Future Generation Computer Systems 153 (2024) 457-466

Contents lists available at ScienceDirect z =
FIBICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =

Check for

Rescheduling serverless workloads across the cloud-to-edge continuum | e

Sebastian Risco, Caterina Alarcén, Sergio Langarita, Miguel Caballer, German Molt6 *

Instituto de Instrumentacién para Imagen Molecular (I3M), Centro mixto CSIC - Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022, Valencia, Spain

ARTICLE INFO ABSTRACT

Keywords:
Cloud computing
Cloud-to-edge continuum

Serverless computing was a breakthrough in Cloud computing due to its high elasticity capabilities and fine-
grained pay-per-use model offered by the main public Cloud providers. Meanwhile, open-source serverless
platforms supporting the FaaS (Function as a Service) model allow users to take advantage of many of their

Sonstainers benefits while operating on the on-premises platforms of organizations. This opens the possibility to deploy
K?lz‘:»ernetes and exploit them on the different layers of the cloud-to-edge continuum, either on IoT (Internet of Things)

devices located at the Edge (i.e. next to data acquisition devices), in on-premises clusters closer to the data
sources (i.e. Fog computing) or directly on the Cloud.

This paper presents two strategies to mitigate the overload that disparate data ingestion rates may cause
in low-powered devices at the Edge or Fog layers. To this end, it is proposed to delegate and reschedule
serverless jobs between the different layers of the cloud-to-edge continuum using an open-source platform for
event-driven file processing. To demonstrate the performance of these strategies, a use case for fire detection
is proposed that includes processing in the Fog via minified Kubernetes clusters located near the Edge, in the
private Cloud via on-premises elastic clusters and, finally, in the public Cloud by using the AWS (Amazon
Web Services) Lambda Faa$S service. The results indicate that these strategies can mitigate overloads in use
cases involving processing across the cloud-to-edge continuum by coordinating several layers of computing
resources.

Serverless computing

1. Introduction possible due to the computing capacity constraints of such devices.
Workload is offloaded into the Cloud when additional computing power

The cloud-to-edge continuum (or computing continuum) [1] encom- is required, thus effectively using the cloud-to-edge continuum. This

passes a wide variety of components that may include low-powered
devices with limited computer resources, on-premises servers with
moderate resources, expensive high-performance computers and pub-
lic cloud platforms. This is in line with the definition by the Open-
Fog Reference Architecture for Fog Computing, stating that it is a
system-level architecture that distributes computing, storage, control
and networking functions closer to the users along a continuum [2].
Indeed, the SPEC-RG reference architecture for the edge contin-
uum [3] proposes an architecture for task offloading according to
five computing models: Mist computing, edge computing, multi-access
edge computing, fog computing and mobile cloud computing. Mist
computing is sometimes used interchangeably with fog computing,
even if some authors point to subtle differences [4]. This distributed
computing paradigm extends cloud computing capacities into the edge
of the network to bring computation closer to the data source and
the end devices such as sensors and other IoT (Internet of Things)
devices [5]. In this paradigm, the edge devices collect data that is
locally processed at the edge of the network to the extent that it is

* Corresponding author.

approach offers several benefits:

» Reduced latency: By processing data locally, mist computing re-
duces the time it takes to transmit data to the cloud and receive a
response. This is particularly important for real-time applications
that require immediate decision-making.

Bandwidth optimization: Sending large volumes of data to the
cloud can strain network bandwidth. Mist computing filters and
processes data locally, reducing the amount of data that needs to
be transmitted to the cloud. Only relevant or summarized data is
sent, optimizing bandwidth usage.

Enhanced privacy and security: Some applications, such as those
involving sensitive data or strict privacy requirements, can benefit
from keeping data locally and reducing the need for data transfer
over public networks. Mist computing allows sensitive data to be
processed and analysed closer to its source, improving privacy
and security.

E-mail addresses: srisco@i3m.upv.es (S. Risco), calarcon@i3m.upv.es (C. Alarcén), slangarita@i3m.upv.es (S. Langarita), micaferl @upv.es (M. Caballer),

gmolto@dsic.upv.es (G. Moltd).

https://doi.org/10.1016/j.future.2023.12.015

Received 10 July 2023; Received in revised form 6 November 2023; Accepted 16 December 2023

Available online 19 December 2023

0167-739X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:srisco@i3m.upv.es
mailto:calarcon@i3m.upv.es
mailto:slangarita@i3m.upv.es
mailto:micafer1@upv.es
mailto:gmolto@dsic.upv.es
https://doi.org/10.1016/j.future.2023.12.015
https://doi.org/10.1016/j.future.2023.12.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.12.015&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Risco et al.

« Offline operation: In scenarios where intermittent connectivity to
the cloud is common, mist computing enables devices to continue
operating and processing data locally even when disconnected
from the cloud. This ensures uninterrupted functionality and
allows for offline data analysis if the computing capacity of the
devices is not exceeded.

However, the execution along the cloud-to-edge continuum involves
several challenges that need to be addressed, as identified by the work
of Mouradian et al. [6]. This work highlights “task scheduling” and
“offloading and load redistribution” as key features for computing in
scenarios related to fog computing.

In this scenario, serverless has risen in recent years as an event-
driven computing paradigm involving services where the service provider
manages the underlying computational infrastructure entirely. This has
paved the way for the surge of open-source serverless platforms to be
deployed on on-premises resources that mimic this abstraction layer for
the developers. These typically involve Container Orchestration Plat-
forms, such as Kubernetes, which provide seamless resource allocation.
This is the case of KNative [7], OpenFaaS [8] and, as addressed in this
paper, OSCAR [9]. These platforms provide the required abstractions
to execute functions or applications, packaged as Docker images, with
dynamic provisioning of resources.

To this aim, this work presents the following contributions: First,
a novel approach for rescheduling workloads on a serverless platform
that can run along the cloud-to-edge continuum. This attempts to
mitigate the disparate workload distribution across the multiple layers
of this continuum to profit from additional computing resources, espe-
cially when involving devices with constrained computing resources.

Second, an implementation of the proposed approach is done in the
OSCAR! open-source serverless platform, together with an assessment
of the functionality on a realistic use case on wildfire detection. To the
best of the authors’ knowledge, this provides the first implementation
of a job rescheduling system for serverless computing across the cloud-
to-edge continuum, provided as a ready-to-use implementation in an
existing open-source framework.

The remainder of the paper is structured as follows. First, Section 2
discusses the related works. Next, Section 3 introduces an architec-
ture to support job delegation and rescheduling across event-driven
serverless platforms. Later, Section 4 introduces a use case on serverless
fire detection along the cloud-to-edge continuum to assess the benefits
of the proposed approach. Finally, Section 5 summarizes the main
achievements and discusses future work.

2. Related work

Several works in the state-of-the-art focus on the scheduling of
serverless workloads. For example, the work by Zhang et al. [10] intro-
duces the cost of execution as a requirement for scheduling serverless
analytics tasks. They introduce a task scheduler that minimizes execu-
tion cost while being Pareto-optimal between cost and job completion
time.

Kaffes et al. [11] discuss the limitations of existing scheduling
mechanisms for serverless platforms when considering the diverse re-
quirements of applications in terms of burstiness, different execution
times and statelessness. They propose a centralized and core-granular
scheduler for serverless functions with a global view of the cluster
resources.

The usage of serverless computing along the cloud-to-edge contin-
uum has also increased recently. This way, Rausch et al. [12] proposed
a serverless platform for building and deploying edge Al applica-
tions, thus integrating concepts from Al lifecycle management into
the serverless computing model. Based on OpenWhisk composer for

1 OSCAR - https://oscar.grycap.net

458

Future Generation Computer Systems 153 (2024) 457-466

workflow composition, they unveiled the lack of support for ARM-based
architectures for OpenWhisk.

The cloud-to-edge continuum embraces a diverse plethora of hetero-
geneous platforms and computer architectures. In this regard, the work
by Jindal et al. [13] introduces an extension of the FaaS (Function as
a Service) computing model to heterogeneous clusters and to support
heterogeneous functions via a network of distributed heterogeneous
platforms (Function Delivery Networks). They focus on SLO (Service
Level Objective) requirements and energy efficiency, deploying func-
tions on Edge platforms to reduce overall energy consumption. The
authors use OpenWhisk, OpenFaaS and Google Cloud Functions.

Sicari et al. [14] build on the concept of scientific workflows using
the FaaS computational paradigm to create Serverless workflow-based
applications based on a customized Domain-specific Language (DSL)
to federate the Cloud-Fog-Edge layers to profit from each computing
tier. This is exemplified in the open-source OpenWolf platform, a
serverless workflow engine for native cloud-to-edge continuum, based
on OpenFaa$, for function execution and Redis to store the workflow
manifests and the execution information for the workflows.

Smirnov et al. [15] introduce Apollo, an orchestration framework
for serverless function compositions that can run across the cloud-to-
edge continuum. The framework leverages data locality to perform
cost and performance optimization. It also includes a decentralized
orchestration approach where multiple instances can cooperatively
orchestrate the application while balancing the workload between the
spare resources.

The work by Ferry et al. [16] introduce the SERVERLEss4I0T plat-
form to perform the deployment and maintenance of applications over
the cloud-to-edge continuum, but no open-source software is provided.

Unlike previous works, our contribution provides an open-source
implementation of the methods described in the paper to support job
rescheduling and distribution among multiple service replicas that can
execute along the cloud-to-edge continuum. An evaluation and assess-
ment of the benefits of the implementation is done through a use case
on wildfire detection run on disparate computing infrastructures on this
continuum, involving serverless computing at the edge, on-premises
clusters and public cloud infrastructures.

3. Proposed architecture

The work carried out is focused on the extension of the OSCAR [9,
17] platform, an open-source® framework for serverless data process-
ing through container-based applications. OSCAR is a cloud-native
framework that runs on the Kubernetes [18] container orchestration
system to define serverless services for data processing. As shown in
Fig. 1, it allows the scheduling of Kubernetes jobs for the asynchronous
processing of files uploaded to a predefined bucket of the MinIO [19]
storage system. These jobs are executed as containers, created out of
user-defined Docker images, that run on an elastic Kubernetes cluster
that can grow and shrink in terms of the number of nodes depending
on the current workload and the limits defined at deployment time,
[thanks to the CLUES®. Output files are likewise uploaded to MinIO so
users can easily retrieve them or to any supported data storage systems
such as Amazon S3, Onedata or dCache.

OSCAR also supports the synchronous processing of invocations per-
formed via HTTP requests. For this purpose, the platform is integrated
with the Knative [7] Serving framework. However, this study focuses
on the asynchronous feature of OSCAR, considering that it is more ap-
propriate for compute-intensive batch tasks, such as inference processes
using Artificial Intelligence/Machine Learning (AI/ML) models, as is
the use case described in Section 4.

2 OSCAR’s GitHub repository: https://github.com/grycap/oscar
3 CLUES - https://github.com/grycap/clues] elasticity system

https://oscar.grycap.net
https://github.com/grycap/oscar
https://github.com/grycap/clues]

S. Risco et al.

Future Generation Computer Systems 153 (2024) 457-466

Manage services
Register jobs
Retrieve logs

API

Kubernetes API

—
-
interface Manager
Create buckets and folders
Configure event nofifications

Download/upload files

Deploy

Execute services

(optional)

Trigger jobs
(webhook events)

Serverless
Backend

Create jobs—
dCache

ON=)ATA

amazon
sl E

MINIO

FaaS
[Supervisor

Upload
output

Download input
Upload output

FaaS
[Supervisor
—

External storage providers

Assign to
function's pod(s)

b
.72 Elastic Kubernetes cluster

~ Infrastructure
Manager

Scale in/out

Working
Node

Infrastructure as a Service provider

Fig. 1. Overall architecture of the OSCAR serverless platform.

OSCAR allows the definition of services via a web-based interface
or through the Functions Definition Language (FDL)* files using the
command-line interface. An OSCAR service is mainly characterized by:

+ a Docker image available in a container image registry (e.g. Docker
Hub or GitHub Container Registry)

A shell script that will be executed inside the container created
out of the Docker image to perform the data processing on
the customized execution environment provided by the Docker
image.

A set of computing requirements for vCPUs, RAM and GPUs.

An input storage bucket that will trigger the execution of the
OSCAR service and one or more output storage back-ends on
which the output data generated by the service will be stored.

These services can be run on an OSCAR cluster or in AWS Lambda
via our development SCAR® [20]. AWS Lambda is a serverless comput-
ing service provided by Amazon Web Services (AWS) to support the
Functions as a Service (FaaS) computing paradigm. It allows users to
run code in response to certain events (file upload, HTTP request, etc.)
without provisioning or managing servers, which is the responsibility
of AWS. Its highly elastic features (up to 3000 parallel invocations)
and fine-grained billing model (in 1 ms blocks) turned AWS Lambda
into a popular option for developing microservices-based architectures.
In turn, SCAR is an open-source tool that pioneered in 2017 the
deployment of container-based applications in AWS Lambda when this
service still had no native container support (introduced in late 2020).
SCAR facilitates the execution of general-purpose applications in AWS
Lambda, and it provides an automated delegation of jobs into AWS
Batch, a managed service to provide automated elastic compute clusters
as a service. This allows the use of AWS Lambda to execute spiky bursts
of short jobs with moderated computing requirements (AWS Lambda
invocations cannot run beyond 15 min or use more than 10 GiB of
RAM) while delegating into AWS Batch jobs that require larger memory
or specialized hardware, such as GPUs.

The advantage of using a common Functions Definition Language
is the ability to compose serverless workflows across the different

4 FDL - https://docs.oscar.grycap.net/fdl/
5 SCAR - http://github.com/grycap/scar

459

layers of the cloud-to-edge continuum. For example, as described in
our previous work by Risco et al. [21], workflows can be composed by
services defined on OSCAR platforms configured on lightweight clusters
(i.e. on ARM-based devices such as Raspberry Pi) located on the Edge
or Fog, on OSCAR clusters in on-premises clouds or Lambda functions
in the public Cloud.

The main benefit of OSCAR is the ability to provide scalable event-
driven computations upon file uploads to an object storage (or an
HTTP-based invocation). OSCAR can run on multiple computer archi-
tectures (amd64 and arm64) and container-based platforms (Kuber-
netes, K3s). It is also, integrated with SCAR for highly scalable cloud
bursting into AWS Lambda. Therefore, for this reasons, it can be used to
support serverless event-driven computing along the continuum and it
has been the selected platform on which to develop our contributions.
Further information about OSCAR is available in the work by Pérez
etal [17].

A well-known drawback of the cloud-to-edge continuum is the lim-
ited computational capacity at the edge. Usually, the devices employed
have scarce computing resources, and this can represent a bottleneck
in several use cases where the input data ingestion rate may fluctuate
depending on external factors. The main goal of this contribution is to
mitigate overload problems in these low-powered devices.

Indeed, replication and distribution are features required to achieve
high availability in a distributed system. Applying this approach in the
cloud-to-edge continuum allows the use of resources from disparate
computing infrastructures, coordinated by a distributed control plane
that mediates access and resource distribution. Therefore, we introduce
the ability to create replicas of serverless services for this work. An
OSCAR cluster has the OSCAR Manager component (shown in Fig. 1),
which provides the entry point to trigger the execution of an OSCAR
service. The cluster can be deployed on various computing infrastruc-
tures supported, such as Raspberry Pis, [aaS Clouds and public Clouds.
The dynamic deployment on multiple Clouds is achieved thanks to
the Infrastructure Manager (IM)® [22], an [open-source’ Infrastructure
as Code (IaC) tool to provision and configure virtualized computing
resources from multiple cloud back-ends. The dynamic deployment
support of OSCAR clusters via the Infrastructure Manager allows users

6 Infrastructure Manager (IM) - https://im.egi.eu
7 IM’s GitHub repository - https://github.com/grycap/im]

https://docs.oscar.grycap.net/fdl/
http://github.com/grycap/scar
https://im.egi.eu
https://github.com/grycap/im]

S. Risco et al.

Available
resources

1.
L

«—

MINIO

OSCAR

store
periodically

2—check resourcej

1—handle event—> Job handler

Future Generation Computer Systems 153 (2024) 457-466

check Kubernetes API
—— available

resources

Resource Manager

C

schedule if

Replica

&S

....... 3 delegate if not
available resources

Fig. 2. Simplified diagram of the Resource Manager component.

to self-deploy them on their preferred Cloud, where the user-defined
OSCAR services are deployed to be triggered for scalable data-driven
processing.

An OSCAR service can have multiple replicas, each one potentially
running on a different cluster with a similar configuration (but each ser-
vice replica can specify a different number of computational resources).
Each file upload to MinlO, or an asynchronous invocation to its REST
API, triggers the creation of a job that is executed on the scalable
Kubernetes cluster, which grows and shrinks depending on the number
of jobs. In this scenario, it is important to support efficient strategies to
distribute the workload among the available OSCAR service replicas to
reduce the execution time.

To this end, two strategies are proposed to reschedule jobs among
OSCAR service replicas: Resource Manager, described in Section 3.1, and
Rescheduler, described in Section 3.2. Furthermore, Section 3.3 defines
the extension of the Functions Definition Language (FDL) used in SCAR
and OSCAR to support this new functionality, as well as details the
mechanism for delegating the events that trigger the execution of the
jobs.

3.1. Resource manager

Given the capabilities for resource discovery on the nodes of a Ku-
bernetes cluster, a resource manager has been implemented in OSCAR
to bypass job scheduling on a cluster that does not have available
resources.

For this purpose, the Kubernetes core API is used to obtain the status
and resources available of all the active working nodes. If the resources
available on a working node exceed those requested by an OSCAR
service execution, the incoming job can be scheduled on the node. The
availability of a working node to be scheduled is checked on a regular
basis according to the periodicity specified on the environment variable
RESOURCE_MANAGER_INTERV AL, configurable by the user. As
shown in Fig. 2, and highlighted by a dotted box, the lifecycle of the
Resource Manager consists of periodically checking through the K8s
API the available resources of each working node and caching them
for the job handler to query.

In turn, the job handler receives an event from a file upload on a
MinIO bucket and checks the availability of resources. If there are no
available resources in any of the working nodes of the cluster and the
OSCAR service has a replica defined in its specification, it will delegate
the event to the replica. The job handler will schedule the job in the
current cluster only if resources are available.

It is essential to mention that the Resource Manager is an optional
feature in OSCAR and will only be activated if the

RESOURCE_M AN AGER_EN ABLE configuration variable is en-
abled and replicas are defined for the active OSCAR service.

460

Kubernetes API

Check pending
jobs exceeding the
rescheduler threshold

Rescheduler

Replica

&S

OSCAR

Fig. 3. Simplified diagram of the Rescheduler component.

3.2. Rescheduler

Although the Resource Manager prevents jobs from being scheduled
once a cluster is overloaded, it is possible that during a peak of
service invocations, the job scheduler allocates many jobs in the cluster
before the resources available in the cluster are updated. These spikes
can generate significant amounts of jobs queued in the Kubernetes
scheduler for further processing as resources become available.

To solve this situation, an additional mechanism named Rescheduler
has been developed. The Rescheduler aims to mitigate cluster overloads
and is in charge of checking the jobs in “Pending” status in the
Kubernetes scheduler. For this purpose, it uses the Kubernetes core API
to list the jobs scheduled in the system. It automatically filters them by
their status and by several labels automatically defined by the OSCAR
backend itself.

Each OSCAR service can have its own threshold, which defines the
maximum amount of time (in seconds) that a Kubernetes job from an
invocation of an OSCAR service with replicas can be queued before
delegating it. Therefore, the scheduled jobs are filtered by a label
containing this information. Also, to figure out to which OSCAR cluster
each job needs to be delegated, the jobs are filtered by another label
that provides the service name.

Fig. 3 shows how the Rescheduler periodically checks the clus-
ter’s pending jobs that exceed the defined threshold. This interval
is configurable through the RESCHEDULER_INTERVAL environment

S. Risco et al.

variable. It has a default value per cluster through the RESCHED-
ULER_THRESHOLD environment variable. However, as mentioned be-
fore, and detailed in Fig. 4, it can be configured for each service via
the rescheduler_threshold parameter in the FDL.

Jobs that exceed the defined threshold will be automatically dele-
gated to a replica by the Rescheduler and, once scheduling is achieved
on the replica, will be removed from the current cluster queue.

Like the Resource Manager, the Rescheduler is an optional fea-
ture for OSCAR services and can be enabled or disabled through
the RESCHEDULER_ENABLE environment variable. Furthermore, if a
service does not have replicas in its definition, the OSCAR backend will
not add the required labels for the Rescheduler to filter the jobs so they
can remain in the Kubernetes scheduler queue as long as necessary until
free resources are available.

3.3. Delegation mechanism

To support the delegation of events to external clusters or endpoints,
the Functions Definition Language (FDL) has been extended to include
the concept of replicas, as introduced earlier. Multiple replicas can be
defined for the same service, so if delegation fails on one replica, there
are other replicas to which service invocation can be delegated. The
definition of replicas can be done in the FDL through the replicas
parameter, a list of OSCAR service replicas. A priority system has been
implemented to choose the replica to delegate in the first place. Users
can indicate each replica’s priority, with the number O as the highest
priority and larger integers having a lower priority.

As shown in Fig. 4, two different types of replicas can be specified.
On the one hand, the “oscar” type of replicas are services defined in
another OSCAR cluster. This requires to indicate the cluster identifier
(cluster_id parameter) where such service is deployed, as well
as its name. The OSCAR command-line interface (CLI)® automatically
embeds the access credentials to the clusters of the replicas in the
configuration of the services so that users do not have to worry about
managing them. On the other hand, the “endpoint” type of replicas
support the delegation of events to HTTP endpoints, which will be sent
via POST requests. Support for these endpoints makes it possible to
use any FaaS service (such as AWS Lambda) where function invocation
via REST APIs can be enabled. Thanks to this support, jobs can be
rescheduled between OSCAR clusters, which can run on the edge, on-
premises and public Clouds, and self-managed services in the public
Cloud such as AWS Lambda functions, which can be exposed via HTTP
APIs, using function URLs or via API Gateway, as done with the SCAR
framework.

Algorithm 1 shows the simplified pseudocode of the delegation
mechanism. The first step is to ensure that the list of replicas is sorted
by priority to consequently wrap the original event that triggered the
service, such as file upload to MinlO, by adding the identifier of the
source cluster. This wrapping is necessary for the replica to know where
the event comes from and, in this way, to download the input file,
which usually comes from the MinIO storage provider of the source
cluster. Then the algorithm proceeds as follows: if the replica type is
“oscar”, it just checks that the cluster identifier is defined in the con-
figuration (i.e. the cluster’s credentials exist under that identifier) and,
consequently, the request is prepared with the replica configuration.
In the case of “endpoint” type replicas, the HTTP headers defined by
the user are added to the request. Finally, the request is sent, and the
response is checked. If the response is valid, the algorithm finalizes; if
not, it continues the loop to try to delegate to another replica in the
list.

Regarding security, all jobs delegated to other OSCAR clusters are
performed using authorization tokens obtained from the OSCAR con-
figuration API via the basic auth credentials embedded in the services

8 OSCAR CLI - https://github.com/grycap/oscar-cli

461

Future Generation Computer Systems 153 (2024) 457-466

functions:
oscar:
- fog:

name: fire-—detection

cpu: 1.0

memory: 1Gi

image: ghcr.io/grycap/fire-detection

script: script.sh

rescheduler_ threshold:
replicas:

- type: oscar
cluster_id: on-premises
service_name: fire-detection-replica
priority: O

input:

- storage_provider: minio.default
path: fire-detect/input

output:

- storage_provider: minio.default

15

path: fire-detect/output
environment:
Variables:
AWS_ACCESS_KEY_ID: XXXXXX
AWS_SECRET_ACCESS_KEY: XXXXXX
TOPIC_ARN: XXXXXX
- on-premises:
name: fire-detection-replica
cpu: 1.0
memory: 1Gi

image: ghcr.io/grycap/fire-detection
script: script.sh
rescheduler_threshold:
replicas:

- type: endpoint

url: https://lambda-function.example

headers:
Authorization:

priority: O

output:

— storage_provider: minio.edge
path: fire-detect/output

environment:

Variables:
AWS_ACCESS_KEY_TID: XXXXXX
AWS_SECRET_ACCESS_KEY:
TOPIC_ARN:

15

Bearer xxxxxx

XXXXXX
XXXXXX

Fig. 4. Support for replicas in the Functions Definition Language file.

Algorithm 1: Delegation algorithm pseudocode.

Require: replicaList is sorted by priority
event < WrapEvent(original Event, clusterl D)
for each: replica € replicaList do
if replica.type = }}oscare then
L if not isCluster De fined(replica) then
| continue
req < prepareDelegationRequest(replica, event)
response < delegate(req)
if isV alid Response(response) then
L break

configuration. Moreover, different authorization mechanisms can be
provided thanks to the support of user-defined custom headers in the
“endpoint” replica type. In addition, all invocations support the HTTPS
protocol, so the traffic between the client and server will be encrypted.

Notice that this approach takes into account the peculiarities of
event-driven serverless systems regarding the job delegation across
replicas to avoid unnecessary data transfers and the ability to invoke
remote HTTP endpoints as the entry point for public serverless services.

https://github.com/grycap/oscar-cli

S. Risco et al.

To assess the benefits of this approach for automated serverless
workload redistribution along the cloud-to-edge continuum, we carried
out the use case described in the next section.

4. Use case: Serverless fire detection across the cloud-to-edge con-
tinuum

Increased wildfires due to rising temperatures are one of the most
alarming impacts of global warming [23]. Detecting fires in their early
stages is essential to act quickly and minimize the damage caused
to forests. However, it is not easy to anticipate these events. While
they often correlate with several meteorological factors, external factors
can also provoke them. Surveillance data analysis is an active field of
research to prevent this type of situation. Advances in image processing
and artificial intelligence enable the development of models capable of
detecting fires from images taken from surveillance systems.

This section proposes a use case for processing surveillance images
across the cloud-to-edge continuum. For this purpose, an architecture
is presented in which the data capture devices would be located at the
Edge. These devices would be composed of thermal sensors capable of
analysing different meteorological metrics such as temperature or rel-
ative humidity and cameras capable of obtaining images periodically.
The information obtained by the thermal sensors will be used to detect
the level of fire risk at a given time, thus increasing or decreasing the
rate of obtaining the images to be processed. To process the images,
Minified Kubernetes clusters (using the k3s [24] distribution) composed
of Raspberry Pis located in the Fog, i.e. near the capture devices, will be
used. Each cluster will be in charge of processing images from several
cameras. In the experiment described in Section 4.1, a cluster in the Fog
will process images from three cameras. Moreover, the Amazon SNS
service will notify the firefighters in case of fire detection (see Fig. 5).

4.1. Case study design

To assess the new serverless job delegation mechanisms an ex-
periment based on the use case described above has been designed.
Although in a real scenario there would be multiple devices at the Edge
to capture information, i.e. cameras with thermal sensors in a forest
and multiple Fog clusters to process the data, in the experiment, we
simulated the ingestion of images from only three cameras to a single
Fog cluster. To highlight the influence of the delegation mechanisms,
the on-premises cluster has been configured with a single working node
to become overloaded quickly. However, it is essential to mention that
in a real case, this cluster could have more nodes to process the jobs
delegated from multiple Fog clusters. Moreover, OSCAR’s deployment
can be configured to be elastic, i.e. the number of working nodes can
be increased or decreased depending on the existing workload.

The specifications of both the Fog and On-premises clusters are as
follows:

+ Fog cluster: composed of four Raspberry Pi 4 model B, each with
4 GB of RAM and a Broadcom BCM2711, Quad-core Cortex-
A72 (ARM v8) 64-bit SoC @ 1.5 GHz. The Kubernetes minified
distribution k3s has been used to deploy the components, running
one node as the frontend, with the remaining three Raspberry Pi
set as working nodes.

On-premises cluster: deployed on an OpenStack-based Cloud, whose
underlying infrastructure is composed of 14 Intel Skylake Gold
6130 processors, with 14 cores each, 5.25 TB of RAM and 2
x 10GbE ports and 1 Infiniband port in each node. The virtu-
alized Kubernetes-based OSCAR cluster is configured with one
frontend node and one working node with eight vCPUs and 32 GB
of RAM each, dynamically deployed and configured using the
Infrastructure Manager (IM).

462

Future Generation Computer Systems 153 (2024) 457-466

| (D
4

N
)

9

EDGE

Fog cluster ------- s
: FOG

delegate fire detection E

service if needed '

v :

On-premises | i

cluster ‘\:

1

1
1 ! ON-PREMISES
: [CLOUD

' |

! i

delegate fire detection |

I service if needed notify if fire

1 1

1 1

U 1

Y \ 4
AWS Lambda | _ notify if fire- - - Amazon
(SCAR) SNS
lI|m [

PUBLIC
CLOUD

Fig. 5. Use case architecture for fire detection across the cloud-to-edge continuum.

The fire detection service is based on the application® from the study
conducted by Thompson et al. [25], in which a compact convolutional
neural network model for non-temporal real-time fire detection was
developed and trained. The implementation consists of a simplified
ShuffleNetV2 architecture for full-frame binary fire detection and an
in-frame classification using superpixel segmentation. The application
has been modified to provide a text file with the words “FIRE” or
“NOT FIRE” as output. Meanwhile, the script employed for the service
generates a compressed (zip) file with the text file and the image of the
superpixel segmentation.

Notifications, when a fire is detected, are sent via the Amazon SNS
service [26], whose SDK (Software Development Kit) client has been
included in the software container built for the service. AWS credentials
can be specified in the services’ definition so that notifications can be
sent regardless of the cluster in which they are deployed.

Fig. 4 shows the definition of the OSCAR services in FDL. After
profiling the application, the OSCAR services were configured to 1 CPU
and 1 GB of RAM for the jobs created when the service is invoked, both

9 https://github.com/NeelBhowmik/efficient-compact-fire-detection-cnn

https://github.com/NeelBhowmik/efficient-compact-fire-detection-cnn

S. Risco et al.

in the Fog and On-premises clusters. Therefore, the number of jobs that
can be executed concurrently will be 9 in the Fog cluster and 7 in the
On-premises cluster, since the services involved in the OSCAR control
plane also use RAM from the underlying virtual infrastructure.

Data ingestion was initially designed using Apache NiFi, a scalable
tool for directed graphs of data routing, transformation, and system
mediation logic, by creating a dataflow that controls the data ingestion
into a MinIO bucket to trigger the OSCAR service. Since NiFi has no
available processors to take pictures from the webcam, the GetWeb-
Camera plugin was included.'® However, we found limitations in the
data capture rate of this plugin. Therefore, we decided on the use case
to emulate the data ingestion through a Python script that reproduces
all the data flow. It gets the image from the virtual web camera and
uploads it into the MinIO bucket. The ingestion rate has two phases
with a duration of 30 min. The first phase ingests three images every
30 s. The second one has an ingestion rate of three images every 5 s.

To validate the operation of the delegation mechanisms and to
benchmark the performance of the developments, the experiment has
been carried out in two different scenarios:

* Scenario 1: There is the Fog cluster, to which the images that
trigger the execution of the fire detection service are uploaded,
and the On-premises cluster with the service configured as a
replica. When the image ingestion rate increases, the Fog cluster
will be overloaded and jobs will be delegated to the On-premises
cluster. This scenario has been designed to exemplify the use
case using on-premises resources, except the SNS service for fire
notifications, so there is no need to rely on public Cloud serverless
platforms (such as AWS Lambda).

Scenario 2: Same as the previous scenario but with the addition of
a replica deployed as a function in AWS Lambda created through
SCAR. The function has been made accessible via HTTP requests
through the API Gateway service. Therefore, the FDL specifies an
additional replica of type “endpoint” with 1 GB of RAM. This
scenario has been developed to demonstrate how delegating jobs
to higher levels of the cloud-to-edge continuum can be appropri-
ate to profit from the scalability of managed serverless services,
especially in time-constrained use cases.

4.2. Results and discussions

This section presents the results obtained after conducting the pre-
viously described experiment for the two proposed scenarios. After
running the experiment in both scenarios, the average processing time
of the fire detection jobs on the three platforms used, i.e. Fog cluster,
on-premises cluster and AWS Lambda, has been analysed. Fig. 6 shows
that the Fog cluster is noticeably slower than the other platforms due
to the lower computational capacity of the cluster’s lightweight devices
(Raspberry Pis). Meanwhile, the on-premises cluster is the one that
has offered the best performance, followed by AWS Lambda, in which
the infrastructure is abstracted from the users, so it is not possible to
know precisely the instance type used. AWS Lambda allocates com-
putational power (e.g. CPU) proportionally to the amount of memory
allocated (up to 10 GBs). For the sake of cost-effectiveness, the memory
allocated to the Lambda function was only 1 GB, thus resulting in
lower performance when compared to the execution in the on-premises
cluster.

The worst execution times for all three platforms correspond to the
first runs when the software image has not yet been downloaded to the
cluster nodes, in the case of OSCAR, and when the functions are not
started in AWS Lambda (cold start). This cold start can be mitigated
in OSCAR by pre-caching the Docker image in all the nodes of the
Kubernetes cluster, a feature that can be activated in an OSCAR service
via the image_prefetch parameter.

10 https://github.com/tspannhw/GetWebCamera

463

Future Generation Computer Systems 153 (2024) 457-466

60

50

40

30

Time (seconds)

20

10

Fog cluster On-premises AWS Lambda

Cluster

Fig. 6. Average execution time of the fire detection service on the three platforms
employed.

The first phase of image ingestion resulted in 180 jobs being pro-
cessed in the Fog cluster for both scenarios. In contrast, the second
phase generated 1005 images in the first scenario and 1028 images in
the second. The script employed to simulate the use case waits for the
time indicated in the ingestion rate between file uploads but does not
take into account the time incurred in uploading images. Therefore, if
any image takes longer to be uploaded due to latency or bandwidth this
may affect the total number of images uploaded in the experiment, as
it has been the case. However, this does not affect the overall results
of the experiment, whose main objective is to analyse the behaviour of
the two job delegation mechanisms.

Since the ingestion rate in the first phase is three images every
30 s, all the jobs could be processed in the Fog cluster without the
rescheduling mechanisms having to delegate any of them. The second
phase, however, is where the behaviour of the delegation systems could
be examined due to the large number of images to be processed:

+ In the scenario 1, a total of 477 jobs have been delegated from
the Fog cluster to the on-premises cluster, 455 of them delegated
via the Resource Manager and 22 via the Rescheduler. Fig. 7
details the job scheduling of the second image ingestion phase
for the first scenario. As can be seen, load peaks appear when
the clusters become saturated. These spikes displayed above the
lines of maximum parallel jobs for each cluster mean that the jobs
cannot be processed and are kept in the queue until free resources
are available. The peak that occurs at approximately the 1090th
second in the on-premises cluster is worth mentioning, in which
the cluster is fully saturated as many jobs are scheduled.

In the scenario 2, 538 jobs have been delegated from the Fog
cluster to the on-premises cluster, 510 delegated by the Resource
Manager and 28 by the Rescheduler. Likewise, the on-premises
cluster has delegated 85 jobs to AWS Lambda, 76 by the Resource
Manager and 9 by the Rescheduler. As seen in Fig. 8, thanks to
the delegation from the on-premises cluster to the public Cloud,
the saturation of the on-premises cluster has almost disappeared.
Unlike the previous scenario, most load peaks appear only in the
Fog cluster. After analysing these results, it can be concluded
that reducing the Resource Manager update interval could have
further mitigated these workload spikes in the Fog cluster.

https://github.com/tspannhw/GetWebCamera

S. Risco et al.

Scheduled jobs

Fig.

Scheduled jobs

Future Generation Computer Systems 153 (2024) 457-466

35
Fog cluster
30 = On-premises cluster
Max. parallel jobs on Fog cluster
25 == == == == == \|ax. parallel jobs on On-premises cluster

20

* ol e M
| L rﬁi

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

(9]

Time (seconds)

. Number of scheduled jobs on the fog and the on-premises cluster, and the maximum number of jobs each cluster can execute simultaneously.

35
Fog cluster
30 = On-premises cluster
AWS Lambda
Max. parallel jobs on Fog cluster
25 == == == == == |\|ax. parallel jobs on On-premises cluster
20

b h P
x...w.m.f.w...umvmrm .m T

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Time (seconds)

Fig. 8. Number of scheduled jobs on the fog, the on-premises cluster and AWS Lambda, and the maximum number of jobs each cluster can execute simultaneously.

Furthermore, an unusual behaviour was found after the experimen-

250

tation: repeated output files were obtained in the second scenario.
After analysing the results, it was discovered that the repeated files

only appeared in some jobs delegated by the Rescheduler from the
on-premises cluster to AWS Lambda. Due to the shorter processing
time in this cluster and the default configuration of the Rescheduler,
a non-negligible percentage of the jobs delegated to Lambda were also
processed in the on-premises cluster. Remarkably, the Rescheduler has
been configured in both OSCAR clusters (Fog and On-premises) with
the default values, which are 15 s for the time interval between check-
ing the jobs in pending state and 30 s for the threshold that indicates
the maximum time a job can be queued. It is crucial to understand that
these times are configurable and should ideally be adjusted according
to the job processing time for each use case. Notice that this issue has
caused an additional waste of computing resources. Still, it does not
affect the main objective, which is to perform the automated delegation
of computing when the workload exceeds a certain threshold along the
cloud-to-edge continuum.

To summarize, Fig. 9 shows the average time jobs have queued in
the two scenarios. As it can be appreciated, in scenario 2, this time

200

150

100

Time (seconds)

50

has decreased notably. Indeed, AWS Lambda was introduced as an [

additional computing layer to offload workload executions from the
on-premises cluster seamlessly. This significantly reduced the number
of scheduled jobs in the on-premises cluster, as shown in Fig. 8, thus

Scenario 1 Scenario 2

Fig. 9. Average time that jobs have been queued for each scenario.

alleviating its workload.

464

S. Risco et al.

This proves that combining serverless computing with strategies to
delegate jobs to replicas along the different layers of the computing
continuum can considerably benefit several use cases of near real-time
processing where the workload may vary in a non-predictable way.
This functionality has been implemented in the open-source OSCAR
framework for the sake reproducibility and to facilitate user adop-
tion when supporting cloud-to-edge computing scenarios based on
serverless computing.

The cost of delegating the execution of the 85 jobs to AWS Lambda
was subsumed in the free tier, which includes one million free requests
per month and 400,000 GB-seconds of compute time per month. With-
out considering the free tier, the cost is estimated by the AWS Pricing
Calculator to be 0,12 $ in the North Virginia region.

Notice that both scenarios included a delegation approach so that
each OSCAR service could offload workload to a single replica located
in an upper layer of the cloud-to-edge continuum (edge, fog and cloud).
However, the implemented mechanism supports a set of replicas, thus
being able to exploit additional potentially distributed resources from a
layer before offloading into another layer. This facilitates the definition
of more complex scenarios in which OSCAR service replicas can be
simultaneously employed within layers of the cloud-to-edge continuum.

5. Conclusions and future work

This paper has presented different strategies for delegating jobs on
the OSCAR open-source serverless data-processing platform that runs
on top of Kubernetes. To exemplify the operation of the two delega-
tion mechanisms implemented, a use case was developed based on a
pre-existing fire detection Al model and then adapted to the OSCAR
platform. The experimentation carried out has allowed, in addition to
testing the operation of the rescheduler and the resource manager, the
benefits of delegating Serverless jobs to a different on-premises cluster,
but also to FaaS services on public cloud providers, thus making use of
the different layers of the cloud-to-edge continuum. The results indicate
that such approach can be beneficial for several use cases where the
workload is unpredictable, and relying only on edge processing devices
can significantly limit the ability to handle information quickly.

Future work involves fine-tuning the implementation of the Resched-
uler component to minimize the execution of duplicate jobs. Also,
adapting the Resource Manager mechanism to support additional work-
load scheduling systems on top of Kubernetes, such as Apache Yu-
nikorn, is currently being used to limit the number of resources per
service within an OSCAR cluster. In addition, we want to assess
the effectiveness of the proposed strategies when including multiple
replicas across the different layers of the edge-to-cloud continuum,
including latency-aware algorithms to decide the delegated OSCAR
service replica. Finally, we plan to introduce support for dynamically
changing the replicas of an OSCAR service to reflect changes in the
underlying infrastructure with the dynamic addition and removal of
virtualized computing resources.

CRediT authorship contribution statement

Sebastidn Risco: Conceptualization, Methodology, Software, Writ-
ing — original draft. Caterina Alarcén: Methodology, Software, Writing
- review & editing. Sergio Langarita: Methodology, Software. Miguel
Caballer: Methodology, Software, Writing — review & editing. German
Molté: Methodology, Writing — original draft, Writing — review &
editing, Supervision, Funding acquisition.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

465

Future Generation Computer Systems 153 (2024) 457-466

Data availability
Data will be made available on request.
Acknowledgements

Grant PID2020-113126RB-100 funded by

MCIN/AEI/10.13039/501100011033. Project PDC2021-120844-100
funded by MCIN/AEI/10.13039/501100011033 and by the European
Union NextGenerationEU/PRTR. This work was supported by the project
AI-SPRINT “AlI in Secure Privacy-Preserving Computing Continuum”
that has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant 101016577. This
work was also supported by the project AI4EOSC “Artificial Intelligence
for the European Open Science Cloud” that has received funding
from the European Union’s Horizon Europe Research and Innovation
Programme under Grant 101058593.

References
[1] P. Beckman, J. Dongarra, N. Ferrier, G. Fox, T. Moore, D. Reed, M. Beck,

Harnessing the computing continuum for programming our world, Fog Comput.

(2020) 215-230, http://dx.doi.org/10.1002/9781119551713.ch7.

A. OpenFog Consortium Architecture Working Group, et al., OpenFog reference

architecture for fog computing, OPFRA001 20817 (2017) 162.

M. Jansen, A. Al-Dulaimy, A.V. Papadopoulos, A. Trivedi, A. Iosup, The SPEC-RG

reference architecture for the edge continuum, 2022, URL http://arxiv.org/abs/

2207.04159.

S. Ketu, P.K. Mishra, Cloud, fog and mist computing in IoT: an indication of

emerging opportunities, IETE Tech. Rev. 39 (3) (2022) 713-724.

A. Ghasempour, Internet of things in smart grid: Architecture, applications,

services, key technologies, and challenges, Inventions 4 (1) (2019) 22.

C. Mouradian, D. Naboulsi, S. Yangui, R.H. Glitho, M.J. Morrow, P.A. Polakos, A

comprehensive survey on fog computing: State-of-the-art and research challenges,

IEEE Commun. Surv. Tutor. 20 (1) (2018) 416-464, http://dx.doi.org/10.1109/

COMST.2017.2771153.

Google, Knative, URL https://github.com/knative/.

A. Ellis, OpenFaaS, URL https://www.openfaas.com/.

GRyCAP, OSCAR: Open source serverless

applications, URL https://oscar.grycap.net.

H. Zhang, Y. Tang, A. Khandelwal, J. Chen, I. Stoica, Caerus:{nimbLE} task

scheduling for serverless analytics, in: 18th USENIX Symposium on Networked

Systems Design and Implementation, NSDI 21, 2021, pp. 653-669.

K. Kaffes, N.J. Yadwadkar, C. Kozyrakis, Centralized core-granular scheduling

[2]

[3]

[4]
[5]

[6]

[71
[8]
[91

computing for data-processing

[10]

[11]
for serverless functions, in: Proceedings of the ACM Symposium on Cloud
Computing, 2019, pp. 158-164.

T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, S. Dustdar, Towards a
serverless platform for edge {Al}, in: 2nd USENIX Workshop on Hot Topics in
Edge Computing, HotEdge 19, 2019.

A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, P. Chen, Function deliv-
ery network: Extending serverless computing for heterogeneous platforms,
Softw. - Pract. Exp. 51 (2021) 1936-1963, http://dx.doi.org/10.1002/SPE.
2966, URL https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2966, https://
onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966, https://onlinelibrary.wiley.
com/doi/10.1002/spe.2966.

C. Sicari, L. Carnevale, A. Galletta, M. Villari, OpenWolf: A serverless workflow
engine for native cloud-edge continuum, in: 2022 IEEE Intl Conf on Dependable,

[12]

[13]

[14]

Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and
Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber
Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech, IEEE,
2022, pp. 1-8.
[15] F. Smirnov, C. Engelhardt, J. Mittelberger, B. Pourmohseni, T. Fahringer, Apollo:
Towards an Efficient Distributed Orchestration of Serverless Function Compo-
sitions in the Cloud-Edge Continuum, dl.acm.org, Association for Computing
Machinery, ISBN: 9781450385640, 2021, http://dx.doi.org/10.1145/3468737.
3494103, URL https://dl.acm.org/doi/abs/10.1145/3468737.3494103.
N. Ferry, R. Dautov, H. Song, Towards a model-based serverless platform for
the cloud-edge-IoT continuum, in: Proceedings - 22nd IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, CCGrid 2022, Institute
of Electrical and Electronics Engineers Inc., ISBN: 9781665499569, 2022, pp.
851-858, http://dx.doi.org/10.1109/CCGRID54584.2022.00101.

[16]

http://dx.doi.org/10.1002/9781119551713.ch7
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb2
http://arxiv.org/abs/2207.04159
http://arxiv.org/abs/2207.04159
http://arxiv.org/abs/2207.04159
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb5
http://dx.doi.org/10.1109/COMST.2017.2771153
http://dx.doi.org/10.1109/COMST.2017.2771153
http://dx.doi.org/10.1109/COMST.2017.2771153
https://github.com/knative/
https://www.openfaas.com/
https://oscar.grycap.net
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb12
http://dx.doi.org/10.1002/SPE.2966
http://dx.doi.org/10.1002/SPE.2966
http://dx.doi.org/10.1002/SPE.2966
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/10.1002/spe.2966
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb14
http://dx.doi.org/10.1145/3468737.3494103
http://dx.doi.org/10.1145/3468737.3494103
http://dx.doi.org/10.1145/3468737.3494103
https://dl.acm.org/doi/abs/10.1145/3468737.3494103
http://dx.doi.org/10.1109/CCGRID54584.2022.00101

S. Risco et al.

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]
[25]

[26]

A. Pérez, S. Risco, D.M. Naranjo, M. Caballer, G. Moltd, On-premises serverless
computing for event-driven data processing applications, in: 2019 IEEE 12th
International Conference on Cloud Computing, CLOUD, (ISSN: 2159-6182) 2019,
pp. 414-421, http://dx.doi.org/10.1109/CLOUD.2019.00073.

Kubernetes, Kubernetes, URL https://kubernetes.io/.

MinlO, High performance, kubernetes native object storage, URL https://min.io/.
A. Pérez, G. Molt6, M. Caballer, A. Calatrava, Serverless computing for container-
based architectures, Future Gener. Comput. Syst. 83 (2018) 50-59, http://
dx.doi.org/10.1016/j.future.2018.01.022, URL https://linkinghub.elsevier.com/
retrieve/pii/S0167739X17316485.

S. Risco, G. Moltd, D.M. Naranjo, I. Blanquer, Serverless workflows for con-
tainerised applications in the cloud continuum, J. Grid Comput. 19 (3) (2021)
30, http://dx.doi.org/10.1007/510723-021-09570-2.

M. Caballer, 1. Blanquer, G. Moltd, C. de Alfonso, Dynamic management of virtual
infrastructures, J. Grid Comput. 13 (1) (2015) 53-70, http://dx.doi.org/10.1007/
510723-014-9296-5.

M.A. Moritz, Wildfires ignite debate on global warming, Nature 487 (7407)
(2012) 273.

Cloud Native Computing Foundation, K3s, URL https://k3s.io/.

W. Thompson, N. Bhowmik, T. Breckon, Efficient and compact convolutional
neural network architectures for non-temporal real-time fire detection, in: Proc.
Int. Conf. Machine Learning Applications, IEEE, 2020, pp. 136-141, http:
//dx.doi.org/10.1109/ICMLA51294.2020.00030, URL http://breckon.org/toby/
publications/papers/thompson20fire.pdf.

Amazon Web Services, Push Notification Service - Amazon Simple Notification
Service (SNS), URL https://aws.amazon.com/sns/.

Sebastidn Risco received a B.Sc. degree in Computer Engi-
neering from the Universitat Politécnica de Valéncia (UPV),
Spain, in 2017. In 2017 he started his M.Sc. degree in
Information Management. He joined the GRyCAP research
group in 2018, while he worked on his Master’s Thesis.
His research interests are focused on Serverless Computing,
Cloud Computing and Container Orchestration Systems.

466

Future Generation Computer Systems 153 (2024) 457-466

Caterina Alarcén received a B.Sc. from Universitat Jaume
I in 2020 and has a Master’'s Degree in Cloud and
High-Performance Computing by Universitat Politécnica de
Valéncia. She has been a member of the GRyCAP research
group at the Institute for Molecular Imaging (I3M) as a
researcher since 2022.

Sergio Langarita received a B.Sc. degree in Computer
Science from Escuela Universitaria Politécnica de Teruel
(EUPT) at the Universidad de Zaragoza (UNIZAR), Spain
in 2021 and a Master’s degree in Big Data Analytics from
the Universitat Politécnica de Valéncia (UPV), Spain, in
2023. Since 2022 he has been a member of the GRyCAP
research group at the Institute for Molecular Imaging (I3M),
developing serverless computing platforms.

Miguel Caballer obtained a B.Sc. and M.Sc. degree in Com-
puter Science from the Universitat Politecnica de Valéncia
(UPV), Spain, in 2000 and 2012. He is member of the
GRyCAP research group at the Institute of Instrumentation
for Molecular Imaging (I3M) since 2001. He has participated
in several European and National research projects about
applying Parallel, Grid and Cloud computing techniques to
several areas of engineering.

German Molté is Full Professor in Computer Science at
the Universitat Politécnica de Valéncia (UPV), Spain. He
has been a member of the GRyCAP research group at the
Institute for Molecular Imaging (I3M) since 2002. He has
participated with different responsibility roles in several
European projects such as INDIGO-DataCloud, EOSC-HUB,
DEEP HybridDataCloud, AI-SPRINT, AI4EOSC and Inter-
Twin, and led national research projects related to cloud
computing. His broad research interests are cloud computing

h and scientific computing.

http://dx.doi.org/10.1109/CLOUD.2019.00073
https://kubernetes.io/
https://min.io/
http://dx.doi.org/10.1016/j.future.2018.01.022
http://dx.doi.org/10.1016/j.future.2018.01.022
http://dx.doi.org/10.1016/j.future.2018.01.022
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
https://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
http://dx.doi.org/10.1007/s10723-021-09570-2
http://dx.doi.org/10.1007/s10723-014-9296-5
http://dx.doi.org/10.1007/s10723-014-9296-5
http://dx.doi.org/10.1007/s10723-014-9296-5
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00476-4/sb23
https://k3s.io/
http://dx.doi.org/10.1109/ICMLA51294.2020.00030
http://dx.doi.org/10.1109/ICMLA51294.2020.00030
http://dx.doi.org/10.1109/ICMLA51294.2020.00030
http://breckon.org/toby/publications/papers/thompson20fire.pdf
http://breckon.org/toby/publications/papers/thompson20fire.pdf
http://breckon.org/toby/publications/papers/thompson20fire.pdf
https://aws.amazon.com/sns/

	Rescheduling serverless workloads across the cloud-to-edge continuum
	Introduction
	Related Work
	Proposed Architecture
	Resource Manager
	Rescheduler
	Delegation Mechanism

	Use Case: Serverless Fire Detection Across the cloud-to-edge continuum
	Case Study Design
	Results and Discussions

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

