (i.e., geometric correction
using the inverse of the perspective transformation).

Focusing on figure 2.2, in this work, the use of simple CNN architectures for the
interpretation of values based on images captured by the device is proposed, as
can be seen in figure 2.3, where the architecture is capable of interpreting the
value of analog controls. The potential of this approach lies in its combination
with the AR physical layer.

As has already been mentioned, AR can be used for many tasks such as product
design (Ong and Shen 2009), process control (Yuan, Ong, and Nee 2008), and
maintenance and training tasks (Garza et al. 2013). Suppose the opportunities
offered by understanding these images are added on top of these functionalities.
In that case, it is possible to obtain systems that conduct the operator in a
much more intelligent and safe way through the tasks that make up a process,
reduce errors, and even increase security and comfort in tasks with a high-risk
component (Bottani and Vignali 2019). In this way, it is possible to develop a
virtual expert able to help the operators.
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Figure 2.3: Using a CNN with regression to interpret the values of a pressure gauge

In the experiments carried out, different CNN architectures for classification
and regression tasks based on the images captured by the device are used. In
figure 2.4, it is possible to detect the state of a button (i.e., on/off) and ensure
that the button is in the correct state before continuing with any operator’s
task; and in figure 2.5, the system can interpret the value through an analog
control that uses a pointer to indicate the current pressure value. In the case
of figure 2.5, the instrument is a pressure gauge that allows measuring the
pressure of fluids contained in a closed container. Regardless of whether the
operator knows if a pressure value is appropriate or not, the semantic layer can
interpret and communicate that information to the operator through elements
in AR.

The plainness of the architecture used for this regression problem can be an-
alyzed in figure 2.12 in appendix 2.9.1, a simplified CNN based on (Alexeev
et al. 2020) that gives great precision in estimating the value from the control
image, with a regression coefficient close to 0.95, with Nadam optimizer and
around 100 epochs with mean squared error loss function.

When testing discrete elements, the architecture shown in figure 2.12 in ap-
pendix 2.9.1 gives accuracy, precision, and recall values close to 1 in the tests.
Again, the Nadam optimizer was used with less than 100 epochs.

The previous knowledge of the position of each control, thanks to the AR
system that allows knowing with certainty the machine the operator is working
with and the perspective correction, are fundamental elements in the great
precision obtained by the CNNs and an important simplification of the training
process.
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Figure 2.4: Classification example

Figure 2.5: Regression example

This simplification is achieved thanks to the perspective correction that can
be calculated from the internal parameters of the location of the elements in
the real world and their relative position with respect to the operator. This
allows, starting from only one image per state, to apply image augmentation
techniques that only consider lighting variations, small rotations, and zooms.
In the case of the discrete control of two states, on/off, two images have been
used, of which 1000 variations have been generated with image augmentation
of each one, using 1500 as training and 500 as test. In the case of analog
control, 25 images of intermediate positions of the analog gauge have been
used, which have generated 1000 images each with image augmentation, with
again 75% for training and 25% for testing.
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2.4 NLP using chatbots

Chatbots are Natural Language Understanding (NLU) platforms that make
designing and integrating a conversational user interface easy and help aid the
operator’s daily tasks (Coli et al. 2020). With rule-based grammar and ML
matching, chatbots detect the intents and entities from the input utterances. It
is convenient to use rule-based grammar with few examples and ML matching
when many examples are available for better accuracy. The chatbot must be
trained using a collection of examples or utterances, where the user manually
labels a collection of intents and entities. After some examples, the chatbot
can accomplish the intent and entity recognition with high accuracy and be
further trained with real questions after deployment. Intents and values are
generally returned in a JSON format that can be easily converted into a formal
query to a database, ERP, or SCADA system. An example of how to get the
remaining stock about a specific item in the facility is shown in listing 2.1
with the AR solution facing the example in figure 2.6. The flexibility of this
approach enables the possibility of making the same query/intent for different
elements/entities.

One of the additional benefits of using chatbots is that the use of natural
language not only favors interaction more intuitively and naturally with the
interface but also helps the integration of staff with functional diversity (Bal-
dauf et al. 2018). In general, the semantic elements that assist the operator
described in this proposal can facilitate the inclusion of operators with func-
tional diversity in new tasks that were previously out of their possibilities.

Many tools permit the implementation of chatbots easily. It is possible to use
cloud services such as Dialogflow or Wit.ai, although using tools like Rasa is
also possible if an independent local server-based system is planned.

{
"text": "Rollers in stock?",
"intents": [

{
"id": "1606940483084759",
"name": "get_stock",
"confidence": 0.9984

}
],
"entities": {

"element:element": [
{

"id": "1087430018514134",
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Figure 2.6: The operator can ask questions in natural language about this machine. The
AR system gives information regarding what element is the operator in front of, so the
question is complemented with the required context

"name": "element",
"role": "element",
"start": 0,
"end": 7,
"body": "Rollers",
"confidence": 0.9995,
"entities": [],
"value": "rollers",
"type": "value"

}
]

}
}

Listing 2.1: The question is "Rollers in stock?" with an intent of getting the stock of a
specific item, identified by the entity "rollers". These elements can be easily translated to a
formal query to an ERP
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2.5 NLP using transformers with questions and answers

The substitution of an expert in all their functions implies the assistance
through the perception of the environment for interpreting visual controls, the
validation of the operator’s actions, and the possibility of answering possible
questions of technical nature.

Traditionally, obtaining additional information relevant to an operator’s work
is either through an HMI or queries to SCADA or ERP systems. The operator
can interact and obtain relevant information by interacting with menus and
screens that, perhaps, are far away from the element’s position to be consulted.
Direct interaction with an expert can significantly facilitate this task, but it
does not eliminate the eventual translation of the operator to other areas where
the elements they can use to retrieve the information are located. Experiments
have been conducted to evaluate the possibility of generating a virtual expert,
as seen in (Barakonyi, Psik, and Schmalstieg 2004).

Recent NLP technologies involve a new step in the capability to receive ques-
tions in natural language that can be converted into queries to databases or
SCADA/ERP systems, as has already been mentioned in sections 2.1 and 2.4.

Apart from providing this possibility, the new capabilities derived from trans-
formers are explored in the present work. After an unsupervised training pro-
cess with large corpora, these recent neural network architectures are capable
of various high-level NLP functionalities, such as text classification, chatbot
generation, or text summarization. Some of the most widely used architec-
tures today are RoBERTa (Liu et al. 2019), DistilBERT (Sanh et al. 2019),
and Google’s T5 (Raffel et al. 2020). Specifically, the current work has explored
transformers’ use in resolving QA tasks on technical manuals.

The lack of need for the operator to consult paper technical manuals during
their activities saves them valuable time. Not having to carry this information
with him or move to another part of the facility to consult is a new step to
provide a high degree of assistance on traditional AR systems.

Although training transformers from scratch using a corpus of specific technical
documents is a possibility, it is typical to use pre-trained transformers. Pre-
training is the first step of transfer learning in which a model is trained on
a self-supervised task on vast amounts of unlabeled data. The model is then
fine-tuned on smaller labeled datasets specialized on specific tasks, resulting
in a more significant performance than simply training on the small, labeled
datasets without pre-training. In this case, the tests were done with pre-
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trained transformers with a final fine-tuning process to improve the results in
QA, and their metrics were finally evaluated with SQuAD (Stanford Question
Answering Dataset) (Rajpurkar et al. 2016).

Different architectures have been explored in this respect, choosing to use an
extractive open QA (the answers come strictly from the context) Intel/bert-
large-uncased-squadv1.1-sparse-80-1x4-block-pruneofa (Zafrir et al. 2021) for
the experiments (with an f1-score of 91.174 on SQuADv1.1). Some significant
tests have been carried out on this model to validate the possibilities of this
new interaction. Examples of these tests can be seen in table 2.1.

Suppose technical manuals are available in natural language and with due
length and depth in their explanations. In that case, current transformers can
respond in natural language to many problems that, even if they need to be
solved in natural language, can compete not only in speed of response but
also in precision with the operator or expert using technical documentation.
Figure 2.7 shows a brief view of some of the answers/predictions provided
by the transformer, whose context of the search for answers is the technical
documentation for the assembly and adjustment of a pressure gauge.

The results are promising, but the accuracy of the responses is highly variable.
This possible variability depends not only on the architecture of the chosen
transformer but also on its pre-training process (i.e., main corpus) and fine-
tuning (i.e., adjustments for QA). Considering these aspects, it is also essential
that the technical manuals themselves, their length and clarity in the expla-
nations, and the characteristics of the questions asked, have greater weight in
the accuracy of the possible answers.

The final model’s accuracy metrics, capable of answering questions from the
operator in front of a technical document describing different processes related
to a device or machine, can only be evaluated in a specific context. If there are
some manuals, a set of questions, and the answers obtained by the model, the
only way to evaluate the model’s adequateness is by comparing its responses
to the ones given by humans (Rajpurkar et al. 2016).

Again, highlight that, even with the limited experimentation, the results and
advantages of using these transformers architectures in front of challenges such
as QA of manuals are inarguable, particularly when facing decisions that re-
quire a quick response and taking into account the extra benefits of integrating
this technology into an AR solution.

For questions about the information contained in SCADA systems, ERP, and
others, the implementation is even easier to achieve since the only need is to
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2.6 ML for anomaly detection

Figure 2.7: Some examples of real questions using a manual of a pressure gauge

perform preliminary training on a chatbot architecture, as discussed in section
2.4.

2.6 ML for anomaly detection

In the architecture exposed in this paper, the utmost effort is to complement
the operator’s knowledge, assist their work, and even replace the need for a
remote expert.

It is evident that having the assistance of a remote expert integrated into an
AR solution is an element of great value, hardly replaceable in its entirety, but
it is the purpose of the present work to make use of human assistance only in
very justified cases.

There are scenarios where some problems may arise that neither an operator
nor a remote expert can solve within a limited time. It is the case of having
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to detect some complex anomalies that are challenging to see (i.e., when they
result from a combination of different values from different sources).

In the scheme proposed in the current work, information from the sensors and
other information available in real-time is combined, plus a set of values that
can be obtained through CNNs from the image coming from the AR system.
Many values may need to be summarized into a feature vector required to train
an anomaly identification ML system. There are many and very diverse possi-
bilities depending on the anomalies’ characteristics (e.g., point, contextual, or
collective) (Chalapathy and Chawla 2019). Not in a few cases, the complexity
of these anomalous patterns can escape the most experienced operator or ex-
pert and allow, for example, for efficient predictive maintenance (e.g., stopping
the production process when an imminent problem is suspected), risk reduc-
tion, and operators’ integrity, production outside of standardized values and
possible defective products, among others.

The synergy of the proposed solution is based on the combination of sensorized
information captured from neural networks, its union with ML techniques for
detecting anomalies, detecting possible problems, locating these problems spa-
tially, and giving convenient indications in AR to the operators. Therefore, it
is not only about identifying possible anomalies but benefiting from the AR
by pointing them in the physical environment.

In the presented example in figure 2.8, different unsupervised classification
algorithms have been tested for anomaly detection. Some examples have been
Isolation Forest (Tony Liu, Ming Ting, and Zhou 2008) or K-Means (Ball and
Hall 1965), with very positive results; however, what is beneficial about the
architecture is not only the speed of detecting the problem in a potentially
complex situation, even for an expert but also the AR-based feedback, which
would allow operators to focus their attention right on the spot where the
problem lies.

2.7 General multimodal AR approach

As a consequence of the elements proposed in the suggested architecture from
figure 2.1, the final solution achieves a multimodal interaction with AR as
the articulating axis, managing to go beyond the traditional possibilities of
interaction in AR. In this way, the operator obtains a set of possibilities in
maintenance, repair, or reconfiguration tasks, similar to those with the assis-
tance of an expert.
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Figure 2.8: The combination of several values can be seen as standard or as an anomaly,
and visual cues are possible in AR

The operators’ workflow is enhanced, not only by the usual interactions AR
systems are capable of but also with two new possibilities:

• CNN-based visual validation is carried out reactively by the operator.
Suppose that in a specific action, the application receives the positive
validation of the CNN (e.g., a specific value in an analog control by re-
gression or the specific position or state of a switch in classification). The
application can automatically move on and invite the operator to perform
another action from a list of maintenance or reconfiguration tasks.

• Translation of natural language sentences into specific queries to ERP,
SCADA systems, and questions to technical documentation and opera-
tions manuals with transformer architectures.

All proactive or reactive interactions and their responses are duly transformed
into synthetic information of interest to the operator and anchored through
the physical layer of the AR on the elements involved. Figure 2.8 is a real
example of the testing process where information of interest to the operator
about the factors involved is signaled at all times.

All the tests have been carried out successfully on a real production line and
using, in this case, a tablet mobile device; however, as mentioned before, the
use of specific AR devices such as smart glasses is also possible.

Figures 2.9 and 2.10 show two of these tests in which it has been possible
to evaluate the multimodal nature of the solution and the ability to provide
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solutions and obtain answers in real-time without assistance from a remote
expert. Specifically, the steps followed in the sample application are:

1. The operator launches the application, and the AR physical layer deter-
mines its position in front of the device or machine.

2. The AR solution invites the operator to perform a specific operation, for
example, activating a device such as the switch from figure 2.9. After the
operator’s action and a perspective correction, the control image is sent
to a CNN to classify if its state is on or off, and the result authorizes or
not the operator to continue with the next step.

3. In some processes, a specific value may be required in some non-sensorized
control, as in the case of the pressure gauge in figure 2.10. If a particular
value needs to be reached to continue the task, the AR physical layer is
used to lead the operator’s focus. In this case, the regression CNN reads
the values of the analog control in real-time and permits appropriate
decisions to be made.

4. All the values of interest coming either from sensors or visually captured
by the different CNNs are sent to anomaly detection ML systems, in this
case, using K-Means or Isolation Forest clustering. Again, any anomaly
is displayed to the operator in its physical context using the AR layer.

It is necessary to emphasize that the operator can ask questions in natural
language to the system during any of the steps mentioned above.

Figure 2.9: When the machine is switched on, the app lets the operator move to the next
step
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Figure 2.10: Automatic value extraction from a pressure gauge

2.8 Experimental setup and evaluation

The evaluation of the proposed method has been carried out in a company’s
facilities. The company has a large factory with numerous production lines
covering a broad and diverse set of final products. This fact has facilitated the
selection of a group of operators with these two characteristics:

1. The operators already have experience in the work and management of
production lines.

2. None of the operators have worked directly on the production line or
machines used in this evaluation.

In this way, it has been possible to have eight highly skilled operators who are
not directly acquainted with the specific processes to evaluate. This aspect has
allowed the division of the operators into two groups to evaluate the advantages
of the presented elements.

The additional elements of the proposed enhanced AR system with a semantic
layer are evaluated, not the inherent advantages of current AR systems. The
workers who operated the system had no previous experience using AR tech-
nology. Given the inexperience of the operators with this type of technology,
the evaluation of the usability of the system through the System Usability Scale
(SUS) (Brooke 1996) has been discarded due to the possible influence that AR
could induce on usability in the first use of the technology. AR is used in many
fields of industry, and its opportunities and benefits have already been exten-
sively evaluated and demonstrated ((Bottani and Vignali 2019), (Fraga-Lamas
et al. 2018), and (X. Wang, Ong, and Nee 2016)). Therefore, evaluating the
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times in achieving the proposed tasks is sufficient to determine the benefits of
the presented approach.

The evaluated applications, used by each group independently, belong to these
two types:

• Group 1 (AR standard application): An AR application with a series
of steps indicates the elements the operator has to interact with. The
operator also has technical manuals and access to a terminal to consult
an ERP.

• Group 2 (AR application with semantic layer): An AR application with
the elements presented in this work, specifically:

– visual validation of user actions

– obtaining values automatically from visual elements

– voice interaction in natural language to manuals or questions to the
ERP

– a layer of additional anomaly detection

The system integrates the visual location of a possible incident through
the AR physical layer.

The evaluated process has focused on the elements of figures 2.6, 2.8, 2.9, and
2.10. This process consists of the following set of tasks:

Task 1 Machine activation (figure 2.9). In group 1, only the step to be carried
out is indicated, and the control in the AR environment is highlighted.
In group 2, additional validation is performed to check that the machine
has been activated effectively, and the new task is automatically triggered
when ’on’ is visually detected.

Task 2 Reaching a certain pressure value (figure 2.10). In group 1, only
the control to be monitored is indicated, with the operator checking that
the indicator reaches the expected value by direct visual inspection. In
group 2, the semantic layer (i.e., a regression CNN) automatically checks
that the level has been exceeded, and the AR application automatically
notifies the operator.

Task 3 Tolerable pressure value margin query (figure 2.10). Group 1 must
conduct this consultation on the technical manuals (i.e., on a mobile
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device). Group 2 can launch this query through a question in natural
language by voice.

Task 4 Stock query (figure 2.6). Group 1 must make the query in a terminal.
Group 2 uses voice interaction to make the query in natural language
(i.e., the command is converted from the chatbot response data into an
SQL statement).

Task 5 Anomaly detection (figure 2.8). For simplicity, a device not directly
related to the production line has been used, but it is suitable for evaluat-
ing the operators’ skills when faced with this type of problem. Group 1 is
informed about two combinations considered anomalous by four controls,
two analog and two with discrete values. An anomaly occurs when the
analog needle exceeds a threshold but only with a particular combination
of the other three controls. Group 2 does not know when the anomaly
occurs and must only operate with the device and wait for possible auto-
matic detection of the anomaly. Both groups are invited to manipulate
the only three possible controls, and changes are artificially induced on
the analog control so that the two groups can face high control values
with combinations considered either anomalous or permissible.

In task 1, as expected, all the operators of both groups operate correctly, but
the shift to the next task is carried out automatically in group 2, which implies
a shorter final time in the task since, in group 1, the operators must press the
’next’ button after completing their action. The times can be seen in table 2.2.

In task 2, the operator’s reaction time is assessed when a certain threshold is
exceeded in the analog control. Reaching a specific pressure value may depend
on other factors unrelated to the experiment. As expected, the reaction times
are similar, given that the operators in group 1 were aware of the expected
value. However, the greater security provided by having a semantic layer that
automatically validates and warns of this situation is evident. In addition,
when one of these situations occurs, the AR system can indicate to the op-
erator the control or element that requires their attention to detect a specific
circumstance. After the experiment, the operators of group 1 agreed on the
clear advantages of having the automatic validation of group 2.

In task 3, the time differences are very notable. Consulting technical docu-
mentation takes much longer than formulating a question in natural language
and receiving the answer in voice and natural language. In this case, it is
essential to note the possible inconveniences when faced with a question erro-
neously interpreted or answered by the transformer. It was necessary to repeat
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the question on only one occasion when obtaining an incoherent answer in the
tests carried out. Even in this case, the final time was less than the average
time spent in direct consultations on the technical documentation, accessible
through an external terminal near the operated machine.

In task 4, group 1 has a nearby terminal to perform the query. In this way, the
time of interacting with the ERP to check the existence of stock of a particular
production line component is evaluated. Group 1 times correspond to those
of operators familiar with the query tools and the necessary navigation in the
corresponding menus; yet, their times in obtaining the answer are much higher
than simply asking a question and getting the response through the chatbot
used, as performed by group 2.

Finally, in task 5, group 1 took much longer to consider the anomaly as having
occurred than group 2, whose interaction is reactive in front of automatic
detection by the system. After detecting the anomaly, group 2 times are the
minimum associated with a visual and audible signal reaction. The calculated
time is the difference between the time the anomaly occurs and how long it
takes for the operator to realize it.

Table 2.2 shows that the improvements obtained by complementing the AR
system with the semantic layer and the new NLP possibilities are more than
significant.

Table 2.3 and figure 2.11 show the result of the ANOVA test of two factors
with repeated measures in one of them to determine if the effect of the group
influences the execution time of the tasks. The result shows a statistically
significant difference between the groups, regardless of the task. However, the
interaction between the group and the task was substantial, so its execution
time depends on the group that performs them. Thus, in tasks 1 and 2,
no differences were observed between the operators of groups 1 and 2, while
in tasks 3, 4, and 5, the execution times of the operators of group 2 were
significantly lower than those of group 1 (p = 0.039, p < 0.001 and p < 0.001,
respectively).

We can conclude that adding the semantic layer proposed in this work reduces
the completion time of specific tasks. Even though time reduction is not signif-
icant in tasks 1 and 2, where the cognitive load given by the nature of the task
is low, the semantic layer can be a helpful assistant when the operator needs
more guidance. In tasks 3, 4, and 5, as the complexity of the task grows, we
can observe that the distance between groups 1 and 2 increases significantly.
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Figure 2.11: Tasks comparison box plot

2.9 Conclusions

AR is becoming a central axis in many processes requiring interaction with
the physical environment, which can benefit from various assistance processes.
Even though the evolution of associated AR device technologies does not yet
reach all the demanding requirements for their use in any domain, it is evident
that it is already possible to improve many industrial processes in maintenance,
repair, and others.

In a preliminary stage, AR focused on solving problems such as spatial map-
ping, 3D registration, and the anchoring and alignment of synthetic elements
with real elements. This technology provides precise instructions on the ele-
ments on which to act, minimizing errors and risks.

However, this AR physical layer can be complemented to solve a new range
of problems. Presently, some AR systems complement their features with the
possibility of incorporating a remote expert capable of visualizing the remote
work environment, making annotations and anchoring synthetic elements on
the operators’ display, and communicating with the operator in the event of
unexpected, complex problems, with risk or a high degree of uncertainty.
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Many of these possibilities provided by a remote expert can be solved by adding
a semantic layer. The evolution of neural networks and their different archi-
tectures and opportunities allow that, in an AR environment, the device itself
can retrieve ’meaning’ from the environment, such as reading states or values
from non-sensorized controls. It is also possible to validate the operators’ ac-
tions (e.g., checking that the operator has activated or not a specific switch
before moving on to the next step). On the other hand, the evolution of NLP
techniques, Chatbots, and new architectures based on transformers allow the
operator to access valuable context information in natural language. The re-
sponses can also be returned in natural form to comprehend better the actions
carried out.

ML anomaly detection techniques can go beyond the problems or situations
that can be solved using a real expert. ML-based anomaly detection techniques
can accelerate and determine errors or risk situations, problems, or irregulari-
ties in scenarios with a large amount of information from sensors and images
retrieved by AR devices.

This paper presents a general scheme of how this new semantic layer, based on
visual interpretation and NLP techniques that complement the AR physical
layer, gives many responses to changing situations, risk, high uncertainty, and
challenging answers in real-time.

Finally, an example has been presented and evaluated, with promising results
yielded from adding these layers to current AR systems in industrial environ-
ments.
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Appendices

2.9.1 CNN architectures

The following diagram represents the architecture for both deep neural net-
works.:

Figure 2.12: Classification and regression CNN architectures
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Chapter 3. Environment awareness, multimodal interaction, and intelligent assistance

Augmented reality is increasingly used in various fields, espe-
cially industrial applications. Although augmented reality devices’
characteristics and technological benefits are still evolving, aug-
mented reality’s clear advantages in facilitating mechanical tasks
and improving operator performance have made it popular. In in-
dustrial settings, the human factor remains irreplaceable, but the
evolution of artificial intelligence has allowed any activity on the
shop floor to be given new semantic possibilities. Through a se-
mantic layer, it is possible to interpret and validate the environ-
ment, provide multimodal interaction, and analyze and evaluate
information to detect anomalies or risky situations. Deep learning
has opened up new possibilities for existing augmented reality so-
lutions, such as visual interpretation of the environment, natural
language understanding for problem-solving, or automatic anomaly
detection. This new intelligent layer minimizes unnecessary inter-
actions with the environment, validates the operator’s actions, and
increases comfort, safety, and focus, making them more efficient in
high cognitive level tasks. This work presents a general architecture
based on a Semantic layer that relies on augmented reality systems
and validates its advantages in a real industrial setting. Overall,
integrating artificial intelligence and augmented reality solutions in
industrial settings offers significant potential for improving produc-
tivity, safety, and worker satisfaction.

3.1 Introduction

Industry 4.0 aims to enhance industrial production efficiency, speed, quality,
optimization, and resilience by adopting new technologies (Kagermann et al.
2013; L. D. Xu, E. L. Xu, and Li 2018). The Industrial Internet of Things
(IIoT), additive manufacturing, Artificial Intelligence (AI), cybersecurity, and
Augmented Reality (AR) play vital roles in this transformation, with AR par-
ticularly emphasizing the human factor (C. H. Chu et al. 2021).

Despite significant automation efforts in Industry 4.0, some tasks on the shop
floor still require a human-centered approach and cannot be fully automated
(Guerreiro et al. 2018; Runji, Y.-J. Lee, and C.-H. Chu 2022). To address
this, adopting a Lean philosophy is recommended, where small changes are
introduced and evaluated (Womack, Jones, and Roos 1992). AR has gained
popularity in the industrial field due to its potential to improve various aspects,
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including assembly, maintenance, training, and waste reduction (X. Wang,
Ong, and Nee 2016; Runji, Y.-J. Lee, and C.-H. Chu 2022; Zonta et al. 2020;
Palmarini, Erkoyuncu, et al. 2018; Jaschke 2014; Huenerfauth 2014). Since
AR strongly focuses on the human factor in the industry, its implementation
can benefit operators and task performance.

Accessing documentation can be complex on the shop floor, especially in non-
or partially automated industries where technical documents may exist in paper
format (Kollatsch and Klimant 2021). The lack of documentation standard-
ization further complicates information retrieval, increasing the mental load
on operators, especially in critical situations (Gattullo et al. 2019). Operators
may sometimes require support from Subject Matter Experts (SMEs), which
may only be feasible occasionally due to cost or availability (Gilchrist 2016).
Operator attentiveness can also lead to task resolution errors (Backs and Seljos
1994). Traditional problem-solving approaches may not be the most effective
strategy for learning new concepts or procedures; instead, reducing cognitive
load is crucial for learning (Sweller 1988). Stress can impact cognition and
knowledge acquisition, but controlled exposure can facilitate cognitive func-
tion (Sandi 2013). This study aims to develop a system to reduce cognitive
stress for operators facing unfamiliar tasks in a shop floor setting.

Furthermore, the concept of Operator 4.0 aims to establish reliable and in-
teractive relationships between humans and machines, empowering "smart op-
erators" with cutting-edge gadgets and novel skills to exploit Industry 4.0
technologies (Romero, Stahre, and Taisch 2020; Romero, Stahre, Wuest, et
al. 2016). Peruzzini et al. highlight these technologies’ potential to alleviate
the cognitive burden on operators (Peruzzini, Grandi, and Pellicciari 2020).
Additionally, the emerging notion of Operator 5.0 aims to create more intu-
itive, symbiotic, human-centered, and cognitively supportive computing envi-
ronments to enhance human adaptation capabilities, productivity, and mental
well-being (Zambiasi et al. 2022). The integration of technologies like AR
and AI is driving the emergence of "softbots" as virtual systems in computing
environments to automate tasks, offer conversation-like interactions, exhibit
system intelligence, autonomy, proactivity, and process automation (Romero
and Stahre 2021; Rabelo, Romero, and Popov Zambiasi 2018).

AI tools such as Machine Learning (ML) and Deep Learning (DL) can comple-
ment existing systems to reduce cognitive load, improve context information,
and enhance shop floor safety. In cases where older machines lack machine-
generated data, visual information becomes crucial. Techniques like Convolu-
tional Neural Networks (CNNs) enable the interpretation of visual cues, such as
reading pressure gauge values. Algorithms like K-means (Ball and Hall 1965)
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and Support Vector Machine (SVM) (Cortes, Vapnik, and Saitta 1995) can
check for anomalies and highlight them through AR. Transformers (Vaswani
et al. 2017) enable operators to ask questions in Natural Language (NL) and
receive responses linked to AR systems through visual cues.

The main objective of this study is to enhance current AR solutions by adding
cognitive capabilities through DL and foundation models (Bommasani et al.
2021). Recent industry interest has been observed in AR solutions with cog-
nitive capabilities, aiming to extend current AR solutions with a semantic
layer, demonstrated in studies (Rasmussen et al. 2022; Eversberg et al. 2022;
Z. Wang et al. 2021; Zhang et al. 2022). These studies illustrate the benefits of
integrating environment awareness, multimodal interaction, and cognitive as-
sistance into AR solutions, crucial for extracting information in fast-paced and
evolving production environments (Sheu 2010). This work develops and eval-
uates a system allowing users to interact multimodally, including NL Question
Answering (QA) and contextualized visual indications in the AR environment,
enhancing operator comfort and reducing the risk of errors. Integrating AR
with AI technologies also impacts aspects such as comfort, security, focus, and
knowledge acquisition (Sahu, Young, and Rai 2021).

The main contributions of this research are:

• To enhance the capabilities of existing AR systems by adding semantic
skills to comprehend and interpret the environment,

• To make a profit from ML models to gain insights, such as anomaly de-
tection or information retrieval with transformers, in industrial settings,

• To reduce the cognitive load from operators, improve task performance,
and foster technology adoption.

This article is structured as follows: In section 3.2, the state-of-the-art research
related to this work is presented. Then, in section 3.3, the different components
of the proposed system are explained in detail. After that, in section 3.4, the
technologies and their characteristics for implementing the evaluated system
are explained. In section 3.5, a specific case study is performed to evaluate
the system’s validity, and the results are discussed in section 3.6. Finally, the
conclusions are drawn in section 3.8.
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3.2 Related work

3.2.1 AI in the Industrial Field

AI, especially ML, has significantly improved various aspects of the industrial
field, including waste reduction, error prevention, enhanced quality, risk pre-
vention, and faster learning (Bertolini et al. 2021). In complex scenarios where
traditional analytical methods struggle to relate variables and outcomes, ML
proves to be a critical tool (Esen et al. 2009). For instance, the "You Only
Look Once" (YOLO) algorithm has been utilized by Zamora et al. to de-
tect real-time assembly task actions (Zamora-Hernández et al. 2021). ML and
DL techniques excel in anomaly detection, outperforming traditional methods
(Javaid et al. 2015). Architectures such as CNNs, RNNs, LSTMs, and AEs are
popular for detecting anomalies in unstructured data like images, videos, audio,
and time series (Chalapathy and Chawla 2019). Various studies have applied
these techniques to detect anomalies in videos and sequential data (Ionescu
et al. 2019; Lu et al. 2017), as well as appearance-based anomalies in videos
using pre-trained ResNet-50 models (Pang et al. 2020). Additionally, GANs
have been used to detect anomalies in image datasets and intrusion networks
(H. Zenati et al. 2018). Traditional ML algorithms, especially unsupervised
training models, have also shown strong performance in anomaly detection
(Škvára, Pevný, and Šmídl 2018). ML and DL are increasingly essential in
monitoring and controlling industrial processes, demonstrating their relevance
in AR industrial environments (Song et al. 2022; Gopaluni et al. 2020).

3.2.2 AR in Industrial Tasks

AR technology has demonstrated great potential in the industrial field by sim-
plifying complex tasks for operators. However, the complexity of the task and
the visual cues utilized should be considered to avoid overloading the oper-
ator and diluting their focus of attention (Radkowski, Herrema, and Oliver
2015). Several authors have studied the development and evaluation of AR
applications in various industrial tasks, including step-by-step guides (Scurati
et al. 2018), product design Luh et al. 2013; Shen, Ong, and Nee 2010; Ong
and Shen 2009, process control Ong and Z. B. Wang 2011; Yuan, Ong, and
Nee 2008, maintenance and security Mourtzis, Siatras, and Angelopoulos 2020;
Tatić and Tešić 2017; Espíndola et al. 2013; Garza et al. 2013; Benbelkacem
et al. 2013; Ziaei et al. 2011; N. Zenati, Zerhouni, and Achour 2004; Barakonyi,
Psik, and Schmalstieg 2004, and operator training Monroy Reyes et al. 2016;
Webel et al. 2013; De Crescenzio et al. 2011. A review of the current literature
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conducted by Bottani et al. in 2019 indicates that the most researched fields
regarding AR in the industry are assembly, maintenance, and training Bottani
and Vignali 2019. It is essential to consider not only the complexity of the
task but also the complexity added by AR to the interface.

3.2.3 Voice-directed Interfaces and NL Interaction

Voice-directed interfaces are gaining popularity in industrial settings due to
their hands-free control and benefits for operators, particularly those with func-
tional diversity (Baldauf et al. 2018). In scenarios where complex machinery
requires information from multiple sources, including paper documents, the
ability for operators to interact through NL questions proves advantageous
(Coli et al. 2020). Examples of chatbots being used to train operators and
improve usability in industrial settings, as well as their application in Main-
tenance, Repair, and Overhaul (MRO) tasks, have been documented in the
literature (Casillo et al. 2020; Mleczko 2021).

3.2.4 Cloud Computing Systems for Remote Assistance

Current investments in communication and Cloud Computing systems have
spurred the development of remote assistance systems, such as TeamViewer As-
sist AR (TeamViewer 2021) and Vuforia Chalk (PTC 2017), facilitating remote
communication between operators and experts. While these AR technologies
have been applied to maintenance tasks (Mourtzis, Siatras, and Angelopoulos
2020), challenges persist, notably the cost and availability of online Subject
Matter Experts (SMEs).

In conclusion, AR, voice-directed interfaces, AI, and Cloud Computing have
greatly enhanced various industrial aspects, simplifying tasks, reducing errors,
and expediting learning. However, it’s crucial to consider task complexity
and the potential for AR interfaces to overwhelm operators. ML and DL
techniques, especially in anomaly detection, outperform traditional methods.
Despite challenges, AR, voice interfaces, and AI hold substantial potential in
the industrial field, necessitating further research and development to unlock
their capabilities. Our research aims to leverage modern DL techniques and
AI foundation models to enhance information access in complex environments.
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3.3 System architecture overview
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Figure 3.1: System architecture layers.

This study proposes an architecture combining AR, ML, and DL techniques
to support operators’ tasks on a production shop floor. The architecture is
designed to enable the creation of applications that offer intelligent assistance
to the operator through multimodal interaction, potentially replacing or en-
hancing the need for an SME, even when using teleoperated AR systems.

The system consists of four communicating layers, as shown in Fig. 3.1. The
central axis is the AR layer, facilitating integration and creating synergy be-
yond individual components. Further details about each layer are provided
below.

3.3.1 Interaction layer

The Interaction layer provides various modes of operator interaction. Three
modules enable multimodal interaction, as depicted in Fig. 3.1:

• Speech recognition: The system recognizes and responds to the oper-
ator’s NL queries, providing prompt answers based on available technical
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information, reducing query time significantly, and avoiding the need for
consulting SMEs or searching technical documentation.

• Device camera: Using a camera is a fundamental element in current
AR solutions, available on mobile devices and AR Head-mounted displays
(HMD). It supplies the possibility of adding visual cues to the operator
and facilitates the validation of performed tasks using AI-based elements
described later.

• Direct manipulation: This interaction style relates real-world actions
to device-based actions (Shneiderman et al. 2016). The operator inter-
acts through touch screens of mobile devices and hand gestures in specific
AR HMDs. The operator can touch the digital representation of environ-
ment elements, such as buttons or AR indicators, to retrieve additional
information or perform specific tasks.

The system’s multimodality allows users to interact with it in three ways and
provides feedback through AR cues or textual information, as explained later.

3.3.2 AR Physical layer

The AR Physical layer performs crucial tasks, including displaying synthetic
content overlaid on the device’s camera feedback, determining the operator’s
location and relative position in the industrial environment, and extracting
areas of interest for later analysis. It locates analog controls, like pressure
gauges, in the camera’s captured image (Relative region segmentation in Fig.
3.1). Geometric transformation is applied to remove the perspective between
the camera position and the control (Geometric transformation in Fig. 3.1),
reducing input image variability for more effective CNN training (i.e., the ma-
chine view remains orthogonal to the device camera). Reference marks, such
as printed images on machines or specific places on the shop floor, can guide
the operator in the real environment. Moreover, the layer provides indications
of possible anomalies, and answers operator queries about technical documen-
tation.

Simultaneous Localization and Mapping (SLAM) creates a 3D map of the en-
vironment to determine the user’s 3D location, allowing real-time combination
of virtual objects and indoor tracking. The traditional A∗ algorithm can guide
the operator on the shop floor, while marker-based tracking and SLAM are
employed to determine the operator’s position.
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The evaluated application utilizes AR technology to enable operators to per-
form complex tasks. Various tools and technologies are available for developing
AR applications, including ARCore for Android (Google 2018), ARKit for iOS
(Apple 2017), and AR Foundation (Unity 2018). Libraries and SDKs like AR-
Toolkit (Kato and M. Billinghurst 1999) or Vuforia streamline the integration
of AR functionality, reducing programming complexity and supporting cross-
platform development. Vuforia SDK is used and tested on an iPad device for
this research.

3.3.3 Business layer

The Business layer plays a pivotal role in our architecture by seamlessly inte-
grating shop floor operational systems with higher-level decision-making pro-
cesses. It leverages Enterprise Resource Planning (ERP) and Supervisory Con-
trol And Data Acquisition (SCADA) systems, enabling efficient resource man-
agement and process supervision. Combining data from ERP, SCADA, and the
semantic layer through CNNs enhances our system’s capabilities, particularly
in tasks like anomaly detection.

This layer acts as a bridge between operational and business components, uti-
lizing ERP and SCADA data alongside DL from the semantic layer to pro-
vide comprehensive insights for informed decision-making. Our architecture
promotes a holistic understanding of the industrial environment, improving
operational efficiency and supporting intelligent decisions. The intermediate
middleware layer serves as an interface, facilitating seamless communication
between the AR Physical layer and the Business layer. Its primary function is
to abstract and enable the retrieval of information from sensorized machines,
enabling system scalability and flexibility.

3.3.4 Semantic layer

DL has enabled the development of CNN architectures for image input, utiliz-
ing convolutional layers to extract significant features and perform classifica-
tions or regressions, such as in Fig. 3.2, where a CNN can predict the pressure
value from the image of a pressure gauge. Analyzing that image through CNNs
is crucial when a machine is not sensorized (i.e., it is not connected to a SCADA
system or does not have a PLC), thus being the only source of information the
system can extract data from. Nevertheless, it’s important to note that this
visual data should not be perceived as a substitute for the structured data de-
rived from PLCs and SCADA systems, as these systems excel in tasks related
to automation, control, and historical data analysis. Instead, the integration
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Figure 3.2: Reading the pressure value with a CNN in non-sensorized machines.

of both structured and visual data sources emerges as a strategic approach,
affording a comprehensive perspective of industrial operations that, in turn,
enhances decision-making capabilities and facilitates process optimization.

On the other hand, ML allows the use of supervised models like SVM or Iso-
lation Forest, and unsupervised models like K-means, to identify anomalies or
outliers in feature vectors, such as values or states from machines or produc-
tion lines. Supervised models require normal and anomalous feature vectors,
while unsupervised models detect anomalies based on deviations from primary
clusters in the training data.

The Semantic layer extracts meaning from the operator/device’s environment
and interactions, integrating three input types (See Fig. 3.1) to enhance system
accuracy.

• CNNs classify discrete and analog controls to predict their values,

• ML algorithms detect anomalies in combinations of interpreted values,

• Transformers are used to answer NL questions from the operator in the
context of a specific machine, process, or task.

Regarding the last point, the transformer-based answers significantly improve
problem resolution for the operator. Combining SMEs’ descriptions with ex-
isting technical documentation determines the transformer’s context. The re-
sponses are transmitted to the middleware layer, where they are stored for
subsequent retrieval by the AR Physical layer. This retrieval process allows
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for the presentation of new information within the operator’s field of view. The
proposed architecture considers displaying information such as the next step
or anomalous information next to a control. Fig. 3.4 shows an example of this
functionality.

Transformers for QA

In complex industrial tasks, AR systems provide visual cues to assist operators.
By adding a Semantic layer (explained in Sec. 3.3.4) that utilizes CNNs to ex-
tract information and context, operators can validate actions, detect anomalies,
and simplify interactions. The Semantic layer also enables automatic progres-
sion to the next step based on confirmed actions.

During MRO tasks, operators may encounter questions that require answers
found in technical documentation and procedure manuals. These inquiries
should be resolved quickly to avoid risks or costs resulting from delays. The
operators may not have the necessary knowledge, leading them to consult either
the technical documentation or a remote expert. One of the most promising
neural network architectures, transformers, can address this issue. Transform-
ers can help interpret technical documentation and procedure manuals, even
when written in NL, enabling operators to find the answers they need promptly.

Transformers outperform recurrent networks by incorporating attention mech-
anisms and acquiring language semantics through extensive text training. They
possess high-level capabilities in NL processing, including text classification,
chatbots, text summarization, and language translation. Popular transformer
architectures include RoBERTa (Liu et al. 2019), DistilBERT (Sanh et al.
2019), and Google’s T5 (Raffel et al. 2020). In QA tasks, transformers can be
specialized to provide context-based answers to NL questions. Training can
be performed on large datasets like SQuAD (Stanford Question Answering
Dataset) (Rajpurkar et al. 2016), or pre-trained transformers can be used for
their ability to understand various question formulations in NL. Fine-tuning,
as detailed in section 3.5, further enhances their accuracy, particularly when
considering real industrial contexts.

The need for knowledge may arise during MRO tasks, with or without AR
guidance. This study evaluates the availability of tools such as QA based on
technical documentation and SME knowledge to analyze whether it improves
task efficiency in complex environments such as shop floors.
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Connecting transformers with AR for multimodal interaction

Transformers have proven to be an effective method for answering technical
documentation questions in NL, offering valuable benefits such as streamlin-
ing the search process for specific problems and reducing cognitive load. In
the evaluated application, the transformer’s responses are integrated with AR
technology, linking NL answers to physical locations and specific elements in
the spatial mapping (see Fig. 3.4). This integration aims to provide precise
indications of the elements of interest in the operator’s physical environment
alongside the NL response to a query (Fig. 3.3).

Figure 3.3: Users can interact multimodally to obtain AR and NL feedback.

The proposed method for linking questions and AR responses involves prepro-
cessing the technical documentation and utilizing existing 3D scanning tech-
nology to map the environment of interest. To achieve this, we add extra
text to the technical documentation to identify elements of interest in the 3D
scanned mesh unequivocally. The relevant elements in the industrial environ-
ment, such as panels, controls, indicators, and actuators, are identified and
assigned unique identifiers in the 3D mesh of the shop floor area.
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3.4 System implementation

The connection between the identified elements and the technical documenta-
tion is established through two steps:

• Additional sentences are incorporated into the context, indicating the spe-
cific identifiers assigned to the elements of interest in the physical space.
For instance, Fig. 3.6 illustrates four marked nozzles (0001, 0002, 0003,
and 0004) of an Extruder machine, and their corresponding identifiers are
listed in lines 26 to 28 of Listing 3.1.

• In cases where the text does not clearly describe the element in question,
the previous sentences are extended to provide the necessary context,
enabling the transformer to obtain the required answer when asking a
question.

The interaction between the operator, the transformer, and the AR system is
depicted as follows (Fig. 3.4): The operator asks a question in NL, and the
system forwards it to the transformer, which predicts and returns the answer.
However, in certain cases, additional information is necessary to pinpoint the
element referred to by the operator in the AR space. In such situations, a
second internal question is sent to the transformer to obtain the identifier of the
element of interest. Therefore, the application receives a response comprising
two elements: (1) the answer provided by the transformer and (2) the ID of the
element of interest associated with a specific location in the AR environment.

Explicit statements are added to identify specific controls in subsequent ques-
tions (see Listing 3.1, lines 26-28) to ensure that the transformer can accurately
relate the response to a physical control in the real environment.

It is worth noting that the transformer used in this study belongs to the Extrac-
tive Open QA family. The answers are generated solely from the context and
do not introduce new content. This approach is recommended when precise
answers are required, based solely on the available technical documentation.

3.4 System implementation

The proposed architecture, its main elements, multimodal capabilities, and
synergies are described, along with a real-world implementation and evalua-
tion. This study analyzes the usage of two machines, an Extruder, and an
Injector, for creating filaments and molds from a polymer mixture. The pro-
cess requires various machine parameters, such as nozzle temperatures, which
vary based on the polymer type. The client-server architecture for implement-
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Figure 3.4: Linking answers in NL to AR cues.

ing, validating, and verifying the proposed system is detailed in section 3.4.1
and 3.4.2, respectively.

3.4.1 Client-side application

The primary application that the operator interacts with has been developed
using the Unity engine, allowing for the development of interactive, cross-
platform apps for desktop and mobile devices. The app was tested on an
iPad Air (4th generation). Since the system relies on AR for spatial location
and operator guidance, a tool that facilitates AR application development in
Unity was required. Vuforia was chosen for environment scanning since it offers
prior 3D spatial mapping of the workspace and allows AR elements placement
during application runtime. The initial scanning procedure is necessary as
the system’s primary objective is to guide the user during various tasks and
processes. The result of the 3D scanned environment using an iPhone 13 with
a LiDAR sensor can be seen in Fig. 3.5. While alternative methods like 3D
laser scans exist for environment scanning, their high cost led us to choose
Vuforia Area targets as the preferred technology. After the scan process, this
tool allows for environment detection and tracking, so placing AR elements on
the environment is possible. Additionally, a marker placed close to the control
of interest aids in interpreting the CNN by eliminating the perspective of the
image taken from the control. Regarding operator guidance on the shop floor,
the Unity native’s implementation of the A∗ algorithm is utilized.

To distribute and optimize the Semantic layer functionality between the client
and the server, the client performs local inferences from CNNs trained using
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the Open Neural Network Exchange standard (ONNX) (The Linux Foundation
2017). The proposed system uses the open-source Keras library (Chollet 2015)
to develop the architecture and train the model, which is subsequently exported
to ONNX for inference on the mobile device, enabling the device to perform
classification and regression tasks, which interpret images semantically.

As explained in Sec. 3.3.4, labeling the elements of interest (e.g., buttons,
machines, nozzles) is required for the system to interpret the transformer’s
responses and identify the relevant elements in the environment. Fig. 3.6
displays the labels used for the temperature nozzles of the Extruder.

Figure 3.5: Scanned mesh (Unity).

3.4.2 Server-side application

To improve the system’s overall efficiency, tasks involving complex DL models,
such as anomaly detection models or transformers for QA, are distributed and
solved on a server instead of the operator’s device. This approach offloads the
computational burden, leading to faster response times and reduced battery
consumption.

For the evaluated implementation, the FastAPI framework for Python was
used to run a transformer on the server. Specifically, the transformer was 80%
1x4 Block Sparse BERT-Large (uncased) Fine Tuned on SQuADv1.1 (Zafrir
et al. 2021) due to its high prediction accuracy for the questions asked. Fur-
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Figure 3.6: Link between a physical element and transformer identifier (Unity).

ther insights into the decision-making process and analysis of the results are
described in section 3.6.

Transformer selection

To establish a relationship between the transformer’s response (Semantic layer)
and the visual AR cue (AR Physical layer), controls are linked with IDs, such
as 0001 or 0002, as shown in Listing 3.1. This linking allows triggering a second
question to the transformer if a keyword like "nozzle" or "funnel" is detected in
the operator’s query. The result from the second question returns the control
identifier and activates the cue in AR, as depicted in Fig. 3.4.

Four state-of-the-art QA transformers were evaluated to provide NL interac-
tion, all available at Hugging Face.

1. Intel/bert-large-uncased-squadv1.1-sparse-80-1x4-block-pruneofa

2. bert-large-uncased-whole-word-masking-finetuned-squad

3. csarron/bert-base-uncased-squad-v1

4. csarron/mobilebert-uncased-squad-v2
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Fourteen questions related to the context were performed to select the QA
transformer for this study. The average scores and their results were calculated
(refer to Table 3.1 and Table 3.2). The chosen model was Intel/bert-large-
uncased-squadv1.1-sparse-80-1x4-block-pruneofa. It is important to note that
the validity of the answers depends on the technical documentation and specific
question formulation. The score value alone should not be the only factor in
choosing a transformer. The possibility of using an Ensemble model to choose
the highest-scoring model for a specific question should also be considered. It is
worth mentioning that the study’s focus is not to compare transformer models
but instead to properly integrate their capabilities into an AR environment.

3.4.3 System operation

The presented architecture’s benefits over a traditional approach have been
evaluated using two applications. The first application utilizes AR, Transform-
ers for NLP, and CNN for action validation, while the second only provides AR
cues for operator guidance. The developed applications allow preparing new
materials using different polymers from a list of possible processes. The AR
Physical layer detects the current environment to ensure the operator is in the
work area. The AR system guides the operator to the first machine using an
AR route and a mini-map. Once in front of the machine, a sequence of AR cues
shows the operator the actions to be performed if the process includes handling
different elements. An example of the flow of use of the developed application
is shown in Fig. 3.7. Again, the complete system, implemented in the first ap-
plication, allows for asking questions in NL, thus generating responses through
AR cues and textual information, and is also capable of interpreting analog
values, such as pressure gauges.

3.4.4 Implementation guidance

To generalize the benefits of the proposed architecture and facilitate its incor-
poration into various industrial environments, this research evaluates a specific
implementation in a particular environment. The following common aspects
should be considered:

1. Technical documentation compilation Collecting technical documen-
tation from various sources is necessary for NL questions. The data is
usually in PDF files or paper documents, but SMEs may have additional
information acquired from experience. Specific tools are required to ex-
tract this data efficiently.
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Figure 3.7: Extruder workflow using the application, setting the nozzle temperatures.
Visual validation, AR guiding, and voice interaction.

2. Operatable elements Define the machines the architecture needs to
understand and operate. Automating the process of determining operable
machines and controls would streamline development.

3. AI model definition The architectures need to be trained with several
models for each control and its variations to achieve better results since
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elements such as gauges or buttons can significantly vary, even in the
same machine. Simple CNN architectures have shown excellent results,
especially with the preliminary perspective removal stage, requiring only
a few pictures.

4. Environment scanning Enable the operator to move freely within the
shop floor, necessitating 3D environment tracking. While 3D scanning
and recognition tools are recommended, 2D markers from specific ma-
chines could serve as an alternative. Current AR systems generally offer
these possibilities with specific authoring tools.

5. Task definition To highlight the AR cues linked to specific tasks, a
good knowledge of what processes and tasks the operator will perform
is necessary. The application should be flexible enough to manage these
abstractions and highlight related elements to specific operator questions.

6. Context and environment linkage The architecture’s advantage is the
strategy used to link responses from the transformer and AR elements,
as described in section 3.3.4. However, the implementation may differ for
different cases.

3.5 System evaluation

A suitable environment was selected to evaluate the proposed system, focusing
on tasks involving creating new materials using polymers mixed with various
materials at different temperatures. These tasks require the use of multiple
machines located in different areas. The system evaluation was conducted
using the following elements:

• Three groups of people were evaluated (see Sec. 3.5.1), a group without
AR, a group with traditional AR, and a group with the proposed system
(i.e., AR and Semantic layer).

• Three work-related questions were posed to operators to measure the
resolution time. Two groups of operators were tested, one with physical
documentation and the other with the transformer integrated into the
proposed AR system.

• A Likert questionnaire was used for qualitative analysis to evaluate two
groups of operators, one with traditional AR and the other with the
proposed semantic AR.
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The chosen evaluation criteria follow similar studies in the literature to ob-
tain qualitative and quantitative measures for assessing the suitability of the
proposed AR system.

3.5.1 Participants

The proposed system was evaluated through the developed application by three
groups of operators, each consisting of six operators with experience on the
shop floor. Although the operators were familiar with industrial processes, they
were not acquainted with the tasks evaluated, allowing for assessing potential
application improvements.

Group A: The first group used an application that incorporated semantic
AR through CNNs and transformers to complete the designated tasks.
Additionally, this group could ask questions in NL when performing a
specific task, providing text and AR cues (if possible).

Group B: The second group had access to an application that only used AR
to display visual cues, which is the current standard in AR applications
used in the industry. They also had access to technical documentation in
a traditional electronic format (i.e., PDF files).

Group C: The third group did not have access to the application or any
AR support. They were given access to the same source of technical
documentation as group B and a list of tasks to be performed.

3.5.2 Task description

The system evaluation involved the operators performing eight tasks, compris-
ing a complete process that required using two machines, the Extruder, and
the Injector, described in section 3.4.

Task 1, Extruder Location: This task required locating the machine re-
sponsible for dissolving the selected material within the manufacturing
plant. While groups A and B successfully used AR guidance, group C
faced challenges due to limited information in the technical documenta-
tion.

Task 2, Turn on the Extruder: Upon locating the Extruder, the operators
had to power it on. This step proved to be straightforward for all groups,
involving a standard control and clear location visibility. Notably, group
A benefited from the assistance of a CNN for automatic switch validation.
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Task 3, Nozzles temperatures setup: Operators were tasked with estab-
lishing the temperatures of the four nozzles, which vary depending on the
melting material. Group A utilized AR cues (e.g., arrows pointing at the
nozzles) and NL interaction for easier execution (e.g., texts indicating the
temperatures of the nozzles, as additional AR cues), while groups B and
C faced difficulties relying solely on technical documentation.

Task 4, Extruder material insertion: In this step, operators introduced
the compound into the Extruder’s top funnel. AR cues provided addi-
tional assistance to groups A and B.

Task 5, Injector Location: Similar to Task 1, this step required locating
the Injector machine. Groups A and B used AR cues, while group C
encountered challenges without this assistance.

Task 6, Turn on the Injector: Activating the Injector involved using a
standardized control, similar to task 2. Groups A and B used AR cues to
find the control, while group C had minor difficulties finding the control
location due to its concealed location.

Task 7, Injector material insertion: Operators needed to locate the In-
jector’s funnel to insert the new mixture. No significant differences were
observed among the three groups.

Task 8, Purge and injection: For this task, the operator had to use the
Injector’s Human Machine Interface (HMI) to perform purging and injec-
tion. Groups A and B received AR assistance on the HMI, while group C
relied on technical documentation and encountered some challenges using
the HMI menus.

To evaluate the possibility of asking in NL, operators from group A had to ask
three questions to see the response from the system. These questions were:

Question 1: Asking for the temperature range of the nozzles for the Extruder
for a specific material different from PLA.

Question 2: Query about a machine’s location on the shop floor.

Question 3: Inquiry regarding the range of values on the pressure during
the injection process.

In addition, a six-question questionnaire was administered to operators from
groups A and B using a 5-point Likert scale (see Table 3.6). The questionnaire
aims to compare and evaluate the use of standard AR applications versus

65



Chapter 3. Environment awareness, multimodal interaction, and intelligent assistance

Index Question Selected transformer prediction

0 What is PLA? polylactide

1 What are all the temperatures for melting PLA? 170º - 180º - 185º - 190º

2 What are the temperatures for PLA? 170º - 180º - 185º - 190º

3 What is the range of temperatures for melting PLA? 170º - 180º - 185º - 190º

4 What is the temperature for the first nozzle for PLA? 170º

5 What are the temperatures for PVAL? 190º - 195º - 200º - 210º

6 What is the temperature for PVAL for nozzle four? 210º

7 How do I start using the extruder? setting the nozzle controls to the desired temperature

8 What is the next step after setting the temperatures? pour the materials into the funnel

9 Where is the extruder’s funnel? top of the machine

10 Nozzle id’s 0001 - 0002 - 0003 - 0004

11 nozzle id’s 0001 - 0002 - 0003 - 0004

12 Activation button id 0005

13 funnel ID 0006

Table 3.1: Transformer predictions to questions (Intel/bert-large-uncased-squadv1.1-
sparse-80-1x4-block-pruneofa).

Model index Mean score

1 ±68.46
2 ±30
3 ±53.38
4 ±28

Table 3.2: Scores for the 4 QA transformers tested.

adding a semantic layer on top of it with the capability of asking questions in
NL. The results of the questionnaire can be found in section 3.6.

3.6 Analysis and results

Table 3.7 presents the task completion times for the three groups. Table 3.8
compiles the time required to answer three specific questions for groups A and
C. As a reminder, operators from group A could use NL to ask questions to
the selected transformer. Group B and group C operators had to search for
answers in technical documentation.

A two-factor ANOVA test was conducted, with one factor using repeated mea-
sures, to assess whether the group impacts the task execution time. Table
3.3 displays the means and standard deviations of task execution times for
each group (refer to Fig. 3.8 in appendix 3.9 for a comparative view). The
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test results indicate that there is a statistically significant difference between
the groups, regardless of the task performed (F (7, 105) = 288.39; p < 0.001;
η2 = 0.951). However, the interaction between group and task was also sig-
nificant, suggesting that the execution time of a task depends on the group
performing it (F (14, 105) =8.30; p < 0.001; η2 =0.525).

Tasks 2, 4, 6, and 7 show no statistically significant differences in execution
times between the operator groups. Conversely, in tasks 1, 5, and 8, the
execution times of operators in group C, who only used the documentation,
were significantly longer than those of operators in groups A and B, who used
the applications; no significant differences were found between groups A and B.
For task 3, the execution time of operators in group C was significantly longer
than that of operators in group A; no significant differences were observed
between groups A and B or B and C.

Table 3.4 presents the p-values of the pairwise comparisons with Bonferroni
correction to adjust the significance level of each pairwise comparison between
the groups and tasks.

Task

1 2 3 4 5 6 7 8
Mean (Sd) Mean (Sd) Mean (Sd) Mean (Sd) Mean (Sd) Mean (Sd) Mean (Sd) Mean (Sd)

Group
Group A 18,67 (3,56) 5,50 (2,26) 50,67 (15,95) 23,00 (6,81) 19,67 (4,93) 12,00 (3,29) 6,83 (3,82) 89,83 (8,91)
Group B 18,50 (2,26) 4,67 (1,37) 64,17 (11,58) 15,83 (4,71) 18,83 (6,31) 10,50 (2,59) 6,83 (2,64) 85,50 (11,52)
Group C 37,83 (8,04) 5,67 (3,01) 77,83 (14,58) 16,83 (5,49) 53,17 (10,07) 14,83 (7,91) 7,67 (2,25) 126,00 (23,38)

Table 3.3: Descriptive execution times of tasks and statistical contrasts.

Task

1 2 3 4 5 6 7 8

Group A Vs. Group B 1 1 0,358 0,141 1 1 1 1
Group A Vs. Group C < 0,001 1 0,014 0,247 < 0,001 1 1 0,004
Group B Vs. Group C < 0,001 1 0,345 1 < 0,001 0,501 1 0,002

Table 3.4: Two to two comparisons P -values (Bonferroni correction).

The response times to the questions posed were analyzed, and the results are
presented in table 3.5 (see also Fig. 3.9 in appendix 3.9). The analysis indicates
a statistically significant difference between groups A and C concerning the
three proposed questions. The response times of operators who worked with
the application were significantly lower than those of operators who performed
tasks with documentation for all three questions (p < 0, 001, p < 0, 001, and

67



Chapter 3. Environment awareness, multimodal interaction, and intelligent assistance

p < 0, 001, respectively). However, the interaction between the group and the
task was not significant.

Question Tests of within-subjects effects

1 2 3 Group Group*Question

Mean (Sd) Mean (Sd) Mean (Sd) F(g.l.);
p− valor(η2)

F(g.l.);
p− valor(η2)

Group F (2; 20) = 3, 93;
p = 0, 036(0, 274)

F (2; 20) = 0, 57;
p = 0, 572(0, 054)

Group A 19,67 (8,89) 10,67 (5,79) 15,17 (5,08)
Group C 87,33 (12,31) 70,83 (19,45) 87,83 (21,74)

Table 3.5: Descriptive answer times and statistical contrasts.

Table 3.6 describes and compares the scores given to each statement based
on the group of workers. The results indicate that operators from group A
showed more significant agreement than those from group B for the questions
"It helped me solve technical questions seamlessly" and "I can access additional
information effortlessly". These answers suggest that workers in group A found
the system more helpful and easier to use than group B workers.

Question Group, median (IR) Mann-Whitney
U test

Group A Group B U p-value

I think AR is helpful 5 (5 - 5) 5 (4 - 5) 15 0,523
I feel I can finish the tasks faster 4,5 (4 - 5) 4 (4 - 5) 13,5 0,423
I felt more confident and safe using the application 5 (5 - 5) 5 (5 - 5) 15 0,317
It helped me solve technical questions seamlessly 5 (4 - 5) 2,5 (2 - 3) 1 0,005
I can focus better on the task 4,5 (4 - 5) 4 (4 - 5) 15 0,575
I can access additional information effortlessly 5 (5 - 5) 2 (2 - 2) 0 0,002
IR: interquartile range

Table 3.6: Descriptive and comparative scores to the questions raised about the perfor-
mance of the tasks.

The results show that the proposed semantic layer reduces the time required
for tasks of a more cognitive nature and provides greater comfort and security
in the qualitative assessment of results. Consequently, group A shows better
results and higher levels of satisfaction. The evaluation of the proposed solution
confirms the significant advantages that can be obtained by complementing
current AR systems in industrial environments with the proposed semantic and
multimodal layers. These findings align with similar studies such as Rasmussen
et al. on workspace awareness using a multi-camera solution (Rasmussen et
al. 2022), Eversberg et al. on cognitively assisted AR through digital twins
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(Eversberg et al. 2022), Wang et al. on spatial cognition (Z. Wang et al.
2021), and Zhang et al. on the benefits of multimodal interaction (Zhang et al.
2022). It is important to acknowledge that further investigation and analysis
are necessary to address the open questions surrounding the semantic layer
and to refine the system’s capabilities in future research.

3.7 Discussion

The present study investigated the effectiveness of a proposed semantic layer in
augmenting industrial workers’ AR tasks. The analysis of the study’s data re-
vealed several significant findings. Firstly, the two-factor ANOVA test demon-
strated a statistically significant difference in task execution times between the
three groups (A, B, and C). Operators in group C, who relied solely on tech-
nical documentation, exhibited significantly longer task execution times than
those in groups A and B, who used the proposed application-based seman-
tic layer. Moreover, task completion times varied significantly across different
tasks, suggesting that the semantic layer’s impact depends on the task’s na-
ture. The response times to specific questions showed that operators in group
A, using the semantic layer, had significantly lower response times than those
in group C, who used only technical documentation. This finding indicates
that the semantic layer can streamline obtaining information and answering
queries, potentially improving workers’ efficiency. The likert-scale evaluation
indicated that operators in group A expressed higher levels of agreement with
statements related to the proposed system’s helpfulness, confidence, and ease
of use. These results suggest that the semantic layer contributes positively to
the overall user experience and satisfaction.

These outcomes imply that the semantic layer has the potential to enhance
workers’ cognitive capabilities and enable them to perform complex tasks more
effectively. The advantages observed in tasks requiring more cognitive pro-
cessing further emphasize the importance of addressing human-computer in-
teraction challenges in AR systems. The seamless integration of contextual
information and multimodal interaction in the proposed solution potentially
alleviates cognitive load, improving task performance.

We acknowledge several limitations in this study:

1. The sample size for each group was relatively small, which may limit the
generalizability of the results. Future studies with more extensive and
diverse samples are necessary to validate and extend our findings.
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2. While various tasks were considered, the chosen tasks may only partially
represent some possible scenarios in industrial settings. Further investi-
gation across a broader range of tasks would enhance the study’s com-
prehensiveness.

3. The study was conducted in a controlled environment, and real-world
industrial conditions may introduce additional complexities not fully ac-
counted for in this research.

3.8 Conclusions

In the Industry 4.0 era, the operator plays a crucial role in incorporating the
mechanisms that benefit from this revolution. This is becoming a fundamental
element of the new Industry 5.0 definition that has, as one essential component,
the human-centric approach and the value-added work of future operators.
AR is an essential technology to enable this evolution toward an automated,
efficient, and user-centric environment. As tasks performed by operators on the
shop floor become increasingly complex, there is a growing need for qualified
labor. However, remote assistance or access to an SME may only sometimes
be available. In critical situations, the operator’s cognitive load can increase
stress levels, affect problem resolution, and compromise safety.

This study proposes a system consisting of four layers to assist operators in the
Industry 4.0 era. The AR Physical layer is the primary interface between the
operator and the shop floor. Multimodal interaction using NL, AR, and direct
manipulation helps operators learn the system more quickly and interact with
it more naturally. By incorporating ML and DL models, the system further
assists operators in understanding the environment (e.g., using CNNs to get
states and values of non-sensorized machines), enabling them to interact in NL
and receive verbal and visual AR feedback.

The proposed system was implemented and evaluated with three groups of
operators, and its real-life use cases have demonstrated significant benefits:

• Enhanced productivity and reduced errors: The first group used
the proposed system with a semantic layer, and they experienced a sub-
stantial increase in task completion efficiency and a notable reduction in
errors. This improvement showcases how AR technology, when integrated
with semantic layers, can significantly enhance operator performance in
complex industrial tasks.

70



3.8 Conclusions

• Comparison with limited application: The second group, using a
limited application version without the semantic layer, struggled to match
the efficiency and accuracy of the first group. This comparison under-
scores the importance of incorporating semantic layers in AR solutions
to improve cognitive tools and environmental awareness.

• Importance of semantic layers: In contrast, the third group, which re-
lied solely on technical documentation, faced longer task completion times
and a higher error rate. These findings further highlight the importance
of integrating AR solutions with semantic layers, as they outperformed
traditional documentation in assisting operators.

These findings highlight the importance of including semantic layers in AR
solutions to enhance cognitive tools and environmental awareness, and are
aligned with recent studies, such as the one by Eswaran et al. on augmented
opportunities in the industry (Eswaran et al. 2023).

The proposed system effectively reduces task completion time and minimizes
errors, ultimately contributing to improved operational efficiency and operator
performance. As the Industry 4.0 revolution progresses, it is crucial to con-
tinue exploring and refining such AR systems to empower operators, mitigate
cognitive load, and foster a safe and productive industrial setting. As Industry
4.0 and 5.0 advance, this research paves the way for future investigations in
AR systems. There is a need for further refinement and exploration of novel
interactions to enhance AR system efficiency for operator assistance. Inte-
grating AI-driven decision support can empower operators to handle complex
tasks effectively. Additionally, extending semantic layers within AR solutions
shows promise in augmenting operators’ cognitive tools and environmental
awareness. These future research directions can significantly advance AR sys-
tems, creating a more user-centric, efficient, and safe industrial environment.
These advancements hold the potential to revolutionize various industries, from
manufacturing and logistics to healthcare and maintenance, providing tangible
benefits to operators and organizations alike.
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Appendices

3.8.1 Transformer context

1context = """
2Extruder information:
3- PLA is Polylactide.
4- For melting PLA , 170° - 180° - 185° - 190°.
5- PLA nozzle one/first: 170°.
6- PLA nozzle two/second: 180°.
7- PLA nozzle three/third: 185°.
8- PLA nozzle four/fourth: 190°.
9

10- PVAL is Polivinylalcohol.
11- For melting PVAL , 190° - 195° - 200° - 210°.
12- PVAL nozzle one/first: 190°.
13- PVAL nozzle two/second: 195°.
14- PVAL nozzle three/third: 200°.
15- PVAL nozzle four/fourth: 210°.
16

17Extruder tasks:
181° Turn on the machine turning the activation button to the

left.
192° Heat up the machine by using setting the nozzle controls to

the desired temperature.
203° When the machine is heated , pour the materials into the

funnel , found at the top of the machine.
214° The material will appear through the fourth nozzle.
22

23-------------------------------------
24
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25Extruder IDs:
26- Nozzle ID ( 0001 - 0002 - 0003 - 0004 ).
27- Activation button ID ( 0005 ).
28- Funnel ID ( 0006 ).
29"""

Listing 3.1: Transformer context based on technical documentation (Python language).

3.9 System evaluation

∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

Figure 3.8: Comparative of tasks, group A (Semantic AR) Vs. group B (Only AR) Vs.
group C (Traditional).
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Group A Group C

∗ ∗ ∗p < 0.001

Figure 3.9: Comparative of answers (Group A Vs. Group C).
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Chapter 4. Large Language Models for in situ knowledge documentation and access with AR

Augmented reality (AR) has become a powerful tool for assist-
ing operators in complex environments, such as shop floors, labora-
tories, and industrial settings. By displaying synthetic visual ele-
ments anchored in real environments and providing information for
specific tasks, AR helps to improve efficiency and accuracy. How-
ever, a common bottleneck in these environments is introducing all
necessary information, which often requires predefined structured
formats and needs more ability for multimodal and Natural Lan-
guage (NL) interaction. This work proposes a new method for dy-
namically documenting complex environments using AR in a mul-
timodal, non-structured, and interactive manner. Our method em-
ploys Large Language Models (LLMs) to allow experts to describe
elements from the real environment in NL and select corresponding
AR elements in a dynamic and iterative process. This enables a
more natural and flexible way of introducing information, allowing
experts to describe the environment in their own words rather than
being constrained by a predetermined structure. Any operator can
then ask about any aspect of the environment in NL to receive a
response and visual guidance from the AR system, thus allowing
for a more natural and flexible way of introducing and retrieving
information. These capabilities ultimately improve the effectiveness
and efficiency of tasks in complex environments.

4.1 Introduction

Augmented Reality (AR) and its capability for superimposing synthetic ele-
ments on top of real environments has been, indeed, a key factor in the rise
of Industry 4.0 (Kagermann et al. 2013). There are numerous definitions of
AR, with one of the most well-known being the one proposed by Azuma: "AR
is a system that supplements the real world with virtual (computer-generated)
objects that appear to coexist in the same space as the real world"(R. Azuma
et al. 2001). Billinghurst also defines AR as an interactive experience in which
real-world objects are enhanced by computer-generated perceptual informa-
tion (Mark Billinghurst, Clark, and G. Lee 2015); nonetheless, AR had been
applied in the industry field even before such definitions (Caudell and Mizell
1992). The ability to enhance environments with this technology has been
utilized in various industrial applications, including product design, process
design and control, maintenance processes, and learning. Its benefits have

78



4.1 Introduction

been widely demonstrated. Examples include using AR to visualize and ma-
nipulate 3D models during the design process, to provide real-time guidance
and instructions for Maintenance, Repair, and Overhaul (MRO) tasks, and
to enhance training and education programs through interactive simulations
and visualizations. Industry 4.0 lays on several pillars, such as the Industrial
Internet of Things (IIoT), cloud computing, additive manufacturing, and AR;
however, the latter is unique in that it focuses on the human factor (C. H. Chu
et al. 2021). On the other hand, shop floor operators have seen how their roles
and required knowledge have been transformed to match completely different
profiles, leading to a need for more skilled operators with advanced education
in the use of technologies (Jaschke 2014; Marino et al. 2021; Gattullo et al.
2019; Masood and Egger 2019). AR can serve as an assistive technology to
support shop floor operators in these environments.

The evolution of Artificial Intelligence (AI) and its integration into the industry
is one the most critical components behind what it has been defined as Industry
4.0. It can lead to a shift in the role of workers towards more value-added
tasks, which can increase job satisfaction and improve overall productivity.
By incorporating these technologies, manufacturers can create a more efficient
and flexible workforce, ultimately leading to a better future of work in the
manufacturing industry (X. Xu et al. 2021). The current proposal is a step
forward in achieving these objectives.

The proper training of operators is always the first challenge to be met to
guarantee their subsequent ability to work effectively and efficiently. Apart
from the emergence of new possibilities in this training, such as multimedia
tools, Virtual Reality (VR) and AR, ’one-to-one’ training is still very beneficial.
Direct interaction is still a precious element in training in complex contexts,
such as laboratories, control centers, and shop floors in the industry. However,
after training, operators need immediate access to documentation that can
solve new doubts or problems that may arise at any time. On these occasions,
the presence of a specialized expert is very rare or impossible. In contrast to
initial training, it is unlikely that the expert or Subject Matter Expert (SME)
will be available for the operator’s day-to-day work (Garza et al. 2013).

It is, therefore, essential to develop solutions that enable the operator to access
information quickly and efficiently in case of need. In this context, there is a
need to know what means and interrogation mechanisms are available. An ideal
solution would offer multiple interaction options, including operators’ ability
to ask questions and receive answers in Natural Language (NL), as discussed in
(Izquierdo-Domenech, Linares-Pellicer, and Orta-Lopez 2022). It is necessary
to consider technical documentation and expert knowledge to provide adequate
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answers. It is very interesting to offer not only the possibility to give answers
in NL to the operator based on the technical documentation, but also the in-
formation provided by the experts; however, technical documentation and ex-
pert information are typically unstructured, presenting a significant challenge
for creating operator assistance systems in complex environments. This often
leads to the creation of time-consuming, ad hoc solutions for different environ-
ments, which can be overwhelming and cause an excessive workload, specially
in environments with a high degree of diversity or work volume. Therefore,
it is necessary to address the issue of unstructured technical documentation
and expert information to create operator assistance systems that are efficient,
effective, and sustainable in complex environments.

One of the latest technologies based on Deep Learning (DL), Large Language
Models (LLMs), can aid in NL interaction and information retrieval by op-
erators. The proposed system enables experts to train operators on the job,
allowing for the system to serve as a knowledge source for subsequent consul-
tations. This type of learning, known as in situ learning or Scenario Based
Training (SBT), has been demonstrated to enhance knowledge acquisition and
retention according to prior research (Lave and Wenger 1991).

One-on-one training, primarily SBT, is still the best way to provide knowl-
edge of complex systems. Combining SBT with an automatic acquisition of
information, adding multimodal elements, avoiding the need to structure or
post-process the information, and making this knowledge available to the op-
erators, is an element of great interest, and the main interest of this work.

Another issue when discussing complex environments, such as shop floors, is
documentation access. The complexity of these environments tends to increase
exponentially, as does the specialized knowledge and technology required by
operators. Documentation about the different machines spread over a shop
floor is critical for making them work and learning and maintenance processes.
However, traditional forms of documentation, such as paper manuals, can be
cumbersome and difficult to use due to their lack of portability, the potential
for inaccuracies, and interpretation issues. As Ventura highlights, these issues
can make it difficult to effectively utilize this type of information (Ventura
2000). To address these challenges, several alternatives using AR technology
have been proposed. For example, AR can be used to display machine-specific
documentation on a user device in real-time as they work, allowing for eas-
ier reference and reducing the risk of errors due to outdated or incomplete
information (Quint and Loch 2015; Gattullo et al. 2019; Kollatsch and Kli-
mant 2021). In the context of Industry 4.0, the need for such accessible and
reliable information becomes even more pressing as the demands for decentral-
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ized, accurate, modular, and fast access to information become increasingly
important (Hermann, Pentek, and Otto 2016). By utilizing AR technology, it
may be possible to improve the accessibility and usability of documentation
in complex environments such as shop floors, ultimately leading to increased
efficiency and productivity.

AI and its subsets, such as Machine Learning (ML) and DL, also play an in-
dispensable role in the industry 4.0 field. The capabilities to develop solutions
that range from Computer Vision (CV), Natural Language Processing (NLP),
and finding patterns hidden in vast amounts of data are being applied in tasks
such as predictive maintenance (Carvalho et al. 2019), process automation
(Ribeiro et al. 2021), or security enhancement (Bécue, Praça, and Gama 2021).
Some architectures that enable developing applications that tackle these kinds
of tasks are Convolutional Neural Networks (CNNs) for CV and Transform-
ers for NLP. CNNs are a type of neural network architecture typically used
for image classification, while Transformers have revolutionized NLP tasks by
allowing for attention-based mechanisms to capture semantic dependencies be-
tween words. Transformers are behind the current LLMs and are mainly used
for tasks such as language translation, text summarisation, sentiment analysis,
question answering (QA), and language modeling (Vaswani et al. 2017). AI
tools are used to analyze large amounts of data, automate repetitive tasks, and
improve decision-making processes, leading to increased efficiency, cost savings,
and improved customer experiences. AI-powered systems are also being used
to monitor, predict, and prevent potential equipment failures and downtime,
reducing maintenance costs and increasing overall productivity.

This study aims to evaluate the effectiveness of using multimodal interaction
and AR to enrich complex environments with additional information from a
variety of sources (e.g., technical documentation, experience-based knowledge)
in an unstructured format and to assess the feasibility of novice workshop
operators accessing this information multimodally by anchoring it in the envi-
ronment through AR.

The main contributions of this work are:

1. The ability to incorporate the knowledge and experience of SMEs in a
flexible format and to continually update it through an iterative process,

2. The collection of information in multiple formats, anchored in the physical
space and using NL, to reduce the need for access to technical documen-
tation and SMEs,
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3. Reducing the time between the emergence of a doubt and receiving a
response.

This paper is structured as follows: In section 4.2, numerous examples of AR
and AI being applied to industrial settings are enumerated and described to
emphasize this research’s novelties. Then, in section 4.3, the principal user
roles and technology used for this research are explained. Section 4.4 presents
and evaluates the results from the experiment. Finally, in section 4.5, the
conclusions are described, highlighting the significance of the findings.

4.2 Background and context

Technological advancements have led to the integration of AR and AI into
various industries in recent years. These technologies have the potential to
revolutionize the way shop floor operators and SMEs interact with and perceive
the environment around them. This section will explore some of the current
state-of-the-art applications of AR and AI in the industry, highlighting their
potential impact and future possibilities.

4.2.1 AR in industry

As a rapidly emerging technology, AR is increasingly being adopted across
various industrial sectors, providing plenty of potential applications that can
improve efficiency, productivity, and safety. There is a considerable amount of
AR applications in the industry, and some examples are step-by-step guides
(Scurati et al. 2018), manufacturing (Caudell and Mizell 1992; Sääski et al.
2008; Salonen et al. 2009), design (M. Fiorentino, Monno, and Uva 2009;
Michele Fiorentino et al. 2013) and evaluation (Hou, Xiangyu Wang, Bernold,
et al. 2013; Hou, Xiangyu Wang, and Truijens 2015). Wang et al. (X. Wang,
Ong, and Nee 2016) highlights in their literature review the need for research
in several aspects when applying AR to the industry field, such as knowl-
edge representation and contextual awareness. AR can provide many benefits
in product design, allowing for faster and more collaborative tasks (Baroroh,
C. H. Chu, and L. Wang 2021; P. Wang et al. 2021; Sereno et al. 2022; Marques,
Silva, Joao Alves, et al. 2022; Marques, Silva, João Alves, et al. 2022). Process
design and control is another field of interest, as indicated by Elia et al. (Elia,
Gnoni, and Lanzilotto 2016), and several applications and systems have been
developed (Yuan, Ong, and Nee 2008; Ong and Z. B. Wang 2011), bringing
to attention the benefits of using AR in this field of application. Regarding
maintenance, much interest has been put into solving challenging problems,
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such as reducing the Mean Time To Repair (MTTR) (Mourtzis, Siatras, and
Angelopoulos 2020), reducing the cost of having SMEs on site (Gilchrist 2016),
guiding in bad viewing conditions (Ziaei et al. 2011), or focusing on the op-
erators’ safety (Tatić and Tešić 2017). There has also been research about
using AR for accessing information, such as the ARES framework, to adapt
the information shown to the operator depending on several conditions, such
as the time to perform a task (Syberfeldt et al. 2016). This highlights the
importance of the different roles and experiences on the shop floor and how
the interface must show more or less information depending on these char-
acteristics. Additionally, the findings indicate that using authoring tools by
SMEs makes creating instructions more efficient and user-friendly. For exam-
ple, Palmarini et al. developed the FARA authoring tool, which facilitates
the creation of step-by-step AR animations for various procedures, such as
maintenance, repair, and overhaul (MRO) (Palmarini, Fernández, et al. 2022).

4.2.2 AI in industry

Equally important, AI is being applied in industrial fields rapidly, alongside AR
in various domains. MRO, diagnosis, and predictive maintenance are among
the fields where AI has found widespread applications. Predicting a possible
error in the system before it happens leverages AI to foresee potential system
failures before they occur, thus enabling proactive maintenance and increased
operational efficiency. Both Carvalho et al. (Carvalho et al. 2019), and Zonta
et al. (Zonta et al. 2020) perform a systematic literature review where several
ML and DL models are being applied for predictive maintenance, demonstrat-
ing the increasing research interest in this field. Other applications focus on
customer support, where chatbots and recommendation systems can help com-
panies provide faster and more personalized support to clients. Casillo et al.
develop a chatbot framework for real-time assistance and efficient and person-
alized training (Casillo et al. 2020). Pattern recognition and prediction are,
by nature, key applications of ML and DL algorithms. Detecting patterns in
vast amounts of data might help data scientists obtain valuable insights, for
example, to predict changes in product demand. Moroff et al. evaluate several
ML and DL models such as Random Forest, XGBoost, Long-term short-term
memory (LSTM) networks, and a multilayer perceptron (MLP), among oth-
ers, as forecasting models (Moroff, Kurt, and Kamphues 2021). Finally, AI
models are being increasingly applied in the field of automation. Operators’
previous tasks can be automatized intelligently, such as optimizing production
processes and improving customer support. Maschler and Weyrich highlight,
in their literature review, several studies in fields such as anomaly detection,
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time series prediction, fault diagnosis and prognostics, quality management,
and computer vision (Maschler and Weyrich 2021).

4.2.3 Synergy between AR and AI in industry

As a complementary element to AR, AI opens new synergy possibilities. In the
field of information access, Chidambaram develops a solution utilizing AR and
the YOLO foundation model (Redmon and Farhadi 2018) to generate instruc-
tions that differentiate between novice users and SMEs (Chidambaram et al.
2021). As described by Standford, a foundation model means to "Train one
model on a huge amount of data and adapt it to many applications.", or in other
words, it is a model that has been pre-trained and provides various features
that can be utilized for transfer learning or fine-tuning to fit specific require-
ments (Bommasani et al. 2021). Examples of foundation models are YOLO for
object detection, Stable Diffusion for image generation (Rombach et al. 2022)
or GPT for text generation (Radford, Narasimhan, et al. 2018). Our previous
research has focused on developing tools that guide and enhance the safety of
shop-floor operators using AR and AI (Izquierdo-Domenech, Linares-Pellicer,
and Orta-Lopez 2022); however, the present proposal in this work takes a closer
look at the other side of the equation, the SMEs and how to use AR and AI to
enrich the environment with information in a comfortable manner. Little re-
search has been done regarding the use of these two technologies in enhancing
unstructured information management and access, and this work proposes an
approach to fill this gap.

4.2.4 Documentation management and access

With its human-centric view, the advent of Industry 5.0 (Rožanec et al. 2022;
Akundi et al. 2022) brings about significant challenges in the realm of docu-
mentation and information access, owing to various factors such as decentral-
ization, virtualization, and modularity (Gattullo et al. 2019). This highlights
the need for more effective methods for managing documentation. In light of
the need for information to be easily accessible, updatable, and translatable,
paper-based documentation is becoming obsolete. Further research must be
conducted in this area, as several authors have emphasized (Ventura 2000;
Quint and Loch 2015; Kollatsch and Klimant 2021). This study seeks to ad-
dress a key challenge in shop floor operations by exploring novel strategies
to enhance information accessibility. The ultimate aim of this proposal is to
leverage the knowledge and expertise of SMEs to create dynamic environments,
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enhancing them with knowledge anchors into spatial 3D real environments to
improve efficiency and profitability.

4.2.5 Information retrieval and mental decay

In accordance with the discussion presented in section 4.1, the most optimal
way to gain expertise in an industrial setting is to perform SBT and personal-
ized tutelage with an SME; however, one of the most critical issues associated
with this process is the maintenance of the acquired knowledge, particularly
its tendency to deteriorate over time.

Mental decay, also known as knowledge decay, is a passive process in which
the knowledge and skills of a person gradually decline over time if not actively
reinforced. Studies have shown that mental decay can occur even when an
individual is exposed to new information, with decay increasing as the time
between exposure and retrieval increases (Hardt, Nader, and Nadel 2013). Nu-
merous studies have been conducted on knowledge retention and information
retrieval in industrial settings in recent years. One such study by Adesope et
al. found that repeated exposure to information leads to better knowledge re-
tention compared to solitary exposure (Adesope, Trevisan, and Sundararajan
2017). This finding is supported by other studies, such as the work of Karpicke
and Roediger, who showed that retrieval practice can enhance long-term re-
tention of information (Karpicke and Roediger 2008). In addition, research
has also been conducted on the impact of aging on knowledge retention and
retrieval. For example, Bissig and Lustig found that older adults experience
greater difficulty retrieving information from long-term memory compared to
younger adults (Bissig and Lustig 2007). This finding has important implica-
tions for industrial settings, as the aging workforce is becoming increasingly
prevalent and might be a focus of interest in future research (Wolf et al. 2018).

In industrial environments, knowledge about machines and elements on the
shop floor is often distributed through multiple documents and SMEs. Hence,
having a reliable source for accessing and retrieving this information is essen-
tial. Information access is of paramount importance in industrial settings as
it plays a critical role in ensuring the efficient performance of operations. Un-
derstanding how the knowledge provided to operators fades over time becomes
increasingly important. It is essential to note that the operators involved in
the experiments were only given the task to perform with prior knowledge.
As explained in section 4.4, operators were subjected to repeated exposures
of the same information because this can lead to better knowledge retention
compared to a solitary exposure (Cepeda et al. 2006; Carpenter et al. 2012).
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The proposed tool aims to fulfill this gap of mental decay, thus providing access
to technical and SME information at all times.

4.3 Proposed system

One of the significant challenges faced by shop floor operators in industrial
settings is knowledge retrieval from the environment, as previously discussed
in section 4.1 and 4.2. It has been discussed that having an SME and utilizing
SBT may be the ideal solution, but not always feasible in practice. Further-
more, mental decay adds to the difficulty as the shop floor operator may not
always retain all of the information taught. Although AR applications have
been proposed as a means of providing additional information in a context-
aware system boosted by AI systems; accessing information naturally when
technical documentation and SMEs are the only sources of information re-
mains a challenge. This section presents a detailed description of the proposed
system, highlighting the key roles of the SME, the shop floor operator, and
their interactions with the system. This research aims to address the gap in
the literature and justify the main contributions outlined in section 4.1.

4.3.1 SME: context enrichment with information

The SME is an expert who has acquired extensive knowledge in a particular
field or topic; however, disseminating their knowledge and its contribution to
the field remains challenging. While the possibility to ask the SME in case there
is doubt exists, it may only sometimes be feasible, as the constant presence
of an SME in the work environment may not be practical (Garza et al. 2013;
Gilchrist 2016). Indeed, AR systems can reduce the cost of having SMEs on-
site, but the challenge remains in effectively transferring the SME knowledge
to the worksite. To bridge the gap in knowledge transfer to the site, this
study proposes an architecture that considers the SMEs roles as a "Knowledge
Transfer Experts".

The SMEs are responsible for utilizing the system to introduce "pills" of knowl-
edge across the environment. In this research paper, a "pill" refers to a small
unit of knowledge that can be added to a system. The term is chosen for its
memorable connotation and aligns with the concept of intentional knowledge
management. It is important to highlight that the presented architecture im-
plementation relies on the fact that the environment needs to be previously
scanned, a common feature in current SLAM-based AR solutions. Upon en-
tering the environment, the SME can interact with their surroundings using
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touch interaction. This way, the SME can add specific "pills" of information
to any element they find interesting to enrich, regardless of whether they are
machines, control panels, or any other element of interest in complex environ-
ments. This information "pills" will be used by the system with two purposes:

1. To retrieve a specific "pill" linked to a specific position in the environment
as-is,

2. For obtaining answers to specific questions.

The present study depicts a specialized tool that supports SMEs in contribut-
ing to a digitized environment. The tool facilitates data input through the
means of either voice recognition or written text. Using ray-casting techniques,
alongside touch interaction in AR, enables SMEs to pinpoint and enrich specific
features of the 3D scanned mesh from the virtual environment. The interaction
in the system is performed using touch input that is implemented differently
depending on the final device used. Specific AR devices can trigger the touch
action with hand-specific controls or even by using hands, while for mobile de-
vices like tablets, touching the screen at the desired object triggers the touch
action. In both cases, the interaction is implemented using ray-casting, which
calculates a line or ray from the touch 2D coordinates and with the direction
derived from the camera frustum. Then, the ray intersections are checked, and
the object selected is the one that is closest to the user in 3D coordinates.
The AR library maintains a congruent mapping of spatial coordinates between
the physical and virtual worlds, resulting in accurately identifying elements in
the 3D virtual space. A visualization of the SMEs task in the environment is
displayed in Fig. 4.1.

4.3.2 Shop floor operator: information retrieval

Once the site has been enriched with anchored "pills" of knowledge, it is time
for the shop floor operator to utilize these resources, reducing the frequency of
their need to seek clarification from the SME and technical documentation.

As depicted in Fig. 4.2, the presented application offers two alternatives for
accessing such information in a multimodal manner:

Touch & Area Selection Since many anchors might be disseminated around
the site, the shop floor operator has the option to select a rectangular area
and retrieve all the "pills" within that selection, as shown in Lane C in
Fig. 4.3. Applying the ray-casting methods as introduced in section
4.3.4.3.1, the system can obtain the 3D virtual coordinates of a chosen
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Figure 4.1: SMEs annotate scanned environments.

location on the shop floor by utilizing touch interaction. The process
involves the shop floor drawing an area of interest from which anchored
"pills" can be retrieved. The approach leverages the same ray-casting
techniques employed by SMEs in the aforementioned section, demon-
strating the tool’s versatility across multiple domains.

Speech Recognition for NL Queries While the touch and area selection
method is proactive, the system also includes a more reactive approach
to obtaining information. The shop floor operator can ask any query in
NL, such as "What temperature does glycol evaporate at?". The system
will then process the query and provide the answer (e.g., "360º") as well
as the location within the work environment where the SME anchored
the corresponding "pill" of knowledge. This is also shown in Lane B in
Fig. 4.3.
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Figure 4.2: Shop floor operator retrieves anchored information via NL query or area selec-
tion.

4.3.3 System implementation

For evaluating the proposed system, a mobile application has been developed
using the Unity platform, which allows for developing applications for both
Android and iOS devices. AR through the Vuforia library has been integrated
for scene recognition (i.e., the scanned laboratory). For Speech Recognition
on device, the Vosk toolkit has been used, which allows for real-time voice
recognition in diverse languages. Regarding the server side, since the infor-
mation must persist between application uses, the Python FastAPI framework
has been utilized for generating the different endpoints using a RESTful API.

Fig. 4.3 briefly summarises the application’s key features. Lane A highlights
the capabilities of SMEs within the app. After detecting the environment, the
SME can add pieces of information, either handwritten or by voice, at any
point, using touch interaction. Lanes B and C outline the interaction from the
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Figure 4.3: Two shop floor roles: SMEs add information, operator retrieves it via NL/AR.

shop floor perspective. In Lane B, the operator can use the application to ask,
in NL, about anything regarding contextual information. This query is then
sent to the transformer for processing. The specific transformer architecture
is explained in detail in subsection 4.3.4. The result is displayed not only as
a text answer but also as a highlighted location in the environment where the
SME added the information. Finally, Lane C briefly shows that the operator
can retrieve any information in any environment by drawing a rectangle around
the area of interest using touch interaction. The application will display all
notes anchored by the SME within that area.
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4.3.4 Consistency of the information

Ensuring the consistency of textual information units when integrating them
into a system is a crucial factor to consider. It is important to estimate whether
a new block of textual information is contradictory, redundant, or provides new
information content, particularly in a proposal where unstructured information
is the fundamental input. The topic of consistency in LLMs is a recurring
subject of study, as noted by Elazar et al. in their work on measuring LLMs
(Elazar et al. 2021). In this context, consistency is treated systematically
and comprehensively, with a focus on ensuring the correctness of the answers
provided by the model prior to paraphrasing the input questions.

In this study, the main focus is on consistency, which involves ensuring that
there are no redundancies or contradictions when introducing a new block of
information related to a particular aspect of the environment. Redundant
information can reduce the efficiency of the model, while contradictory infor-
mation is even more critical. It is crucial to prevent SMEs from providing
conflicting information about the same element, as this can cause problems
when correcting subsequent information queries. Such conflicts may arise not
only from an SME’s error but also from speech-to-text conversion, for instance.
To solve this problem, LLMs allow a fine-tuning process after pre-training to
improve their behavior when faced with more specific problems. For this spe-
cific problem we use a Transformer architecture.

Transformer architecture is a neural network model composed of two key com-
ponents: an encoder and a decoder. The encoder comprises multiple lay-
ers comprising two sub-layers: an attention mechanism and a fully connected
feed-forward neural network. The decoder, on the other hand, follows a similar
structure. However, in this case, each sub-layer comprises three sub-layers: the
attention sub-layer, the feed-forward one, and a third sub-layer in which multi-
head attention is applied to the output of the encoder. Using this mechanism
makes it possible to have better results than with recurrent networks since
it is possible to take into account the semantics of the input sentence more
efficiently. In addition, the training process can be unsupervised; however, it
is necessary to use significant amounts of unlabelled text. Due to the cost of
training a transformer from scratch, not only in terms of time but also in terms
of computational units and the amount of data needed to obtain a good per-
formance, it is common to use pre-trained models. That is, using architectures
that have already been trained with vast amounts of data. This allows the
pre-trained transformers to have already learned most of the semantics of NL,
so they can process and answer most of the questions or suggestions that the
user asks in NL in a very flexible way. However, it is important to carefully
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select the dataset to fine-tune the model, as it is of balanced and representative
data.

It is possible to find a wide variety of transformers with a wide range of capa-
bilities in NL processing. Such as machine translation between language pairs,
text summarisation, text-relevant QA, or conversational systems. Among the
most commonly used transformer-type pre-training systems currently in use are
DistilBERT (Sanh et al. 2019), RoBERTa (Liu et al. 2019), Google’s T5 (Raf-
fel et al. 2020), BLOOM (Scao et al. 2022), or GPT-3 (Radford, Narasimhan,
et al. 2018). Arroni et al. (Arroni et al. 2023) provide a compelling example
of the effective use of LLMs in their work on semantic classification.

In the case of this project, the GPT-JT model was used as resulting of the
fine-tuning of the GPT-J model with UL2 training objectives (Tay, Dehghani,
et al. 2022; Tay, Wei, et al. 2022), achieving results similar to models of 175B
parameters in many tasks, such as InstructGPT davinci v2, but with only
6B parameters (Together 2022). GPT-JT has been trained in a decentralized
way and allows its free download and use, as well as its installation and local
use. The final LLM used in the final solution can be adapted to specific final
requirements of the solution and available options. GPT-JT was a good com-
mitment in evaluating the proposed solution, allowing good results in QA on
technical documentation and a high degree of flexibility on few-short learning.
Few-shot learning means that the model can be presented with one or several
examples of the task to be solved to achieve higher degrees of accuracy in its
responses.

With this purpose, the GPT-JT model has been tested to detect if a new
piece of textual information is redundant or in contradiction with the previous
information assigned to a specific element of the scene of the AR environment.

Although the main aim of this research was not to compare various models on
the same instruct-based tasks, we set specific criteria for selecting the most ap-
propriate model. Based on its Open Source availability, superior performance
against instruct-based queries (as per the Hugging Face ranking), and ease
of installation on local servers (6B parameters only), the GPT-JT model was
chosen. The preliminary findings indicated that the chosen model classified
the information consistently.

Table 4.1 shows a concrete example used to discriminate between "new", "con-
tradictory", or "redundant" with few-shot learning, in this case, a single train-
ing example. Using only one example, it has been possible to verify the cor-
rectness of the classification of the new information block in all the tested ex-
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amples. An exhaustive evaluation of this approach transcends the objectives
of the present proposal, more typical of computational linguistics, requiring
the creation of comprehensive and specific evaluation datasets which, in the
best of cases, cannot guarantee their results in the face of domain problems.

The proposal in this paper focuses on using the few-shot learning consistency
test of the transformer to detect redundancy or contradiction problems better
and visually notify the SME of this possibility. When the SME is warned
of a possible redundancy or contradiction, it can examine the text entered
associated with an element and repeat in case of a possible error or reconfirm
the correction of the new information element.

4.4 Evaluation and results

4.4.1 Experimental setup

Experiments were conducted in a textile laboratory at Universitat Politècnica
de València, Campus d’Alcoi. The section of the laboratory that was scanned
for subsequent identification is a representative sample of an overall facility.
It was selected because it contains a variety of equipment commonly used
in textile manufacturing and provides a suitable environment for testing the
developed system. The equipment used in the experiments includes machines
for fabric dye testing, material cleaning, and emulsion homogenization, all
essential for producing high-quality textile products. The laboratory’s wide
range of equipment and diverse capabilities make it an ideal environment for
simulating potential scenarios, providing a representative setting for testing
and evaluating various approaches and solutions. To evaluate the developed
application, we selected an iPad Air device because of its compatibility with
the system and development tools and its ease of use for the operators.

4.4.2 Participants

As far as participants are concerned, a textile master teacher served as the
SME for explaining and adding information. Two groups of participants were
selected to evaluate the system. 30 participants were selected and distributed
between groups A and B.

The 30 participants recruited for the study were all master’s students in engi-
neering, ranging in age from 22 to 28 years old, with an equal distribution of
male and female participants. While all participants had previous experience
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Context Input Output
Few-shot learning
To turn on the machine
switch on the red button.
To turn off the machine
switch off the red
button.

To turn on the machine it is
necessary to switch on the red
button.

"redundant"

Same context.
To turn on the machine it is
necessary to switch on the blue
button.

"contradictory"

Same context.
To pause the machine it is
necessary to switch on the blue
button.

"new"

After few-shot learning...
The emulsion is
homogenized with an
agitator.
One field of use is
microcapsule emulsions
or cosmetic creams.
At the top of the panel
is the button to raise
and lower the agitator.
In the central part of the
panel are the buttons to
turn on and off, and a
wheel to control the
number of Revolutions
Per Minute (RPM).
At the bottom, we find
the motor and ignition
indicators.

To lower the agitator, use the
button on the top of the panel. "redundant"

Same context. The machine is called
homogenizer. "new"

Same context. We can find the buttons to turn
off the machine at the bottom. "contradictory"

Table 4.1: GPT-JT tests label information as "new", "redundant", or "contradictory"
based on context.

with similar machines, none were familiar with the specific machine used in
this study, making it a novel task for all participants.

While both groups were exposed to the explanation of the SME, during the
system evaluation phase, group A had access to the documentation about the
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machines to be utilized and the SME. In contrast, group B had access to
the developed application. The only restriction applied to group B was that
they were instructed to use the application first for any questions about the
machines. If the answer from the application was incorrect or lacked enough
information, they were allowed to search in the technical documentation and
ask the SME.

Both groups, A and B, were exposed to information about the environment and
the machines they were going to use during the experiment. The information
exposure took place simultaneously a week before the experiment for both
groups. The information was presented by a SME, who, at the same time,
introduced the information into the system. Three days before the experiment,
both groups were again presented with the same information to boost retention.

4.4.3 Tasks

The participants were instructed to perform several interactions with three
types of machines; fabric dye testing (Task 1), material cleaning with an ul-
trasonic machine (Task 2), and homogenizing emulsions (Task 3). Fig. 4.4
compares the completion time between groups A and B while performing the
same tasks in seconds. To ensure objective and consistent measurements, the
data was collected by a single external observer who followed standardized
procedures throughout the data collection process.

The following standardized procedures were employed by the observer:

1. Training and Familiarization: The observer underwent comprehen-
sive training to become familiar with the research goals, the tasks to be
performed, and the specific machines involved. This training aimed to
ensure that the observer had a thorough understanding of the procedures
and requirements for accurate data collection.

2. Non-Intrusive Observation: The observer adopted a non-intrusive ap-
proach to minimize any potential influence on the participants’ behavior
or performance. The observer focused on discreetly observing the partic-
ipants without interfering with their interactions or affecting the natural
flow of the tasks. This approach aimed to ensure that the participants’
actions were representative of their usual behavior.

3. Data Recording: The observer used the same data collection sheet to
record relevant information during the observation process. This included
capturing the start and end times of each task, any relevant observations
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Figure 4.4: Time comparison between groups A (No app) and B (With app).

or notes, and any additional contextual information that could be impor-
tant for later analysis.

This approach allowed for precise time measurement and reduced the potential
for biases or errors that could arise from multiple observers or inconsistent
methods. It is clear that there is a significant reduction in time when specific
information needs to be retrieved, thereby supporting the second and third
main contributions of this research: anchoring information in the environment
reduces the need for consulting technical documentation and SME, and the
reduction in time between the emergence of a doubt and receiving a response.

4.4.4 Results

Table 4.2 shows the results of the two-factor ANOVA with repeated measures
on one of them performed to determine if the effect of the group influences the
task execution time. The results show that there is a statistically significant
difference between the groups, regardless of the task (p < 0,001) such that the
task execution time for workers using the app (45,62 seconds) was significantly
lower than for workers not using the app (196,29 seconds). No differences were
observed between tasks (p = 0.964), and the group and task interaction were
not significant (p = 0,781). The term "group and task interaction" refers to
the relationship between the different groups of participants (Groups A and

96



4.5 Conclusions

B) and the specific tasks they performed. In this context, a non-significant
interaction suggests that the effect of the group on task execution time was
consistent across all tasks. In other words, the app usage had a similar effect
regardless of the task performed.

Additionally, a Likert questionnaire of 5 points was delivered to the partic-
ipants of group B (see table 4.3) to measure their perceptions towards the
combination of AR and anchored information retrieval in a multimodal man-
ner and the NL interaction complement in the AR system. The questionnaire
had ten questions, with values that ranged between 1 (Strongly disagree) and
5 (Strongly agree). The results support the notion that the participants had
a favorable view towards integrating anchored information and its retrieval
by AR systems. This indicates that this approach could potentially lead to
improved outcomes in future studies and practical applications.

4.5 Conclusions

The roles of SMEs and shop floor operators are essential in Industry 4.0, but
even more in the future advent of Industry 5.0. AR and AI techniques are
being applied to improve the efficiency and effectiveness of these roles. How-
ever, while the use of AR and AI techniques is receiving much attention, only
some studies have investigated the value of SMEs as a source of information.
The unstructured nature of this information makes it challenging to manage
and integrate with technical documentation. In this study, we developed and
evaluated a system to extract information from SMEs that can be integrated
with technical documentation. We used state-of-the-art AI architectures such
as Transformers and LLMs to perform useful tasks such as QA and multi-
modal interaction on AR systems. Our results demonstrate the potential of
integrating SME information with technical documentation to reduce the time
it takes for operators to access relevant information. It is worth noting that
Industry 5.0 is a human-centric approach to the industry that emphasizes the
value added by people in the manufacturing process. While Industry 4.0 fo-
cuses on using advanced technology to automate and optimize production,
Industry 5.0 recognizes the importance of operator comfort and satisfaction
in the workplace. This approach considers the physical and emotional well-
being of the workforce, as well as their creativity, problem-solving abilities,
and interpersonal skills. By combining the strengths of both human workers
and technology, Industry 5.0 aims to create a harmonious and efficient work
environment that benefits all stakeholders.
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Chapter 4. Large Language Models for in situ knowledge documentation and access with AR

This study highlights the importance of SMEs’ knowledge for improving shop
floor operations; however, there is still room for improvement in automating
the extraction process and maintaining the accuracy and relevance of the in-
formation. Future research could focus on developing more advanced NLP
techniques to better extract and organize SMEs’ knowledge while ensuring
that the information remains up-to-date and reliable.

Although the Vosk toolkit was used for the system implementation for speech
recognition, in the presence of noisy or industrial environments, speech-to-text
accuracy can be significantly improved by employing the latest Open Source
models, such as Whisper (Radford, Kim, et al. 2022).

Another area for future research is integrating SME knowledge with techni-
cal documentation. It would be beneficial to investigate how different types
of information can be presented in a way that is easy to access and use for
operators. Additionally, there is potential for integrating AR and AI tech-
niques with SME knowledge to further enhance the efficiency and effectiveness
of shop floor operations. For example, by implementing automatic informa-
tion retrieval methods using object detection models, thus allowing operators
to access relevant information while exploring the shop floor quickly.

As Industry 5.0 emphasizes the human-centric nature of manufacturing, it is
essential to explore ways to improve operator comfort and satisfaction in the
workplace. Future studies could investigate using AR and VR technologies to
create more engaging and interactive training materials or wearable technolo-
gies to monitor and improve operator well-being.

4.6 Appendix

This appendix illustrates the different requests the application can make to
the server, shown in Fig. 4.5. It outlines the possible requests the SME and
the shop floor operator can make to the server.
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4.6 Appendix

Figure 4.5: Rest API calls.
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Chapter 5

Conclusions

This chapter presents a summary of the key contributions of this thesis and
suggests directions for future research.

5.1 Conclusions

In this thesis, the integration of AI with AR has significantly enhanced the
capabilities of AR systems. This synergy has facilitated advancements rang-
ing from automated validation to improved learning experiences, introducing
diverse multimodal interaction methods with the systems and effectively dis-
seminating SME knowledge. A comprehensive architecture was devised and
evaluated across multiple applications to assess the viability and advantages
of this AI-AR fusion, yielding promising outcomes. Moreover, the process
enabling SMEs to impart their knowledge for subsequent retrieval has been
examined, demonstrating substantial success.

This thesis encompasses three studies to evaluate the practicality of integrating
AR and AI via a semantic layer alongside the dissemination of SME knowledge.
Each study benchmarked the system’s performance against conventional infor-
mation dissemination methods, such as paper and PDF documents. Further-
more, in the second study, the effectiveness of the developed AR-AI application
was also compared with that of a traditional AR application. Additionally, in
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the second and third studies, participants were asked to complete a Likert-
scale questionnaire designed to assess the usability and overall appeal of the
proposed system.

The following outlines the conclusions drawn from each of the three studies:

Study 1: Towards achieving a high degree of situational awareness and mul-
timodal interaction with AR and semantic AI in industrial applications

• The introduction of a semantic layer in the AR system facilitated
automatic transitions to subsequent tasks, reducing completion time
for specific tasks. This was particularly evident in Task 1, where
Group 2, utilizing the semantic layer, could automatically proceed
to the next task without manual intervention, unlike Group 1.

• In Task 2, the semantic layer provided additional security by auto-
matically validating and warning operators when a specific threshold
was exceeded in the analog control. This feature not only reduced the
cognitive load on operators but also improved their response times
and accuracy in task execution

• Task 3 highlighted the significant time efficiency achieved by query-
ing through natural language instead of consulting technical docu-
mentation. The use of NLP and voice responses in the AR system
considerably sped up information retrieval despite occasional needs
for question repetition due to errors in transformer interpretation.

• The addition of the semantic layer showed a notable impact on the
execution time of tasks, especially those that were more complex.
Tasks 3, 4, and 5 demonstrated significant time savings for Group
2 (using the semantic layer) compared to Group 1. This finding
suggests that the semantic layer is particularly beneficial in tasks
where operators require more guidance and where the complexity is
higher, such as anomaly detection.

• Overall, it has been demonstrated that automatic validation and
guidance are beneficial, even for tasks that do not require high cog-
nitive effort.

Study 2: Environment awareness, multimodal interaction, and intelligent as-
sistance in industrial augmented reality solutions with deep learning
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• Integrating a semantic layer in AR significantly improved task per-
formance. Operators in Group A, who used semantic AR, demon-
strated more efficient completion of tasks compared to those in Group
C, who relied solely on traditional documentation. This was partic-
ularly noticeable in tasks that required more complex cognitive pro-
cesses, underscoring the semantic layer’s role in enhancing cognitive
capabilities and operational efficiency.

• The study revealed that operators using the semantic AR system
(Group A) experienced considerably lower response times when ask-
ing questions than those using only technical documentation (Group
C), indicating that the semantic layer effectively streamlines informa-
tion retrieval, enabling faster decision-making and problem-solving.

• Operators utilizing the semantic AR system reported higher satis-
faction levels, as evidenced by their responses to the Likert-scale
questionnaire. They found the system to be more helpful and easier
to use, suggesting that the semantic layer improves task performance
and enhances the overall user experience.

• The analysis showed a statistically significant difference in task ex-
ecution times between the groups, regardless of the task performed.
This highlights the effectiveness of the semantic AR system in re-
ducing the time required to complete tasks, particularly for Group
A operators.

• For tasks that were less cognitively demanding (such as Task 2, 4,
6, and 7), no significant differences in execution times were observed
among the operator groups. This suggests that the benefits of the se-
mantic AR system are more pronounced in tasks that require higher
cognitive input and complex decision-making.

• Both groups that utilized AR systems (Groups A and B) concurred
on the advantages of implementing AR in shop floor operations. No-
tably, participants from Group A (app with semantic capabilities)
perceived the system as significantly more beneficial, especially for
information retrieval purposes.

Study 3: Large Language Models for in situ knowledge documentation and
access with Augmented Reality
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• The integration of Large Language Models (LLMs) with AR in the
textile laboratory setting significantly enhanced task efficiency. This
technology facilitated more rapid completion of tasks related to fab-
ric dye testing, material cleaning, and emulsion homogenization com-
pared to traditional methods.

• The experimental setup, involving various of equipment used in tex-
tile manufacturing, proved to be a suitable environment for assessing
the application of AR and LLMs. The diversity and complexity of
the equipment provided a realistic and challenging environment for
testing the system’s capabilities.

• Participants in the study, comprising master’s students in engineer-
ing, could effectively use the developed AR application despite unfa-
miliar with the specific machines used. This suggests the system is
intuitive and user-friendly, even for those new to the specific indus-
trial environment.

• The findings demonstrated a distinct benefit in utilizing the AR ap-
plication for information retrieval in a shop floor setting. Compared
with conventional approaches, like referring to technical documenta-
tion or consulting an SME, who cannot be available at any time, the
AR application offered a more rapid and effective means of accessing
essential information.

Based on the aforementioned specific conclusions, the following general con-
clusions are drawn:

• The integration of semantic layers and LLMs with AR technology signif-
icantly enhanced task efficiency. This was evident in tasks that required
higher cognitive input and complex decision-making, where AR systems
facilitated more rapid completion and increased accuracy.

• While the advantages of semantic AR systems were more pronounced
in tasks requiring higher cognitive input, they also proved beneficial in
less demanding tasks by providing automatic validation and guidance,
enhancing overall efficiency.

• The use of AI-enhanced AR systems, and more specifically with NLP
capabilities, resulted in considerably faster information retrieval and more
effective decision-making compared to traditional methods like consulting
technical documentation or seeking SME assistance.
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• Operators using AR systems with semantic layers reported higher satis-
faction levels and found the systems more helpful and easier to use.

• The diverse and challenging environments used for the studies, such as
a textile laboratory or a shop floor, demonstrated the suitability of AR
systems with semantic layers for a wide range of industrial applications.

• Even participants without prior experience with specific machinery could
use the developed AR applications effectively, indicating the systems’
user-friendliness.

5.2 Future work

This thesis underscores the advantages of augmenting traditional methods and
AR applications with cutting-edge AI techniques. While significant progress
has been made, there remain several avenues for further research:

• In Studies 1 and 2, we conducted a general evaluation of the semantic
layer without specifically focusing on gender and age diversity. Future
research should involve a more diverse participant pool to broaden the
applicability and robustness of our conclusions.

• The tasks involving visual validation, such as the operation of pressure
valves or activation buttons in Study 1, necessitated specialized CNN
model training. This approach, while effective, may not be ideal for
complex environments with numerous visual elements that belong to non-
sensorized machines (e.g., not connected to a SCADA system). Future
work should explore the potential of Large Multimodal Models (LMMs)
like Flamingo, CLIP, or GPT-4 with Vision to enhance the capacity for
interpreting and interacting with a wide array of visual controls, thus
minimizing the necessity for training one model per each control.

• The tasks selected for system evaluation were specific and relevant to our
studies. However, the diversity of tasks on the shop floor extends far be-
yond these. Subsequent research should aim to evaluate the effectiveness
of these systems across a broader spectrum of tasks, thereby affirming
their versatility and applicability in various industrial contexts.

• In our current setup, the SME manually added and updated informa-
tion through the AR interface, a method that might not be scalable in
larger, more complex settings. Future studies should focus on developing
more efficient and scalable techniques for inputting and updating expert
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knowledge to enhance the practicality and adaptability of the system in
diverse industrial environments.

5.3 Scientific contributions

The following publications have emerged from this thesis:

5.3.1 Papers in journals indexed in JCR

• Izquierdo-Domenech, J., Linares-Pellicer, J., & Orta-Lopez, J. (2023).
Towards achieving a high degree of situational awareness and multimodal
interaction with AR and semantic AI in industrial applications. Multi-
media Tools and Applications, 82(10), 15875-15901.

• Izquierdo-Domenech, J., Linares-Pellicer, J., & Ferri-Molla, I. (2023). En-
vironment awareness, multimodal interaction, and intelligent assistance
in industrial augmented reality solutions with deep learning. Multimedia
Tools and Applications, 1-28.

• Izquierdo-Domenech, J., Linares-Pellicer, J., & Ferri-Molla, I. (2023).
Large Language Models for in Situ Knowledge Documentation and Access
With Augmented Reality. International Journal of Interactive Multime-
dia and Artificial Intelligence.

5.3.2 Conferences

• Izquierdo-Domenech, J., Linares-Pellicer, J., & Orta-Lopez, J. (2020, De-
cember). Supporting interaction in augmented reality assisted industrial
processes using a CNN-based semantic layer. In 2020 IEEE International
Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 27-
32). IEEE.

• Izquierdo-Domenech, J., Linares-Pellicer, J., & Orta-Lopez, J. (2021,
November). Semantic Computing Enhancement of Industrial Augmented
Reality Solutions with Machine Learning. In Proceedings of the 2021 3rd
International Conference on Video, Signal and Image Processing (pp.
131-138).
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