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Abstract

The performance, vulnerability, and resilience of water distribution systems (WDS) depend, 
to  varying degrees, on its underlying topological structure, herein referred to as its shape. 
Literature mostly differentiates between two main shapes of networks - branched or looped. 
However, the shape of real networks lies in between the two extremes of purely branched and 
looped systems. Although these networks are globally topologically different, they may show 
high similarity at the local scale of a borough or a neighbourhood. Recent studies focused on 
describing WDS via links and nodes by using graph theory. These first attempts at graph-
theoretical applications showed promising results in describing the global structure and 
estimating the global resilience of WDS, but there are a limited number of measures that take 
the importance of local topology into consideration.  

This research enters the new terrain of local WDS investigations using graphlet analysis to 
describe this local topology in more detail. Graphlets are small connected subgraphs of a large 
network which have recently gathered much attention as a useful concept to characterise local 
topology and uncover structural design principles of complex networks. Consequently, these 
novel analysis techniques can provide new insights into how local WDS structures influence 
their overall behaviour. 

In this work, we first provide a framework to describe local and global topology with graphlets. 
We then employ the framework to assess the local criticality of two benchmark WDS, linking 
the results to topological metrics already adopted in the literature. Additionally, we analyse 
the potential gain of graphlet analysis in the prediction of local vulnerabilities by including 
graphlet features into a random forest regression setting. As a result, we observe a positive 
trend in performance in comparison to a similar model without graphlet features. 

Keywords
Graphlet, graph theory, resilience, water distribution, topological structure. 

1. INTRODUCTION

WDSs naturally relate to graphs, associating the pipes and junctions in the water system with links 
and nodes on a mathematical object. That is why graph theory can be utilised  to describe and 
compare WDSs with different topologies in a unified mathematical language and serve as sound 
support in decision making in planning and optimization of networks. Water system research 
successfully adopted graph-theoretical measures in support of various tasks. The current set of 
instruments includes a large variety of graph-theoretical measures that are widely used in 
resilience and redundancy analysis [1], [2], [3], identifying critical components [4], [5], [6], and 
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sectorisation [7], [8]. The resilience of a network, defined as the ability of the system to recover 
after adversarial effects [3], partially depends on the topology of the WDS.  Earlier works showed 
that more resilient networks can be designed by graph theoretical approaches, for example, by 
taking spectral and statistical graph measures into consideration. [2] systematically reviewed and 
evaluated the correlation between common topological measures and network resilience. 
Additionally, topological and spectral properties were used in [9] and [10] to assess global and 
local vulnerabilities. These works highlight the importance of such metrics as algebraic and 
spectral connectivities. The utility of centrality measures for the assessment of local vulnerability 
has been indicated in [11] and [12].  

Nevertheless, traditional graph theoretical measures (e.g., average node degree, graph diameter, 
link density) do not provide detailed information on local neighbourhood structures of networks 
but rather a global description. However, this local information can be of high importance in 
automatic generation of WDS [13], and applications that require a more precise description of 
those networks (e.g., node and link criticality analysis) [4], [5]. There are two sides to the 
criticality of elements of WDSs: fault probability and the impact severity. In this work, we 
introspect the latter part of the equation by looking only at the local topological structure.  With 
the terms of local importance, and criticality we refer to the same phenomena, particularly - the
total impact of the fault in the element on the whole system. Utilities and engineers estimate the 
impact by simulating pipe breakages, abrupt increases in demands, and other faults with 
hydraulic engines such as EPANET. The main issue of a hydraulic-based critical element analysis 
is computational costs for larger WDSs. On the flip side of the coin, pure topological measures will 
fail to take into account energy dissipation and the physical nature of the water distribution 
process. Some works attempt to bridge energy-based measures of local criticality with topological 
indicators. For example, water-flow centrality [14] and node demand centrality [15] assign 
hydraulically informed weights to centrality metrics. Furthermore, energy-informed shortest 
routes gently introduce energy loss properties into the graph structure [16],  

With this work, we open the way for a more detailed description of WDSs by introducing graphlet 
representation to address the aforementioned challenges. Graphlet analysis aims to extract small 
induced subgraphs that appear in the network. Graphlets have been successfully applied in 
network alignment, description of brain  networks [17] and used as an early precursors for in 
social networks [18]. The ultimate goal is to provide a relevant and comparable numerical 
representation of local connectivities of water networks, i.e. a topological fingerprint of the WDS.  
This research additionally covers the assessment of the descriptive power of graphlets in the 
estimation of local (i.e. node) criticality. Analysis of global network vulnerability and various 
resilience metrics is outside the scope of this project. 

2. METHODOLOGY

In the first step of our methodology we introduce the reader to graphlet decomposition, the 
products of graphlet analysis, and the relationship between graphlets and traditional topological 
metrics. We show how the coarseness of the network influences the results of the analysis by 
comparing graphlet representation of the network versus the representation of the skeletonized 
version of the network. Next, we evaluate the intrinsic relationship between the graphlet features 
with existing topological measures. In this step, we carry out a graphlet analysis on a set of 
generated networks and estimate the correlations with the topological metrics on a global 
(network-level) and local (node-level) scale. Specifically, we carry out a Principal Component 
Analysis (PCA) on extracted graphlet features and assess the correlations of principal components 
with those features. 

Second, we assess the descriptive power of graphlet analysis in the prediction of the importance 
of a node. We perform the analysis by incorporating the results of the graphlet into the random 
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forest regression model and estimate the performance gain by comparing it with the performance 
of the same model without graphlet features. 

2.1 Graphlet analysis

Graphlets are small subgraphs that collectively comprise the structure of the network. One can 
think of graphlets as (atomic) building blocks of the graph. A plethora of research in graphlet 
analysis focuses on extracting the graphlet level description of the network with a relatively low 
computational effort. This is usually performed by some form of a counting algorithm. Since direct 
enumeration of the graphlets is rather computationally expensive, researchers attempt to speed 
up the calculations by exploiting the symmetry properties of graphs [19] or employing sampling 
strategies.  

In this work, we employed the ORCA algorithm due to the availability of the source code and 
particular suitability for sparse graphs. Due to the computational constraints, the size of the 
graphlets included in ORCA is limited to 5. Theoretically, the number of potential distinct 
graphlets is infinite and grows exponentially with its size. However, this may reduce the 
applicability of the graphlet representation due to a sparse representation. Current rules to find 
certain graphlets are mostly designed by hand, although there are advancements towards the 
automatic generation of those rules [20].  

For a finer representation of graphlets, counting algorithms operate on the level of orbits. An orbit
is an automorphism of a graphlet, e.g. isomorphism of the graphlet to itself. In other words,  the 
parts of the graphlet that are symmetrical to others will belong to the same orbit. Orbit counting 
algorithms thus identify how many times a node touches the corresponding orbit. In total, 29 
graphlets of sizes up to 5 contain 73 distinct orbits.   

As a result, ORCA produces vectors on 2 scales - a local of size 73 and assigned to each node level, 
and a global, i.e. a vector of 29 which is assigned to a whole graph. The values on the former vector 
correspond to the number of times an orbit occurs on each node. We further denote this vector as 
an orbit count vector (OCV). OCVs are comparable between the nodes of different water networks. 
The global vector is calculated by summing up OCVs over nodes of a graph and results in the total 
graphlet count in that network. We denote this vector as a graphlet count vector (GCV).   

One important aspect of the graphlet representation is the influence of the coarseness of the graph 
layout. Commonly, the number of nodes and connections in the topology varies depending on the 
ultimate task. Skeletonization is a technique to simplify networks that simultaneously alters the 
granularity of the graph [21]. As a consequence, the graphlet analysis is sensitive to this 
granularity. In our work, we assess the influence after 2 steps of skeletonization. The first step is 
a unification of adjacent consecutive pipes. The second is trimming dead ends and parallel 
connections. 

After retrieving graphlet and orbit counts from the network we perform a PCA.  PCA is a widely 
used method of dimensionality reduction that decomposes the variables into a new set of 
uncorrelated features through a singular value decomposition. As the result, we obtain a low 
dimensional representation of the original data, while preserving most of the variance. These new 
features are called Principal Components (PCi). Each of them is composed as a result of a linear 
combination of original features and explains a certain share of variance. In the case of GCV and 
OCV, we use PCA to find the inner correlations between the features and to compare the key 
components altogether rather than each graphlet or orbit individually. To extend the analysis, for 
each principal component we leverage the information about contributions of original features 
and explained variances. 
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Figure 1. Existing graphlets (with sizes up to 5 nodes) and their orbits. 

2.2 Graph-theory based measures

In this section we summarize topological measures that describe graph networks. As was 
mentioned above, graphlet analysis produces vectors on 2 scales - a local (node) level, and a global 
(network) level. The former representation can be viewed as a heatmap on the nodes network, 
while the latter assigns a vector to a whole graph. We thus compare both representations with the 
corresponding topological measures separately. These measures are widely used in WDS analysis, 
mostly in the context of vulnerability and resilience analysis.  

2.2.1 Local measures

Node degree
Node degree is a basic metric that measures the number of incidental links (or pipes to the 
network. 

𝑑(𝑣) = ∑
𝑗 ∈ 𝑉

𝑗 ≠ 𝑖

 𝐴𝑖𝑗  (1) 

Here Aij is the element of an adjacency matrix.

Betweenness centrality
Betweenness centrality is a statistical value that measures the relative position of a node on the 
network. A higher value of centrality is usually assigned to the “hubs” of the network. It indicates 
how the rest of the network “depends” on the node. 

𝑐𝑏(𝑣) = ∑
𝑗 ∈ 𝑉

𝑗 ≠ 𝑖

𝜎𝑖𝑗 (𝑣)
𝜎𝑖𝑗

(2) 

where σij is the total number of shortest paths from node i to node j,  σij (v) is a number of those
paths that pass through the node v. 
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Closeness centrality
Closeness centrality is another centrality metric that assigns a value to a node depending on the 
distance from the node to the rest of the network. In contrast to betweenness, closeness centrality 
indicates the independence of the node from the rest of the network. 

𝑐𝑐(𝑣) = ∑
𝑗 ∈ 𝑉

𝑗 ≠ 𝑖

𝑛 − 1
𝑑𝑖𝑗

(3) 

Here dij denotes the distance from node i to node j, while n is the total number of nodes.

PageRank
PageRank is a ranking algorithm originally proposed by Google research and designed to assign 
relative importance to nodes on the graph based on number of incidental links and the “quality” 
of incidental links. This quality is likewise defined by the importance of the source nodes.  

2.2.2 Global measures

For the comparison we chose the following set of descriptors, that are used in the estimation of 
redundancy and resilience of WDSs. [2] provides a systematic review over the vast majority of 
common topological metrics and their correlation with network resilience. 

Distribution of node degrees
The distribution of node degrees is simply the normalized distribution of all node degrees over 
the entire graph G. Similarly to the average node degree, it indicates spatial organization of a 
network. In the context of WDS, where the node degree rarely exceeds 4, a right skew in the 
distribution corresponds to a highly connected structure. On the contrary, left-skewed 
distribution is related mostly to a tree-like structure. 

Number of cycles
Number of cycles in the network is an indicator of redundancy. For example, clustering coefficient 
is defined by the total number of triangles in the loop. Intuitively, a higher number of 3-cycles 
suggests availability of alternative paths from supply to demand nodes. 

Meshedness
Meshedness measures a fraction of the actual number of cycles of any order (or loops of any size) 
to the maximum possible number of cycles in the network. Meshedness is directly related to the 
number of alternative paths in a supply system and hence to the redundancy of the network [1]. 

𝑐𝑚(𝐺) =
𝑓

2𝑛 − 5
 (4) 

Here, f  denotes the number of total independent loops and n denotes the number of nodes. 

Connectivity
Although connectivity metrics (e.g. spectral gap, algebraic connectivity) and modularity are 
important factors to the resilience of the network [2], we deliberately omit these measures from 
the comparison with GCV. We motivate it by the fact that connectivity and modularity measure 
properties of a larger scale rather than the one of graphlet analysis.  

2.3 Local vulnerability analysis

A system is as resilient as its most vulnerable element, therefore there is a strong demand from 
utilities and planners to identify which elements have the highest chance of failing. One of the 
paradigms to approach this problem is based on simulating various types of faults in a simulator 
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such as EPANET or others. A drastic change in the operations of the WDS, such as a burst or a pipe 
break, will impact the overall distribution of water pressure. Consequently, low pressure on the 
consumer end results in the system's incapability to supply the required volumes of water. We 
simulate a pipe break by closing the pipe during a 72 hour simulation and measure the total 
amount of water that was not supplied to end consumers. The final indicator of the importance of 
the pipe is measured by the amount of unsupplied demand conditioned by the fault in this element 
in a pressure-driven simulation.  Here  𝑞𝑗 and 𝑞𝑗 denote demands during pressure driven 
simulations and base demand during normal conditions correspondingly. To facilitate 
comparability across WDSs, we evaluate this metric on a logarithmic scale. 

𝑐𝑐𝑟𝑖𝑡(𝑒) = ∑
𝑗 ∈ 𝑉

𝑗 ≠ 𝑖

(𝑞𝑗 − 𝑞𝑗)
𝑞𝑗

(5) 

We additionally constrain the lowest values at -10. As a result, the values of criticality are 
distributed in the negative range up to 0. Higher values correspond to higher criticality. 

It is important to mention that criticality analysis yields pipe-level information, i.e. a value 
assigned to a link. In contrast, OCV is a junction-level vector. We thus transform the pipe criticality 
into a junction criticality by averaging the values over incidental links of the node. 

𝐶𝑐𝑟𝑖𝑡
𝑒 = 𝐶𝑐𝑟𝑖𝑡

𝑣 𝐵𝐷−1, (6) 

where Ccrit   is vectors of criticality assigned to vertices or edges, B denotes an incidence matrix, 
and D is a degree matrix. 

3. CASE STUDY

We selected ZJ and FOS  networks due to their homogeneity in network geometry (e.g. elevations, 
diameters, and pipe length) and locations of the reservoirs, which limits the influence of network 
hydraulics on our graph-based analysis. In order to operate on a comparable dataset, we 
generated 1200 artificial variations of those networks. We introduced several surgical 
morphological transformations on the local connectivity and geometry during data generation.  

3.1 Network generation

We first define the proximity radius r by calculating the median geographical distance between 
connected junctions in the network. Next, for every junction, we define unconnected candidates 
in the local neighbourhood located within the radius. We also define the upper limit to the degree 
of each junction as 4 and 5 and evaluate both cases separately. With a probability p = 0.5 a pipe is
generated for each possible candidate node.   

Table 1. Summary of network generation.

ZJ FOS 

Number of networks 300 300 300 300 

Maximum node 
connectivity 

4 5 4 5 

Number of nodes 114 114 38 38 
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Relative frequencies of 
node degrees  

Distribution of node 
criticalities (higher 
values relate to higher 
criticality) 

In Table 1, we observe a shift in the distribution of average node criticality towards less critical 
conditions (i.e., lower values) with the increase of the maximum connectivity (from 4 to 5) during 
data generation. 

It is important to mention that some of the generated connections are likely to be unfeasible in 
real-life scenarios. Some of the connections intersect or double existing pipes. We leave the 
investigation of the feasibility and associated costs as a potential for future work. 

Figure 2. Examples of topology modification of generated network variants (red links denote generated
pipes). Both have a limit of a maximum of 4 connections.

4. RESULTS AND DISCUSSION

In this section we provide the result of the analysis of the correlation of graphlet counts with the 
topological measures described above.  Additionally,  to inspect the relationship of the graphlet 
count to the local criticality we show the effect of including the graphlet representation in the 
random forest regression model.  

4.1 The influence of skeletonization on graphlet representation

On the example of L-Town network, we observe that reducing the number of adjacent essentially 
reduces the order of cycles on the graph and increases the average degree. Consequently, this 
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increases the count of higher-level orbits related to the graphlets with cycles (e.g. G2, G5, G12, etc.). 
We show in Figure 2 the example that skeletonization allows the graphlet counting algorithm to 
capture higher-order graphlets that wouldn’t be captured otherwise. The second step continues 
the trend increasing the count of higher orbits, such as G37 and G38. and results in more dense GCV.   
However, we argue that for criticality analysis, this level of coarseness might be detrimental.  

Figure 3. Example of influence of skeletonization on the graphlet count on the example of area C in L-Town
water network (top - no skeletonization, center - unification of adjacent pipes, bottom - removal of parallel

connections and dead-ends) 

4.2 Principal component analysis

High granularity of the orbit representation comes at the cost of interpretability. Specifically, some 
of the graphlets can be present as components of the others, which can lead to certain 
autocorrelation in the orbit representation vector. We hypothesize that it is possible to translate 
OCV into a lower dimensionality representation via principal component decomposition. 

Figure 4 (A). Contribution of each graphlet to the principal components of GCV of the overall dataset. A
higher magnitude indicates a higher contribution of that graphlet with the principal components. 
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Figure 4 (B) Contribution of each orbit to the principal components of OCVs of the overall dataset. A higher
magnitude indicates a higher contribution of that orbit with the principal components. Explained variances

are 24%, 16%, 5.8%, 5.1, and 4.5% correspondingly. 

According to weighting in Figure 5 (A), most of the graphlets collectively contribute to the first 
principal component (PC1). This might be a result of intercorrelation between the counts of most 
graphlets. PC2 is correlated with the graphlets that contain cycles in the structure and can be 
translated to the “loopedness” of networks. Lastly, PC3 is predominantly described as graphlets 
that contain 4 fully connected nodes in the structure. Another observation is that orbit 14 (which 
belongs to G8) has comparably low contribution to PC1 in OCV as well.  Since 4 fully connected 
nodes is a rare structure, these features explain the smaller share of variance (PC3 in GCV and PC5 

in OCV). 

Likewise we observe that a large proportion of graphlets contribute to the first principal 
component of OCV. We can also note that orbits 1, 4, 5, 15, 16, 17, 20, and 21 have slightly higher 
weighting than the others. All these orbits belong to 4 graphlets of the same shape - a sequence of 
nodes (2, 3, 4,  and 5 nodes) and additionally to G19. We extend the discussion in the section .
Likewise, orbits that correspond to “corners” of the triangles are included in PC2. At the same time, 
orbits 19-23 have a negative weight, which emphasises the focus on the triangular structures. PC4 
is highly correlated with orbits 9, 24, and 28. All these orbits are located in the neighbourhood of 
triangular structures. 

Below we summarize the correlation of the principal components of the entire OCV  and GCV 
datasets for two networks separately. In each case, we carry out PCA separately in order to assess 
the difference in the main PCs.  
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4.2.1 Relationship of PCs to graph-theoretical metrics

(a) Generated networks with maximum connectivity 4

(b) Generated networks with maximum connectivity 5

Figure 5. Correlations of local graph-theoretical metrics with the principal components of OCV  (left) and
global graph-theoretical metric with GCV (right) on the example of modifications of the ZJ network.  

(a) Generated networks with maximum connectivity 4
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(b) Generated networks with maximum connectivity 5

Figure 6. Correlations of local graph-theoretical metrics with the principal components of OCV  (left) and
global graph-theoretical metric with GCV (right) on the example of modifications of FOS network 

Particular orbital indices are inherently related to graph-theoretical measures that characterize 
the structure and topology of a graph network. For example, an orbital count of the orbit 0 is 
equivalent to node degree. In other words, the number of times a node “touches” orbit 0 equals to 
a number of incidental links. Graph orbits of graphlets sequence of nodes (e.g. orbits 4, 5, 15, 16, 
and 17) are likely to appear in the parts of the network that are located in between larger 
neighbourhoods as a hub. One can imagine this as a hyperbolic increase in the number of nodes 
in the k-hop neighbourhood of a node as k increases. In other words, the number of combinations 
a graphlet G9  can be placed in that neighbourhood will be high, which increases the count in its 
turn.  In all of the cases, these orbits showed the highest contribution to the first principal 
component of OCVs (left pictures in Figures 5 and 6) and a strong correlation with centrality 
metrics.  

The number of loops (or n-cycles) such as triangles, squares, or pentagons, in the network, is 
natively related to the number of identified graphlets that have loops in them. Since the graphlets 
in the ORCA counting algorithm are limited to the size of 5 nodes, higher-order cycles are omitted.  
Some of the graphlets, e.g. G9, G7, G14, and G22 contain triangular structures in themselves, which 
means that their orbit counts might be correlated. As we show in the principal component 
analysis, some of the principal components are highly correlated with the number of identified 
squares and triangles. We further observe in the case of ZJ a stronger correlation of its PC1 with 
the number of squares and pentagons than in the case of FOS. We argue that the original structure 
of ZJ contains higher-order cycles which contribute to the variability in GCVs, hence higher 
correlation with the first principal component. 

4.3 Random Forest Regression model

To assess the informational gain from incorporating the graphlet analysis we introduce the 
feature vector from orbit count in a random forest model. Here we hypothesize that incorporating 
graphlet features into the regression model that estimates the criticality of the node will increase 
the performance of a regression model.  

We then set up the task as a regression model with the importance of a node as the target variable 
of the i. We evaluate 3 cases of used features in the model: solely traditional graph measures (a),
solely OCV (b), and traditional features and OCV altogether (c). Further on, we compare the
performance measured by coefficient determination. Traditional metrics include degree, 
betweenness and closeness centrality, and distance to reservoirs. 

1132



The shape of water distribution systems - 
Describing local structures of water networks via graphlet analysis 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

Table 2. Summary of network generation 

ZJ FOS

Maximum node 
connectivity 

4 5 4 5 

Topological features, R2 0.36 0.25 0.30 0.18 

OCV, R2 0.36 0.21 0.32 0.15 

Topological features +
OCV, R2

0.47 0.34 0.39 0.22

The random forest model has been set up with the same set of hyperparameters and evaluated 
with a coefficient of determination on 10% of the dataset.  

We can see in the example above the improvement in the predictive power of the regression model 
as we include GCV in the analysis. This hints at the conclusion that graphlet representation 
contains local information that assists in the prediction.  

5. CONCLUSIONS & FUTURE WORK

Consequently, this work shows that graphlet representation is beneficial as a descriptor of WDS. 
GCV captures local patterns and implicitly contains information about the global structure. PCA 
showed that GCV captures well the number of loops of different sizes and meshedness of a 
network. Simultaneously, OCV aids in the identification of small hubs and contains information 
about the degrees of the network. It is important to note that although the graphlet analysis 
enriches the set of descriptors of the graph structure and provides higher resolution to a local 
neighbourhood, it is not an exhaustive descriptor of the network structure. A key factor that  limits 
the expressive power of graphlet analysis appears from the influence of global connectivity. 
Although graphlet decomposition is capable of identifying hubs in the influence of connectivity 
and network modularity on a global scale might not be captured. 

Furthermore, this research introduces graphlets as an assisting factor in assessing local criticality. 
As it was mentioned, solely topological representation is not a piece of sufficient but necessary 
information. This problem implies the need for a holistic approach that includes both hydraulics 
and geometry. For example, the location of the reservoir and the main artery of the WDS is 
definitive for the importance of the elements of the network. Nevertheless, incorporating graphlet 
features into the analysis shows promising first results. 

For future work, we suggest extending the dataset with more hydraulically “independent” and less 
modular networks in order to further mitigate the influence of these factors. For example, an 
artificial WDS with many homogeneously placed reservoirs can aid in the analysis.  

Adding hydraulically informed edge weights to the graphlet count could be a potential direction 
for the analysis. Orbit count might be weighted by hydraulical costs, e.g. by multiplication of node 
counts by a weight factor. This can serve as a bridge between hydraulics and topological 
description of the local neighbourhood and increase the expressiveness of graphlets. 
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