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A B S T R A C T   

The analytic network process (ANP) is a well-known multi-criteria decision method that uses pairwise com-
parison matrices to assess the influence among elements and clusters. This method requires the participation of 
experts who need to answer a large number of questions. A recent paper proposes using Decision-Making Trial 
and Evaluation (DEMATEL) scales in ANP to assess influences and suggests the possibility of grouping all ele-
ments into a single cluster. This rise the following questions that this paper seek to answer: if no comparison 
matrices are used in ANP, how similar are the results, whether clusters are used or not, to the original results with 
ANP using pairwise matrices? Why should or should not one or several groups be used in ANP? How much does 
the result change when considering multiple groups versus a single group? Does the variation of questions 
compensate for the variation of the results? How should the evaluation of influences and the use of the scale be 
approached depending on whether there are one or several groups? For this purpose, published cases solved with 
ANP have been reviewed and solved without comparison matrices, with the original clustering and with a single 
cluster, using four different models for each case study. The results show that clustering does influence the re-
sults. It should also be noted that the use of clustering helps to identify the elements of the decision problem. 
Additionally, this work includes the compilation of 17 cases matrices which can be used in further studies   

1. Introduction 

Analytic network process (ANP) is a well-known method in multi- 
criteria decision-making (MCDM) proposed by Thomas Saaty in [1] as 
a generalization of the Analytic Hierarchy Process (AHP). ANP considers 
that the elements of the decision problem, alternatives and criteria, can 
influence any other element and, consequently, supports modeling de-
pendencies and feedback between elements in the network model. To 
measure these influences between elements, Saaty proposes to group the 
elements of the model into clusters and use pairwise comparison 
matrices to assess the influence between elements and between clusters. 
This results in many questions, long questionnaires and a lot of time for 
the decision makers/experts (DMs) to answer these questionnaires [2]. 
Therefore, the ANP is often avoided because of its complexity [3]. This 
last work proposes a new way of integrating Decision Making Trial and 
Evaluation Laboratory (DEMATEL) with the ANP, using influence 
measurement scales. They also indicate that with this proposal there is 
no need to group elements into clusters. Using of measurement scales 
instead of pairwise comparison matrices is not foreign to AHP/ANP. 

Saaty himself incorporates them in the so-called Ratings or Absolute 
measurements [4], but they are only used in the evaluation of alterna-
tives and not in the assessment of importance or influence, since no limit 
can be set on the number of alternatives and it may not be possible to use 
comparison matrices. On the other hand, the proposal of not using 
clusters is challenging for regular users of ANP/AHP because it is 
necessary to limit the order of pairwise comparison matrices and 
because it is part of the decomposition process of the problem [5,6]. 
Although DEMATEL does not require clusters in its model, even in 
DEMATEL-Based ANP (DANP) proposals it is considered that the influ-
ence between clusters should be calculated rather than assuming that 
they are equally influential to each other [7]. 

Having verified in [8] that using influence scales instead of pairwise 
comparison matrices and a single cluster, similar results to the original 
ones are obtained with ANP, with a significant reduction in the number 
of questions, we decided to study the proposal of not clustering. 

Although it is not necessary to group elements into clusters, from a 
strictly numerical point of view, should clusters be used or not? After a 
review of the literature, we did not find any work using ANP or DANP 
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that proposed not to use clusters or studied whether clusters should be 
used or when they should or should not be used. 

The objective of this research is to answer the following research 
questions (RQ): While using a measurement scale to directly measure 
influence in ANP, RQ1) it is indifferent, better or worse to group all 
elements into a single cluster or into multiple clusters? RQ2) How much 
does the result change when considering multiple groups versus a single 
group? RQ3) Does the variation of questions compensate for the varia-
tion of the results? 

To answer these questions, published cases have been identified that 
include the ANP matrices in order to perform the calculations in two 
ways: on the one hand, considering all the clusters of each model, and on 
the other hand, grouping the elements in a single cluster. Both results 
have been compared with the original results with ANP. We consider 
three comparisons: (1) compare the ordering of the elements; (2) 
compare the values of the element priorities; (3) compare the priority 
vector as a whole. For this purpose, the following indicators have been 
calculated: Spearman’s and Kendall’s rank correlation coefficients, 
mean squared error, Saaty’s and Garuti’s compatibility indexes. 
Regarding RQ1, a model is considered to be better when it obtains a 
value of higher correlation/compatibility or lower error with respect to 
the ANP result. It will be considered indifferent when the correlation/ 
compatibility/error coefficients are similar between both models. 

As a consequence of this work, the following additional questions 
have been posed: When the DMs are asked to evaluate the influence with 
a measurement scale, RQ4) What should they take as a reference value, 
the most or the least influential element? RQ5) Does this affect the result 
depending on how the elements have been grouped, in one or in several 
clusters? 

It is not the purpose of this paper to compare ANP and/or DEMATEL 
with other MCDM methods, or to justify why to use one method and not 
others, but if the decision maker has decided to use ANP, we want to 
contribute to a more efficient and faster use, by collecting less infor-
mation from the DM, and simpler information, thus needing less time to 
provide the information needed by the method, with a result as similar 
as possible to the original ANP. 

The Theoretical background section summarizes the ANP and 
DEMATEL, the new approach, and clustering. The section regarding 
Method and applied treatments, presents the method used to compare 
both strategies. The section entitled Case Study an application, presents 
as an illustrative example of the calculations, one of the cases to which 
this calculus has been applied. Section Results compiles the results of all 
the cases analyzed in the Discussion section. Finally, the conclusions and 
proposals for future works are presented. 

Furthermore, all the matrices and results for the 17 cases analyzed 
can be found in the supplementary material, to be used in further 
research, and to ensure that this work can be reproduced and verified. 

2. Materials and methods 

This section presents the ANP and DEMATEL methods, the new 
DANP approach with its fundamental steps, as well as the clustering 
technique and a review on clustering. 

2.1. The ANP method 

The ANP method is a multi-criteria decision making (MCDM) tech-
nique initially defined by Saaty in [1], being subsequently referenced in 
other publications, such as in [9,10]. ANP represents any 
decision-making problem as a network, presented in a matrix of criteria 
and/or alternatives (both called elements), grouped in clusters. The el-
ements can be intertwined with each other in any possible way, which 
makes it possible to include feedback and interdependence connections 
both within the same cluster and between different clusters. The influ-
ence of some elements on other elements of the network are evaluated at 
the element level and at the cluster level by means of pairwise 

comparison matrices from which the normalized eigenvectors are ob-
tained as the relative influences sought. 

The ANP calculation steps are as follows (for a more detailed 
explanation regarding its mathematical formulation and execution steps 
see [8,10–12]):  

(1) Clearly define the decision-making problem in order to structure 
the elements network and thus build a relationship matrix, where 
each cell takes the value of 0 or 1. It is 0 if the element in the row 
does not influence the element in the column, and 1 if it does.  

(2) Secondly, to obtain the so-called Unweighted Supermatrix, where 
the influence of the elements of each row with respect to each 
element of the column is analyzed. The value of each cell is 
proportional to the influence of that row element with respect to 
the rest of the elements of the same cluster that influence the 
column element. Considering that influence is an intangible 
variable [13], the level of influence is measured by pairwise 
comparison matrices using Saaty’s fundamental scale, a 
nine-point absolute scale defined by Saaty [11], where 1 to 9 
represent a range from "equal influence" to "extreme influence", 
respectively.  

(3) A cluster influence matrix is defined, where the influence of the 
clusters on each other is evaluated. The value of each cell is the 
proportion of influence of the cluster in each row with respect to 
all clusters influencing that cluster column. Pairwise comparison 
matrices and Saaty’s scale are used to assess influence. 

(4) To determine the order of precedence between the in-
terdependencies of the system, the Weighted Supermatrix is 
constructed, which collects the influences of the elements on the 
elements, considering the influence of the elements and of the 
clusters. It is calculated by multiplying the influence value of 
each cell element of the Unweighted Supermatrix and the influ-
ence value of its row cluster on the column cluster. Each column 
of the matrix is then normalized to sum up to 1 if necessary, and 
thus, a stochastic matrix is obtained. 

(5) Finally, the Limit Supermatrix is calculated to obtain the prior-
ities of the elements, considering the accumulated direct and 
indirect influences. The priority values of the criteria and alter-
natives will be their weights and ratings, respectively. 

If the model has n elements, nxn questions are needed to identify 
relationships. To assess the influences of np items (elements/clusters), 
with pairwise matrices, (np x (np-1))/2 questions are needed. If the 
number of relationships detected between elements is high, the DM have 
to answer a very large number of questions. 

2.2. The DEMATEL method 

The DEMATEL method was developed at the Battelle Geneva Insti-
tute to analyze causal relationships between elements in order to un-
derstand and solve real-world problems [7]. It is used to construct 
Influential Network Relation Maps (INRM) to define interactions be-
tween dimensions and criteria, based on expert judgement. Addition-
ally, it allows to analyze indirect relationships between criteria [14]. 

The DEMATEL steps according to [15–18] are as follows:  

(1) Establish a direct influence relationship matrix using expert 
questionnaires on a proportional scale from 0 (no influence) to 4 
(maximum influence), in order to obtain data for the influence 
relationship between any two elements. The value in each cell 
indicates the relationship level of the element in the row relative 
to the element in the column. An element cannot directly influ-
ence itself.  

(2) Calculate the normalized relationship matrix. The mean matrix is 
calculated and normalized. 
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(3) Obtain the complete direct/indirect influence matrix or total in-
fluence matrix. The sums of the rows indicate the sum of the in-
fluence that an element in the row exerts on the other elements, 
both directly and indirectly. The sums of the columns indicate the 
sum of the influence that an element in the column receives from 
the other elements.  

(4) Analyze the causal relationships between the elements by setting 
a threshold value for impact. From the complete direct/indirect 
influence matrix or total influence matrix, the sum of each row 
plus the sum of each column is called impact and shows the 
relational intensity of the element. The higher the impact, the 
higher the degree influence relationship between the elements. 
On the other hand, the sum of each row minus the sum of each 
column is called relationship. If the difference is positive, the 
element is considered a cause that actively affects other elements. 
If the difference is negative, the element is considered an effect 
that is affected by other elements. Cause and effect relationships 
can be represented in an impact digraph with the elements having 
a value in the total influence matrix above the threshold. 

Other manuscripts in which different scales have been used in 
DEMATEL can be found in the literature review: in [19] used major 
contribution (8), considerable contribution (4), some contribution (2), 
negligible contribution (0), with negative values if necessary; in [20] 
used a 1–3 scale; in [21–23] used a 0–3 scale; in [24] used a 0–5 scale; 
[25,26] designed a 11-categories scale, from 0 to 10. 

2.3. The new DANP proposal 

[3] proposes a new approach in the hybrid integration of DEMATEL 
and ANP models, considering the weaknesses of the ANP regarding the 
complexity of the method, the time required for the application and the 
uncertainty in making judgements, especially at the cluster level [27]. 
The proposal relates to the way the Supermatrix is calculated, specif-
ically the dependencies between criteria and alternatives in the network. 
In [3,27] the following steps are defined:  

(1) A procedure of structuring the problem by means of a weighted 
graph in order to model the dependencies between criteria as well 
as the intensities of those dependencies, and thus define their 
degree of influence. It therefore structures the problem using part 
of the DEMATEL algorithm to establish a matrix of influences 
between elements, equivalent to steps one and two of the method. 

(2) Calculate a weighted ANP matrix from the influence matrix ob-
tained in the previous point. It is important to note that, although 
the proposed method allows the calculation of the unweighted 
matrix and the cluster matrix, they recommend looking at all 
elements as a single cluster, thus obtaining the ANP Weighted 
Supermatrix directly. To assess the influences, they indicate that 
the Table 1 scale should be used.  

(3) Finally, the ANP limit matrix must be calculated to obtain the 
global influences. 

2.4. Clustering 

Since most MCDM methods do not make explicit in the literature the 

concept of clustering, nor which algorithm they propose to use to group 
the criteria, in order to have a clear understanding of the concept of 
clustering, it is helpful to start from the concept of "data mining". [28], 
defines data mining as the use of algorithms and techniques to transform 
and convert data into something useful by extracting patterns and in-
formation from a large amount of data in the process of knowledge 
discovery. In a first classification, data mining is categorized as super-
vised and unsupervised learning [29]. Supervised learning considers an 
objective variable together with a set of input data (predictors, inde-
pendent) as the basic supply, in order to characterize the output in terms 
of the predictors. Supervised learning can be subdivided according to 
the nature of the objective variable, which can be binary (dichotomous), 
categorical with several unordered categories (polytomous or multino-
mial), ordered or quantitative (discrete or continuous). In contrast, un-
supervised learning does not require prior information, either a 
non-response data set or a known specific objective variable, to search 
for clusters, connections, trends or patterns. According to [30] the main 
data mining techniques are association (association rules, sequential 
patterns and a priori algorithm), clustering (hierarchical methods, 
network methods and segmentation methods), classification (decision 
trees, neural networks and fuzzy sets) and prediction (regression). 

Clustering, as indicated by [30–32], is an unsupervised multivariate 
technique where a set of data samples is divided into categories or a 
number of clusters, where the particularity is the homogeneity that al-
lows belonging to the same cluster. Clustering algorithms based on un-
supervised learning are characterized by not possessing or requiring 
prior knowledge and treating the input data as a set of random variables 
[33]. Clustering techniques have been successfully applied in knowledge 
discovery and data engineering [34], since the first works on k-means, 
clustering algorithms have been developed, such as kernel k-means, 
spectral clustering, hierarchical clustering, probabilistic-based clus-
tering, metric clustering, clustering nonumerical data, clustering high 
dimensional data, clustering graph data, among others [35]. 

[31] define clustering in N-dimensional Euclidean space RN is the 
process of partition a given set of n points into a number, say K, of groups 
or clusters in such a way that patterns in the same cluster are similar in 
some sense and patters in different clusters are dissimilar in the same 
sense. Let the set of n points {X1,X2,X3,…,Xn} be represented by the set S 
and the K clusters be represented by C1,C2,…,CK. Then Ci ∕= ∅ for i = 1,
2,…,K and Ci ∩ Cj = ∅ for i = 1, 2,…,K, j = 1,2,…,K and i ∕= j and 
⋃K

i=1Ci = S. 
MCDM methods can be classified by criterion dependence into 

structural dependence, causal dependence and preferential dependence 
[7], and ANP is classified as a method of the structural dependence type. 
ANP uses the decomposition (or aggregation) of the elements of a 
problem within a structure in order to develop a proportion scale of 
relative priorities between these elements. The measuring instrument 
that Saaty proposes to use is the pairwise comparison matrix. In this 
matrix Saaty proposes to cut the scale of measurement into nine. These 
two things limit on the one hand the number of elements to be compared 
and on the other hand the proportion of things to be compared. That is 
why one of the main axioms defined by Saaty requires that only ho-
mogeneous elements are compared [36] as defined in the basic foun-
dations of clustering. In situations where the 1 to 9 scale defined by 
Saaty would be inadequate to cover the spectrum of comparisons 
needed, i.e., there is no homogeneity, a clustering process is used with a 
pivot from one cluster to an adjacent cluster, establishing an order of 
magnitude larger or smaller than the given group, and continuing to use 
the 1 to 9 scale within each group, thus extending it as far as desired 
[11]. If all elements cannot be compared to each other directly, it is 
useful to represent them in groups to avoid large errors of judgement. 

The clustering algorithm defined by Saaty determines that clusters 
are constructed according to the relative size of the priorities of the el-
ements in each cluster, and if any priority differs by an order of 
magnitude or more, it is moved to the appropriate cluster in order to 

Table 1 
Classic 5 categories influence scale.  

Influence category Influence Value 

No influence (NI) 0 
Low influence (LI) 1 
Medium influence (MI) 2 
Strong influence (SI) 3 
Very strong influence (VSI) 4  
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make the transition from cluster to cluster a well-designed operation 
[11,37]. 

In terms of causal dependence, cause and effect relationships are the 
main distinction of the methods, with DEMATEL being the most repre-
sentative. However, no research papers have been found with this 
method in which any clustering technique is used. 

3. Methodology and treatments applied 

To answer the research questions raised to check whether consid-
ering a single cluster with this new proposal, the results are closer or 
further than considering multiple clusters to the results of the original 
ANP, the steps shown in Fig. 1 and described below have been followed. 

3.1. Searching and selecting ANP articles 

To conduct our research, we need cases from the literature solved 
with ANP that include the unweighted matrix, the cluster matrix and the 
weighted matrix and/or global priorities. The first phase carried out was 
a literature review to identify articles on ANP applications. For this 
purpose, the keyword "ANP" or "analytic network process" was used, 
performing a search in "Abstract, title and keywords" of journal articles 
in the Scopus, Web of Science or Google Academic databases published 
between 2000 and 2021. In addition, this search was filtered by subject 
areas, such as "Engineering", "Computer Science", "Business, 

Management and Accounting", "Mathematics", "Energy", among others. 
Conference papers, master’s theses, doctoral dissertations, textbooks 
and unpublished articles were excluded from the review process. A total 
of 880 documents were identified. 

The next step was to review them and discard those that did not 
include the matrices and results indicated above. Of the total obtained, 
the articles that applied the ANP method and included the unweighted, 
cluster and weighted matrices were identified. Incomplete models that 
did not include the matrices or had inconsistent data were discarded. 
Finally, a total of 16 articles were selected [38–53], equivalent to 17 
cases of application. We have experienced the problem of missing in-
formation in the articles published by the ANP researchers pointed out 
by [54]. This bad practice prevents the validation of these models and 
their numerical use by other researchers. 

3.2. Calculating five categories scale ANP matrices 

Before explaining how the ANP matrices have been transformed to 
the scale to be used, we want to emphasize that using a measurement 
scale to assess the influences (such as the one in Table 1), instead of the 
pairwise comparison matrices and the Saaty scale, implies that the nu-
merical values associated with the levels or categories of the scale are 
indicating the ratio of influence between these levels, not only their 
order of influence. 

If we had the DMs for each of the cases found in the literature, after 

Fig. 1. Methodology and steps performed.  
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building the three models (classical ANP with several clusters and with 
pairwise comparison matrices; ANP model with multiple clusters and 
with measurement scale; ANP model with a single cluster and with a 
measurement scale), three questionnaires would be given to the DMs to 
obtain the answers of each model and to be able to calculate the three 
different weighted matrices with their priorities and compare them. The 
questions for each model would be similar to the following:  

• Original ANP model.  
○ Question 1. Identifying relationships. Given a row element, does it 

influence the column element?  
○ Question 2. Assessing elements’ influences. Given a column 

element, and given a pair of row elements of the same cluster, how 
much more a given member of the pair influence that column 
element than the other member?  

○ Question 3. Assessing clusters’ influences. Given a column cluster, 
and given a pair of row clusters, how much more a given member 
of the pair influence that column cluster than the other member?  

• ANP model with multiple clusters and with measurement scale. 
○ Question 4. Identifying relationships and assess elements’ in-

fluences. Given the elements of a row cluster, how much does each 
influence a given column element?  

○ Question 5. Assessing clusters’ influences. Given a column cluster, 
how much influence does each of the row clusters have?  

• ANP model with a single cluster and with measurement scale. 
○ Question 6. Identifying the relationships and assessing the in-

fluences of the elements. Given a column element, how much is it 
influenced by the row elements? 

Questions 2 and 3 are answered with the Fundamental Saaty’s scale 
[11]. Questions 4, 5 and 6 are answered with the scale of Table 1. But 
since these DMs are not available, in this step the DMs’ response are 
proposed if they would had been asked how much influence this ele-
ment/cluster has on this other element/cluster and they would have 
answered with the scale of Table 1. 

To propose the DMs’ response, two data must be considered: (1) The 
influence value of each cell of the published matrices of the original 
ANP; (2) That this value represents the proportion of influence among a 
set of items. In the unweighted matrix the influences on each column 
element are normalized for each of the clusters. In the clusters and 
weighted matrices, the normalization covers each complete column. The 
response will be based on the numerical influence values associated with 
each category of the scale. It should be considered that the numerical 
values of the scale also reflect their proportion to each other: e.g., SI (3) 
is three times more influential than LI (1). So, how to convert the in-
fluence values of the matrices in each normalization block into influence 
values 0–4? 

This transformation can be formally described as follows: given an 
influence vector w = (w1,w2,…,wn ) where wi ∈ [0,…,1] and 

∑
wi ∈

{0,1}, to obtain the vector v = (v1, v2,…, vn ) where vi ∈ {0,1, 2,3,4}. 
This transformation must be a positive monotonic transformation, and if 
wi = 0→vi = 0, and ideally, the proportions between them is main-
tained, (vi/vj ≅ wi/wj, ∀i,j = 1,…,n) and/or together (vi /

∑

j
vj ≅ wi, ∀

i, j = 1,…,n). In the following points, the vector w (1) will be used as an 
example to illustrate the calculations. 

w = (0, 0.015, 0.186, 0.05, 0.093, 0.038, 0.105, 0.134, 0.38) (1) 

Some possible options for this transformation are:  

(1) Regarding the maximum value, taking the highest value to 
transform, wmax, the ratios ui = wi/wmax are calculated. Obvi-
ously, ui ∈ [0,1]. Since there are 5 categories in the measurement 
scale, the interval [0,1] is divided into five parts, and the vi values 
sought are obtained according to Table 2. 

Thus, with the vector w (1), the vector 
v1 = (0, 0, 2, 0, 1, 0, 1, 1, 4) is obtained.  

(2) Regarding the maximum value, considering that the largest value 
of each block to be transformed, wmax, represents the last step in 
the measurement scale, in this case it would correspond to the 
influence value 4. The value ui = 4 × (wi /wmin) converted to an 
integer is the value vi sought. This conversion can be done in 
three possible ways:  
(a) the greatest integer less than or equal to u, denoted floor(u) 

or ⌊u⌋;  
(b) the least integer greater than or equal to u, denoted ceil(u) or 

⌈u⌉; 
(c) the nearest integer with tie breaking towards positive in-

finity, rounding u, denoted rpi(u) = ⌊u+ 1/2⌋. 
With the vector w (1), the vectors 

v2 = (0, 0, 1, 0, 0, 0, 1, 1, 4), v3 = (0, 1, 2, 1, 1, 1, 2, 2, 4) y 
v4 = (0, 0, 2, 1, 1, 0, 1, 1, 4) would result with each proced-
ure, respectively.  

(3) Regarding the minimum value, considering that the smallest non- 
zero value of each block to be transformed, wmin, represents the 
first non-zero value step in the measurement scale, in this case 
with the scale of 0–4, it corresponds to the influence value 1. If 
wmin is the unit value, the ratio wi/wmin converted to an integer is 
the value vi sought, with the restriction wi/wmin > 4→vi = 4. This 
conversion can be carried out with the three procedures indicated 
above (floor, ceil, round). With the vector w (1), the vectors 
v5 = (0, 1, 4, 3, 4, 2, 4, 4, 4), v6 = (0, 1, 4, 4, 4, 3, 4, 4, 4) y 
v7 = (0, 1, 4, 3, 4, 3, 4, 4, 4) are obtained respectively.  

(4) Regarding the distribution of values as a whole, for example, an 
allocation of categories based on quartiles of values can be 
considered. 

In this study, the latter option could be realized given that the 
resulting influence values of the ANP are known, but it is difficult to 
imagine the DMs considering the full set of influence values and their 
distribution, in order to make his assessment of categories. Instead, it 
seems more plausible to think that it will be easier to take as a reference 
that which influences more or that which influences less, and to make 
proportional judgements with respect to that reference. Therefore, op-
tion 4 is discarded. In this conversion, either the minimum or the 
maximum value will be considered as the reference. If the least influ-
ential element is assigned a value of 1 (LI), regardless of how the whole 
number is obtained, it is easy to lose proportionality because ratios 
greater than 4 are assigned 4 (VSI). It is common to have influence ratios 
in w much higher than 4. This can be seen in the cases studied in this 
article and should not be surprising because in the paired comparison 
matrices the Saaty scale is used, with influence ratios up to 9. Despite 
this lack of proportionality, using the minimum value as the reference 
value to obtain the vectors v sought have not been ruled out, for the 
following reasons: (1) because this guarantees that all the elements that 
influence the w vectors, continue to influence the v vectors; (2) because 
based on our experience, it fits with the way many DMs make their 
judgements: "it does influence, a little, but it influences" and they would 
assign it the lowest value; (3) because it follows Saaty’s 

Table 2 
0–4 scale equivalent value of influence.  

Value Range Influence 

[0, 0.2) NI-0 
[0.2, 0.4) LI-1 
[0.4, 0.6) MI-2 
[0.6, 0.8) SI-3 
[0.8, 1] VSI-4  
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recommendation to look for that unitary element, the smallest among 
those to be valued, and use it as a pattern to compare the rest with it. In 
the case of using the minimum, with ceil() the proportionality as a whole 
would be lost even more. With floor() the value obtained will be "is at 
least x times", greater than the minimum considered the unity. For this 
work, the round() function have been chosen, because this method ap-
pears to be the most neutral or balanced of the three. 

As for considering the most influential element as the reference, 
looking at the three options in 2), the conversion with floor() is 
considered too downward, since influences are being compared with 
respect to the most influential element. With this, only the upward 
transformation, ceiling, and rounding remains to be considered. All 
seem reasonable. The upward transformation is acceptable precisely 
because the comparison is being made with respect to the highest in-
fluence, and it allows relatively low influence values to still reach the LI 
category with a value 1. Although the rounding conversion is more 
balanced and, in our opinion, more neutral. Thus, three options are left 
on the table considering the maximum: 1), 2b) and 2c). Of these three 
options, the first option is considered to be best, not so much for nu-
merical reasons, but conceptually. This is best explained with an 
example: taking the 4th component of the vector w (1), method 1) gives 
0.05/0.38 = 0.1316, i.e., being 13.16% of the most influential element, 
it has the value 0 (NI). With methods 2b and 2c), 4 
× (0.05 /0.38) = 0.5263 is obtained, and both methods assign the value 
1 (LI). The fundamental difference is that method 1) gives the actual 
ratio of the influences between w4 and wmax, while methods 2b) and 2c) 
amplify this influence with the bottom of the measurement scale, which 
implies assigning the category by taking a part of the value (and infor-
mation) that not only is the ratio of its influences. In other words, 1) 
assigns the scale value in proportion to 1, while 2b) and 2c) assign it in 
proportion to 4. 

With all this, four matrices have been obtained with influence values 
on the 0–4 scale, equivalent to the original ANP matrices. Each one 
obtained with a different method that will henceforth be used to name 
the four models: Max Single cluster, Max Multiple clusters, Min Single 
cluster and Min Multiple clusters. Each of them is a different approxi-
mation to the matrix that the DMs would have answered if they followed 
each of the explained strategies to issue their assessments using the scale 
in Table 1. 

For practical purposes, using the most influential item or the least 
influential item modifies the procedure used by the DMs to answer the 
above questions. In the Max models, the DMs must first identify the most 
influential item (element/cluster) of those they have to evaluate, and 
assign it the highest level of the scale, the rest will be assigned their level 
of influence proportionally to this most influential one. In the Min 
models, the DMs must first identify the non-influential elements, then 
identify the least influential of the influential elements, and finally 
assign their level of influence to the remaining items in proportion to the 
least influential. 

3.3. Limitations 

We make explicit the following limitations of our work:  

- We do not have DM to make judgments for the three questionnaires. 
Therefore, we cannot compare the results calculated from them. We 
are calculating through a systematic procedure, what level of influ-
ence intensity is appropriate to consider for the influence values of 
the ANP matrices, and assuming that the responses of the DMs would 
be those calculated levels. This does not have to be so, because ex-
perts are not usually perfectly coherent, proportional or transitive in 
their answers.  

- The number of categories in the scale. The proposal under study [3] 
utilizes a 5-point scale as presented in Table 1, with the following 
categories: no influence, low influence, medium influence, strong 

influence, and very strong influence. Although, as already indicated, 
other scales with different numbers of categories can be used.  

- The numerical values of influence associated with the categories. It is 
important to note that the proposed numerical values for the scale (0, 
1, 2, 3, 4) are not necessarily obligatory, as alternative real numbers 
may also be assigned. Furthermore, the scale need not necessarily be 
linear. Our prior experience with ratings in decision-making sce-
narios has demonstrated that non-linear scales are not uncommon. 
However, we will adhere to the specific proposal made by the au-
thors of the study, despite the possibility of alternative numerical 
values or non-linear scales.  

- The number of cases studied. With 17 cases, it is evident that the 
answers to the research questions cannot be generalized to the uni-
verse of all possible ANP models. 

With these limitations, we will not be able to answer the RQs with the 
premise "While using a measurement scale to directly measure influence 
in ANP". Rather, we will approach RQs by "Considering the proposed 
transformation of influence values of ANP matrices derived from pair-
wise matrices; considering the proposed scale of five degrees and 
considering the 17 cases found in the literature". RQ1 being worded in a 
more measured way: “Which results are more similar to those obtained 
with the original ANP, considering single cluster or multiple clusters? 

3.4. Normalize by sum 

Matrices with influences in 5-categories scale, must be normalized to 
sum 1 in their influence groupings, to do so:   

(1) 5-categories Unweighted matrix: Each column values are divided 
by the sum values of same column cluster.  

(2) 5-categories Cluster and 5-categories Weighted matrices: Each 
column is divided by the sum of the column. 

The normalized weighted matrices of the single cluster models are 
ready to calculate the limit priorities. Calculating the weighted matrices 
considering multiple clusters is the only step left. 

3.5. Calculate weighted matrix of multiple clusters model 

By multiplying each value of the normalized 5-categories un-
weighted matrix by the cluster’s influence value in the normalized 5-cat-
egories cluster matrix, the weighted matrix of multiple clusters model is 
obtained. Finally, this matrix must be normalized by column sum to 
ensure stochasticity. 

3.6. Compute limit matrices and priorities 

All priorities, min and max single cluster models and min and max 
multiple clusters models, are calculate from each weighted matrix. 

3.7. Compare of the results with original ANP results 

Finally, the four priority results obtained have been compared with 
the published prioritization obtained by the conventional ANP method. 
Different indicators have been proposed to measure how similar two 
vectors are, some based on rank, and others on values. Spearman’s rank 
correlation coefficient and the mean squared error (MSE) are the in-
dicators that the authors use in their new proposal to compare their 
results with ANP. In this article, the following indicators have been 
additionally calculated: Saaty’s Compatibility Index based on the 
Hadamard product [11] and the Garuti’s Compatibility index [55,56] 
both proposed in the AHP/ANP context; Cosine similarity as additional 
measure of similarity between two nonzero vectors; and Kendall corre-
lation coefficient, Tau-b. With these indicators, the aim is to measure to 
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what extent the priority vectors of the four models (min and Max Single 
cluster and min and Max Multiple clusters), are similar to the priority 
vector obtained with ANP. With Saaty’s, Garuti’s y Cosine’s indicators, 
the priority vectors are compared as a whole; with the Spearman and 
Kendall indicators, it is verified the extent to which the elements of each 
vector are in the same order of priority and are therefore in the same 
ranking. Finally, the MSE is used to evaluate the differences in the values 
of the priorities obtained. 

4. Cases study and results 

The size of the cases (number of elements and clusters) is shown in 
Table 3, as well as the number of questions to be answered using the 
original ANP and the new method using a single cluster or multiple 
clusters. This section presents Case 1 [38] of the 17 case studies to which 
the evaluated proposals has been applied. Only the resulting 0–4 scale 
matrices are shown. All cases with all matrices are included in the 
Supplementary material of the article. 

4.1. Multiple clusters models  

(1) Transform the original Unweighted matrix to 5-categories scale 
values. From the original ANP Unweighted two 0–4 scale Un-
weighted matrices were obtained using the procedures previously 
explained:  
(a) Using max value as the reference. Each value is divided by the 

maximum cluster column value. For example, in CL3 rows 
(E6 to E10) on E1 column, influence values are: 0.0678, 
0.0502, 0.1443, 0.6199, 0.1178. Dividing by the maximum 
(0.6199), the values obtained are: 0.1094, 0.0809, 0.2328, 1, 
0.19. Converting these values with Table 2, the resulting in-
fluence values in 0–4 scale are: 0, 0, 1, 4, 0. The resulting 0–4 
scale unweighted matrix using max value as reference is 
shown in Table 4.  

(b) Using min value as reference. First, each value is divided by 
minimum cluster column values not equal to 0. For example, 
in CL3 rows (E6 to E10) on E5 column, influence values are 
0.11343, 0.05239, 0.28393, 0.55025, 0. The minimum non- 
0 value is 0.05239. Dividing by this reference value, the 
following values are obtained: 2.165, 1, 5.42, 10.503, 0. 
Secondly, to obtain the values on the 0–4 scale, they are 
converted in the following way: values greater than 4 are 
replaced by 4, values 0 are maintained as 0, and the rest are 

rounded to integer numbers. In our example, the resulting 
values are: 2,1,4,4,0 The resulting 0–4 scale unweighted 
matrix using min value as reference is shown in Table 5.  

(2) Transform the original Cluster matrix to 0–4 scale values. 
Applying the two procedures of the previous point, in this case, 
by columns of the Cluster matrix, the Cluster matrices in the 0–4 
scale are obtained. The resulting 0–4 scale Cluster matrices are 
shown in Tables 6 and 7. For example, the first column CL1 values 
(0, 0, 0.15762, 0.1603, 0.02636, 0.06955, 0.04297, 0.5432) are 
divided by 0.5432 or 0.02636 depending on the case, resulting (0, 
0, 0.2902, 0.2951, 0.0485, 0.128, 0.0791, 1) and (0, 0, 5.980, 
6.081, 1, 2.638, 1.630, 20.607) and then finally (0, 0, 1, 1, 0, 0, 0, 
4) and (0, 0, 4, 4, 1, 3, 2, 4).  

(3) Normalize the 0–4 scale Unweighted matrix. For example, in the 
0–4 Unweighted matrix max model, CL5 rows (E12 to E14) on E1 
column, influence values are: 1, 4, 4. Dividing by their sum, 9, the 
proportional influence of CL5’s elements on E1 are: 0.1111, 
0.4444, 0.4444. In min model, this positions’ values are: 1, 2, 3. 
Dividing by 6, the proportional influence values are: 0.1667, 
0.3333, 0.5.  

(4) Normalize the 0–4 scale Cluster matrix. For example, in the 0–4 
Cluster matrix max model CL7 column, the influence values are: 
0, 0, 4, 4, 1, 1, 0, 0. Dividing by their sum, 10, the proportional 
influence on CL7 are: 0, 0, 0.4, 0.4, 0.1, 0.1, 0, 0. In the 0–4 
Cluster matrix min model CL7 column, the influence values are: 
1, 1, 4, 4, 1, 1, 0, 0. Dividing by their sum, 12, the proportional 
influence on CL7 are: 0.0833, 0.0833, 0.333, 0.333, 0.0833, 
0.0833.  

(5) Calculate the Weighted matrix from the normalized 0–4 scale 
Unweighted and Cluster matrices. This matrix is calculated by 
following these two steps:  
(a) Multiply the unweighted and cluster normalized matrices. 

Each value of the normalized unweighted matrix from step 3, 
is multiplied by the influence value between clusters of the 
normalized cluster matrix from step 4. For example, in the 
max model, in the non-zero values of the column of the 
element E3 of cluster CL2: 1, of element E1 is multiplied by 
0 (CL1, CL2); (0.5714,0.2857,0.1429) of elements E2, E4 and 
E5, are multiplied by 0.2222 (CL2, CL2); (0.8,0.2) of E15 and 
E18, are multiplied by 0.1111 (CL6, CL2); 1 of element E18 is 
multiplied by 0 (CL7, CL2). This way, the obtained vector of 
column E3 is: (0, 0.127, 0, 0.0635, 0.0317, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0.0889, 0, 0, 0.0222, 0, 0, 0). 

Table 3 
Cases’ number of elements, clusters and questions by model.  

Case Elements Clusters No. questions 

ANP model  Single cluster 
model 

Multiple clusters model 

Elements’ 
relationships 

Elements’ 
influence 

Clusters’ 
influence 

Total About elements About 
elements 

About 
clusters 

Total 

01 22 8 484 268 159 911 484 484 54 538 
02 19 8 361 181 148 690 361 361 52 413 
03 36 6 1296 483 154 1933 1296 1296 46 1342 
04 15 3 225 182 9 416 225 225 9 234 
05 18 5 324 603 24 951 324 324 18 342 
06 13 4 169 39 24 232 169 169 16 185 
07 21 4 441 542 13 996 441 441 12 453 
08 13 4 169 158 15 342 169 169 13 182 
09 18 5 324 147 22 493 324 324 17 341 
10 18 6 324 159 42 525 324 324 25 349 
11 13 5 169 123 21 313 169 169 17 186 
12 18 4 324 109 14 447 324 324 12 336 
13 19 4 361 218 11 590 361 361 11 372 
14 21 4 441 453 16 910 441 441 13 454 
15 13 5 169 60 6 235 169 169 4 173 
16 13 4 169 27 6 202 169 169 8 177 
17 20 10 400 80 59 539 400 400 26 426  
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(b) Normalize by column sum. The values of the matrix obtained 
in the previous point are divided by the sum of its column. 
This ensures the stochasticity of the weighted matrix. For 
example, in the max model, the values in column E3 are 

divided by 0.3333, resulting (0, 0.381, 0, 0.1905, 0.0952, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0.2667, 0, 0, 0.0667, 0, 0, 0).  

(6) Compute the limit matrix and priorities. The limit matrix and the 
priorities of the elements are calculated from the weighted ma-
trix. These are the priorities considering several clusters and 

Table 4 
Case 01. Max Multiple Clusters Model.0–4 Unweighted Supermatrix.    

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8   

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 

CL1 E1 0 0 4 0 0 0 0 0 0 0 4 4 4 0 4 4 4 4 4 4 4 
CL2 E2 0 0 4 4 4 4 4 4 0 0 0 4 4 1 4 4 4 4 3 4 4 

E3 0 1 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 4 4 4 4 
E4 0 4 2 0 1 4 3 4 4 4 4 4 1 1 2 1 1 4 1 4 4 
E5 0 1 1 0 0 0 0 0 4 0 4 0 1 4 2 1 4 4 0 4 4 

CL3 E6 0 0 0 0 1 0 1 2 3 1 1 0 0 1 1 0 1 0 0 0 0 
E7 0 0 0 0 0 0 0 1 3 1 1 1 1 4 3 4 4 4 3 4 1 
E8 1 1 0 0 2 4 4 0 4 4 2 1 2 4 4 4 4 4 4 4 4 
E9 4 4 0 0 4 4 4 4 0 0 4 4 4 0 4 0 0 0 1 4 3 
E10 0 2 0 0 0 4 4 4 0 0 2 0 2 0 0 4 2 0 2 0 2 

CL4 E11 4 4 0 0 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 4 4 
CL5 E12 1 1 0 0 0 2 1 0 0 0 0 0 1 4 0 0 0 0 4 4 1 

E13 4 4 0 0 4 0 0 0 0 4 0 1 0 1 4 4 4 0 4 4 0 
E14 4 4 0 0 4 4 4 0 0 0 4 4 4 0 0 0 0 0 0 4 4 

CL6 E15 1 1 4 0 0 1 0 0 0 0 0 4 0 0 0 0 0 0 4 4 0 
E16 0 0 0 0 0 0 4 0 0 4 4 0 0 0 0 0 4 4 4 3 0 
E17 0 0 0 0 4 0 4 0 0 4 4 0 0 0 0 0 0 0 4 3 0 
E18 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 1 0 
E19 4 4 0 0 0 4 0 0 0 0 0 3 0 0 4 0 0 0 0 0 4 

CL7 E20 4 4 4 0 4 4 4 0 0 0 0 4 4 0 4 0 0 0 0 0 4 
CL8 E21 4 0 0 0 0 4 0 0 0 0 0 4 0 0 0 4 0 0 0 0 0  

Table 5 
Case 01. Min Multiple Clusters Model.0–4 Unweighted Supermatrix.    

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8   

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 

CL1 E1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 
CL2 E2 0 0 4 1 3 1 1 1 0 0 0 1 3 1 2 4 3 1 3 1 1 

E3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 1 3 1 1 
E4 0 4 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
E5 0 1 1 0 0 0 0 0 1 0 1 0 1 3 1 1 2 1 0 1 1 

CL3 E6 1 1 0 0 2 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 
E7 1 1 0 0 1 1 0 1 1 2 1 3 2 4 2 4 3 4 4 4 3 
E8 3 4 0 0 4 4 3 0 2 4 2 3 3 4 3 4 3 4 4 4 4 
E9 4 4 0 0 4 4 3 4 0 0 3 4 4 0 3 1 0 0 4 4 4 
E10 2 4 0 0 0 4 3 4 0 0 2 0 3 0 0 4 2 0 4 0 4 

CL4 E11 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 
CL5 E12 1 1 0 0 0 2 1 0 0 0 0 0 1 3 0 0 0 0 1 1 1 

E13 2 4 0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 
E14 3 3 0 0 1 4 4 0 0 0 1 3 4 0 0 0 0 0 0 1 4 

CL6 E15 4 3 3 0 0 4 0 0 0 0 0 4 0 0 0 0 0 0 1 4 4 
E16 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 3 1 
E17 2 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 3 1 
E18 4 1 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 1 1 2 
E19 4 4 0 0 0 4 0 0 0 0 0 4 0 0 4 0 0 0 0 0 4 

CL7 E20 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 
CL8 E21 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0  

Table 6 
Case 01. Max Multiple Clusters Model. 0–4 Cluster Matrix.   

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 

CL1 0 0 0 0 0 2 0 3 
CL2 0 2 0 1 1 0 0 2 
CL3 1 4 4 4 4 4 4 4 
CL4 1 2 3 0 2 2 4 4 
CL5 0 0 0 0 0 1 1 2 
CL6 0 1 0 0 2 0 1 2 
CL7 0 0 0 0 0 0 0 2 
CL8 4 0 0 0 3 0 0 0  

Table 7 
Case 01. Min Multiple Clusters Model. 0–4 Cluster Matrix.   

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 

CL1 0 1 0 1 2 4 1 2 
CL2 0 4 2 3 2 4 1 1 
CL3 4 4 4 4 4 4 4 2 
CL4 4 4 4 0 4 4 4 2 
CL5 1 1 2 2 1 4 1 1 
CL6 3 3 2 2 4 3 1 1 
CL7 2 1 1 0 1 1 0 1 
CL8 4 0 2 0 4 3 0 0  
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using scale of influence measures instead of pairwise comparison 
matrices. 

4.2. Single clusters models   

(1) Transform the Original Weighted matrix to 0–4 scale values. 
According to the aforementioned procedures, as all elements are 
considered in a single cluster, they are divided by the maximum 
or minimum of its column. For example, in max model CL1 
column, those values are divided by 0.543, resulting (0, 0, 0, 0, 0, 
0.0197, 0.0146, 0.0419, 0.1799, 0.0342, 0.2951, 0.0082, 
0.0188, 0.0215, 0.0244, 0.0037, 0.0062, 0.0138, 0.08, 0.0791, 
1). The resulting 0–4 scale Weighted Max Single cluster model 
matrix is shown in Table 8. In the min model, CL1 column values 
are divided by 0.002, resulting (0, 0, 0, 0, 0, 5.5, 4, 11.5, 49, 9.5, 
80, 2, 5, 6, 6.5, 1, 1.5, 3.5, 21.5, 21.5, 271.5). The resulting 0–4 
scale Weighted Min Single cluster model matrix is shown in 
Table 9.  

(2) Compute the Normalized 0–4 Weighted matrix. Normalizing by 
column sum, the Weighted matrices are obtained.  

(3) Compute limit matrix and priorities. The limit matrices and 
element priorities are calculated from the weighted matrices. 
These are the priorities considering a single cluster model and 
using scale of influence measures instead of pairwise comparison 
matrices. 

4.3. Compare results with ANP 

The results obtained for each case have been compared with the 
original ANP results. As mentioned above, compatibility/similarity in-
dicators, as well as correlation and error indicators have been calcu-
lated: Saaty’s index, Garuti’s index, Cosine similarity, ρ Spearman, τ 
Kendall and SME (Tables 10–14). The calculation of Saaty’s and Garuti’s 
indexes presents problems with null values in the components of the 
vectors. As in this case, several 0′s were present in the priorities, the null 
values have been replaced by 0.000001 for the calculation of the Saaty’s 
index and the Garuti’s index. In the similarity and correlation indicators, 
values greater than or equal to 0.9 are highlighted in green. In the case of 
the Garuti’s index, its author indicates that a value in the range 
85–89.9% indicates "High compatibility (almost compatible vectors)" 
[56], so these values have also been highlighted, but in yellow. Indicator 

statistics have also been calculated for each of the four models 
(Table 15). The results for each indicator are discussed below:  

(1) Saaty compatibility index (Table 10). According to the Saaty’s 
compatibility index, out of the 17 cases studied, only 3–9 cases 
are compatible with the ANP results according to the model. If the 
most influential element is used as the reference, there is no 
obvious conclusion about which is the best approach, to use 
single or multiple clusters. On the other hand, if the minimum 
influence element is used, a greater number of results more 
similar to the original ANP are obtained with the multi-cluster 
model. If a single cluster model is considered, the Saaty index 
results are much closer to unity if the minimum influence element 
is used as the reference, although the number of compatible re-
sults is similar. With multiple clusters, it is also much more results 
more similar to the original ANP are also obtained using the 
minimum influence element as a reference. These results indicate 
that Saaty’s insistence on using the smallest element to make 
comparisons and judgements, is corroborated by his indicator.  

(2) Garuti’s compatibility index (Table 10). The number of cases with 
compatible results with those obtained with ANP are 2 to 4. If 
almost compatible values are included, the count is between 5 
and 8. With this indicator it is not so clear which strategy is 
preferable, given that using the model with multiple clusters the 
number of cases with results more similar to the results with ANP 
is slightly higher, but looking at the cases individually, in some 
particular cases the similarity has worsened.  

(3) Cosine similarity index (Table 11). According to this indicator, 
practically all models and cases are similar to the results with 
ANP (12 to 17 cases). Considering the number of cases with a 
result greater than 0.9, whether the most influential or the least 
influential value is used, the number of results similar to the 
original ones with ANP using multiple clusters is higher. If the 
single cluster model is chosen, it is slightly greater the number of 
results similar to the originals with ANP using the most influential 
element as reference. If the model with multiple clusters is used, 
it is almost a tie, slightly in favor of using the least influential or 
the largest element as the reference. The fact that such over-
whelming results are obtained for similarity between results, 
when other indicators of compatibility or correlation are not so 
clear, might indicate that the Cosine similarity index could not be 
the most useful indicator for discriminating results. 

Table 8 
Case 01. Max single cluster model. 0–4 weighted matrix.    

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8   

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 

CL1 E1 0 0 1 0 0 0 0 0 0 0 1 1 2 0 4 4 4 4 4 0 3 
CL2 E2 0 0 4 4 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

E3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
E4 0 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 
E5 0 0 1 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 

CL3 E6 0 0 0 0 0 0 0 1 2 1 1 0 0 1 1 0 1 0 0 0 0 
E7 0 0 0 0 0 0 0 0 2 1 1 1 1 4 2 2 3 4 2 1 0 
E8 0 1 0 0 2 2 2 0 3 4 2 1 2 4 3 3 3 4 3 1 1 
E9 0 4 0 0 4 2 2 2 0 0 4 3 4 0 3 0 0 0 1 1 1 
E10 0 1 0 0 0 2 2 3 0 0 2 0 2 0 0 2 1 0 1 0 0 

CL4 E11 1 4 0 0 4 4 4 4 4 4 0 2 4 4 4 4 4 4 4 4 4 
CL5 E12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 

E13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 1 0 0 
E14 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 1 

CL6 E15 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
E16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 
E17 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
E18 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
E19 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

CL7 E20 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 
CL8 E21 4 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0  
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(4) Rho Spearman (Table 12). According to Spearman’s correlation, 
between 7 and 12 cases have a high correlation with the ANP 
results. It is worth noting that with the Min Single cluster model, 
the results of case 04 should not be considered different from 
chance as it has a p-value of 0.23. Taking the value of greatest 
influence as the reference, it seems to be appropriate to use the 
single cluster model, not so much because of the number of cases 
with a very high correlation (12vs. 11) but because the rho values 
are greater in general. On the other hand, if the least influential 
value of each block is taken as the reference, higher correlation 
values are obtained when using the model with multiple clusters. 
Using a single cluster, higher correlation values are obtained 
using the most influential element as the reference, while with 
multiple clusters, the results are very similar when using the most 
influential or the least influential element as the reference. 

(5) Tau-b Kendall (Table 13). Analyzing the Kendall correlation re-
sults, the first thing to highlight is the large difference in corre-
lations with Spearman. With the Max Single cluster models, there 
are only between 1 and 6 cases with a high correlation with the 
ANP results. It does concur in discarding the results obtained with 

Table 9 
Case 01. Min single cluster model. 0–4 weighted matrix.    

CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8   

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 

CL1 E1 0 0 1 0 0 0 0 0 0 0 1 4 4 0 4 4 4 4 4 4 4 
CL2 E2 0 0 4 1 4 4 2 1 0 0 0 4 4 1 3 4 3 1 3 2 4 

E3 0 4 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 1 3 2 4 
E4 0 4 2 0 2 4 2 1 1 2 1 4 2 2 2 1 1 1 1 2 4 
E5 0 4 1 0 0 0 0 0 1 0 1 0 2 4 1 1 2 1 0 2 4 

CL3 E6 4 4 0 0 2 0 4 3 4 2 1 2 3 3 4 3 4 2 2 3 3 
E7 4 4 0 0 1 4 0 2 4 4 1 4 4 4 4 4 4 4 4 4 4 
E8 4 4 0 0 4 4 4 0 4 4 2 4 4 4 4 4 4 4 4 4 4 
E9 4 4 0 0 4 4 4 4 0 0 4 4 4 0 4 3 0 0 4 4 4 
E10 4 4 0 0 0 4 4 4 0 0 2 0 4 0 0 4 4 0 4 0 4 

CL4 E11 4 4 0 0 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 4 4 
CL5 E12 2 1 0 0 0 4 1 0 0 0 0 0 1 3 0 0 0 0 4 4 4 

E13 4 4 0 0 1 4 0 0 0 2 0 1 0 1 4 4 4 0 4 4 4 
E14 4 3 0 0 1 4 4 0 0 0 2 3 4 0 0 0 0 0 0 4 4 

CL6 E15 4 3 3 0 0 4 0 0 0 0 0 4 0 0 0 0 0 0 1 4 4 
E16 1 1 0 0 0 1 3 0 0 1 1 1 0 0 0 0 4 3 1 3 1 
E17 2 1 0 0 4 1 3 0 0 1 1 1 0 0 0 0 0 0 1 3 2 
E18 4 1 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 1 1 2 
E19 4 4 0 0 0 4 0 0 0 0 0 4 0 0 4 0 0 0 0 0 4 

CL7 E20 4 4 1 0 2 4 2 0 0 0 0 3 4 0 2 0 0 0 0 0 4 
CL8 E21 4 0 0 0 0 4 0 0 0 0 0 4 0 0 0 4 0 0 0 0 0  

Table 10 
Saaty and Garuti Compatibility Indices.   

Saaty Index Garuti Index 

Case Max Single 
cluster 

Max Multiple 
clusters 

Min Single 
cluster 

Min Multiple 
clusters 

Max Single 
cluster 

Max Multiple 
clusters 

Min Single 
cluster 

Min Multiple 
clusters 

01 176.663 117.083 1.57 1.48 0.825 0.716 0.674 0.634 
02 1.187 1.925 1.236 1.102 0.897 0.735 0.799 0.749 
03 1051.398 535.219 1.422 1.339 0.431 0.723 0.688 0.7 
04 1602.995 5767.463 1.547 1.076 0.852 0.831 0.586 0.829 
05 1.208 1.011 1.064 1.006 0.775 0.923 0.836 0.927 
06 1.007 1.003 1.004 1.004 0.954 0.959 0.943 0.953 
07 1.132 9917.256 1.176 1.181 0.804 0.465 0.715 0.699 
08 1.039 1.012 1.032 1.126 0.919 0.935 0.866 0.8 
09 524.676 1.041 1.302 1.069 0.844 0.901 0.699 0.826 
10 595.997 700.766 1.425 1.142 0.745 0.88 0.642 0.74 
11 5268.329 1.699 1.305 1.032 0.645 0.768 0.581 0.841 
12 5987.334 5987.334 1.4 1.038 0.51 0.51 0.879 0.882 
13 2521.683 2319.058 1.354 1.115 0.8 0.751 0.713 0.83 
14 12,245.533 1.013 1.02 1.004 0.327 0.899 0.883 0.95 
15 1.028 1.122 1.008 1.035 0.897 0.811 0.947 0.859 
16 1904.932 375.414 1.647 1.134 0.408 0.867 0.608 0.778 
17 2931.579 1663.669 1.158 1.092 0.775 0.868 0.803 0.836  

Table 11 
Cosine Similarity Index.  

Case Max Single 
cluster 

Max Multiple 
clusters 

Min Single 
cluster 

Min Multiple 
clusters 

01 0.9899 0.975 0.9151 0.917 
02 0.9925 0.9513 0.9674 0.9453 
03 0.6955 0.9502 0.9053 0.9231 
04 0.9864 0.9812 0.8473 0.9794 
05 0.9669 0.9968 0.9646 0.9967 
06 0.999 0.9989 0.9974 0.9979 
07 0.9862 0.8966 0.8828 0.9635 
08 0.9942 0.9972 0.9889 0.962 
09 0.9806 0.9922 0.9002 0.97 
10 0.9658 0.9926 0.8335 0.9375 
11 0.9599 0.9813 0.8738 0.9858 
12 0.9349 0.9349 0.9953 0.9953 
13 0.9791 0.9554 0.8822 0.9798 
14 0.7871 0.9898 0.9839 0.9983 
15 0.992 0.9615 0.9978 0.9862 
16 0.5521 0.9956 0.9332 0.9874 
17 0.9802 0.9942 0.9683 0.9878  
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the Min Single cluster model in Case 4. With these results, ac-
cording to Kendall’s tau-b, whether the maximum or minimum 
value is used as the reference, the models with multiple clusters 
have turned out to obtain priorities more correlated with the 

original ANP. Similarly, more correlated results are obtained by 
using the minimum value as the reference, both in single and 
multi-cluster models.  

(6) MSE (Table 14). Regarding the MSE, the largest error occurs with 
the Max Single cluster in Case 16, with a value of 2.059E-2, which 
is excessive. The rest of the MSE values, in general, have expo-
nentials -4, and some with E-3 and E-5. 

Below, the strategies have been compared for each case, and for each 
indicator. For example, for Case 1, according to Saaty’s index, which 
model, single or multiple clusters, generates results more similar to 
ANP? And if the minimum influence value is used as the reference? In 
Case 1, both answers are the multiple cluster model, because Saaty’s 
index is closer to 1. If the single cluster model or the multiple cluster 
models is used, according to Saaty’s index, which reference value, 
maximum or minimum, generates results more similar to ANP? Using 
the minimum value as a reference generates results more akin to those 
obtained with ANP in Case 1 for both models. 

Overall, according to the Saaty index, in the max models, the ANP 
with multiple clusters yields more similar results in 11 cases and with 
single clusters in 5 cases. In the min models, ANP with multiple clusters 
produces results more similar in 13 cases, and with single clusters in 3 
cases. Tables 16 and 17 display the case counts for all indicators and 
model combinations. 

Table 12 
Spearman Correlation.  

Case Max Single cluster Max Multiple clusters Min Single cluster Min Multiple clusters 

rho p-value rho p-value rho p-value rho p-value 

01 0.9932 3.360E-19 0.7584 6.763E-05 0.8896 6.850E-08 0.874 2.255E-07 
02 0.9596 8.502E-11 0.9193 2.679E-08 0.8596 2.397E-06 0.8579 2.648E-06 
03 0.8679 7.271E-12 0.9189 2.727E-15 0.6723 7.091E-06 0.7786 2.251E-08 
04 0.9536 3.792E-08 0.9262 7.236E-07 0.3286 2.318E-01 0.9464 9.448E-08 
05 0.9648 1.069E-10 0.9896 6.473E-15 0.8984 4.119E-07 0.9855 9.429E-14 
06 0.9725 2.619E-08 0.9835 1.611E-09 0.989 1.751E-10 0.9835 1.611E-09 
07 0.9701 3.812E-13 0.7334 1.551E-04 0.8688 3.241E-07 0.9662 1.203E-12 
08 0.967 7.064E-08 0.989 1.751E-10 0.9176 9.906E-06 0.78 1.660E-03 
09 0.848 8.798E-06 0.8579 5.305E-06 0.5993 8.580E-03 0.8848 1.083E-06 
10 0.9525 1.117E-09 0.9814 6.726E-13 0.5232 2.587E-02 0.8576 5.389E-06 
11 0.9269 5.206E-06 0.9505 6.364E-07 0.967 7.064E-08 0.989 1.751E-10 
12 0.5455 1.922E-02 0.5455 1.922E-02 0.9897 6.315E-15 0.9917 1.066E-15 
13 0.9341 5.049E-09 0.8423 6.068E-06 0.8298 1.108E-05 0.9421 1.722E-09 
14 0.6978 4.371E-04 0.9634 2.547E-12 0.9851 5.613E-16 0.9817 3.756E-15 
15 0.9491 7.433E-07 0.685 9.777E-03 0.9298 4.182E-06 0.9298 4.182E-06 
16 0.8884 4.955E-05 0.9461 1.015E-06 0.8143 7.017E-04 0.989 1.751E-10 
17 0.9639 8.742E-12 0.9754 2.848E-13 0.963 1.074E-11 0.945 3.597E-10  

Table 13 
Kendall Correlation.  

Case Max Single cluster Max Multiple clusters Min Single cluster Min Multiple clusters 

tau-b p-value tau-b p-value tau-b p-value tau-b p-value 

01 0.9594 1.261E-09 0.6095 1.110E-04 0.7429 2.468E-06 0.7524 1.832E-06 
02 0.848 3.918E-07 0.8012 1.643E-06 0.6842 4.253E-05 0.6491 1.030E-04 
03 0.6828 6.469E-09 0.7815 2.396E-11 0.5079 1.308E-05 0.5873 4.662E-07 
04 0.8857 4.178E-06 0.7945 5.085E-05 0.219 2.550E-01 0.8476 1.061E-05 
05 0.88 5.004E-07 0.9467 6.412E-08 0.8133 3.394E-06 0.9333 9.780E-08 
06 0.8974 1.949E-05 0.9231 1.120E-05 0.9487 6.342E-06 0.9231 1.120E-05 
07 0.8762 2.757E-08 0.6136 4.454E-04 0.7333 3.314E-06 0.8762 2.757E-08 
08 0.8718 3.345E-05 0.9487 6.342E-06 0.7949 1.552E-04 0.6672 1.930E-03 
09 0.6954 6.647E-05 0.7261 2.973E-05 0.4835 5.554E-03 0.7657 1.066E-05 
10 0.8431 1.028E-06 0.9085 1.402E-07 0.3464 4.469E-02 0.6993 5.058E-05 
11 0.8239 1.571E-04 0.8718 3.345E-05 0.9231 1.120E-05 0.9487 6.342E-06 
12 0.4588 2.451E-02 0.4588 2.451E-02 0.9474 4.703E-08 0.9605 3.058E-08 
13 0.8343 1.055E-06 0.6727 7.053E-05 0.6842 4.253E-05 0.8129 1.156E-06 
14 0.611 6.267E-04 0.8686 6.082E-08 0.9187 6.510E-09 0.9076 1.515E-08 
15 0.8645 4.218E-05 0.529 1.221E-02 0.8129 1.178E-04 0.8387 7.098E-05 
16 0.7849 3.051E-04 0.8687 4.865E-05 0.7097 7.745E-04 0.9487 6.342E-06 
17 0.8953 1.735E-07 0.9214 2.742E-08 0.871 1.279E-07 0.8236 5.332E-07  

Table 14 
SME.  

Case Max Single 
cluster 

Max Multiple 
clusters 

Min Single 
cluster 

Min Multiple 
clusters 

01 1.859E-04 5.836E-04 8.655E-04 7.980E-04 
02 6.057E-05 5.203E-04 2.581E-04 4.184E-04 
03 1.567E-03 1.739E-04 2.090E-04 1.715E-04 
04 2.851E-04 4.010E-04 2.102E-03 3.144E-04 
05 4.107E-04 2.915E-05 3.071E-04 3.007E-05 
06 1.572E-05 1.717E-05 4.303E-05 3.192E-05 
07 2.938E-04 3.080E-03 1.050E-03 6.380E-04 
08 8.661E-05 4.388E-05 1.672E-04 5.481E-04 
09 1.542E-04 5.950E-05 7.686E-04 2.255E-04 
10 5.575E-04 9.992E-05 1.450E-03 5.831E-04 
11 2.061E-03 8.813E-04 2.697E-03 3.799E-04 
12 5.435E-03 5.435E-03 1.590E-04 1.562E-04 
13 3.344E-04 5.906E-04 1.149E-03 2.299E-04 
14 7.176E-03 7.144E-05 1.242E-04 1.400E-05 
15 1.298E-04 5.532E-04 3.129E-05 1.975E-04 
16 2.059E-02 2.843E-04 3.420E-03 8.320E-04 
17 4.490E-04 1.302E-04 4.494E-04 1.737E-04  
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Regarding the Single cluster vs Multiple clusters comparison, all in-
dicators except Garuti’s index show more cases with results more similar 
to ANP using multiple clusters. In the Min vs Max comparison, dis-
crepancies between indicators and models are more pronounced. With 
single clusters, the Saatty, Garuti, and SME indices yield results closer to 
ANP using the minimum value as a reference. However, with the 
Spearman, Kendall, and Cosine coefficients, the opposite is true. With 

multiple clusters, the Cosine indicator is the only one in favor of using 
the maximum value as a reference in the comparisons, while the Garuti 
and SME indicators show an even distribution (9–8). 

Another aim of this work is to analyze which of the four models had 
the best and worst results for each of the 17 cases and for the statistics in 
Table 15:  

(1) Cases. For example, in Case 1, which model has obtained the best 
Saaty’s index? Min Multiple clusters, so a vote in favor of this 
model being the best because it gives the best result according to 
this indicator. Also in Case 1, which model has obtained the worst 
Saaty’s index? Max Single cluster model is the worst and should 
not be used, having obtained the worst Saaty’s index. Repeating 
this procedure for all cases and indicators yields the results in 
Table 18.  

(2) Indicator Statistics. A similar process is followed as for the cases, 
but with the three statistics. According to the Saaty’s index, 
which model has the best and which has the worst average value? 
Min Multiple clusters and Max Single clusters. Repeating the 
procedure for the three statistics and all the indicators, the results 
shown in Table 19 are obtained. 

Finally, the votes for best and worst model were subtracted to obtain 
the results of Table 20. 

5. Discussion 

First of all, it has to be pointed out that the number of cases studied is 
small, which makes it difficult to make clear-cut statements based on the 
results obtained. In this sense, we must ask authors who publish case 
studies with ANP to include all the ANP matrices in their articles, both to 
be able to reproduce their results and to be able to use their work in 
other research studies. 

Table 15 
Indicators Statistics.   

Max Single 
cluster 

Max Multiple 
clusters 

Min Single 
cluster 

Min Multiple 
clusters 

Saaty’s index 
Mean 2048.1012 1611.3581 1.2747 1.1162 
Min 1.007 1.003 1.004 1.004 
Max 12,245.533 9917.256 1.647 1.48 

Garuti’s index 
Mean 0.7299 0.7966 0.7566 0.8137 
Min 0.327 0.465 0.581 0.634 
Max 0.954 0.959 0.947 0.953 

Cosine 
Mean 0.926 0.9732 0.9316 0.9714 
Min 0.5521 0.8966 0.8335 0.917 
Max 0.999 0.9989 0.9978 0.9983 

Rho Spearman 
Mean 0.9032 0.8803 0.825 0.9225 
Min 0.5455 0.5455 0.3286 0.7786 
Max 0.9932 0.9896 0.9897 0.9917 

Tau-b Kendall 
Mean 0.8066 0.7791 0.7142 0.8201 
Min 0.4588 0.4588 0.219 0.5873 
Max 0.9594 0.9487 0.9487 0.9605 

SME 
Mean 2.34E-03 7.62E-04 8.97E-04 3.38E-04 
Min 1.60E-05 1.70E-05 3.10E-05 1.40E-05 
Max 2.06E-02 5.44E-03 3.42E-03 8.32E-04  

Table 16 
Single cluster vs multiple clusters. No Cases.   

Max Min  

Saaty Garuti Spearman Kendall Cosine SME Saaty Garuti Spearman Kendall Cosine SME 

Single cluster 5 10 6 6 7 7 3 12 6 5 3 3 
Multiple clusters 11 6 10 10 9 9 13 5 10 12 14 14 
Tide 1 1 1 1 1 1 1 0 1 0 0 0  

Table 17 
Min vs Max. No Cases.   

Single cluster Multiple clusters  

Saaty Garuti Spearman Kendall Cosine SME Saaty Garuti Spearman Kendall Cosine SME 

Min 15 10 4 4 5 15 14 9 10 10 6 9 
Max 2 7 13 13 12 2 3 8 6 6 11 8 
Tide 0 0 0 0 0 0 0 0 1 1 0 0  

Table 18 
Best vs Worst Models. Cases.  

Best Total Saaty Garuti Spearman Kendall Cosine SME 

Max Single cluster 26 1 4 5 6 5 5 
Max Multiple clusters 33 3 7 5 5 7 6 
Min Single cluster 8 1 1 2 2 1 1 
Min Multiple clusters 36 12 5 5 5 4 5  

Worst Total Saaty Garuti Spearman Kendall Cosine SME 

Max Single cluster 34 11 6 4 4 4 5 
Max Multiple clusters 27 6 6 4 5 2 4 
Min Single cluster 37 0 6 7 6 10 8 
Min Multiple clusters 12 1 2 3 3 2 1  
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When this study was set up, the expectation was that the results were 
more clearly favorable to using multiple clusters, because it was 
assumed that proportionality would be more maintained by having two 
influence values combined instead of just one. But this has not always 
been the case, with some cases even worsening the results. On the other 
hand, it needs to be emphasized that the indicators have not given 
uniform results, so that when their values were examined, one could 
justify any conclusion by keeping the indicators that were in favor of the 
assertions made. For this reason, all the indicators calculated have been 
included and they will be used in the subsequent analyzes, so that the 
reader can make a critical analysis of them. 

Regarding the main research question, RQ1, we can answer after this 
study that it is not indifferent whether clusters are used or not, because 
the results between the models with clustering and without, are very 
different from each other, but we cannot say that one model is always 
more suitable, because there are cases in which the single cluster model 
offers a result more similar to the ANP result and in other cases the result 
of the model with multiple clusters is more similar. Moreover, these 
cases change depending on the similarity indicator considered. 

Concerning RQ2) How much does the result change when consid-
ering multiple groups versus a single group? Although there are con-
tradictory results between indicators and cases, based on Table 15, we 
have prepared Table 21, which shows how much the mean values of the 
indicators improve (shaded in green) or worsen (shaded in red). For 
example, the mean value of the Saaty’s index goes from 2048.1012 with 
Max Single cluster models to 1611.3581 with Max Multiple Clusters 
models, improving by 21.32%. The Min Multiple clusters models 
improve the average value by 12.43%, from 1.2747 to 1.1162. Also 

shown in the same table is the variation of the mean values when using 
the minimum value as a reference. For example, with the use of the 
minimum value as a reference, the mean value of Kendall’s Tau-b has 
worsened by 11.46% in the Single models, but improved by 5.26% in the 
Multiple models. Returning to RQ2), according to the results in Table 21, 
there is a slightly more than 60% improvement in the mean SME when 
using the multi-cluster models. This improvement is 55% or 61% when 
using the minimum value as a reference to evaluate the influences. 

Regarding RQ3) Does the variation of questions compensate for the 
variation of the results? Reviewing the number of questions in each 
model in Table 3, we are of the opinion that wanting to reduce the 
number of questions is not the determining factor in choosing a single 
cluster model versus a multiple cluster model. The reason for this is that 
between a model with multiple clusters and a single cluster/no clusters 
model, the difference in the number of questions is very small, one 
question for each cluster of elements that influence each other. Once the 
number of questions has been reduced by not using comparison 
matrices, the number of clusters does not add a significant number of 
questions. Furthermore, from the results in Tables 9, 10 and 21, it does 
not seem, in general, to be the best decision to model as a single cluster, 
although there are cases that have better indicators with this option. 

Regarding the secondary questions: RQ4) when the DMs are asked to 
assess the influence with a measurement scale, which should be taken as 
a reference, the most or the least influential element? and RQ5) does this 
affect the result depending on how the elements are grouped into one or 
several clusters? The results also show differences between the two 
modeling approaches, but there are also conceptual differences that 
should not be forgotten. DMs find it easier to respond by using one 
element as a mental reference of influence than by considering a range 
and having to adjust the rest of the ratings proportionally. On the other 
hand, in our experience with network models, it is always important to 
incorporate all relationships in the model, because even a small rela-
tionship between two elements allows influence paths to form between 
other elements that would otherwise remain isolated. Whether the 
model is more or less connected affects reducibility and other properties 
of the network, as well as the final priorities. But if the model considers 
all elements in the same cluster, using the minimum value of influence as 
the reference for the measurement scale may shorten the influence range 
and it may be more appropriate to place the elements proportionally 
distributed with respect to the most influential value. 

In view of the results obtained, and although there are indicators for 
all tastes, the following idea must be highlighted: with a model with 
multiple clusters, results more similar to ANP are obtained using the 
least influential element as the reference, or, in other words, if the least 
influential element is used as a reference, a model with multiple clusters 
should be built. Whereas, if modelled with a single cluster, the results 
are more similar if either the most influential or the least influential 
element is used. It should also be noted that, in this study, the distri-
bution of influences has been as proportional as possible when operating 
with the values of the ANP matrices. In reality, these values are not 
known, so the question arises, would the DMs be more proportional by 
assigning the maximum influence to the most influential and 

Table 19 
Best vs worst models. Indicator statistics.  

Best Total Saaty Garuti Spearman Kendall Cosine SME 

Max Single cluster 2 0 0 1 0 1 0 
Max Multiple clusters 3 1 1 0 0 1 0 
Min Single cluster 0 0 0 0 0 0 0 
Min Multiple clusters 13 2 2 2 3 1 3  

Worst Total Saaty Garuti Spearman Kendall Cosine SME 

Max Single cluster 9 3 2 0 0 2 2 
Max Multiple clusters 2 0 0 1 1 0 0 
Min Single cluster 8 0 1 2 3 1 1 
Min Multiple clusters 0 0 0 0 0 0 0  

Table 20 
Best – worst models. Global result.   

Cases Statistics Total 

Max Single cluster − 8 − 7 − 15 
Max Multiple clusters 6 1 7 
Min Single cluster − 29 − 8 − 37 
Min Multiple clusters 24 13 37  

Table 21 
Variation of the mean of the indicators.   

With multiple clusters With min as reference  

Max 
models 

Min 
models 

Single cluster 
models 

Multiple cluster 
models 

ΔMean Saaty’s 
index 

21.32% 12.43% 99.94% 99.93% 

ΔMean Garuti’s 
index 

9.14% 7.55% 3.66% 2.15% 

ΔMean Cosine 5.10% 4.27% 0.60% 0.18% 
ΔMean rho 

Spearman 
2.54% 11.82% 8.66% 4.79% 

ΔMean Tau-b 
Kendall 

3.41% 14.83% 11.46% 5.26% 

ΔMean SME 67.45% 62.32% 61.68% 55.64%  
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distributing the rest of the elements in the range of influence, or by 
assigning 1 to the least influential element and, taking this as a refer-
ence, evaluate the proportion of the rest of the elements? 

In addition to the results obtained, the use of clusters must also be 
considered from a more theoretical or conceptual point of view. In our 
opinion, the fact that Saaty proposes to cluster the elements of the model 
is almost obligatory when using comparison matrices and the Saaty scale 
to measure the influences. And it is due to the limitation of 7 to 9 ele-
ments to compare in order to maintain the consistency of the judgements 
in the pairwise comparison matrices. The pairwise comparison matrices 
also force the grouping of things that are comparable. In return it forces 
a comparison of the clusters, or grouping levels, to obtain the prioriti-
zation of the influence of the elements on each other. But in ANP (and 
AHP) the concept of clusters, or hierarchy levels, is also used and is 
useful in the very elaboration of the model and identification of criteria. 
Thinking about a group of cost criteria, short term, long term, …, helps 
the decision-maker to think about other criteria or elements that must be 
considered, to mentally organize the information, to think about his 
priorities, etc. In this respect, Saaty has always put forward two basic 
modeling strategies: top-down and down-top. Of course, these sets of 
criteria do not have to be the definitive ones to be incorporated into the 
decision problem, e.g., because the elements end up grouped differently, 
but they are very useful in the process of knowing and learning about the 
particular decision problem. In summary, thinking in hierarchical 
clusters/levels helps to approach a complex problem by analyzing it in 
parts. However, should these clusters/levels be used in the evaluation of 
influences/priorities of the elements of the model? By not using pairwise 
matrices, it is true, as proposed by the authors of the new DANP pro-
posal, that it is not necessary to group the elements into clusters, but just 
as the model must reflect the reality of the problem, the influence 
measurement system should also consider the nature of the problem 
under study. For example, in a criteria prioritization model without al-
ternatives, it may make sense to group all the criteria in a cluster and the 
DMs will be able to assess the influences directly because the influence 
comes directly from the criterion, not from the group in which the cri-
terion is grouped. But in another model where the elements are for 
example people, surely the model should incorporate, in addition to the 
influences between the individual people, the influence of the groups to 
which these people belong (social groups, research teams, etc.). The fact 
that the relationships to be evaluated are as similar as possible to reality 
will make the DMs’ assessments of influence more correct and will in-
crease the similarity between the results and reality. 

Finally, it is important to point out that in the DANP proposal at the 
origin of this study, there is an aspect that has been considered closed by 
its authors, which influences the result, but which is not unique: the 
measurement scale. The range of the scale directly influences the pro-
portionality of the results. The authors state that DEMATEL uses a scale 
in numerical terms from 0 to 4, which is not strictly true. As indicated 
above, other authors have used scales other than the 0–4 scale. A unique 
scale does not exist, and as a ratio scale, there is no reason why it should 
numerically finish in 4. 

6. Conclusions 

In this paper, 17 cases solved with ANP in the literature have been 
analyzed. An attempt has been made to answer the research questions 
posed, showing that there are substantial differences in the results 
depending on whether a single cluster or multiple cluster model is used. 

The results also suggest that results more similar to those of ANP can 
be obtained using the most influential element as a reference in models 
with a single cluster, but that using the least influential element the 
results will be more similar in models with multiple clusters. 

But being only 17 cases and not having obtained strong results, it is 
necessary to increase the number of cases in the study to obtain more 
conclusions. Since real cases with all the necessary data are not avail-
able, the study presented here should be continued in future 

developments with simulations. The use of scales other than the 0–4 
scale should also be evaluated in these simulations. Although more 
closed to ANP results have been obtained using the minimum value as 
the reference with multiple clusters, the authors’ experience with ANP 
indicates that DMs tend to avoid making judgments at the extremes of 
the scales, so it should be studied the results obtained using a distribu-
tion with respect to the most influential element versus using the least 
influential element but without pushing the bottom of the scale. In this 
regard, it would be advisable to simulate decision-makers with different 
tendencies in their evaluations (one very strict, another laxer, …) to 
study their influence on the results. 
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E. Schulze-González et al.                                                                                                                                                                                                                     

https://doi.org/10.1016/j.orp.2023.100275
http://refhub.elsevier.com/S2214-7160(23)00010-6/sbref0001
https://doi.org/10.17535/crorr.2018.0018
https://doi.org/10.17535/crorr.2018.0018
https://doi.org/10.1007/s10100-018-0601-4
https://doi.org/10.1016/0038-0121(86)90043-1
https://doi.org/10.1016/0038-0121(86)90043-1
http://refhub.elsevier.com/S2214-7160(23)00010-6/sbref0005
http://refhub.elsevier.com/S2214-7160(23)00010-6/sbref0005
https://doi.org/10.1007/978-1-4939-3094-4_10
https://doi.org/10.1016/j.eswa.2015.10.041
https://doi.org/10.1016/j.eswa.2015.10.041


Operations Research Perspectives 10 (2023) 100275

15
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