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A B S T R A C T

Optimising the catenary topology to improve the pantograph–catenary interaction is computationally expen-
sive. Especially in the case of large numbers of parameters. Unfortunately, varying span lengths and dropper
distribution in realistic systems requires the inclusion of a vast number of parameters, making the optimisation
problem extremely complicated. Published optimisation works assume that the catenary is a perfectly periodical
structure to reduce the number of parameters involved in the optimisation and keep the computational cost
below a feasible limit. This paper attempts to deal with the scientific challenge of optimising a realistic system
by proposing an iterative optimisation strategy consisting of optimising groups of parameters separately and
repeating the optimisations iteratively to consider the dependence between parameters that otherwise would
need to be optimised together. This solution performs topological catenary optimisation in catenary zones with
span variability or transition zones in which optimisations that assume periodicity are no longer valid.
. Introduction

.1. Background

A substantial proportion of railway lines are electrified and the
umber has been growing since the start of the present trend in
lean energies. The most frequently used system in electrified lines is
hat of Overhead Contact Lines (OCL), or catenaries. Every train that
btains electric current from catenaries is furnished with at least one
antograph that keeps sustained sliding contact with the catenary. The
igher the speed train travels, the more unfavourable conditions for
he pantograph–catenary system, and the more likely loss of contact
ecomes. The primary mechanism for avoiding loss of contact is the
plift system, which raises the contact force between the pantograph
nd catenary, but unfortunately it also increases the wear and main-
enance costs. Improving the pantograph–catenary system by other
eans is therefore crucial for increasing running speeds and enhancing

he durability of the catenaries.
Various approaches can be used for investigating at pantograph–

atenary system [1], while nowadays most of them rely on numer-
cal simulations to evaluate the system performance, at least in the
arly stages of the design process, due to the high availability of
umerical simulation tools that allow the virtual recreation of the
antograph–catenary dynamic interaction with accurate models, low
ost and complete observability. The most popular catenary models
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used in numerical simulations are built by the Finite Element Method
and a comprehensive collection of these pantograph–catenary models
can be found in [2].

Numerical simulations are essential for conducting computational
optimisation of the different parameters that participate in the prob-
lem. Essentially, they can be divided into pantograph optimisations
and catenary optimisations. The work conducted in [3] assesses the
influence of different parameters in the current collection quality and
concludes that stiffness and damping of the pantograph head and frame,
uplift force and contact wire tension are closely related to the dynamic
behaviour of the system. Other parameters affecting the catenary, such
as pre-sag [4] or dropper spacing [5] have been shown to be relevant
in catenary optimisation. Several successful optimisations of the panto-
graph models can be found in the literature, for instance in [6], the
parameters of a lumped pantograph model are optimised, or in [7]
a pneumatic suspension is used to improve pantograph performance
coupled with the catenary. Also, some authors have attempted to
optimise the catenary designs as described in Section 1.3.

There is now a vast quantity of optimisation algorithms that can
be used to find the best parameters related to the problem. The
study [8] provides a good insight into the different methods and
includes derivative-based, metaheuristic, and surrogate-based methods,
among others. The ever-increasing computational power allows more
ambitious optimisation problems with more optimisation parameters.
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1.2. Problem of interest

While the pantograph–catenary system can be improved by optimis-
ing the different systems participating in the problem, the present work
focuses on optimising the catenary. The first step for this is to create
a computational model that relates the catenary design parameters
to a performance indicator or objective function. In every optimisa-
tion problem, the objective function must be evaluated many times
for the different parameter combinations. The higher the number of
parameters, the higher the number of evaluations.

In the pantograph–catenary interaction problems, every evaluation
entails solving the initial configuration problem and the dynamic in-
teraction problem. The first of these consists of solving a non-linear
equation system with a large number of variables or degrees of freedom
(10 000–20 000 per km) and provides the initial position of the cate-
nary. The second consists of integrating the pantograph and catenary
dynamic equations and is also non-linear, since dropper slackening is
involved. In short, evaluating the objective function is computationally
expensive and this factor limits the number of parameters that can be
optimised.

The catenary design parameters can be divided into global and local.
The former are those that affect the entire catenary, such as the wire
tension or mass. Local parameters are those that affect a specific area in
the catenary, such as the length or position of the droppers. However,
local parameters can become global if periodicity is considered, which
means that the catenary spans are equal and every parameter affects
all the others. The studies on catenary optimisation in the literature
only include a few parameters and when local parameters are included
they assume periodicity and symmetry in the span configuration. The
present study is aimed to optimise the local parameters in a real cate-
nary design with varying span length, thus ruling out the assumption
of periodicity. In this scenario, a large number of parameters need to
be optimised, which is prohibitive to optimise all at once in terms of
computational cost. Local parameters were thus optimised iteratively,
taking advantage of the reduced influence zone of each parameter to
define a proper optimisation strategy.

1.3. Literature review

In the literature there is an endless list of different optimisation
methods and in recent years the use of intelligent computational meth-
ods has become more popular. The book [9] contains a collection of
intelligent approaches such as evolutionary algorithms, swarm algo-
rithms and neural network computing. Additionally, the methods are
applied for different structural optimisation problems to improve the
topology and materials. Besides the boundless number of structural
optimisations that can be found, this section reviews the different
alternatives that have been used for optimising catenary designs in the
last few years.

In [10], the speed limit of an existing catenary design is increased
by 23%, changing the tension of the messenger and contact wire and
the pre-sag. In that work, the contact wire dynamic response and uplift
are considered to evaluate the speed limit of the catenary and the
effect of the changing parameters. The work [11] studies not only
the tensions of the messenger and contact wire but also the mass of
both wires and includes a sensitivity analysis of the parameters in
the contact force standard deviation by central composite design and
optimisation at a speed of 500 km/h. In [12], in contrast to the previous
works, the topological optimisation is investigated, allowing the contact
wire to have different shapes to the conventional pre-sag. In that
work, the optimisation parameters are the length and spacing of the
catenary droppers, symmetry of the span arrangement and periodicity
are assumed (leading to a number of parameters close to ten), the
Genetic Algorithm is employed and the objective function is the contact
force standard deviation. The optimum configurations found present
a remarkable improvement, showing that the catenary topology has
2

a significant influence on the problem. In [13], both catenary and
pantograph optimisation are conducted in independent studies (not
optimising parameters of both systems at once), but in this review
we address only the catenary optimisation. Similarly to [12], in [13]
dropper length and spacing are optimised, considering symmetry and
periodicity but also the tension of the messenger and contact wires.
In the work, non-dominated sorting genetic algorithm-II is used to
avoid repeating the FEM simulation, while the objective function is
the standard deviation and the mean of the contact force. It is worth
noticing that in [13] the optimised catenary performs better in the 100–
180 km/h range, even though it was optimised at the single speed
of 160 km/h, showing a certain robustness of the results. In [14],
the genetic algorithm is also used for the optimisation process, but in
this case a surrogate model is used to reduce the computational cost
of evaluating the objective function. This surrogate model is built by
training a Back Propagation Neuronal Network. In that work, three
independent optimisations are performed for the catenary to reduce
the number of parameters per optimisation, splitting them into dropper
spacing, dropper length and wire tensions. A significant improvement
is found, with slight differences between the FEM simulations and the
surrogate models used in the optimisations. To conclude, the study
conducted in [15] uses Bayesian optimisation to improve the profile of
the contact wire within the overlap sections, which are the most critical
zones of the catenary as regards the current collection quality.

1.4. Scope and contributions

The scope of this paper is the modelling of a real catenary design, a
comparison of the numerical simulation with experimental data, the
topological optimisation of a whole section of the catenary and the
analysis of the optimisation results.

Previous works on optimisation studied the parameters that have
an overall effect on the catenary, while the present work focuses on
parameters with local effect: i.e. the position and length of every
individual dropper of the catenary. This optimisation modifies the
topology of the entire catenary without assuming periodicity or span
symmetry in order to satisfy the transitory design of certain of its
parts. The biggest challenge in this approach is the large number of
parameters to be optimised. The paper contribution is that it offers an
alternative strategy for avoiding the prohibitive computational cost of
optimisation by conventional methods. The strategy proposed entails
sub-optimisations of reduced groups of parameters while leaving the
remainder unaltered. These sub-optimisations were carried out on all
the parameter groups and repeated iteratively until convergence. This
strategy leads to much fewer evaluations of the objective function than
the conventional approach and optimises all the parameters at once.

1.5. Organisation of the paper

The remainder of this paper is organised as follows. Section 2
describes the modelling of the pantograph–catenary dynamic interac-
tion. In Section 3, the experimental measurements are contrasted with
numerical simulations to validate the models. Section 4 describes the
proposed optimisation method and Section 5 gives the results of the
optimisation of a real catenary design, while Section 6 gives the paper
main conclusions.

2. Modelling of the pantograph–catenary interaction

The catenary can be optimised thanks to the ability to evaluate the
performance of different configurations by computational methods. It is
therefore necessary to obtain computational models of the catenary and
pantograph to compute their dynamic interaction and assess their per-
formance. The pantograph–catenary dynamic interaction model used
in this work only considers purely mechanical effects. Other types
of actions (electromagnetic, wind on the catenary, movement of the

pantograph’s base, etc.) have not been considered.
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Fig. 1. Parts of the catenary FEM model.
2.1. Catenary model

In this work, from the different types of catenary we selected
a stitched catenary, consisting of a contact wire, messenger wire,
droppers, steady arms and stitch wires, as shown in Fig. 1. The Fi-
nite Element Method (FEM) is used to model the different wires and
bars, employing ANCF (Absolute Nodal Coordinate Formulation) ele-
ments [16] for the contact, messenger and stitch wires and elements
bar for the steady arms and droppers.

The catenary is subjected to gravity, which produces large displace-
ments of the wires, defined by the degrees of freedom of the catenary
nodes 𝐪. This problem is governed by non-linear static equilibrium
equations:

𝐅int (𝐪) + 𝐅g = 0 (1)

in which 𝐅int and 𝐅g are the internal elastic forces and the gravity
forces, respectively. Additionally, the displacements of specific nodes in
the deformed configuration must fulfil design requirements, for which
the positions of the contact wire joints with droppers and steady arms
are imposed. To satisfy these constraints, the lengths of some elements 𝐥
need to be considered as unknowns. The initial configuration or ‘shape-
finding’ problem consists of finding the position of the nodes and the
lengths of droppers that satisfy both the static equilibrium and the
design requirements:

𝐅int (𝐪, 𝐥) + 𝐅g(𝐥) = 0
𝐪𝑐 − 𝐏 = 0

(2)

in which 𝐪𝑐 are the node degrees of freedom which are constrained
by the design, and 𝐏 are the positions imposed for these nodes. Addi-
tionally, specific tensions of some wires can be required and restriction
equations for the tensions must be included. A comprehensive descrip-
tion of this problem can be found in [17], from which the methodology
was taken for the present study.

Once the initial configuration problem is solved, the dynamic in-
teraction of the catenary with the pantograph can be computed. In this
dynamic problem small displacement theory is considered, and the non-
linear formulation of the FEM model of the catenary can be linearised
around the equilibrium point 𝐪0:

𝐌�̈� + 𝐂�̇� +𝐊𝐮 = 𝐅
𝐮 = 𝐪 − 𝐪0

(3)

where 𝐌, 𝐂, 𝐊 are the mass, damping and stiffness matrices of the
catenary and 𝐅 the external nodal force produced by the pantograph.
Even though the equations have been linearised, the droppers are
not able to exert compression forces, and this non-linearity has to be
considered. The paper [18] proposes an efficient method for dynamic
interaction with non-linear droppers, which is used in this work.

We modelled a section of the Norwegian catenary between Oslo and
Eidsvoll from Pole No. 32-1 to No. 33-5, which refer to the distance
from 32.04 km to 33.14 km. Additionally, the two adjacent sections are
also modelled to compute the dynamic interaction in the overlapping
sections. The catenary model in the static equilibrium is shown in
Fig. 2, in which it has an irregular arrangement to fulfil the particular
details of the track, including variable length spans, a different num-
ber of droppers in every span and different stagger values. The data
necessary for modelling the catenary can be found in Appendix, which
includes the mechanical properties, the mesh description, dynamic
parameters and catenary topology data.
3

Table 1
Coefficients of the pantograph model WBL85.

D.o.f. 1 2

Stiffness 5400 N/m 0 N/m
Mass 5.2 kg 15.2 kg
Damping 40 N s/m 63.5 N s/m
Friction 0 N 7 N

2.2. Pantograph and contact model

In this work the pantograph WBL85 was modelled by a lumped
mass model with two degrees of freedom and Coulomb friction (see
Fig. 3). The friction was incorporated by the regulation of Coulomb
law proposed by Quinn [19], which allows a continuous representation
of friction. The parameters of this pantograph model can be found in
Table 1. This simple model is suitable for pantograph behaviour in the
0 to 20 Hz frequency range, as required by the European Standard [20]
for the validation of simulations.

The pantograph catenary interaction requires a contact model, for
which we used the penalty contact model, which allows a certain
minimal penetration between the elements in contact, the contact force
𝑓 being proportional to the penetration and the contact stiffness 𝑘h and
zero when there is no penetration:

𝑓 =
{

𝑘h(𝑧1 − 𝑧cw) if 𝑧1 − 𝑧cw > 0
0 if 𝑧1 − 𝑧cw ≤ 0

(4)

where 𝑧1 is the height of the pantograph head and 𝑧cw the height of the
contact wire. The contact stiffness was chosen to avoid compromising
precision and numerical stability. A value of 𝑘h = 100 000 N∕m was set,
which does not affect accuracy in the 0–20 Hz frequency band.

3. Validation with measurement data

The pantograph–catenary interaction contact force was measured
for the same section of the catenary and pantograph modelled in
this work. The train with the instrumented pantograph recorded the
CF (Contact Force) at a velocity of 160 km/h. The same case was
computationally simulated and the statistic values of the contact force
were compared to validate the simulations.

In Fig. 4 the 20-Hz filtered contact force is represented in both the
simulated interaction and the measurement. In Fig. 5 the same signals
are contrasted but in the frequency domain showing an acceptable
agreement. The contribution to the standard deviation of different
frequency ranges is plotted in Fig. 6. The Standard [20] requires the
contact force to be within certain permissible limits to validate the
simulations. Table 2 shows that the simulation and experimental data
satisfy the Standard [20] requirements.

Even though the measurement and the simulations fulfil the re-
quirements of the Standard, there is still a certain misalignment. The
deviation of the real catenary assembly with respect to the design
data prevents the simulation from being closer to real measurements.
In [21], this deviation was documented for the same catenary that
is modelled in the present paper. Deviation in the longitudinal and
vertical directions can result in errors in both the time and frequency
domains.
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Fig. 2. Model of a section of the Oslo–Eidsvoll catenary.
Fig. 3. Lumped mass model of the pantograph with Coulomb friction.

Fig. 4. Comparison of the 20-Hz filtered simulated and measured contact force.

Fig. 5. Comparison of the simulated and measured contact force in the frequency
domain.

Fig. 6. Comparison of the simulated and measured contact force standard deviation.
4

Table 2
Validation of the contact force statistics according to [20].

Simulated Measured Error Permitted error Pass

Mean 74.47 N 74.49 N 0.02 N ±2.5 N Yes
Std 0–20 Hz 7.33 N 8.02 N 8.0% ±20% Yes
Std 0–5 Hz 5.08 N 5.95 N 14.6% ±20% Yes
Std 5–20 Hz 5.28 N 5.42 N 2.6% ±20% Yes

4. Optimisation: proposed method

In this section, an algorithm is proposed for optimising catenary
topologies, in which only parameters that have a local effect are
changed in the search for better pantograph–catenary behaviour. The
method is illustrated with the optimisation of the topology of a whole
section of a catenary by applying changes to all the droppers in the
section.

Let us say that a section of the catenary has 𝑁d droppers and
the position 𝑥𝑑 and length 𝑙𝑑 of every dropper 𝑑 are the parameters,
arranged in the vector 𝐏, that can be modified in the optimisation. The
performance of the system is assessed by an objective function, which
in this case is the standard deviation 𝜎𝑓𝑐 (𝐏) of the Contact Force (CF)
between the pantograph and the catenary.

The optimisation problem consists of finding the value of 𝐏 that
provides the best behaviour or minimises the objective function. Un-
fortunately, there are too many parameters to ask any optimisation al-
gorithm to tune all the parameters at once. The solution adopted was to
optimise groups of parameters separately in multiple sub-optimisations.
For this particular problem it is useful to divide the parameters into
groups, since the catenary is a very large structure compared to the
local effect of the parameters. A parameter influence zone (region of the
catenary where the contact force is strongly affected by the parameter)
does not overlap with most of the other-parameter influence zones,
only with the adjacent ones. This feature is shown in Fig. 7, which
shows the contact force variation produced by small modifications to
the parameters (length and position) of three consecutive droppers. It
can be seen that the length of every dropper affects the contact force
from the previous dropper for a short distance backwards. The position
of the dropper has a slightly wider influence zone, but in all cases
the dropper parameter influence zones extend more backwards than
forward.

The optimisation of a group of parameters (sub-optimisation) does
not yield the optimum values of the global optimum, since the solution
depends on the parameters with overlapping influence zones. However,
in the current problem this dependence includes a small number of
parameters. Taking advantage of this feature leads to an optimisation
strategy that attempts to solve the coupled problem (global optimi-
sation) by iteratively solving uncoupled problems (sub-optimisations).
This strategy consists of repeating the sub-optimisations for all the
groups several times in a particular order until reaching the conver-
gence of the results.

The order in which the sub-optimisations are run is crucial for the
success of the optimisation. The sub-optimisations are arranged accord-
ing to the spatial position of the influence zone of the parameters on
the catenary. Those that affect the contact force sooner are optimised
first, so that they are ordered by their physical position according to
the direction in which the train is travelling. Every time that a sub-
optimisation starts, the parameters that are not being optimised adopt
the value of the last sub-optimisation. When the sub-optimisations of all
the groups of parameters have been carried out, the whole process is
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Fig. 7. Contact force variation produced by modifying the length (blue solid line) and the position (orange dashed line) of three consecutive droppers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
repeated in successive iterations until the improvement in the objective
function is small enough, which allows the coupled effect between
parameters to be considered.

The reason why the sub-optimisations are launched in the order
defined by the direction the train is travelling can be understood by
looking at the influence of the dropper parameters on the contact force,
especially at its particular distribution as seen in Fig. 7. The influence
starts slightly before the modified dropper and continues backwards
while attenuating slowly. This means that the dropper 𝑑 strongly affects
a zone that dropper 𝑑 + 1 affects slightly. The next sub-optimisation
thus cannot lose the improvement in this zone, which facilitates the
parameters changing in the right direction for convergence.

The whole set of parameters 𝐏 of the catenary is thus divided into
groups of parameters, in this work every group includes the parameters
of just one dropper, 𝐏 = [𝐩1 𝐩2 ... 𝐩𝑑 ... 𝐩𝑁d

]⊤ with 𝐩𝑑 =
[𝑥𝑑 𝑙𝑑 ]⊤. Therefore, the optimisation process 𝑂 is divided into 𝑂𝑖

𝑑
sub-optimisations, being 𝑑 the optimised dropper and 𝑖 the iteration.
For any iteration 𝑖, 𝑂𝑖

𝑑 for 𝑑 = 1, 2,… , 𝑁d are carried out. Groups
including more parameters have shown similar solutions but higher
computational costs. A smaller number of iterations is needed for
bigger groups but this does not compensate for the increase in the
computational cost of every sub-optimisation. This is explained because
the computational cost of a sub-optimisation grows exponentially with
the number of parameters, while the overall cost grows linearly with
the number of sub-optimisation problems.

Every sub-optimisation process consists of the optimisation of a
reduced number of parameters, in this case just the position 𝑥𝑑 and
length 𝑙𝑑 of a dropper. The Bayesian optimisation algorithm [22] was
used for all sub-optimisation, which reads as:

min
𝐩𝑑

𝜎𝑓𝑐 (𝐏) (5)

and the algorithm tries to minimise the function for a bounded domain
of 𝐩𝑑 . The bayesopt built-in MATLAB® is implemented with an explo-
ration ratio of 0.5. The algorithm fits a Gaussian model of the objective
function and uses the model to build an acquisition function that in turn
is used to determine the next evaluation point. Due to the nature of this
problem with a non-smooth objective function plenty of local minima,
gradient-based methods exhibit bad performance. Genetic algorithm
and Bayesian optimisation are thus appropriate. However, Bayesian
optimisation is more suitable for costly objective functions (as a rule of
thumb more than one second) as in this case, which takes one minute
approximately.

5. Optimisation results

This section describes the application of the proposed optimisation
method to a particular section of the Oslo–Eidsvoll catenary (see Fig. 2),
consisting of 20 spans, 16 of which are optimised (the first and last two
5

do not affect the interaction), including 𝑁d = 91 droppers and twice
the number of parameters (length and position of each dropper). In
accordance with the Standard [20] and to evaluate the simulations, the
contact force was filtered with a 20-Hz low-pass filter and the standard
deviation was computed from the filtered contact force.

Every sub-optimisation 𝑂𝑖
𝑑 was carried out changing the parameters

of dropper 𝑑 for the 𝑖th iteration using the Bayesian optimisation
algorithm, in which a limit of 30 evaluations was enough for the two
parameters involved. Although the objective function of the global
optimisation is the standard deviation of the contact force 𝜎𝑓𝑐 along
the whole section, the objective function of the sub-optimisations was
defined as the standard deviation 𝜎𝑛𝑓𝑐 in a reduced domain around the
span 𝑛, to which the optimised dropper 𝑑 belongs. The selection of
the domain can affect the performance of the method. Avoiding the
inclusion of zones where the influence of the optimised parameters is
small (see Fig. 7) can have a positive impact. The domain considered
in every suboptimisation includes the span, D extra meters before and
D extra meters after the span. A distant D between 20 and 30 meters
has shown a better performance and therefore 𝐷 = 25 is set in this
work. This reduced domain prevents the optimisation from considering
the zone in which other droppers are more significant, improving
convergence and results, and also avoiding longer simulations.

The catenary was optimised for a speed of 200 km/h. The best
objective function 𝜎𝑛𝑓𝑐 achieved in every sub-optimisation is represented
in Fig. 8 to show the evolution of the process. Every graph includes the
results of the sub-optimisations of all the droppers (horizontal axis) of a
specific span 𝑛 for the different iterations (in different colours). To clar-
ify the order in which the values or the graphs were obtained, note that
every iteration starts when the previous iteration ends completely (for
all the droppers in all the spans). For example, the orange curve of the
first optimised span (𝑛 = 3) was obtained after all the blue curves were
obtained. It can be seen that all the curves are necessarily decreasing
and the progress of the objective function with respect to the iterations
is positive and tends to converge at a value between 6 and 8 in all
the spans except in the overlapping sections, where it tends towards
bigger values. It should be noted that some points obtained in a specific
iteration are slightly worse than in the previous iteration (e.g. in the 5th
iteration of the 𝑛 = 6 span, where the green curve is higher than the
purple). This is because in that iteration the improvement achieved in
previous spans led to slightly worse conditions for a specific span, but
there is still a global improvement.

In Fig. 9, the objective function 𝜎𝑛𝑓𝑐 of any span 𝑛 for the final
optimised catenary and the original catenary are compared, showing
a great improvement. Considering the whole section, the standard
deviation of the contact force is 𝜎 = 15.23 N for the original catenary
and 𝜎 = 7.43 N for the optimised configuration. In Fig. 10 the 20 Hz-
filtered contact force is also compared for both configurations, showing

the reduction in the oscillation amplitude of the optimised result. The
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Fig. 8. Evolution of the optimisation process. Standard deviation 𝜎𝑛
𝑓𝑐

of span 𝑛 after every sub-optimisation 𝑂𝑖
𝑑 of dropper 𝑑 at iteration 𝑖. 𝑖 = 1 blue, 𝑖 = 2 orange, 𝑖 = 3 yellow,

𝑖 = 4 purple and 𝑖 = 5 green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Standard deviation of the 𝑛 span of the original (orange) and optimised (blue)
catenaries. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

configuration of the contact wire before and after the optimisation is
shown in Fig. 11. The optimised solution does not exhibit symmetry
nor periodicity and the characteristics of the solution depend on every
specific problem.

As said above, this method allows the optimisation of a catenary
section that with a conventional approach is unaffordable. Taking into
account the cost of the objective function (about 1 min with a 12th
Gen Intel®Core(TM) i9-12900KS 3.40 GHz) and the fact that gradient-
based methods are not appropriate for this problem, the inclusion of
180 parameters in a single optimisation is far from being feasible. On
the contrary, with the proposed approach the optimisation takes 900
evaluations per span, lasting about 15 h that can be reduced to 2 h
with the advantage of parallel computing (12 workers).

5.1. Different scenarios

The optimisation described above was conducted for a speed of
200 km/h, which is the line operational speed for passenger trains.
However, the trains also operate at different speeds, e.g. goods trains
travel at 160 km/h on the same track, and different pantographs can
be used with the same catenary. In this subsection, the optimised
catenary was tested at 160 and 200 km/h with the WBL85 (used for
the optimisation) and WBL88 (Table 3) pantographs. The catenary
was also optimised for a speed of 160 km/h and tested for both
speeds and both pantographs. The standard deviation of the 200 km/h-
optimised catenary is compared with the original one in Table 4.
6

Table 3
Coefficients of the pantograph model WBL88.

D.o.f. 1 2

Stiffness 4400 N/m 0 N/m
Mass 6.6 kg 19.76 kg
Damping 75.6 N s/m 63.5 N s/m

Table 4
Standard deviation change from the original catenary to the optimised catenary at 200
km/h.

Pantograph WBL85a WBL88

200 km/ha 15.23 N → 7.43 N (−51%) 18.66 N → 9.36 N (−50%)
160 km/h 10.48 N → 11.73 N (+11%) 11.49 N → 13.38 N (+16%)

a Speed and pantograph set for the optimisation.

Table 5
Standard deviation change from the original catenary to the optimised catenary at 160
km/h.

Pantograph WBL85a WBL88

200 km/h 15.23 N → 14.27 N (−6%) 18.66 N → 17.29 N (−7%)
160 km/ha 10.48 N → 6.59 N (−37%) 11.54 N → 7.71 N (−33%)

a Speed and pantograph set for the optimisation.

The improvement achieved in the optimisation still remains with the
WBL85 pantograph. However, the optimised catenary does not perform
better for the different speed, for any of the pantographs. Similar results
were achieved for the 160 km/h-optimised catenary. As summarised
in Table 5, a vast improvement was found at 160 km/h (optimisation
speed) while the improvement is quite small at 200 km/h.

Given the optimised catenaries lack of significant improvement
when operated at different speeds from those set in the optimisations,
we conducted a new optimisation in which the objective function is
the mean of the standard deviation at 160 and 200 km/h within the
sub-optimisation domain, 𝜎𝑛𝑓𝑐 = 0.5(𝜎𝑛𝑓𝑐 (160 km∕h) + 𝜎𝑛𝑓𝑐 (200 km∕h)). Table 6
gives the results of the optimised catenary at both speeds compared
with the original catenary. In this case the improvement is obtained at
both speeds, reducing the standard deviation to around 20% at 160
km/h and a 35% at 200 km/h, which are lower than the 35% and
50% obtained at 160 and 200 km/h single speed optimisations. The
optimised catenary was also tested at 170, 180 and 190 km/h, showing
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Fig. 10. 20 Hz filtered contact force of the original (orange) and optimised (blue) catenaries. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 11. Contact wire geometry before (green) and after (black) the optimisation. Spans are delimited with the vertical lines. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
Table 6
Standard deviation change from the original catenary to the optimised catenary at 160
and 200 km/h.

Pantograph WBL85a WBL88

160 km/ha 10.48 N → 8.29 N (−21%) 11.54 N → 9.40 N (−19%)
170 km/h 12.42 N → 9.65 N (−16%) 12.85 N → 10.83 N (−16%)
180 km/h 13.38 N → 10.70 N (−20%) 14.36 N → 12.34 N (−14%)
190 km/h 14.43 N → 10.97 N (−24%) 16.74 N → 12.92 N (−23%)
200 km/ha 15.23 N → 9.65 N (−37%) 18.66 N → 12.21 N (−35%)

a Speed and pantograph set for the optimisation.

a significant improvement for those speeds which were not included in
the optimisation.

6. Conclusions

This work aimed to optimise the catenary topology by modifying the
dropper positions and lengths (although the proposed method could be
applied using other features) to reduce the standard deviation of the
pantograph–catenary contact force and have a better current collection
quality. The optimisation was set for a real catenary design scenario in
which there is no periodicity and the catenary topology varies along
the track. In this scenario, the definition of the topology relies on
a vast number of parameters, which makes the computational cost
unaffordable. However, these circumstances are found in the general
catenary layouts, so that an optimisation strategy is needed to deal with
this challenge for a proper design.

To cope with the large number of optimisation parameters, we
proposed a method that divides these parameters and performs mul-
tiple recursive sub-optimisations. The idea is based on the fact that
𝑛 optimisations of one 𝑛th of the number of optimisation parameters
are very much faster than one optimisation including all of them. This
method takes advantage of the large size of the catenary and therefore
the weak interdependence of most of the optimisation parameters. The
method proved to be successful in reducing the objective function
significantly, and although it does not ensure the absolute minimum, it
7

provides a compromise solution with a good improvement and feasible
computational cost.

A different matter is the robustness of the optimisation, i.e. whether
the improvement achieved for certain operating conditions remains
when these conditions are changed. In this paper, the optimised cate-
naries were tested at different speeds and pantographs from those used
in the optimisations, showing that a catenary optimised for a specific
speed does not give a better performance at a different speed. An
optimisation was thus carried out that sought the solution that had a
better average performance at two different speeds, leading to a smaller
improvement but with more robust results.
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Table A.7
Positions of messenger and contact wire support points.
Pole 𝑥 [m] 𝑦 [m] 𝑧 cw [m] 𝑧 mw [m]

1 0 0 5.8 6.5
2 54.4 −0.16 5.8 7.52
3 104.4 −0.15 5.45 7.6
4 145.4 −0.15 5.3 6.81
5 187.4 0.3 5.3 6.85
6 238 0.15 5.3 7.08
7 291 0.3 5.3 7.1
8 341 −0.3 5.3 7.06
9 390 0.3 5.3 7.09
10 444 −0.3 5.3 7.12
11 507 0.2 5.3 7.07
12 570 −0.3 5.3 7.04
13 633 −0.22 5.3 7.04
14 697 0.3 5.3 7.02
15 759 −0.25 5.3 7.06
16 822 0.25 5.3 7.03
17 884.6 −0.3 5.3 7.06
18 938.6 0.3 5.3 7.07
19 987.6 0.15 5.45 7.56
20 1039.6 0.75 5.8 7.48
21 1099 0 5.8 6.5
Table A.8
Dropper spacing: distance between droppers or between dropper and steady arm. Stitch wire spacing: distance between the start/end point of
the stitch wire and the steady arm.
Span Dropper spacing Stitch wire

1 2 3 4 5 6 7 8 1 2

2 9.2 9.2 9.2 9.2 9.2 4
3 4 8.63 8.63 8.63 8.63 2.48 7
4 2.5 8.88 8.88 8.88 8.88 3.98 7 7
5 4 8.82 8.82 8.82 8.82 8.82 2.5 7 7
6 2.5 9.3 9.3 9.3 9.3 9.3 4 7 7
7 4 8.4 8.4 8.4 8.4 8.4 4 7 7
8 4 8.2 8.2 8.2 8.2 8.2 4 7 7
9 4 9 9 9 9 9 5 7 9
10 5 9.25 9.25 9.25 9.25 9.25 9.25 2.5 9 9
11 2.5 9.25 9.25 9.25 9.25 9.25 9.25 5 9 9
12 5 8.83 8.83 8.83 8.83 8.83 8.83 5.02 9 9
13 5 9 9 9 9 9 9 5 9 9
14 5 8.67 8.67 8.67 8.67 8.67 8.67 4.98 9 9
15 5 9.25 9.25 9.25 9.25 9.25 9.25 2.5 9 9
16 2.5 9.18 9.18 9.18 9.18 9.18 9.18 5.02 9 9
17 5 9 9 9 9 9 4 9 7
18 4 8.2 8.2 8.2 8.2 8.2 4 7
19 4 9.6 9.6 9.6 9.6 9.6
Appendix. Modelling data

This appendix provides additional data for modelling the catenary
section studied of a section of the Norwegian catenary between Oslo
and Eidsvoll from Pole No. 32–1 to No. 33–5, from 32.04 km to 33.14
km.

Table A.7 gives the coordinates of the contact wire and messenger
wire support points. Note that the 𝑥 and 𝑦 coordinates are the same for
both wire support points.

Table A.8 gives the horizontal distances between consecutive drop-
pers (or between a dropper and the adjacent steady arm) of all spans.
The stitch wire is defined by two distances: the horizontal distance
between the first pole of the span and the end point of the stitch wire,
and the horizontal distance between the starting point of the stitch wire
and the last pole in the span. Table A.8 gives both distances for every
span in the section.

The mechanical properties of the elements are given in Table A.9.
Note that the elements modelled with beam type element have second
area moment 𝐼 , whereas those modelled with bar type element do not.

The clamps used to fasten the wires are modelled with point masses.
The droppers are attached to the contact, messenger and stitch wires
with 0.105 kg clamps. The messenger wire and the stitch wires are
8

Table A.9
Mechanical properties of the elements.

Element Young modulus Area Density 𝐼
(GPa) (mm2) (kg/m3) (mm4)

Messenger wire 108 65.8 9058 344.5
Contact wire 120 120 8917 1145.9
Droppers 103 9.7 8786 –
Stitch wire 108 33.4 9012 –
Steady arm 0.13 923.6 498 –

connected with 0.38 kg clamps, while the steady arms pull the contact
wire through 0.278 kg clamps.

The messenger and contact wire tension is set to 1500 N, while the
stitch wire to 2800 N.

The average length of contact wire elements is 0.2 m, while in the
messenger and stitch wires it is 0.6 m.

The integration method used is the HHT (Hilber Hughes Tay-
lor) [23]. The coefficients related to the method are summarised in
Table A.10. The Rayleigh damping model is considered, in which the
damping matrix is proportional to the mass and stiffness matrices,
𝐂 = 𝛼r𝐌 + 𝛽r𝐊. Being the coefficients 𝛼r = 0.062 s−1 and 𝛽r = 6.1310−6

s.
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Table A.10
Coefficients for the HHT integration method.
𝛥𝑡 (s) 𝛼 𝛾 𝛽

0.001 −0.05 0.5 0.25
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