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A B S T R A C T   

This study develops a calibration method for the porous media to properly model the interaction between waves 
and coastal structures using VARANS models. The proposed method estimates the porosity, np, and the optimum 
values of the Forchheimer coefficients, α and β, that best represent the wave-structure interaction for a complete 
set of laboratory tests. Physical tests were conducted in a 2D wave flume for a homogeneous mound breakwater 
under regular wave conditions. Numerical tests were carried out using the IH-2VOF model to simulate the 
corresponding physical tests and incident wave conditions (HI, T). The numerical tests covered a wide range of 
Forchheimer coefficients found in the literature, α and β, and the porosity, np, with a total of 555 numerical tests. 
The results of 375 numerical tests using IH-2VOF were used to train a Neural Network (NN) model with five 
input variables (HI, T, np, α and β) and one output variable (K2

R). The NN model explained more than 90% (R2 >

0.90 and RMSE <5%) of the variance of the squared coefficient of reflection, K2
R. This NN model was used to 

estimate the K2
R in a wide range of np, α and β, and the error (εa) between the physical measurements with regular 

waves and the NN estimations of K2
R was calculated. The results of εa as function of np, α and β showed that for a 

given porosity, np, it was difficult to obtain a pair of α and β values that gave a common low error if few physical 
tests are used for calibration. Then to calibrate properly a VARANS model it seems necessary to check the results 
obtained for each combination of α and β with many laboratory {HI, T} tests. The minimum root-mean-square 
error of K2

R (εrms) was calculated to find the optimum values of porosity and Forchheimer coefficients: np =

0.44, α = 200 and β = 2.825 for the tested structure. Blind tests were conducted with the remaining 180 nu
merical tests using IH-2VOF to validate the proposed method for VARANS models. In this study, eight or more 
physical tests were required to find adequate values of np, α and β for VARANS models related to the best 
performance of wave-porous structure interaction.   

1. Introduction 

Coastal structures are responsible for the protection from wave ac
tion of ports and highly populated coastal regions. Mound breakwaters, 
low-crested structures, revetments and other porous structures are 
commonly used to protect harbors, beaches and other highly valuable 
natural areas and artificial infrastructures. These coastal structures must 
be designed to provide safety and service during a given lifetime, and 
they must be designed considering the expected extreme wave condi
tions during lifetime. Global warming and the corresponding sea level 
rise (Camus et al., 2019; Reguero et al., 2019) are changing the design 
hypotheses, increasing overtopping rates and wave heights in the surf 

zone. The challenges of protecting coasts and harbors from the effects of 
climate change demand to understand in detail the wave-structure 
interaction processes for the correct design of new coastal structures 
and the maintenance and rehabilitation of existing ones. 

The hydraulic performance and efficiency of coastal structures can 
be assessed in two ways, either by experimental laboratory testing or by 
numerical modelling. Physical experimentation is one of the best tool to 
analyze the wave-structure interaction. The main advantage of labora
tory testing is the possibility to visualize and understand the processes 
occurring in the wave-structure interaction and, most importantly, the 
possibility to control and easily modify the physical tests. However, 
laboratory tests requires expensive equipment and physical facilities, 
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which are not always available. The accuracy and sampling rates are 
also limited and affect the quality of the experimental data (Hughes, 
1993; Wolters et al., 2010). Moreover, in a laboratory plan, both in the 
scientific and business field, which generally requires a large number of 
tests to properly analyze maritime structures with design variations, the 
laboratory experimentation way is very expensive and time-consuming. 
In this case, numerical modelling arises as a useful tool to analyze the 
wave-coastal structure interaction, with relatively low cost and time 
consuming compared to a laboratory program involving many tests. The 
level of accuracy of numerical models is relatively high and many suc
cessful applications have been reported in reproducing the 
wave-structure interaction processes measured in laboratory experi
ments. Numerical modelling also allows non-intrusive instrumentation 
to be placed in the numerical model that would be intrusive in the 
physical model. Various types of data, such as velocity, pressure, surface 
elevation or turbulent kinetic energy, can be extracted from any point 
and time in the simulation, and the numerical instrumentation does not 
interfere with the flow or the structure. From a time and cost point of 
view, it is preferable to perform few laboratory tests to calibrate and 
validate a numerical model, and then use the numerical model to 
perform the rest of the experimental program, as well as to consider and 
analyze different geometry designs or wave condition scenarios. 

Numerous studies use numerical models to analyze different types of 
coastal structures and the processes and variables involved in the wave- 

structure interaction; thus, Guanche et al. (2009) and Croquer et al. 
(2023) analyzed wave loads, Lara et al. (2011) and Moragues et al. 
(2020) studied the wave-breaking on the structure, and Higuera et al. 
(2014), Vieira et al. (2021) and Mata and Van Gent (2023) analyzed 
overtopping discharges. One of the main challenges in numerical 
modelling is the interaction of waves with the porous media of the 
structure. The correct modelling of the flow through the porous media is 
fundamental to characterize the dissipated, reflected and transmitted 
wave energy (Vílchez et al., 2016a; Díaz-Carrasco et al., 2020), 
wave-breaking on the structure, run-up and run down patterns, as well 
as the turbulence generated between the different layers within the 
structure (Clavero et al., 2020). The wave-porous structure interaction is 
modeled with mathematical formulations able to embrace all relevant 
physical processes and especially the role played by the porous media. 
This mathematical analysis is based on coupling two flow models: (1) 
the flow outside the porous media, in the outer region acting on the 
structure, and (2) the averaged flow through the porous media. The 
quality of the wave-structure modelling in numerical models depends 
strongly on correctly defining the wave transformation within the 
porous model. The representation of the flow within the porous media, 
characterized by a nominal diameter, Dn50, and a porosity, np, is 
generally based on the extended Darcy-Forchheimer equation (For
chheimer, 1901), which relies on some coefficients calibrated and 
validated with physical tests. 

Table 1 
Overview of Forchheimer coefficients (α and β) calibrated for the porous media of coastal structures characterized by a nominal diameter, Dn50, and a porosity, np.  

Reference Structure typology Porous media Dn50 (m) np Nº of tests for calibration (porous media 
x physical test) 

Forchheimer 
coefficients 
α β 

Van Gent (1995) 
Permeable vertical breakwater Irregular rocks 0.0610 0.442 5 × 3 

1000 1.1 
(
1 +

7.5
KC

)

Semi round rocks 0.0487 0.454 
Very round rocks 0.0488 0.393 
Irregular rocks A 0.0202 0.449 
Irregular rocks B 0.0310 0.388 

Liu et al. (1999) Porous dam Crushed rocks 0.0159 0.49 2 × 1 1000 1.1 
Glass beads 0.03 0.39 200 1.1 

García et al. (2004) Two low-crested rubble-mound 
breakwater 

Core 0.012 0.49 2 × 1 1000 1.2 
Armor 0.039 0.53 1000 0.8 

Lara et al. (2008) Low-crested mound breakwater Berm 0.00035 0.48 2 × 1 200 0.8 
Armor 0.035 0.50 200 1.1 

Losada et al. (2008) Rubble-mound breakwater Core 0.01 0.48 3 × 2 200 0.8 
Filter 0.035 0.50 200 1.1 
Armor 0.135 0.50 200 0.7 

Lara et al. (2011) Porous underwater step Rocks 0.0307 0.5 1 × 1 985.89 2.45 
Lara et al. (2012) Permeable vertical dam-break Rocks 0.0083 0.43 1 × 1 10,000 3 
Del Jesus et al. 

(2012) 
Porous dam of Lin (1998) Crushed stones 0.0159 0.49 2 × 1 10,000 3 

Glass beads 0.003 0.30 700 0.5 
Higuera et al. (2014) Rubble-mound breakwater of Guanche 

et al. (2009) 
Vertical porous breakwater 

Core 0.01 0.49 4 × 1 5000 1 
Filter 0.035 0.493 5000 3 
Armor 0.12 0.50 5000 2 
Rocks 0.015 0.51 20,000 1.5 

Jensen et al. (2014) Permeable vertical breakwater Spherical glass 
bead A 

0.002 0.34 3 × 3 500 2 

Spherical glass 
bead B 

0.0159 0.49 500 2 

Spherical glass 
bead C 

0.025 0.41 500 2 

Pilechi et al. (2018) Rubble-mound breakwaters Core 0.19 0.30 3 × 0 (from literature) 200 0.7 
Armor A 0.707 0.40 200 0.8 
Armor B 1.063 0.45 200 1 

Palma et al. (2019) Rubble-mound breakwater Core 0.002 [0.4, 0.5, 
0.6] 

3 × 3 1000 1.1 

Filter 0.02 [0.5, 0.6, 
0.7] 

1000 1.1 

Armor 0.04 [0.7, 0.6, 
0.8] 

1000 1.1 

Molines et al. (2019, 
2020) 

Mound breakwater with crown wall Core 0.007 0.4 3 × 0 (from literature) 200 1.1 
Filter 0.017 0.4 200 1.1 
Armor 0.0382 0.4 200 1.1 

This study Homogeneous Mound breakwater Rocks 0.030 [0,37, 
0.46] 

1 × 25 200 2.825  
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Although there are a variety studies in the literature analyzing the 
porous flow characteristics in coastal engineering applications, the 
problem of the wave interaction with the porous structures has not been 
solved yet. Firstly, different authors have proposed Forchheimer co
efficients, α and β, in a wide range of values for the same wave condi
tions and coastal structure typologies (see Table 1 in Section 2). There is 
a large uncertainty in selecting the adequate values for these coefficients 
(α and β) to correctly model the flow through the porous media of a 
structure. Secondly, the measurement of the porosity, np, is not easy as 
porosity may slightly change during the laboratory tests, and “in situ” 
measurement is almost impossible; therefore, the physical measurement 
of structure porosity is not reliable. The scatter of the measured np may 
be due to the expansion in the water and rearrange of the granular units 
by the physical model construction in a wave flume or basin and/or 
during the wave impact with the structure. 

The main objective of this study is to develop a method to estimate 
the most appropriate Forchheimer coefficients, α and β, and porosity, np, 
to correctly model the interaction between waves and coastal structures 
using Volume-Averaged Reynold Averaged Navier-Stokes (VARANS) 
equations numerical models. The calibration method provides the op
timum values of the Forchheimer coefficients and the porosity from the 
error prediction of a Neural Network (NN) model developed using 
physical and numerical tests. Physical tests were conducted at the Uni
versity of Granada for a homogeneous mound breakwater under regular 
waves, non-overtopping and non-breaking conditions. Numerical tests 
were conducted to reproduce the physical tests using the IH-2VOF model 
(Lara et al., 2008), with different combinations of porosity and For
chheimer coefficients. A total of 555 numerical tests using IH-2VOF 
were calculated, and 375 of them were used to develop the NN model. 
To calibrate the porous media, the proportion of the reflected wave 
energy, K2

R, was compared between the physical and numerical tests 
estimated with the NN model. Results corresponding to the remaining 
180 numerical tests of IH-2VOF were used for blind testing to validate 
the method. 

This paper is structured as follows. Section 2 includes a literature 
review on modelling the wave interaction with the porous media of 
coastal structures, paying attention to the mathematical formulation, 
calibrated Forchheimer coefficients and methods. Section 3 describes 
the physical laboratory tests and numerical tests using the IH-2VOF 
model. Section 4 develops the NN model to estimate errors for 
different combinations of HI, T, np, α and β. The procedure to find the 
optimum values of the Forchheimer coefficients, α and β, and the 
porosity, np, is described in Section 5. The proposed method to calibrate 
np, α and β is described in Section 6, as well as the recommended min
imum number of tests required to use this method efficiently. Section 7 
presents the summary and some conclusions derived from this study. 

2. Literature review on modelling the porous media of coastal 
structures 

The porous media modelling is usually a complex task (irregular 
pores and variable shapes and sizes), which are often assumed to be a 
rigid structure. There is no unique way to simulate the flow through the 
porous media, but existing approaches given in the literature are mostly 
based on Navier-Stokes (NS) equations; a detailed description of the 
different approaches can be found in Losada et al. (2016). The flow 
outside the porous media is usually solved by Reynolds-Averaged 
Navier-Stokes (RANS) equations, which are the time averaged of NS 
equations, with an appropriate turbulence model. For coastal structures, 
the flow through its porous media is frequently modeled using a 
macroscopic approach, which calculates the mean behaviour of the flow 
averaging their properties inside a continuous porous media. In partic
ular, most numerical models solving the flow through the porous media 
are based on Volume-Averaged Reynold Averaged Navier-Stokes 
(VARANS) equations. 

The VARANS equations are derived by integrating the RANS equa
tions over a Control Volume. Their final form is shown in Eqs. (1) and 
(2). A more detailed derivation of VARANS equations can be found in 
Jensen et al. (2014). 

∇u= 0 (1)  

∂
∂t

(ρu)
np

+
1
np
∇ •

(
1
np

ρu× u
)

= − ∇p+
1
np
∇(ν∇ • u) + ρfb − I (2)  

where u is the velocity vector, p is the wave pressure, ρ is the water 
density, ν is the kinematic viscosity, np is the porosity, fb represents the 
body forces, namely gravity; and I is the hydraulic gradient, which 
represents the flow resistance forces inside the porous media by the 
extended Forchheimer equation: 

I = au+ bu|u| + cA
∂(ρu)

∂t
(3) 

being a, b and cA, coefficients related to the porous flow, with di
mensions of s/m, s2/m2 and s2/m, respectively. In Eq. (3), the first term 
is the linear term of the drag force that represents a Darcy’s flow or 
laminar flow behavior, the second term is the non-linear term of the drag 
force that considers the fully turbulent flow behavior, and the last term 
is the inertial force due to the effect of added mass (Polubarinova-Ko
china, 1962). The added mass defines the extra momentum needed to 
accelerate the same volume of water in a porous media (Van Gent, 
1995). Several approaches to determine a, b and cA, can be found in 
literature. Ergun (1952), Engelund (1953), Van Gent (1995) and 
Burcharth and Andersen (1995), among others, analyzed these co
efficients and established relationships with the flow conditions for 
different hydraulic regimes (Losada et al., 2016). The following 
analytical expressions to calculate a, b and cA are the most commonly 
used: 

a= α
(
1 − np

)2

n3
p

μ
D2

n50
(4)  

b=β
(

1+
7.5
KC

) (
1 − np

)

n3
p

ρ
D2

n50
(5)  

cA = γp

(
1 − np

)

np
(6)  

where Dn50 is the granular nominal diameter, μ the dynamic viscosity, 
KC is the Keulegan-Carpenter number that accounts for the transient 
nature of flows, and α, β and γp are three empirical coefficients. Ac
cording to Losada et al. (2008) and Higuera et al. (2014), the empirical 
coefficient γp has a very small influence and yields good results with a 
constant value of γp = 0.34. The values of α and β are coefficients which 
need to be calibrated. 

Numerous studies calibrated the Forchheimer coefficients, α and β,
considering laboratory tests and numerical VARANS models to describe 
wave-structure interaction, such as, overtopping, wave pressure, wave 
energy transformation, wave-breaking on the slope and armor stability. 
Table 1 shows some of the studies that used VARANS numerical 
modelling and calibrated α and β values for different typologies of 
coastal structures, mainly breakwaters characterized by different porous 
layers with a nominal diameter, Dn50, and a porosity, np. The value of the 
porosity provided by the studies listed in Table 1 is physically measured 
in laboratory (Van Gent, 1995), or assumed values depending on the 
nominal diameter, Dn50, and following manual recommendations (CIR
IA/CUR/CETMEF, 2007; Vílchez et al., 2016b). The number of physical 
tests used to calibrate the Forchheimer coefficients, is gathered in 
Table 1. 

Table 1 shows different values of α and β given by researchers 
depending on how these coefficients were determined or calibrated. 
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There are many more wave-porous structure interaction modelling 
studies that calibrate the Forchheimer coefficients with the same 
method and in the same range of values as the studies presented in 
Table 1. Recent studies developed other calibration methods for α and β 
using numerical techniques or simplified expressions instead of experi
mental calibration. For example, Vílchez et al. (2016b) used the 
simplified Forchheimer equation (Eq. 3) of Sollitt and Cross (1972), 
based on the Lorentz’s hypothesis of equivalent work, and determined a 
non-dimensional linear friction coefficient that calibrates the flow inside 
the porous media of several breakwater typologies. Zhao et al. (2021) 
calibrated the Forchheimer coefficients, α and β, for a porous vertical 
structure and a rubble-mound breakwater using the calibration method 
of Zhao et al. (2019), which relates α and β values with the wave 
damping rate. Vieira et al. (2021) presented a Neural Network model 
that determined the optimum combination of Forchheimer coefficients 
to numerically predict the mean overtopping discharges. They used a 
database to develop the NN model based on limited numerical cases 
simulated in the IH-2VOF model which solves VARANS equations, with 
few values of β in the range [0.8, 1.2] for each porous layer of the 
structure, and a constant linear coefficient, α = 200. Norouzi et al. 
(2022) used the Particle Swarm Optimization (PSO) algorithm to opti
mize a, b and cA coefficients in non-Darcy steady and unsteady flow 
conditions in a rockfill installed inside a wave tank. Dang et al. (2023) 
determined the Forchheimer coefficients in a thin perforated plate using 
an advanced machine learning algorithm based on decision trees of 
GBDT method. They tested 72 samples with only 3 wave conditions, H 
and T, three values of α, and four values of β in combination with two 
porosities. 

Despite the numerous numerical modelling studies of coastal struc
tures using the Forchheimer coefficients, the wide range of values found 
in the literature, 200 ≤ α ≤ 20,000 and 0.4 ≤ β ≤ 4, and the scatter of the 
porosity, np, is a clear indication of the need of a robust method to 
calibrate np, α and β. The calibration method used in most studies using 
numerical VARANS models are based on a few physical tests; usually, 
the porosity, np, is fixed and the different values of α and β are consid
ered in a limited range, until a few experimental results somehow 
resemble the numerical ones. 

3. Physical and numerical tests 

This section describes the 2D physical and numerical tests used in 
this study to calibrate the Forchheimer coefficients, α and β, and the 
porosity, np, to model the interaction between waves and a coastal 
structure. 

3.1. Physical experiments 

2D physical tests were conducted by Díaz-Carrasco (2019, 2023) in 
the wave flume with 23 m long, 0.65 m wide and 1 m deep of the Fluid 
Dynamics Laboratory at University of Granada, Spain. The physical 
model was a homogeneous mound breakwater with a Gc (m) = 0.24 crest 
width, a breakwater height FMT (m) = 0.55, and seaward and landward 
slope H/V = 2/1 and H/V = 3/2, respectively. The porous media is a 
homogeneous rock material with a nominal diameter Dn50 (m) = 0.030, 
rock mass density ρs (g/cm3) = 2.64, and a porosity measured in labo
ratory, np, = 0.46 according to manual recommendations (CIR
IA/CUR/CETMEF, 2007); Fig. 1 shows the cross section of the physical 
model. 

The physical tests were carried out using regular waves under non- 
overtopping and non-breaking wave conditions. A total of NT = 37 
physical tests with regular waves were tested at laboratory with Nw =

100 waves per test. The physical tests were reproduced later numerically 
with the IH-2VOF model. Table 2 describes the target wave conditions 
tested in the laboratory; being HI and T the incident wave height and 
wave period, and L is the wavelength calculated by the linear dispersion 
equation, h/L is the relative water depth, HI/L is the wave steepness, and 

Rec =

(
np . HI

T

)
Dn50

ν the Reynolds number of the porous media. Rec charac
terizes the hydrodynamic regime inside the porous media, a region 
where the laminar, turbulent and inertia forces are relevant to describe 
the water flow (Gu and Wang, 1991; Van Gent, 1995; Burcharth and 
Andersen, 1995). The experimental technique consisted in varying HI/L 
for each fixed value of h/L, taking into account the conditions of paddle 
generation and the imposed non-overtopping and non-breaking condi
tions. The experimental technique is described in detail in Díaz-Carrasco 
(2019). The AwaSys software package was used to generate waves with 
the active wave absorption system (AWACS®)to eliminate re-reflected 
waves in the wave flume; additionally, a dissipative parabolic ramp 
was placed at the end of the flume to minimize the wave reflection of the 
flume. The water depth in the wave flume was constant, h (m) = 0.4. 

Fig. 2 shows a scheme of the longitudinal cross section of the wave 
flume and the resistance wave gauges (G) located along the flume to 
measure the water surface elevation with a sampling frequency of 20 Hz. 
The incident and reflected waves were estimated with the wave records 
taken by gauges G1, G2 and G3. The incident and reflected wave trains 
were separated using the method of Baquerizo (1995), which provides 
the squared coefficient of reflection, K2

R, and phase, φR, of the reflected 
waves. The transmission coefficient, K2

T, was computed from the records 
of wave gauge G5; K2

T was not used in this study. A detailed analysis of 
the experimental tests and the [K2

R,K 2
T ] values measured in each test 

(HI/L, h/L) is given in Díaz-Carrasco (2023). Specifically, the range of K2
R 

values measured in the laboratory was K2
R = [0.026–0.41]. 

3.2. Numerical experiments 

3.2.1. Model description 
The IH-2VOF numerical model (Losada et al., 2008) was used in this 

study to model the interaction between waves and the porous break
water tested at laboratory, since it is able to simultaneously solve the 
flow both inside and outside the porous media. IH-2VOF solves the 
two-dimensional Reynolds Averaged Navier-Stokes (RANS) equations 

Fig. 1. Cross section of the physical model of the homogeneous mound 
breakwater tested. 

Table 2 
Range of wave variables tested in the laboratory.  

Variables Range [Min, Max] 

h (m) 0.4 
T (s) [1.02, 3.64] 
HI (m) [0.02, 0.12] 
(h/L) [0.06, 0.28] 
(HI/L) [0.01, 0.03] 
Rec [100, 940]  

Fig. 2. Longitudinal cross section of the wave flume and location of wave 
gauges (dimensions in meters). 
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outside the porous media using the k − ϵ turbulent model to calculate 
the kinetic energy (k) and the turbulent dissipation rate (ϵ). The 
free-surface is tracked by the Volume of Fluid (VOF) method (Hirt and 
Nichols, 1981). The flow through the porous media is solved by the 
Volume-Averaged Reynolds Averaged Navier-Stokes (VARANS) equa
tions (see Eqs. (1) and (2) in Section 2). 

IH-2VOF model has been applied to study numerous wave-structure 
interaction problems including low-crested mound breakwaters (García 
et al., 2004; Lara et al., 2006), composite and emerged breakwaters 
(Lara et al., 2008; Guanche et al., 2009), wave energy transformation on 
a wide range of porous breakwaters typologies (Vílchez et al., 2016b), 
wave-breaking on porous structures (Del Jesus et al., 2012), 
wave-overtopping on rubble-mound breakwaters (Vieira et al., 2021), 
pore-pressure on rubble mound breakwater (Guanche et al., 2015), and 
wave energy conversion on non-conventional rubble mound and vertical 
breakwaters (Di Lauro et al., 2019; 2020). 

3.2.2. Numerical set-up 
A 2D domain of the wave flume described in Fig. 2 was reproduced in 

the IH-2VOF model. The numerical domain was slightly shorter in the x- 
direction (15.6 m long) than the wave flume as the dissipation ramp was 
substituted by an active absorption condition to reduce the number of 
cells. A mesh sensitivity analysis was performed to assess the compu
tational cost and the accuracy of the results, comparing the measured in 
laboratory and numerically obtained wave height far from the region of 
the structure for different mesh sizes. A uniform mesh on the y-direction 
was used with a grid cell size of 0.5 cm ≈ Δy = H/10. The x-direction 
was divided in 2 subzones as defined in Fig. 3a: (1) the 10.4 m-long outer 
region corresponding to the wave generation zone with a cell size of 2 
cm ≈ Δx = L/100, (2) the region corresponding to the breakwater 
(wave-structure interaction), where higher accuracy is needed, with a 
cell size of 1 cm. The total number of cells in the numerical domain was 
1 017 (x-direction) x 201 (y-direction). The active wave absorption 
condition was considered at the generation boundary and at the end of 
the domain to reproduce the same conditions as in the laboratory ex
periments, i.e., to avoid wave reflection at boundaries (see Fig. 3b). 
Numerical wave gauges G01 to G05 correspond to the physical wave 
gauges G1 to G5. 

The porous structure was modeled in the IH-2VOF model using the 
physical characteristics, Dn50 and np, and the Forchheimer coefficients: 
α, β and γp. The physical homogeneous breakwater model with Dn50 (m) 
= 0.03 was reproduced in the numerical model considering different 
combinations of np, α and β. The value of γp= 0.34 (Van Gent, 1995) was 
assumed to be invariable because the results are practically insensitive 
to its variation (Losada et al., 2008; Higuera et al., 2014). To cover the 
full range of α and β values used in the literature (Table 1), this study 
considered the following range parameters given in the literature: 200 ≤
α ≤ 20,000 and 0.4 ≤ β ≤ 4.0. As discussed in Section 1, the porosity 
measurement at laboratory is not reliable; thus, the porosity (np) was 
considered in this study as an additional parameter to be calibrated. The 

porosity values were chosen in the range 0.37≤ np ≤ 0.46, which cor
responds to the possible porosities for homogeneous stones of size Dn50 
(m) = 0.03 following the recommendations of CIRIA/CUR/CETMEF 
(2007). 

The incident wave height, HI, and wave period, T, obtained from the 
temporal analysis of the NT = 37 physical tests of regular waves (see 
Table 2) were numerically generated with the same number of waves per 
test, Nw = 100. For each test (i = 1, …, 37), NR = 15 numerical simu
lations were conducted and a random combination of {np, α, β} for each 
“r” simulation (r = 1, …, 15) was selected within the ranges: 0.37 ≤ np ≤

0.46, 200 ≤ α ≤ 20,000 and 0.4 ≤ β ≤ 4.0. The different values of np, α 
and β for each “i” physical test and “r” simulation were randomly ob
tained with the following relations, 

npir = npmin + U(0, 1)ir •
(
npmax − npmin

)
; being npmax= 0.46,npmin= 0.37

(7a)  

αir = exp
[
ln αmin +U(0, 1)ir • (ln αmax

− ln αmin)
]
; being αmax= 20, 000, αmin= 200 (7b)  

βir = βmin + U(0, 1)ir • (βmax − βmin); being βmax= 4.0,βmin= 0.4 (7c)  

in which {npir ,αir, βir} are the porosity and Forchheimer parameters 
corresponding to the “i” physical test and “r” simulation ; and U(0,1) is a 
random number uniformly distributed in the range [0,1]. Fig. 4 shows a 
scheme of the methodology described above with a total of NT x NR = 37 
× 15 = 555 combinations of {np, α, β} different from each other and 555 
numerical tests using IH-2VOF. The random selection and combinations 
made to simulate the cases in IH-2VOF model will allow to develop a 
Neural Network (NN) model (see Section 4) trained with all possible 
combinations in the sample space {HI, T, np, α and β}, and thus to avoid a 
NN model biased by pre-defined combinations and to help the correct 
NN model interpolation. The computer time for each numerical test 
using IH-2VOF varied between 20 min and 2 h in a personal computer 
with Eight-Core and processor of 3.70 GHz. For computational effi
ciency, most tests were simultaneously run in the RIGEL Computational 
Cluster at the Universitat Politècnica de València (Spain), it required few 
days to simulate the 555 numerical VARANS tests. 

Numerical wave gauges were placed in the same location as the ones 

Fig. 3. Numerical domain in IH-2VOF model: (a) mesh grid, (b) wave 
gauges position. 

Fig. 4. Scheme of the numerical tests simulated using the IH-2VOF model. The 
number of physical test is represented by subindex i = 1, …, 37 and for each test 
“i”, r = 1, …, 15 simulations were conducted with a random combination of {np, 
α, β} obtained by Eqs. (7a), (7b) and (7c), respectively. A total of NT x NR = 37 
× 15 = 555 numerical cases and numerical K2

R results were obtained. 
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used in the laboratory experiments (see Fig. 3b). Two additional wave 
gauges G0A and G0B were located near the generation zone to analyze 
the mesh sensitivity and the numerically generated waves; the time step 
was Δt= 0.05 s, in agreement with the sampling frequency of the wave 
gauges in the physical tests. The methodology to calculate {HI, T, L} and 
K2

R for the 555 numerical tests was similar the same used for the 37 
physical tests. 

4. Neural Network model for estimating wave reflection 

In this section a Neural Network (NN) model is developed in order to 
predict K2

R on the homogeneous mound breakwater using the numerical 
results with the {np, α, β} combinations from the IH-2VOF model. Once 
the NN is trained, K2

R can be estimated much faster than any numerical 
VARANS model. The NN can then be used as an auxiliary numerical tool 
to estimate K2

R and calibrate the values of np, α and β for the tested 
breakwater within the ranges of the IH-2VOF tests. 

4.1. Neural Network structure 

This section describes the NN model developed from the results 
corresponding to the 555 numerical tests using IH-2VOF to estimate the 
proportion of reflected wave energy, K2

R in homogeneous mound 
breakwaters. Fig. 5 represents the NN model with five input variables 
(NI = 5), 20 hidden neurons (NH = 20) and one output variable (No = 1). 
For the porous media of the breakwater characterized by a Dn50, the 
selected input variables were: HI, T, np, α and β. The output variable was 
the squared coefficient of reflection, K2

R. 
The number of parameters of this NN model was P––NO + NH(NI +

NO +1) = 1 + 20 (5 + 1 + 1) = 141. Although a total of NT x NR = 37 ×
15 = 555 numerical tests using IH-2VOF were available, only 25 phys
ical tests (randomly selected from the total 37 tests) with their corre
sponding combination of {np, , β}, that is 25 × 15 = 375 numerical tests 
were considered to build up the NN model. The results from the 
remaining 12 × 15 = 180 numerical tests were used only for a final blind 
test. 

The NN model was trained and tested using the NN toolbox (Beale 
et al., 2019) in the MATLAB® environment (MATLAB, 2022) with the 
following characteristics:  

(1) Early stopping criterion to prevent overlearning,  
(2) Randomly selection of data using 263 cases (70%) for training, 56 

cases (15%) for validation and 56 cases (15%) for testing,  
(3) Levenberg-Marquardt training algorithm, and  
(4) hyperbolic tangent sigmoid transfer function for hidden neurons. 

4.2. Neural Network performance 

Fig. 6 shows the comparison between the K2
R predicted by the NN 

model and the K2
R calculated with IH-2VOF model. The coefficient of 

determination, R2, and the root-mean-squared error, RMSE, were used 
in this study to measure the goodness of fit of the NN model for training, 
validation and testing. The higher R2 or lower RMSE, the better is the 
prediction of K2

R given by the NN model compared to the numerical IH- 
2VOF model. The coefficient of determination and the root-mean- 
squared error are given by, 

R2= 1−

∑M

m=1
(YVm − YNNm)

2

∑M

m=1
(YVm − YV)

2
; (8a)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

m=1
(YVm − YNNm)

2

M

√
√
√
√
√

(8b)  

where YV is the K2
R from IH-2VOF model (K2

RVOF), YNN is K2
R from NN 

model (K2
RNN), YV is the mean value of YV ; M = 25 × 15 = 375 is the total 

number of cases and “m” is the data index (m = 1, 2, …M). 
The NN model with five input parameters {HI, T, np, α, β} predicted 

very well the numerical results of IH-2VOF model (see Fig. 6), with R2 =

0.99 and RMSE = 2.1% for training data, R2 = 0.99 and RMSE = 1.7% 
for validation, and R2 = 0.92 and RMSE = 4,6% for testing. This NN 
model is computationally much faster than IH-2VOF model and can be 
used as an auxiliary tool to find the best combination of {np, α, β}. 

5. NN model results 

This section presents the estimations of the porosity and For
chheimer coefficients using the NN model as an auxiliary numerical tool 
to estimate K2

R and to compare them with K2
R measurements from 

physical tests. Then, the optimum combination of {np, α, β}, which 
calibrates the porous media of the tested homogeneous mound break
water, is calculated. 

5.1. Estimations of porosity and forchheimer coefficients for each test 

Because of the computational efficiency of the NN model trained 
with numerical results from IH-2VOF model, a huge number of combi
nations of np, α and β for each tested pair {HI,T} were considered to 
obtain many numerical estimations of K2

R. The estimation of K2
R using the 

NN model, named K2
RNN, was compared with the K2

R measurements from 
physical tests, named K2

RLAB, to calibrate the parameters of the porous 
media (np, α and β) of the homogeneous mound breakwater. The pro
cedure was the following:  

(1) Selection of combinations of the five input variables {HI, T, np, α, 
β} (see Fig. 7) covering uniformly the range of variables found in 
the literature (Table 1):  
o NT = 25 pairs of {HI, T} were taken from the 25 physical tests 

previously selected to develop the NN model (physical tests of 
Section 3.1). 

o Nnp = 19 values of porosity (np) were considered, with a con
stant step in the range [0.370, 0.460]; np = 0.370; 0.375; …; 
0.455; 0.460.  

o Nα = 200 values of α were considered, with a logarithmic step 
in the range [200, 20,000]; α = 200; 204.68; …; 19,542; 
20,000.  

o Nβ = 721 values of β were considered, with a constant step in 
the range [0.400, 4.000]; β = 0.400; 0.405; …; 3.955; 4.000.  

(2) Estimation of the output variable K2
R using the NN model, K2

RNN, 
for the NT x Nnp x Nα x Nβ = 25 × 19 x 200 × 721 = 68,495,000 
different combinations of the five input variables {HI, T, np, α, β}. 

Fig. 5. Scheme of the NN model using the 375 numerical tests using IH- 
2VOF model. 
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(3) Comparison of the NN estimations of the squared reflection co
efficient, K2

RNN, with the physical measurements, K2
RLAB. The ab

solute error was calculated as, 

εakij

(
K2

R

)
=

⃒
⃒
⃒K2

RLABi
− K2

RNNkij

⃒
⃒
⃒ (9)  

where sub-index “i” (i = 1, …, 25) refers to physical tests, “k” (k = 1, …, 
19) refers to porosity, and “j” (j = 1, …, 200 × 721) refers to different 

pair of {α,β} values for a given porosity (np) and physical test (HI, T). 
Note that Eq. (9) can emphasize the error for small measured K2

RLAB 
values. 

Fig. 7 shows a scheme of a homogeneous cloud of Nnp x Nα x Nβ =

2,739,800 points {np, α, β} in a 3D space; each point considers 25 pair of 
{HI, T} corresponding to the 25 physical tests used for calibration. For 
each physical test “i” {HI, T} and each porosity “k”, a pair “j” of {α, β} 
values was selected. 

Fig. 8 represents the results of the absolute errors, εa (Eq. (9)), 
expressed as a percentage, for each pair of α (x-axis) and β (y-axis) ac
cording to the NN estimations for two porosities (np = 0.38 and 0.45) 
and two physical tests: (1) HI1 (m) = 0.03, T1 (s) = 1.12 (Fig. 8a and b), 
and (2) HI2 (m) = 0.10, T2 (s) = 2.46 (Fig. 8c and d). The minimum value 
of εa for each case is marked with a red circle. Assuming a constant 
porosity for the numerical model, the optimum values{α, β} with min
imum value of εa are different for each test {HI, T}i. For example, if np =

0.38 (Fig. 8a and c), the minimum errors were given by α = 4341 and 
802, and β = 3.745 and 2.695 for {HI1, T1} and {HI2, T2}, respectively. 
For the same test {HIi, Ti}, the minimum error corresponds to optimum 
values of {α, β} which are different depending on the porosity. For 
example, for {HI2, T2} (Fig. 8b and d), the minimum was obtained with α 
= 802 and 1,761, and β = 2.695 and 3.925 for np = 0.38 and np = 0.45, 
respectively. 

The results obtained in this section are pointing out that selecting 
one or a few physical tests {HI, T} to calibrate the values of np, α and β (as 
reported in the literature) is not sufficient to obtain the best represen
tation of the hydraulic performance of wave-porous structure interac
tion. Therefore, for the calibration of a VARANS model, with or without 
the using of a NN model, it seems necessary to check the results obtained 

Fig. 6. Comparison between the K2
R predicted by the NN model (K2

RNN) and the 375 results of K2
R calculated with IH-2VOF model (K2

RVOF). NN model fits for: (a) 263 
training data (70 %), (b) 56 validation data (15%), (c) 56 test data, and (d) 375 data (100 %). 

Fig. 7. Scheme of the selection of the five input variables {HI, T, np, α, β} 
combined in a homogeneous cloud with a total of 25 × 19 x 200 × 721 =
68,495,000 numerical cases simulated in the 3D space of {np, α, β}. 
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for each combination of {α, β} with many laboratory {HI, T} tests. 

5.2. Optimum values for porosity and forchheimer coefficients (np, α, β) 

The previous section calculates values of np, α and β which gave a 
minimum error between the K2

R estimated by NN and the measured in 
laboratory for each physical test {HI, T}i. However, as observed in pre
vious studies found in the literature and for greater computational ef
ficiency, an optimum combination of np, α and β for all physical tests 
related to the best performance of wave-porous structure interaction 
should be calculated. For that, the NN estimations for each combination 
of {np, α, β} common to all 25 physical tests were compared with the 
measured result of the physical test as follow: for each porosity, “k” and 
for each pair “j” of {α, β}, the root-mean-square error (εrmskj) between 
the NN estimations and measurements of K2

R from the 25 physical tests 
were calculated as, 

εrmskj
(
K2

R

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑25

i=1

(
K2

RLABi − K2
RNNkij

)2

25

√
√
√
√
√

(10) 

A total of 19 × 200 x 721 = 2,739,800 root-mean-square errors, 
εrmskj, were calculated. Each value of εrmskj is characteristic of a {np, α, β} 
combination for all 25 physical tests. Fig. 9a shows the empirical Cu
mulative Distribution Function (eCDF) of εrms results for all the combi
nations of {np, α, β}. The lowest percentiles of the eCDF corresponded to 

small errors between estimations K2
RNN and measured K2

RLAB with {np, α, 
β} combinations in an increasingly restricted range. For example, the 5% 
percentile has low errors, εrms ≤ 2.5 %, and the combinations of {np, α, β}
were in a cloud of points within the restricted range: 0.39 ≤ np ≤ 0.46, 
200 ≤ α ≤ 8100 and 1.3 ≤ β ≤ 3.5. Fig. 9b represents the range of {np, α, 
β} values for a small error, εrms ≤ 2.5 %. Fig. 9b shows that there is a 
correlation between α and β values for a fixed porosity (Higuera et al., 
2014): for a constant porosity, np = 0.46, in the cloud of points with low 
errors εrms ≤ 2.5 %, if α increases then β has to decrease (and vice versa) 
to find the pair of α and β values that represents better the flow inside the 
porous media of the structure, that is, {α = 8100 and β = 1.3}, and {α =
200 and β = 3.5}. The percentile 0.5% has a value of εrms < 2.30 %, and 
the combinations of {np, α, β} were even in a highly restricted range, 
with the same correlation between α and β: np = 0.44, 200 ≤ α ≤ 276 and 
2.805 ≤ β ≤ 2.830. As the error, εrms, decreases the range of values of 
{np, α, β} becomes smaller. For the 90 % percentile, the NN model 
provided estimations K2

RNN far from that measured K2
RLAB in the physical 

tests with εrms ≥ 14.4 %. 
Small errors in Fig. 9a have a range of {np, α, β} values that would be 

adequate to calibrate the porous media and would represent the wave- 
structure interaction for all laboratory tests. To obtain an optimum 
combination of {np, α, β} for all physical tests related to the best per
formance of wave-porous structure interaction, the minimum value of 
εrms was calculated, equal to εrms = 2.28 %. This minimum εrms value 
between the NN estimations and laboratory measurements of K2

R for the 
25 physical tests corresponded to an optimum and unique combination: 

Fig. 8. Results of the absolute error, εa (K2
R) %, calculated with Eq. (9), for each pair of α (x-axis) and β (y-axis) according to the NN estimations for two porosities, np 

= 0.38 and 0.45, and two tests: (a, b) HI1 (m) = 0.03, T1 (s) = 1.12; (c, d) HI2 (m) = 0.10, T2 (s) = 2.46. The minimum error is marked with a red circle. 

Fig. 9. (a) Cumulative Non-Parametric distribution (eCDF) of the root-mean-square errors, εrms(K2
R) %, calculated by Eq. (10) for all combinations of {np, α, β}; (b) np, 

α and β values with εrms(K2
R) ≤ 2.5 % (percentile 5% of the eCDF). 
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np = 0.44, α = 200 and β = 2.825. The porosity np = 0.44 was selected in 
the range 0.37 ≤ np ≤ 0.46, the linear coefficient α = 200 was selected in 
the range 200 ≤ α ≤ 20,000 and the non-linear coefficient β = 2.825 was 
selected in the range 0.400 ≤ β ≤ 4.000. The selection of α = 200 in this 
study, the lowest range limit found in the literature, is pointing out the 
need to explore the range α < 200 in the calibration process of For
chheimer coefficients. The NN was not able to give α < 200 since it was 
trained in the range 200 ≤ α ≤ 20,000. 

Because of the NN model emulates the numerical IH-2VOF model, 
the calibrated porosity and Forchheimer coefficients (np = 0.44, α = 200, 
β = 2.825) obtained in this study are adequate to characterize the 
interaction between the waves and the porous media of the tested ho
mogeneous mound breakwater. 

6. The proposed calibration method for VARANS models 

This study describes a calibration method for the porosity, np, and the 
Forchheimer coefficients, α and β used in VARANS models to properly 
model the wave-porous structure interaction. The calibration method 
proposed in this study can be described as follows:  

• Step 1: NT physical tests using regular waves (HIi, Ti) are selected to 
calibrate the numerical VARANS model; NT = 25 in this study.  

• Step 2: Selection of the output variables to represent the wave- 
structure interaction; the squared coefficient of reflection, K2

R, is 
selected in this study.  

• Step 3: For each physical test (i = 1, …, NT), NR numerical simulations 
are conducted using the VARANS model with a different combina
tion of porosity and Forchheimer coefficients randomly selected in 
reasonable pre-determined ranges. In this study, 0.37 ≤ np ≤ 0.46, 
200 ≤ α ≤ 20,000 and 0.400 ≤ β ≤ 4.000 for mound breakwaters, 
and NR = 15. A total of NT x NR numerical cases are conducted using 
the VARANS model, and NT x NR numerical results of the output 
variables (K2

RVOF in this study) are obtained.  
• Step 4: A NN model is created, from the results of the available NT x 

NR numerical cases, to emulate the VARANS model. The NN model 
has five input variables (HI, T, np, α,β) and, in this study, one output 
variable (K2

R,NN). If the coefficient of determination of the NN esti
mations, K2

RNN, compared to K2
RVOF is R2 < 0.90 (less than 90% of 

explained variance), then the NR in Step 3 should be increased.  
• Step 5: Estimation of the output variable (Step 2) by the NN model 

created in Step 4 are conducted to cover the complete range of np, α 
and β values. For each physical test {HIi, Ti } (i = 1, …, NT) used for 
calibration in Step 1, Nnp porosities, Nα values of α, and Nβ values of β 
are combined (Nnp = 19, Nα = 200 and Nβ = 721, in this study) in a 
3D space of {np, α, β}. A total of NT x Nnp x Nα x Nβ (68,495,000 in this 
study) numerical cases are predicted by the NN model to calculate 
the K2

RNN corresponding to each combination of {np, α, β} and each 
physical test {HIi, Ti}.  

• Step 6: Calculation of the root-mean-square error, εrms, between the 
squared coefficient of reflection measured in physical tests, K2

RLAB, 
and predicted by the NN model, K2

RNN, corresponding to the NT 
physical tests. The combination of {np, α, β} with the minimum εrms 
provides the recommended porosity, np, and Forchheimer co
efficients (α and β) for the VARANS model.  

• Step 7: If any recommended value of np, α or β in Step 6 is the 
maximum or minimum value of the ranges considered in Step 3, the 
corresponding range should be widened to keep the optimum within 
the limits selected in Step 3. 

In this study, the ranges of np, α and β were selected to cover all 
values found in the literature; however, the optimum combination of 
{np, α, β} was found for α = 200, just in the limit of the range 200 ≤ α ≤
20,000 considered in the literature. This fact is suggesting that some 
porous structures, such as the homogeneous mound breakwater 

considered in this study, may have a better combination of {np, α, β} 
with α < 200. For this reason, Step 2 recommends using a wider range for 
α, for example 100 ≤ α ≤ 20,000, than the range used in this study. This 
issue will be the subject of a future work. 

The flow-chart in Fig. 10 summarizes the proposed calibration 
method for VARANS models. In this study, the calibration method is 
based on the proportion of reflected wave energy, K2

R; however, this 
method can be applied to other representative variables (Step 2), such as 
overtopping, run-up, wave forces, etc. In these cases, the NN model (Step 
4) may use a different o several output variables to better represent the 
wave-structure interaction. Note that the proposed calibration method 
must be applied for each layer of porous media forming the structure 
with its characteristic Dn50 and a range of porosity values representative 
of the unit size. In this case the breakwater is a homogeneous and 
permeable mound breakwater with a single Dn50 (m) = 0.03 and range 
0.37≤ np ≤ 0.46, which corresponds to the possible porosities for the size 
of the homogeneous stones. 

To show the strength and the applicability of the proposed calibra
tion method for Forchheimer coefficients, new IH-2VOF cases were 
simulated following the traditional methodology of the studies found in 
the literature (Table 1); that is: 2 wave conditions of {HI1 (m) = 0.03, T1 
(s) = 1.12} and {HI2 (m) = 0.10, T2 (s) = 2.46}, two values of α = 200 
and 2000, and three values of β = 0.8, 1.5 and 3 were selected in 
combination with a fixed porosity np = 0.46 (the value physically 
measured in laboratory). Table 3 shows the results obtained in the IH- 
2VOF model by applying (1) 2 values of α and 3 values of β, and (2) 
the optimum combination {np = 0.44, α = 200 and β = 2.825} obtained 
from the proposed calibration method. It is observed that for both wave 
conditions, the absolute error, εa , with the optimum combination {np =

0.44, α = 200 and β = 2.825} is much smaller than selecting 2 values of α 
and 3 values of β. Moreover, with this method it is possible to calibrate 
the most suitable porosity for the porous media of the structure. The 
choice of 2 values of α and 3 values of β for two wave conditions does not 
represent the wave-structure performance for all laboratory tests; 
whereas the optimum combination obtained with the proposed cali
bration method does. 

Fig. 10. Flow-chart of the proposed calibration method for VARANS models to 
calculate the optimum combination of np, α and β to model the wave-porous 
structure interaction. 
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6.1. VARANS and NN model validation 

From the available 37 physical tests, NT = 25 randomly selected 
tests, corresponding to 25 × 15 = 375 numerical cases from the IH-2VOF 
model, were used in this study to calibrate porosity and Forchheimer 
coefficients; the optimum combination of {np, α, β} was np = 0.44, α =
200 and β = 2.825 (see Section 5). The remaining 37 – NT = 12 available 
physical tests, corresponded to 12 × 15 = 180 numerical cases from the 
IH-2VOF model, were used in this study for a blind test of the proposed 
calibration method for VARANS models in two ways: 

(1) Validation of the NN model: new estimations of K2
RNN were ob

tained with the NN model for the wave input parameters {HI, T} 
corresponding to the 12 physical tests not used for calibration; 
the calibrated parameters (np = 0.44, α = 200 and β = 2.825) 
were fixed. The comparison between the measured, K2

RLAB, in the 
12 physical tests used for validation and the new NN estimations 
K2

RNN, lead to a root-mean-square error εrms = 2.56%, slightly 
higher than εrms = 2.28% obtained during the calibration process 
(NT = 25 tests).  

(2) Validation of the IH-2VOF model: numerical results using IH- 
2VOF, K2

RVOF, were obtained for the 12 additional physical tests 
taken for validation; the calibrated parameters (np = 0.44, α =
200 and β = 2.825) were fixed. The comparison between the 
measured, K2

RLAB, in the 12 physical tests used for validation and 
the new IH-2VOF numerical simulations, K2

RVOF, lead to a root- 
mean-square error εrms = 1.90%, slightly lower than εrms =

2.28% which were obtained during the calibration process (NT =

25 tests). 

The combination of np = 0.44, α = 200 and β = 2.825, which was the 
result of the calibration method, was validated with new physical tests 
and performed well in both IH-2VOF and NN model. Numerical IH-2VOF 
estimations of K2

R were better than NN estimations (εrms = 1.90% <
2.28%), but NN estimations require a much lower computational effort, 
which is adequate to calibrate the parameters of the porous media {np, α, 
β}. 

6.2. An adequate number of physical tests for calibration 

The numerical analysis of wave-structure interaction and other 
coastal problems using VARANS models usually has a high computa
tional cost (time and resources), which are not always available. For 
studies using VARANS models in numerical flumes, this section analyzes 
the minimum number of tests needed to properly apply the calibration 
method proposed in this study. The calibration method described in 
Section 6 was applied with different number of tests NT = [2, 4, 8, 12, 16 

and 20], randomly taken from the 25 physical tests used for calibration, 
following the steps gathered in Fig. 10. 

Fig. 11 represents the 5%, 50% and 95% percentiles of the root- 
mean-square error, εrms, given by Eq. (10) for different number of tests 
NT = [2, 4, 8, 12, 16 and 20]. With a number of tests NT = 8, the median 
error value was εrms = 3.24 % with a reasonably low variability, which is 
a small enough error to consider that the optimum combination of {np, α, 
β} provide the adequate parameters for the porous media of the ho
mogeneous mound breakwater in the VARANS model. A number of tests 
NT < 8, shown a median error of εrms > 8.58 % with a large variability; it 
is hard to believe that the optimum combination of {np, α, β} obtained 
with NT < 8 was adequate to describe the porous media. 

Fig. 12 shows the distribution of the NT = 4 tests, within the 25 
physical tests used for calibration (blue circles), with the lowest and 
highest value of εrms. It is observed that, for the case with the lowest εrms 
(the best case), the selection of {HI, T} covered a wide range of wave 
periods, T, in the 2D space {HI, T}, while the highest εrms (the worst case) 
covered a small range of T in the space {HI, T}. If one is forced to use this 
calibration method with few available physical tests, the results found in 
this Section suggest selecting points {HI, T} covering the full range of 
wave periods, T, used in the experiments. One should consider that NN 
models are usually very good interpolating but very poor extrapolating. 

7. Summary and conclusions 

The main objective of this study was to develop a calibration method 
for the porous media to properly model the interaction between waves 
and coastal structures in VARANS models. The proposed calibration 
method calculates the values of Forchheimer coefficients, α and β, and 
the porosity, np, from the results of a Neural Network (NN) model 
developed using physical and numerical tests. In this study, 37 physical 
tests using regular waves were conducted in the 2D wave flume of the 
University of Granada for a homogeneous mound breakwater under 
regular waves, non-overtopping and non-breaking wave conditions. 
Numerical tests were simulated in the IH-2VOF model, reproducing the 
37 physical tests with regular waves {HI, T}. The squared coefficient of 
reflection, related to the proportion of reflected wave energy, K2

R, was 
selected as the variable to represent the wave-structure interaction. The 
numerical cases were selected to cover a range of porosities, np, char
acteristic to the porous media with a nominal diameter Dn50 (m) = 0.03, 

Table 3 
Comparison between the absolute error (Eq. (9)) obtained in the IH-2VOF model 
using the traditional methodology for calibration and using the calibration 
method proposed in this study: εa (%) of α = 200, 2000; beta = 0.8, 1.5, 3; np =

0.46 (measured at laboratory) and εa (%) of the optimum combination {np =

0.44, α = 200 and β = 2.825}.  

H1(m) = 0.03; T1 (s) =
1.12; np = 0.46 (Lab 
measured) 

εa (%) =
⃒
⃒K2

RLAB − K2
RVOF

⃒
⃒ • 100 

β =
0.8 

β =
1.5 

β =
3 

Optimum combination np =

0.44, α = 200 and β = 2.825 

α= 200 3.1 2.6 1.4 0.31 
α= 2000 2.9 2.3 1.2  

H2(m) = 0.10; T2 (s) =
2.46; np = 0.46 (Lab 
measured) 

εa (%) =
⃒
⃒K2

RLAB − K2
RVOF

⃒
⃒ • 100 

β =
0.8 

β =
1.5 

β =
3 

Optimum combination np =

0.44, α = 200 and β = 2.825 

α= 200 14.6 11.6 5.8 0.05 
α= 2000 13.2 10.0 4.4  

Fig. 11. Percentiles 5%, 50% and 90% of the root-mean-square error, 
εrms(K2

R) %, calculated by Eq. (10) for each number of test NT. 
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and the ranges of Forchheimer coefficients, α and β, found in the liter
ature. A total of 555 numerical cases using IH-2VOF were simulated. The 
results of 375 numerical cases using IH-2VOF were selected to develop a 
NN model with five input variables (HI, T, np, α,β) and one output var
iable (K2

R). Estimations of K2
R were obtained with the NN model to cover 

the complete range of np, α and β values found in the literature. The 
remaining 555–375 = 180 numerical cases of IH-2VOF were used to 
validate the proposed calibration method. The proposed calibration 
method was applied with different number of physical tests to obtain the 
minimum number of physical tests for calibration required to find 
adequate Forchheimer coefficients for the porous media in VARANS 
models. 

The following conclusions are derived from this study:  

1. The NN model developed with the input variables {HI, T, np, α, β}, 
generate estimations K2

RNN which explained more than the 90% (R2 

> 0.90 and RMSE <5%) of the variance of the numerical K2
RVOF re

sults obtained using IH-2VOF model. The NN model correctly 
emulated the IH-2VOF model and was a computationally efficient 
tool to predict numerical VARANS results.  

2. The selection of one or a few physical tests {HI, T} to calibrate the 
values of np, α and β for a general applicable model, as reported in the 
literature, is usually not sufficient to obtain an adequate represen
tation of the wave-porous structure interaction. For the calibration of 
a VARANS model, applying or not the proposed calibration method, 
it is necessary to check the results obtained for each combination of 
{α, β} with many laboratory {HI, T} tests.  

3. The blind test conducted in this study resulted in a root-mean-square 
error εrms = 2.56 %, slightly higher than εrms = 2.28 % obtained 
during calibration. NN estimations, K2

RNN, were in agreement with 
the numerical IH-2VOF calculations, K2

RVOF, and the physical mea
surements, K2

RLAB, when using the calibrated parameters: np = 0.44, α 
= 200 and β = 2.825. The selection of a porosity, np = 0.44, and 
Forchheimer coefficients, α = 200 and β = 2.825, was the optimum 
combination of {np, α, β} for the porous media of a homogeneous 
mound breakwater with Dn50 (m) = 0.03 and under regular wave 
conditions.  

4. In this study, 4 physical tests for calibration seem insufficient to 
obtain a combination of parameters {np, α, β}, which adequate rep
resents the porous media in VARANS models. The selection of at least 

8 physical tests for calibration leads to an adequate combination of 
{np, α, β} for VARANS modeling. If few physical tests are available for 
calibration, it is preferable tests {HI, T} that cover the full ranges of T. 

5. In this study, the optimum value of the linear Forchheimer coeffi
cient was α = 200, at the lower limit of the range of α values found in 
the literature (200 ≤ α ≤ 20,000); therefore, the actual optimum 
combination of {np, α, β} may has an α lower than 200. 

The proposed method based on a NN model is a robust, accurate and 
computational efficient tool to calibrate the porous media of a coastal 
structure under wave attack using VARANS models. This method not 
only obtains the optimum combination of Forchheimer coefficients {α, 
β}, but also estimates the actual porosity of the physical model, char
acterized by a nominal diameter Dn50. The correct calibration of a nu
merical model will allow proper analysis of the performance of wave- 
structure interaction and, once the model is setup, further physical 
phenomena and variations in the structure design can be studied. The 
proposed method may seem costly in time and money as it requires 
several steps (Step 1 to 7) and some laboratory tests (Step 1); however, 
the use of this calibration method and the numerical modelling (1) will 
be beneficial for the scientific and business community who need a very 
extensive laboratory test program to complete their studies; (2) will 
reduce the existing uncertainty in the numerical models calibration with 
a higher accuracy of obtaining the Forchheimer coefficients and the 
porosity. As a future work it would be interesting (1) to simulate a wider 
range for α, for example 100 ≤ α ≤ 20,000, than the range used in this 
study, and (2) to compare the results obtained by the proposed cali
bration method with the results of the NN methods of Vieira et al. (2021) 
and Dang et al. (2023) applied to the same physical model. 
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Martín: Resources, Supervision. Josep R. Medina: Conceptualization, 
Formal analysis, Resources, Supervision, Writing – original draft, 
Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The first author is funded through the Juan de la Cierva 2020pro
gram (FJC 2020-044778-I) by “Unión Europea – NextGenerationEU en el 
marco del Plan de Recuperación, Transformación y Resiliencia de España”, 
Spanish Ministry of Science and Innovation. This work is supported by 
two projects (1) PID 2021-126475OB-I00 and (2) PID 2021-128035OA- 
I00, funded by the MCIN/AEI/10.13039/501100011033 and, as 
appropriate, by “ ERDF A way of making Europe”, by the “ European 
Union NextGenerationEU/PRTR”. The authors thank Professor Javier L. 
Lara and the Environmental Hydraulics Institute of Cantabria (IH-Can
tabria, Spain) for providing the IH-2VOF numerical model.  

Fig. 12. Distribution of the NT = 4 tests of HI (y-axis) and T (x-axis) with the 
lowest (yellow triangles) and the highest (grey triangles) εrms value. Blue circles 
represents the 25 physical tests used for calibration. 

P. Díaz-Carrasco et al.                                                                                                                                                                                                                         



Coastal Engineering 188 (2024) 104443

12

List of symbols 

a coefficient of the linear term of the drag force of Darcy-Forchheimer equation 
b coefficient of the non-linear term of the drag force of Darcy-Forchheimer equation 
cA coefficient of the add mass of the inertial force of Darcy-Forchheimer equation 
Dn50 nominal diameter of the porous media 
fb body forces 
FMT breakwater height 
g gravity 
Gc crest width 
h water depth 
HI incident wave height for regular waves 
I hydraulic gradient 
k kinematic energy (turbulent model) 
KC Keulegan-Carpenter number 
K2

R squared wave reflection coefficient 
K2

T squared wave transmission coefficient 
L wavelength at the toe of the structure calculated with T 
np porosity 
Nh number of hidden layers 
Nh number of hidden layers 
Nα total number of α values simulated 
Nβ total number of β values simulated 
NO number of output layers 
Nnp total of np values simulated 
NR number simulations with a selection a random combination of α and β for each physical test 
NT number physical tests 
Nw number of waves 
p wave pressure 
P number of parameters of the Neural Network model 
Re,c porous Reynolds number 
R2 coefficient of determination 
t time 
T wave period 
u wave velocity vector 
U(0,1) random number between [0,1] 
α linear Forchheimer coefficient 
β non-linear Forchheimer coefficient 
Δα,Δβ differential step of α and β coefficients, respectively 
Δnp differential step of np values 
Δx,Δy cell size of the mesh grid in the x- and y-directions, respectively 
ϵ turbulent dissipation rate (turbulent mode) 
εabs absolute error 
εrms root-mean-square error 
γp add mass Forchheimer coefficient 
ρ water density 
ρs rock density 
μ dynamic water viscosity 
ν kinematic water viscosity 
Subindexes “NN”, “LAB” and “VOF” represent the results obtained in the NN model, physical tests and IH-2VOF model, respectively 
Subindexes “k”, “i” and “j” represent each np, {HI, T} test, and pair of {α, β} values, respectively, simulated in the NN model 
Subindex “r” represents the number of simulations with a random combination of np, α and β for each physical test 
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