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Remote microphone technique for active noise
control over distributed networks

Christian Antoñanzas, Miguel Ferrer, Member, IEEE, Maria de Diego, Senior Member, IEEE, Alberto Gonzalez,
Senior Member, IEEE

Abstract—Multichannel Active Noise Control (ANC) headrest
systems have usually been designed with the objective of creating
quiet areas at the passenger positions within the cabin of a public
transport. Due to the high computational demands of dealing with
multiple loudspeakers and multiple microphones by using a single
centralized processor, and the convenience of a scalable system,
a distributed implementation may be advisable. On the other
hand, the addition of the remote microphone (RM) technique
to the ANC headrest systems has recently allowed the creation
of local zones of quiet at unachievable placements for the error
sensors. This technique allows the quiet zone to be shifted to a
desired location away from the physical sensor. However, to our
knowledge, the implementation of an ANC headrest system with
virtual microphones over a distributed acoustic sensor network
has not been addressed. In this work, a distributed version of
the multiple-error FxLMS (MEFxLMS) algorithm considering
the RM method (RM-DMEFxLMS) is proposed by using an
alternative formulation of the RM method. Through a set of
simulations, it is found that on a non-constrained communication
network, the proposed algorithm presents the same performance
of its centralized version and provides a scalable and more
versatile ANC system.

Index Terms—Remote microphone, active noise control, dis-
tributed processing, acoustic sensor networks.

I. INTRODUCTION

ACTIVE Noise Control (ANC) headrest systems have been
developed to reduce the sound level of undesired noise in

the listener’s ears, avoiding active headphones [1]–[3]. Gener-
ally, several actuators are placed near the headrest to generate 
the anti-noise signals, while several sensors located close to
the listener’s ears pick up the error signals. Depending on the 
control strategy, a reference microphone signal (feedforward
control) [4], [5] or an internally estimated signal (feedback 
control) [6], [7] are used to obtain a reference signal that is
correlated to the undesired noise. It is also worth noting that 
deep learning techniques have been recently applied to ANC
problems [8]–[10]. The resulting quiet zones around the error
sensors are generally limited in size and remain approximately 
within a sphere whose diameter is one tenth of the wavelength
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of the highest frequency of the noise [11], [12]. The noise
level may even increase away from these zones [13]. This
requires the error sensors be located as close as possible to the
listener’s ears, which is often uncomfortable. Thus, the remote
microphone (RM) [14] and virtual sensing [15] techniques are
effective methods for projecting a quiet zone to the desired
position and have attracted increasing attention in recent years.
Several authors have proposed ANC systems based on the
RM method [16]–[21] to achieve noise cancellation at a
target position (virtual location) where the microphones cannot
be located. To this end, the control system minimizes the
signals that the virtual sensors would pick up, but it uses the
signals captured by a set of physical sensors, called monitoring
sensors, that are located away from the quiet zone. By using
several previously calculated observation functions, the RM
technique is able to estimate the primary disturbance at the
virtual sensors from the primary disturbance measured at the
monitoring sensors. That allows us to directly estimate the
error signals at the virtual sensors from the error signals at
the monitoring sensors. It should be noted that the stability
of these ANC systems must also be assured when the RM
technique is applied. Since the stability can be compromised
due to inherent uncertainties related to the control of the
sound field [22]. Therefore, new schemes have recently been
proposed to improve the performance and robustness of the
ANC systems [23]–[25].

On the other hand, ANC headrest systems attempt to create
noise-free zones at all listener locations in a listening area or
room. That involves multiple loudspeakers and microphones
that are linked to the same centralized processor, which picks
up, processes, and generates multiple signals. However, the
computational burden of a single controller may increase sig-
nificantly due to the use of multiple transducers and overflow-
ing its capacity. On the contrary, a distributed approach can di-
vide this computation between several processors. Furthermore
ANC systems may usually require a change in the number or
positions of transducers. In such cases, a distributed approach
is often preferred since it provides independent processing
and control. Therefore, the use of distributed ANC systems
eliminates dependence on the capacity of a single central
system, making the ANC systems more versatile and scalable.
In addition, the acoustic interaction between loudspeakers
and microphones must also be taken into consideration in
the multichannel distributed ANC system [26], [27]. In cases
where such interaction does not significantly affect the sys-
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tem´s performance (e.g., if loudspeakers and microphones of
different subsystems are sufficiently separated), it is possible
to achieve global system stability by using independent and
non-collaborative processing systems. That results in a decen-
tralized approach [27]–[29]. Nevertheless, acoustic coupling
among transducers is present in most practical cases and could
also lead to an impairment of the behavior and stability of the
ANC system in many cases [30]. Therefore, the use of collab-
orative algorithms for distributed multichannel ANC systems
must be considered. This collaboration takes into account the
effects of the acoustical interaction and ensures global system
stability while providing cancellation performance similar to
the centralized approach. A distributed version of the Multiple
Error FxLMS (MEFxLMS) algorithm [26] was presented
in [31] and named DMEFxLMS. This work considers a
distributed ANC system composed of autonomous acoustic
nodes that are capable of measuring and generating signals
to reach a noise control target using a homogeneous acoustic
sensor network (ASN) [32]. ASNs are specifically designed
for acoustic signal processing tasks and are a popular and
efficient solution for different applications in multiple acoustic
areas such as: environmental audio monitoring [33], sound
source location [34], [35], speech enhancement [36], blind
synchronization [37], and binaural hearing aids [38], among
others. The ASN introduced in [31] is a ring-topology sensor
network that is composed of acoustic single-channel nodes,
which are equipped with a single sensor and a single actuator,
share the same communications and computation capacities,
and execute the DMEFxLMS algorithm. As presented in [31],
a collaborative ASN with ring topology based on incremental
communication among the nodes [39] could obtain the same
performance as its corresponding centralized algorithm. Thus,
to improve the implementation of this algorithm in practical
scenarios, several collaborative distributed approaches have
been proposed taking into account implementation aspects
such as convergence rate [40], [41], hardware constraints [42],
and efficient performance [43].

To our knowledge, the implementation of ANC headrest
systems using the RM technique over ASNs has not yet been
developed. Accordingly, one of the main objectives of this
work is to apply the RM technique to distributed systems
by reviewing the centralized formulation presented in [44]
and proposing a distributed approach. More specifically, we
present a distributed ANC headrest system based on the
MEFxLMS algorithm combined with the RM technique over
ASNs based on incremental communication among the nodes.
We denote this strategy as the RM-DMEFxLMS algorithm,
which should provide the same performance as the centralized
version (which we refer to as the RM-MEFxLMS algorithm)
under good communication conditions. In the proposed RM-
DMEFxLMS algorithm, each node uses a local version of the
global adaptive filter, which is updated and exchanged among
the nodes following incremental learning. The performance
of the new distributed approach based on virtual sensors
compared to its centralized version over a homogeneous ASN
is evaluated. An analysis of implementation considerations,
such as the computational complexity and the communication
demands, is also presented. Since each node can independently

Fig. 1. Multichannel centralized ANC headrest system.

compute a part of the global adaptive filter, the presented
algorithm can be used in heterogeneous networks and the
distributed scheme can be adapted to work with other network
topologies and data sharing strategies.

The paper is organized as follows: In Section II, we formu-
late the multichannel ANC system based on the centralized
MEFxLMS algorithm and the ANC system based on the
RM technique (RM-MEFxLMS). This section also introduces
the distributed version of the RM-MEFxLMS, leading to the
RM-DMEFxLMS over ASNs based on incremental learning.
Section III studies the performance of the RM-DMEFxLMS
algorithm for an ANC headrest system compared to the
MEFxLMS and the RM-MEFxLMS algorithms. Finally, Sec-
tion IV outlines the main conclusions of the present work.

Notation: For the sake of clarity, the following notation has
been used throughout this work: italics denote scalars (e.g.,
x), boldface lower-case letters denote vectors (e.g., x), and
boldface upper-case letters denote matrices (e.g., X). Boldface
subindexes denote type of sensor (e.g., em refers to a scalar
related to the monitoring sensor). The character˜ indicates an
estimation of the given signal or system.

II. DESCRIPTION OF THE ALGORITHMS

Let us consider a multichannel centralized ANC headrest
system based on the FxLMS algorithm [45] and composed of
J actuators and V sensors, as shown in Fig. 1. The single
ANC controller receives the information picked up by all of
the sensors and aims to control the sound field by generating
control signals via all of the actuators. The objective is to
cancel the acoustic noise signal at each sensor location, dv(n)
(where v∈{1, . . . , V }). Adaptive techniques combined with
the filtered-x structure are usually considered in the estimation
of the control signals [46]. To this end, the control signal
yj(n) (where j∈{1, . . . , J}), which is rendered by the j-
th actuator and propagated through the acoustic system, is
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TABLE I
NOTATION FOR THE RM-MEFXLMS ALGORITHMS

Notation Definition
x(n) reference signal. We consider one disturbance noise.
yj(n) control signal at the j-th actuator.

em,k(n) error signal at the k-th monitoring sensor.
ev(n) error signal at the v-th virtual sensor.

dm,k(n) acoustic noise signal at the k-th monitoring sensor.
dv(n) acoustic noise signal at the v-th virtual sensor.
wj(n) adaptive filter coefficients at the j-th actuator.

hm,jk , hjv acoustic channels that link the j-th actuator with the k-th monitoring sensor and the v-th virtual sensor, respectively.
okv observation filters that link the k-th monitoring sensor with the v-th virtual sensor.
J number of actuators.
K number of monitoring sensors.
V number of virtual sensors.
L number of coefficients of each adaptive filter.
M number of coefficients of the estimated acoustic channels.
P number of coefficients of the observation filters.
Q number of acoustic nodes.

designed to minimize the signal recorded at v-th sensor, called
error signal, and denoted by ev(n) (where v∈{1, . . . , V }). The
application of the filtered-x scheme in the adaptive algorithm
requires the estimation of the secondary path channels, hjv(n),
that link the j-th actuator and the v-th sensor. Those acoustic
channels are usually modelled as FIR filters of M coefficients,
denoted as h̃jv. It is common to assume ideal path estimation
(e.g., h̃jv=hjv). The acoustic noise signal at the v-th sensor,
dv(n), is modeled as the noise signal filtered through the
acoustic (primary) channel between the noise source and the
v-th sensor, denoted as pv(n). We assume that x(n) is the
reference signal at the discrete time instant n picked up by a
reference sensor.

The vector wj(n) holds the L coefficients of the FIR filter
of the j-th actuator. As demonstrated in [26], the vector wj(n)
minimizes the summation of the instantaneous square of the
noise signals at the sensors and it is updated by

wj(n) = wj(n− 1) −2µ
V∑

v=1

ujvev(n), (1)

where µ is the step-size parameter and ujv(n)=X(n)h̃jv,
with X(n) being a matrix of size [L×M ] defined as
X(n)=[x(n) x(n−1) . . . x(n−M+1)], with x(n) as a [L×1]
vector holding the most recent L samples of x(n). The output
signal of the j-th actuator is thus given by

yj(n) = wT
j (n)x(n), (2)

and the error signal at the v-th sensor can be expressed as

ev(n) = dv(n) +

J∑
j=1

hjv(n) ∗ yj(n), (3)

with ∗ denoting the linear convolution operator. Note that (1)
is the updating equation for the j-th adaptive filter of the
MEFxLMS algorithm. However, although significant attenu-
ation can be achieved at each error sensor location, the quiet
zones are usually small since they are inversely proportional
to the maximum frequency of the noise signal. Consequently,
it is necessary to place the error sensors as close as possible
to the listener’s ears, which is often a drawback. To overcome

these problems, the remote microphone technique has been
developed to shift the quiet zone away from the physical
position of the sensor to another desired location. On this
basis, the centralized version of the MEFxLMS algorithm
considering the remote microphone method (RM-MEFxLMS)
is briefly described in Section II-B. First, the observation filters
that link the primary disturbance measured at the monitoring
sensors with the virtual sensors are modelled in a setup phase.

A. Estimation of noise signals by observation filters

Fig. 2 illustrates the block diagram of a multichannel
centralized ANC system using the remote microphone method.
In the following, J actuators, K monitoring sensors, and
V virtual sensors are considered. The aim is to cancel the
acoustic noise signal at the virtual sensor locations, dv(n)
∀v. Since the actual signals at the virtual sensors cannot be
directly measured, the remote microphone technique considers
that the virtual sensor signals can be estimated from the signals
picked up at a set of K monitoring sensors. This is achieved
through the use of the corresponding observation functions,
which are usually estimated in a previous stage by means of
P -order FIR filters. A given observation function relates the
noise signal at a virtual control point, dv(n), with the noise
signal measured at the positions where the monitoring sensors
are located, dm,k(n) with k∈{1, . . . ,K}. It is important to
note that the robustness of the ANC system depends on the
choice of the proper modelling order, P , as well as the number
and location of the monitoring microphones [44]. The noise
signal picked up at the v-th virtual sensor can be estimated as

d̃v(n) =

K∑
k=1

okv(n) ∗ dm,k(n), (4)

where okv(n) denotes the observation filter that links the k-
th monitoring sensor with the v-th virtual sensor. At a setup
stage, physical microphones are placed on the targets (virtual
microphone positions) to estimate the observation filters. Note
that, when the algorithm is working, the microphones placed at
the virtual control points will not be available. Because of this,
the observation filters should be previously calculated using
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Fig. 2. Block diagram of a multichannel centralized ANC system using the remote microphone technique. The box, which contains the õ
′
m,jv and okv

observation filters, performs the calculation described by (7).

suitably selected measurements. This method is summarized
in Appendix A.

With regard to the calculation of the observation filters,
a more detailed explanation can be found in [18], [19],
[44]. However, some aspects must be considered. The relative
physical positions among virtual and monitoring microphones
significantly influence the performance of the RM algorithms.
In other words, the shapes of the quiet zones around the virtual
microphones depend on the location of the monitoring micro-
phones, as demonstrated in [18]. Consequently, given multiple
virtual and monitoring sensors, the proper modelling of the
observation filters and the relative positions of the sensors will
improve the algorithm behavior. Thus, an experimental study
on the best positioning of the monitoring sensors in a practical
acoustic environment is included in the results presented in
Section III, with the aim of illustrating a suitable estimation
of the signals at the virtual points from the signals at the
monitoring sensors.

B. The RM-MEFxLMS algorithm
We can approximate the behavior of the algorithm described

by (1) and (2) by estimating the virtual sensor error signals
from the actual error signals picked up at the monitoring
sensors, and thus we can develop an algorithm for practical
use. The primary disturbance signals at the monitoring sensors
can be estimated from the actual error signals as:

d̃m,k(n) = em,k(n) −
J∑

j=1

h̃m,jk(n) ∗ yj(n), (5)

where h̃m,jk(n) is the measured acoustic channel between the
j-th actuator and the k-th monitoring sensor, and em,k(n)

is the error signal at the k-th monitoring sensor. From the
assumptions in Section II-A and considering (5) to be accurate
enough, (4) can be expressed as

d̃v(n) =

K∑
k=1

okv(n) ∗ em,k(n) −
J∑

j=1

õm,jv(n) ∗ yj(n), (6)

being õm,jv(n)=
∑K

k=1 okv(n) ∗ h̃m,jk(n). The error signals
at the virtual points, ẽv(n), are estimated according to (3) and
(6), leading to

ẽv(n) =

K∑
k=1

okv(n) ∗ em,k(n) −
J∑

j=1

õ
′

m,jv(n) ∗ yj(n), (7)

being õ
′

m,jv(n)=õm,jv(n)−h̃jv(n).
Furthermore the steps to calculate the updated filter coeffi-

cients at the j-th actuator are described as follows:
1) The error signal em,k(n) is acquired from the k-th

monitoring sensor.
2) The estimated error signals at the v-th virtual sensor

are calculated through (7) using the error signals at
the monitoring sensors and the signals generated by the
actuators.

3) The filter coefficients at the j-th actuator are updated as:

wj(n) = wj(n− 1) − 2µ

V∑
v=1

ujv ẽv(n). (8)

Table I gathers the notation required for the remote mi-
crophone technique applied to ANC. The algorithm steps are
described in Algorithm 1. Note that, in practical systems, the
error signals are correlated with both the adaptive filter output
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Algorithm 1: RM-MEFxLMS algorithm

1 Setup stage: Calculation of õ
′

m,jv,okv, h̃m,jk and
h̃jv ∀j, k, v

2 Initialize: wj(0) = [0, . . . , 0]T ∀j
3 for all n ≥ 0 do
4 Obtain x(n) from the reference sensor
5 x(n) = [x(n) x(n− 1) . . . x(n− L+ 1)]T

6 X(n) = [x(n) x(n− 1) . . . x(n−M + 1)]
7 for all monitoring sensor 1 ≤ k ≤ K do
8 Obtain em,k(n) from the k-th monitoring

sensor
9 em,k(n) =

[em,k(n) em,k(n−1) . . . em,k(n−P−1)]T
10 end for
11 for all actuator 1 ≤ j ≤ J do
12 yj(n) = wT

j (n)x(n) // L Mult.
13 yj(n) = [yj(n) yj(n−1) . . . yj(n−M−P )]T

14 end for
15 for all virtual sensor 1 ≤ v ≤ V do
16 ẽv(n) =∑K

k=1 o
T
kvem,k(n) −

∑J
j=1(õ

′

m,jv)
Tyj(n−1)

// PK + J(P +M − 1) Mult.
17 end for
18 for all actuator 1 ≤ j ≤ J do
19 for all virtual sensor 1 ≤ v ≤ V do
20 ujv(n) = X(n)h̃jv // M Mult.
21 end for
22 wj(n+1) = wj(n) −2µ

∑V
v=1 ujv(n−1)ẽv(n)

// V (L+ 1) Mult.
23 end for
24 end for

signals and the filtered reference signals. For this reason, a
delay of one sample is applied to ujv and yj in the algorithm
description. The number of multiplications required for each
operation is also shown in Algorithm 1. It is important to
observe that the matrix-vector product of line 20 requires only
M multiplications, since only one new element of the output
vector has to be calculated. Consequently, and as demonstrated
in [44], it is possible to derive the updating equation of
the global filter of the centralized RM-MEFxLMS algorithm,
which is stated as follows:

w(n) = w(n− 1) − 2µ

V∑
v=1

uv(n)ẽv(n), (9)

where w(n) is the global adaptive filter vector of size [LJ×1],
which concatenates all of the adaptive filter vectors of each
actuator, w(n)=[wT

1 (n) wT
2 (n) . . . wT

J (n)]
T . The [LJ×1]

vector uv(n) is defined as uv(n)=[uT
1v uT

2v . . . uT
Jv]

T .
Therefore, the centralized algorithm proposed is suitable for

multichannel ANC headrest systems based on a single con-
troller to manage all of the signals generated by the actuators
and captured by the sensors. However, multichannel systems
deployed over a wide area require long communication wiring
among the transducers and the controller. That increases the

amount of cabling and, consequently, requires more costly
infrastructure. Moreover, adding multiple transducers may
drastically increase the computational cost needed to capture,
manage, and generate multiple signals. It should also not be
forgotten that a single controller failure means no information
is processed. Then, as stated previously, a distributed approach
provides independent processing and control, which is often
preferred, especially regarding the flexibility, versatility, and
scalability of the system. Hence, the proposed implementation
of (9) over a collaborative network of distributed acoustic
nodes is presented in Section II-C. This approach aims to have
the same behavior of the centralized one under the assumption
of ideal network communications, as shown in [31] for the
MEFxLMS algorithm.

C. The distributed RM-MEFxLMS algorithm
Let us now consider a multichannel feedforward ANC

system that is combined with the remote microphone technique
working over a homogeneous ASN of Q nodes, which are
spatially distributed within a certain area. A simplified case
with J=V=Q is shown in Fig. 3. A communication network
is available to allow data exchange among the nodes. An ideal
network with no communication constraints is assumed, where
all of the nodes execute the same algorithm and have access
to the same reference noise signal, x(n). Every node should
be able to locally process its signals and parameters and the
information received from its neighbors in order to address
the ANC problem, which aims at canceling disturbance noise
at the virtual sensor position. In the distributed case, we
consider that the q-th node is composed of {Jq} actuators
and {Kq} monitoring sensors. Thus, each node is linked to
a single set of monitoring sensors and one set of actuators.
Since the nodes cannot share any actuator,

∑Q
q=1 Jq=J always

holds. If the nodes do not share any monitoring sensor, which
usually occurs in practical cases,

∑Q
q=1 Kj=K. In addition,

we consider that both the observation filters and all of the
estimated acoustic channels (h̃m,jk and h̃jv for all values of
j, k and v) have been calculated in a setup stage and are
known before the algorithm starts working.

It is assumed that only the {Kq} error signals picked up at
the monitoring sensors linked to the q-th node are available.
Thus, the error signals at the virtual points from (7) can be
denoted by the following expression

ẽv(n) =
∑Q

q=1

∑
∀k∈{Kq} okv(n) ∗ em,k(n)

−
∑Q

q=1

∑
∀j∈{Jq} õ

′

m,jv(n) ∗ yj(n).
(10)

We define ẽvq(n) as

ẽvq(n) =
∑

∀k∈{Kq} okv(n) ∗ em,k(n)

−
∑

∀j∈{Jq} õ
′

m,jv(n) ∗ yj(n),
(11)

where ẽvq(n) denotes the contribution to the v-th error sig-
nal that the q-th node can independently calculate using its
available data, without data exchange among nodes. Therefore,
each virtual error can be calculated by the summation of these
contributions as:

ẽv(n) =

Q∑
q=1

ẽvq(n). (12)
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Fig. 3. ASN of Q nodes for an ANC system with the remote microphone
technique; in this figure, J = K = Q for simplicity.

Note that the driving signals that belong to other nodes
influence the monitoring signal of a certain node, but they are
subtracted by the summation over the ẽvq(n) signals for all
the nodes expressed by (12). The adaptive algorithm recursion
given by (9) can be formulated using (12) as

w(n) = w(n− 1) − 2µ
∑V

v=1 uv(n)
∑Q

q=1 ẽvq(n)

= w(n− 1) −
∑Q

q=1

(
2µ

∑V
v=1 uv(n)ẽvq(n)

)
= w(n− 1) −

∑Q
q=1 ∆wq(n),

(13)
where the term ∆wq can be calculated by the q-th node
using only its corresponding monitoring error and output
signals as well as the parameters estimated during the setup
phase. Now, the adaptive processing can be carried out in
a distributed way, for example over a ring topology with
incremental communication between the nodes, where the
global filter w(n) is split into local updates, as described in
[31]. Considering wq(n) as a local version of w(n) at the q-th
node, from (13), we can derive the filter updating equation of
the RM-DMEFxLMS algorithm.

wq(n) = wq−1(n)−∆wq(n), (14)

with q ∈ {1, . . . , Q}, where w(n) = wQ(n) at the last node
of the ring and w0(n+ 1) = wQ(n) at the first node for the
next round. A summary of the RM-DMEFxLMS algorithm
pseudocode executed per sample time at each node is given in
Algorithm 2. Note that an extra data transfer time is required
in order to disseminate wQ(n) throughout the network. The
data transfers and computations carried out at each node using
(14) are illustrated by Fig. 4.

To clarify the operations performed by each node both
sequentially and in parallel, Fig. 5 shows the time diagram
of Algorithm 2 of an ASN composed of Q nodes at the n-
th iteration. The delay introduced by each process is depicted
by the following colors: blue represents the processing delay

Algorithm 2: Distributed RM-MEFxLMS algorithm.

1 Setup stage: Calculation of õ
′

m,jv,okv, h̃m,jk and
h̃jv ∀j, k, v

2 Initialize: w(0)(0) = [0, . . . , 0]T

3 for all n ≥ 0 do
4 do in parallel
5 Obtain x(n) from the reference sensor
6 x(n) = [x(n) x(n− 1) . . . x(n− L+ 1)]T

7 X(n) = [x(n) x(n− 1) . . . x(n−M + 1)]
8 for all monitoring sensor k ∈ {Kq} do
9 Obtain em,k(n) from the k-th monitoring

sensor
10 em,k(n) =

[em,k(n) em,k(n−1) . . . em,k(n−P−1)]T
11 end for
12 for all actuator j ∈ {Jq} do
13 wq

j (n) = wq(n)[1+L(j−1):jL]

14 yj(n) = xT (n)wq
j (n) // L Mult.

15 yj(n) =
[yj(n) yj(n−1) . . . yj(n−M−P )]T

16 end for
17 ∆wq(n) = 0
18 for all virtual sensor 1 ≤ v ≤ V do
19 ẽvq(n) = 0
20 for all actuator 1 ≤ j ≤ J do
21 ujv(n) = X(n)h̃jv // M Mult.
22 end for
23 uv(n) = [uT

1v(n) u
T
2v(n) . . . uT

Jv(n)]
T ,

24 for all actuator j ∈ {Jq} do
25 ẽvq(n) = ẽvq(n)− (õ

′

m,jv)
Tyj(n− 1)

// M + P − 1 Mult.
26 end for
27 for all monitoring sensor k ∈ {Kq} do
28 ẽvq(n) = ẽvq(n) + oT

kvem,k(n) // P
Mult.

29 end for
30 ∆wq(n) = ∆wq(n) + 2µuv(n− 1)ẽvq(n)

// LJ + 1 Mult.
31 end for
32 end
33 Calculate: wQ(n) (w0(n) ≡ wQ(n− 1)).
34 for all node 1 ≤ q ≤ Q do
35 wq(n)← wq−1(n) /* Communication */
36 wq(n) = wq(n)−∆wq(n)
37 end for
38 Disseminate: wQ(n) (w0(n+ 1) ≡ wQ(n)).
39 for all node 1 ≤ q ≤ Q− 1 do
40 wq(n+ 1)← wq−1(n+ 1)

/* Communication */
41 end for
42 end for

due to the operations performed by a node with its local
information; red shows the delay introduced in the update
procedure of wq(n) since node q requires the local update
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Fig. 4. A ring-topology distributed ASN with incremental learning. The
algorithm is performed by two rounds within one sampling period: the first
one to calculate the network state wQ(n) using partial updates computed
at the nodes, and the second one to disseminate wQ(n) sequentially among
the nodes (w(n) = wQ(n), ∀q ∈ {1, . . . , Q}). Data transfer rounds are
indicated by different type of lines.

of the previous node, wq−1(n), to perform its updating; green
shows the data transfer delay necessary for the diffusion of
w(n) throughout the network; and yellow denotes the period
of time when the node is idle, waiting for the other nodes
to finish their respective operations. Since a homogeneous
ASN has been considered, all of the nodes have the same
characteristics and, consequently, the time to perform each
operation is the same independently of the node. Note that the
total processing time of the centralized method relies only on
the time the algorithm needs to process local data. In contrast,
in the distributed version, it also includes the time required
to update wq(n) as well as to deliver this information among
the nodes. It should be noted that the distributed algorithm
saves computing time due to the parallel processing of each
∆wq(n) at each node. Nevertheless, the total processing delay
of the whole network for each iteration must be less than the
sampling period. This condition is required in practice to run
the proposed distributed algorithm and it guarantees the same
performance as the centralized counterpart system.

Another important aspect that should be guaranteed is
the causality of the system [47], [48]. In this regard, the
following condition must be fulfilled. The minimum delay
of the propagation paths between the primary source and
the virtual sensors must be greater than the sum of the
total processing time, the maximum delay of the acoustic
paths linking the actuators to the monitoring sensors, and
the maximum delay of the acoustic paths from the reference
sensor to the primary source. This causality constraint can
be relaxed when a harmonic excitation is considered, but it
is important in broadband noise control. Since we consider
ANC applications inside enclosures, where the wavelength is

Fig. 5. Timing diagram of Algorithm 2 for a Q-node ASN including the
processes carried out for each node at each sample iteration.

relatively large in comparison with the physical dimensions
of the system, the causality condition is fulfilled by carefully
choosing the distances among the noise source, the actuators,
and the sensors. Although this (delay) causality condition is
not fulfilled for all monitoring and virtual points in some
setups, such as the one proposed in the next section, the
(causal) observation functions obtained are accurate enough. It
should be noted that propagation occurs inside an enclosure (in
contrast to free propagation), the sensors are relatively close,
and the observation functions are computed using multichan-
nel measurements. Thus, reflections provide high correlation
values between the monitoring and virtual signals within the
working frequency band for most points. In any case if this
condition is not met, it is possible to delay the error signals
obtained from the virtual control points at each node in prac-
tical scenarios [49] or increase the sampling rate. When these
requirements are fulfilled, assuming a network of synchronized
nodes, the proposed distributed algorithm can achieve the same
performance as the centralized version. Under the considered
assumptions, the stability and convergence properties of the
proposed distributed algorithm are identical to the centralized
one [31], [50].

III. SIMULATION RESULTS

This section presents the performance of the proposed RM-
DMEFxLMS algorithm compared to the RM-MEFxLMS and
the MEFxLMS algorithms over a distributed ANC headrest
system. To this end, an acoustic simulation environment
has been developed using the room impulse response (RIR)
measurements of a setup with two ANC headrest systems.
Each headrest system is composed of a car seat and two
control nodes. Each node is equipped with one loudspeaker
and two exclusive monitoring microphones and controls the
noise at all selected virtual positions. This setup of transducers
attempts to emulate a practical ANC headrest application,
where the creation of local quiet zones at the listener’s ears
is intended, e.g., within a cabin of an automobile or public
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Fig. 6. Distributed ANC headrest system composed of two ANC headrest
systems.

transport. All the nodes are emulated over the same processor,
which runs the distributed processing and implements the
communication model performing a ring topology network.
The four nodes follow an incremental learning strategy with no
communication constraints (ideal communications) and perfect
synchronization. For simplicity, we assume that each node has
local access to the reference signal to be used directly by the
algorithms. Two dummy heads seated in the chairs are used
in the measurements to emulate real listeners.

With the aim of studying the effect of using the RM
technique in practical environments, 67 measurement points
numbered as shown in Fig. 6 were chosen as allowed lo-
cations of the monitoring microphones. Thus, a total of 335
acoustic channels were measured in a listening room of 9.36
meters long, 4.78 meters wide, and 2.63 meters high (with
a reverberation time, RT60, of 0.2 seconds), located at the
Audio Processing Laboratory of the Institute of Telecommu-
nications and Multimedia Applications (iTEAM), as depicted
in Fig.7. These acoustic channels were modeled as FIR filters
of M=768 coefficients at a sampling rate of 2 kHz (which
is usually high enough for ANC applications). Each pair of
measurement points was 10 cm apart, except the points close
to the dummy heads where the separation was 7.5 cm, as
illustrated by Fig. 6.

The loudspeakers were placed adjacent to the car seats in the
rear of the headrests, with a separation of 40 cm between the
loudspeakers of each headrest system. The virtual microphones
were placed 4.5 cm away from the dummy head ears at
[4, 3] and [6, 3] positions for Headrest system 1, and at [12, 3]
and [14, 3] positions for Headrest system 2, respectively (see
Fig. 6). The locations of the monitoring microphones have
significant impact on the calculation of the observation filters,
as shown in Section III-A. The disturbance signal was rendered
by a loudspeaker placed in front of the chairs, 200 cm away
from the headrests. The considered disturbance signal is a
zero-mean Gaussian white noise band-limited to 1 kHz with
a sound pressure level of 91.1 dBSPL. The adaptive filter
length was of L=150 coefficients. The step-size parameter

Fig. 7. Illustration of the experimental setup for measuring the acoustic
channels at the specified monitoring points within the listening room.

for each configuration and adaptive algorithm was set as the
highest value that ensured the algorithm stability. All of the
microphones and loudspeakers were located at a height of
113.5 cm.

In order to evaluate the performance of the algorithms, we
define the Noise Reduction (NR) at the l-th sensor (either
virtual or monitoring), NRl(n), as the ratio in dB between
the estimated error powers with and without the active noise
control, which is given by:

NRl(n) = 10 · log10
[
Pel(n)

Pdl
(n)

]
, (15)

where Pdl
(n) is the power of the signal picked up at the

l-th sensor when the ANC system is inactive and Pel(n)
is the error signal power measured at the l-th sensor when
the ANC system is working. These powers were estimated
by applying an exponential windowing to the instantaneous
signal power. In summary, we have compared the algorithms
by calculating their NR learning curves and comparing: their
final values (final NR), their tendency or monotony (stability),
and the shapes of these curves (convergence rate). In addition,
a comparison between the presented algorithms in terms of
multiplications per iteration (computational complexity) and
data transfer (communication requirements) is also presented.

A. Calculation of the observation filters

In the identification stage prior to control, the observation
functions are usually modelled as P -coefficients FIR filters. P
is chosen as the lower number of coefficients to ensure accu-
rate modelling. In addition, practical cases require including
a regularization factor β on the calculation of the observation
filters to improve its robustness [18]. However, higher values
of β can result in a poor estimation of the signals at the
virtual positions. Therefore, a trade-off between accuracy and
robustness in the estimation as a result of a proper selection
of P and β parameters needs to be considered.

Moreover, as previously commented, the ability of the
observation functions to properly model the signal at the
virtual points also depends on the location of the monitoring
microphones. Because of this, it is convenient to present an
experimental study to estimate the potential accuracy of the
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remote microphone technique given the configuration consid-
ered at the beginning of Section III. Taking into account the
measurements points depicted in Fig. 6, a suitable combination
of positions for placing the monitoring microphones was
selected to minimize the error provided by the observation
functions, which are calculated following the guidelines pre-
sented in Appendix A. The study provides the best monitoring
microphone configuration, which leads to the minimum Mean
Squared Error between the estimated and the actual noise
signals at the virtual points (MSE defined by (18) in Appendix
A). To this end, some assumptions have been considered that
simplify the search. Each configuration has been defined by
eight monitoring microphone positions where the first four
positions are physically close to Headrest system 1 and are
hereby assigned to the nodes belonging to Headrest system
1. Alternatively, the other four positions are near to Headrest
system 2 and consequently, are linked to the nodes of that
headrest system. The optimal configuration must provide a
compromise between accuracy in the calculation of the obser-
vation matrix and comfortable installation of the microphones.
It is worth noting that it is not feasible to place the monitoring
microphones very close to the listener’s ears (for each headrest
system) due to the discomfort that this location may cause to
the listener.

First, different combinations of P and β were considered
with the aim of leading to a minimum MSE given by (18)
for each microphone configuration. The regularization param-
eter β was selected as the lowest one that provides good
performance on the observation functions computation and
a negligible bias on the filter coefficients. Fig. 8 shows an
example of the MSE at the four virtual control points for
different values of parameter P (β=10−10) and a configuration
with eight monitoring microphones. It can be observed that
the P values above 400 provide the lowest MSE. From these
results, a good choice of the parameter P is given by P=512.

Taking into account the assumptions previously considered
and the values of P and β, the next step is to find the best lo-
cation of the monitoring microphones. Of all of the considered
locations of the monitoring microphones illustrated by Fig. 6,
the minimum MSE was given by the following configuration:
microphones ([2, 3][4, 6])([6, 6][8, 3]) for Headrest system 1;
and: microphones ([10, 3][12, 6])([14, 6][16, 3]) for Headrest
system 2. Each pair of the selected monitoring microphones
were assigned exclusively to its closest node.

Having selected the values of both P and β as well as
the optimal location for the monitoring microphones, we are
interested in the set of monitoring microphones that minimizes
the MSE of each virtual microphone. The aim is to evaluate the
suitability of using all eight available monitoring microphones
in the optimal positions (or only some of them) to calculate
the observation functions. Table II shows the minimum MSE
at each of the four virtual microphones for several combina-
tions of the eight monitoring microphones. The microphones
selected for each case were those that gave the lowest MSE
within the possible combinations of the same number of
microphones (e.g., among the 56 available combinations for
five monitor microphones, the case with the lowest error at
the virtual microphones is shown). From the results, it can

Fig. 8. MSE (dB) at the four virtual microphones for different values of P
and β=10−10.

TABLE II
MINIMUM MSE AT THE VIRTUAL MICROPHONES CONSIDERING THE BEST

LOCATION OF THE MONITORING MICROPHONES BY USING DIFFERENT
COMBINATIONS OF THEM WITH P=512 AND β=10−10 . THE TERM mic v

REFERS TO v-TH VIRTUAL MICROPHONE.

Number of monitoring MSE (dB)
microphones mic 1 mic 2 mic 3 mic 4

8 -102.0 -99.7 -98.5 -110.5
7 -103.8 -98.2 -97.4 -108.6
6 -102.4 -96.1 -95.5 -105.6
5 -98.1 -90.9 -92.2 -100.9
4 -90.2 -83.1 -81.5 -92.0
3 -71.3 -69.8 -70.2 -74.5
2 -29.2 -32.1 -29.8 -29.8
1 -10.1 -14.9 -16.4 -13.1

be observed that the use of the eight monitor microphones
provides the best MSE (although very low MSE can also be
provided from combinations of three or more microphones).
Thus all of the monitoring microphones were used to estimate
the noise signals at the virtual points. In summary, and given
the very low MSE obtained at the virtual microphones, we can
consider that a good estimation of the observation functions
was achieved.

B. Performance evaluation of the RM-DMEFxLMS algorithm

In this section, the performance of the RM-DMEFxLMS
in terms of noise reduction and convergence rate is evaluated
and compared with the MEFxLMS and RM-MEFxLMS algo-
rithms. The set of eight monitoring microphones selected in
Section III-A is considered. Fig. 9 illustrates the NR learning
curves obtained for the centralized and distributed algorithms
with different setup configurations for the two active headrest
systems at each of the four virtual microphones. The first
result (red line) illustrates the performance of the centralized
MEFxLMS algorithm with a 1:4:8 configuration. Thus, the
ANC system consists of one reference signal, four actuators,
and eight monitoring microphones used as error sensors.
As expected, when the active control is performed at the
monitoring microphones, there is no attenuation at the virtual
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(a) Virtual microphone 1 at [4, 3] position (b) Virtual microphone 2 at [6, 3] position

(c) Virtual microphone 3 at [12, 3] position (d) Virtual microphone 4 at [14, 3] position

Fig. 9. Noise reduction at the virtual positions by the ANC headrest system for: MEFxLMS (controlling noise at the 8 monitoring sensors), MEFxLMS
(controlling noise at the 4 virtual sensors), RM-MEFxLMS (using the remote microphone technique), and RM-DMEFxLMS (distributed version of the RM-
MEFxLMS with 4 nodes). The noise reduction at the dummy head microphone closest to the corresponding virtual microphone is also showed in each figure.

sensor positions. The second result (green line) corresponds to
the ideal case, in which the MEFxLMS runs in a 1:4:4 system
with four error microphones physically located at the virtual
positions. The third result (blue line) is provided by the RM-
MEFxLMS algorithm considering a 1:4:4 ANC system where
the four virtual sensors were used as the targets by using the
RM technique. Comparing the performance of the MEFxLMS
and the RM-MEFxLMS, both exhibit the same behavior at the
virtual sensor positions (see Fig. 9), with NR levels higher than
15 dB after the algorithms’ convergence. These results are due
to the accuracy in estimating the observation filters. However,
different enclosures or set-ups of the monitoring microphones
could lead to less accurate observation functions. Then higher
differences in the performance between algorithms using or not
using the RM technique would be observed. The fourth result
(blue dashed line) shows the performance of the distributed
algorithm, the RM-DMEFxLMS over an ASN comprised of
four nodes with one secondary source and two error sen-
sors at each node. As can be observed, the proposed RM-
DMEFxLMS algorithm presents the same behavior as its
centralized version since there are no differences between
the learning curves. It shows a stable and robust behavior

and provides the same noise reduction at the four virtual
microphone positions. It should be noted that the distributed
version of the RM technique exhibits the same performance
as its centralized version when there are no communication
constraints in the network. Finally, the NR measured at the
dummy head microphones is also shown in Fig.9 (pink line).
The NR of each dummy head microphone is represented
together with the NR of its nearest virtual microphone. As
expected, the NR at the dummy microphones is slightly lower
than the NR at the corresponding virtual microphone.

C. Computational complexity and communication demands

In this section, we evaluate the computational complexity
of both centralized and distributed RM strategies in terms
of multiplications per iteration at each node. The centralized
version is considered a particular case of the distributed
version with a single node. In parallel, the communication
requirements (data transfer) of the distributed RM algorithm
are also presented. To this end, we consider an ASN of
Q nodes. Because we assume that each node has access to
the reference signal through an alternative broadcast channel,
the sharing of this reference signal has not been considered
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TABLE III
(1) TOTAL NUMBER OF MULTIPLICATIONS PER ALGORITHM ITERATION AT EACH NODE, MEASURED IN NUMBER OF MULTIPLICATIONS, AND, (2)

COMMUNICATION REQUIREMENTS PER ALGORITHM ITERATION, MEASURED IN NUMBER OF COEFFICIENTS ( L: LENGTH OF THE ADAPTIVE FILTERS; M :
LENGTH OF THE ACOUSTIC PATHS; P : LENGTH OF THE OBSERVATION FILTERS; Q: NUMBER OF NODES FOR THE DISTRIBUTED CASE; AND, J : NUMBER
OF LOUDSPEAKERS). SEVERAL TYPICAL CASES ARE SHOWN WITH: L=150, M=768, P=512, Kq=2, Jq=1, AND Q=1, 2, 4, 8, AND 16 NODES. NOTE

THAT K=
∑Q

q=1 Kq AND V=
∑Q

q=1 Vq .

Algorithms Multiplications per iteration Q = 1 Q = 2 Q = 4 Q = 8 Q = 16
(1) RM-MEFxLMS LJ +MV J +KV P + JV (P +M − 1) + JV (L+ 1) 3372 13188 52152 207408 827232
(1) RM-DMEFxLMS LJq +MV J +KqV P + JqV (M + P − 1) + V (LJ + 1) 3372 8430 24054 77334 272022

Algorithm Exchanged coefficients per iteration Q = 1 Q = 2 Q = 4 Q = 8 Q = 16
(2) RM-DMEFxLMS 2LJ(Q− 1) 600 3600 16800 72000

in the calculation of the data transfer. As can be observed
from Table III, the computational complexity depends on
L, M , P , J , K, and V for both algorithms. In addition,
the distributed method also depends on Jq and Kq . On the
other hand, the communication requirements only depend on
L, J , and Q. Both implementation strategies are specified
for Q∈{1, 2, 4, 8, 16} nodes. The case Q=1 is omitted for
the communication demands since there is no data transfer
among nodes. As expected, when Q=1, the RM-DMEFxLMS
algorithm exhibits the same computational complexity as the
RM-MEFxLMS strategy. However, as Q increases, Table III
shows that the computational cost of the centralized algorithm
is higher than the distributed approach, whose complexity
at each node remains low. Note that, for the 16-node case,
the reduction of the computational cost is up to 67%. With
regard to the communication demands, Table III shows the
data transfer needed per iteration on the whole network for
the RM-DMEFxLMS. Note that, every node must transfer
LJ×1 adaptive coefficients to the following node using an
incremental strategy. These transfers are carried out 2(Q−1)
times within each sampling period (algorithm iteration), which
means that two rounds are needed. Note that both implemen-
tation aspects, computational complexity and communication
requirements, increase significantly with the number of nodes.
A practical example of an ANC system working over an
incremental ASN composed of 4 nodes (Q=4), similar to
that described in [43], is considered. It uses standard audio
cards working with blocks of 2048 samples (B=2048) and a
common sampling frequency (fs) of 44.1 kHz. The buffering
time, defined as B/fs, is then 0.0464 s. The amount of data
transferred through four nodes at this buffering time is given
by 2(Q−1)(LJ)×4 bytes. This means 393.216 kB for single-
precision floating-point format (which requires 4 bytes) and a
general filter length of 4096 taps (L=4096). Therefore, the
data per second that must be transferred through four nodes
is (393.216/0.0464) 8474.4 kBps (kB per second). Thus, a
transfer rate at least of 8.5 MBps would be necessary to
implement the DMEFxLMS algorithm over an incremental
network of four nodes. Therefore, a standard Ethernet network
of 1 GBps can perform the required data transfer among
the nodes. In addition, the standard network capacity allows
the number of nodes to be increased. However, if enough
communication capacity is not available, the proposed system
would not achieve the performance of the centralized system,
but it could work with a slower convergence rate [31].

IV. CONCLUSION

This work introduces a distributed version of the MEFxLMS
algorithm based on the remote microphone technique for ANC.
This distributed approach allows the computational cost of the
equivalent centralized algorithm to be shared among acoustic
nodes with lower computational capacity instead of a single
high-capacity central processing unit. In addition, removing
or adding secondary sources or monitoring microphones is
straightforward since it only involves turning nodes on or
off, leading to a more scalable and flexible system. The
proposed algorithm is called RM-DMEFxLMS and reaches
the same solution as the centralized algorithm over ASNs with
ring topology and incremental unconstrained communication.
It has been tested on a distributed ANC headrest system
over an ideal ASN. In order to evaluate the performance of
the RM-DMEFxLMS for ANC applications, we have carried
out numerical simulations in an ASN that is comprised of
two ANC headrest systems. The noise reduction obtained by
the proposed approach has been compared to that achieved
by its centralized version (the RM-MEFxLMS) and by the
MEFxLMS algorithm (the centralized approach without the
remote microphone technique). The results show that the
new approach exhibits the same performance in transient and
steady states as the RM-MEFxLMS, providing there are no
latency or data rate constraints in the network. Furthermore,
the RM-DMEFxLMS outperforms the MEFxLMS at the vir-
tual sensor positions. In addition, a study of implementation
aspects such as computational complexity and communication
capabilities among the nodes in the network is also presented.
We have concluded that the computational requirements of
the RM-DMEFxLMS per node are lower than those of the
centralized strategy. Moreover, it has been shown that the
computation and data communication requirements increase
with the number of nodes.

APPENDIX A
CALCULATION OF THE OBSERVATION FUNCTIONS

The observation functions are usually modeled as FIR filters
of P coefficients that we refer to as the vector okv . The
relationship between the noise signal picked up at the physical
microphones placed at the virtual sensor positions and at all
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of the monitoring sensors can be expressed in matrix form as
d̃1(n)

d̃2(n)
...

d̃V (n)

 =


oT
11 oT

21 · · · oT
K1

oT
12 oT

22 · · · oT
K2

...
. . .

...
oT
1V oT

2V · · · oT
KV



dm,1(n)
dm,2(n)

...
dm,K(n)

 , (16)

which can be compacted as

d̃(n) = [O1 O2 . . . OK ]dm(n) = Odm(n), (17)

where d̃(n) is a [V×1] vector with the last sample of the
estimated noise signals picked up at each of the V virtual
sensor positions when a physical microphone is located and
dm(n) is a [PK×1] vector, which concatenates the K vectors
composed by the last P samples of the signals at each moni-
toring sensor. O is a matrix of size [V×PK] that holds all of
the observation filters, which link all of the monitoring sensors
to all of the virtual sensors. Moreover, Ok is a [V×P ] matrix
comprised of the observation filters linking the k-th monitoring
sensor to all of the virtual sensors, Ok=[ok1 ok2 . . . okV ]

T .
The observation filters are calculated by minimizing the

mean square error (MSE) between the signals picked up at
the monitoring and at the virtual sensors. Thus, matrix O
minimizes the following cost function:

MSE = E{(d(n)−d̃(n))T(d(n)−d̃(n))}. (18)

The solution of the above problem is given by
Oopt=[R−1

mmRmv]
T , where Rmm=E{dm(n)dT

m(n)} is
a matrix of size [PK×PK] and Rmv=E{dm(n)dT(n)} is
a matrix of size [PK×V ]. It should be noted that, if dm(n)
and d(n) are measured by exciting the system with white
noise, the calculation of the matrices Rmm and Rmv would
be equivalent to the calculation of these matrices from the
knowledge of the primary paths between the noise source
and the monitoring and virtual sensors. Thus, Rmm could be
estimated as:

Rmm =


Rmm11 Rmm12 · · · Rmm1K

Rmm21 Rmm22 · · · Rmm2K

...
. . .

...
RmmK1

RmmK2
· · · RmmKK

 , (19)

with Rmmzk
being a matrix of size [P×P ] defined as

Rmmzk
=

pm,zk(0) pm,zk(1) · · · pm,zk(P−1)
pm,zk(−1) pm,zk(0) · · · pm,zk(P−2)

...
. . .

...
pm,zk(−P+1) pm,zk(−P+2) · · · pm,zk(0)

 ,

(20)
with pm,zk(n)=pm,z(n)∗pm,k(−n), where pm,l(n) is the
impulse response of the acoustic channel between the noise
source and the l-th monitoring sensor. Similarly, the [PK×V ]
matrix Rmv could be estimated as:

Rmv =


Rmv11

Rmv12
· · · Rmv1V

Rmv21
Rmv22

· · · Rmv2V

...
. . .

...
RmvK1

RmvK2
· · · RmvKV

 , (21)

with Rmvkv
being a matrix of size [P×1] defined as

Rmvkv
=


pkv(0)
pkv(−1)

...
pkv(−P + 1)

 , (22)

with pkv(n)=pm,k(n)∗pv(−n), where pv(n) is the impulse
response of the acoustic channel between the noise source and
the v-th virtual sensor.
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