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A B S T R A C T   

Pseudo-two-dimensional models based on physical processes are of significant relevance in this field, especially 
now that computational cost is getting more affordable with new technological advancements. Their biggest 
demerit is the difficulty in selecting a reduced number of parameters to consider during the optimization process 
to maintain the coherence of the physical processes and a good compromise in complexity. The current work 
proposes a methodology in which a selection of 14 critical constructive and performance parameters are itera-
tively fitted with an affordable computing cost using a genetic algorithm. The objective is to represent with high 
fidelity the experimental response of real 18,650 lithium-ion cells based on different cathode chemistries (NMC 
811 and NCA). The results show that the proposed methodology can deliver better results if the calibration 
process is performed with a single dynamic driving cycle test instead of a series of constant C-rate curves, 
maintaining high reliability when simulating dynamic conditions such as driving cycles representative of real 
transport applications. The maximum voltage Root Mean Square Error (RMSE) of the validation profiles is not 
exceeding 0.0315 V and 0.0357 V for the NMC 811 and NCA cells, respectively.   

1. Introduction 

Nowadays, in the context of the energy crisis and environmental 
pollution, the automotive sector has put conventional powertrains based 
on internal combustion engines in a tight spot with ever-increasing re-
strictions on emissions and higher demands in terms of fuel savings [1]. 
This urgent pursuit of the decarbonization of the automotive sector has 
brought to light alternative power sources and technologies. 
Zero-carbon fuels for ICEs [2] and fuel cells [3], like hydrogen or 
ammonia [4], and hybridization of vehicles [5] are different research 
lines being considered by the manufacturers. However, a clear trend 
shows that the preferred alternative is the electrification of the power-
train. In the past five years, hybrid and fully electric vehicles have 
increased their sales volume by almost 10%, showing their relevance in 
the present situation [6]. 

Electric vehicles have clear benefits regarding pollutants emissions 
savings and noise levels [7], but the capacities of electric batteries 
currently limit this technology. The autonomy and life expectancy of this 
component make it very clear that the maturity of this technology is still 
not on par with previous combustion-based platforms [8]. A consider-
able effort is being made to improve the performance, energy capacity, 

and safety specifications of lithium-ion cells, researching different 
chemistries for anodes and cathodes, form factors, and packaging of the 
cells to minimize the impact of weight and volume [9,10]. Due to this, a 
great variety of alternatives can be found in the market in terms of ge-
ometries, being the most common the cylindrical, prismatic, and pouch 
cells, each of them with different size and capacity options and also 
different chemistries [11]. Among them, the most used cathode chem-
istries in transport applications are NCM (Lithium Nickel-
–Cobalt–Manganese oxide), LFP (Lithium–Iron-Phosphate oxide), NCA 
(Lithium Nickel–Cobalt–Aluminum oxide), and LCO (Lithium Cobalt 
Oxide), each of them with different characteristic properties [9,12]. 

During the design process, when defining battery size, the number of 
cells, or the vehicle range, numerical models have become an essential 
tool used for most decisions [13,14]. For this reason, predictive tools 
capable of accurately predicting the performance of the components are 
necessary. Battery system models usually depend on single-cell models 
distributed in series or parallel to scale up the setup [10]. Single-cell 
performance can be easily measured with limited instrumentation, 
and a wide scope of testing conditions will significantly improve the 
dataset’s quality. However, these datasets are fed to a battery cell model 
that has to be able to capture all the main performance indicators of the 
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cell, like the heat production and drop in capacity at high power output, 
how working temperatures affect the voltage output, or other effects like 
the degradation over time depending on the purpose of the model [15]. 
As can be seen, the features that an all-purpose battery cell model should 
have, are mainly to capture voltage output and temperature de-
pendencies of other parameters while accommodating any cell chemis-
try and geometry or size. 

The most commonly used models in current applications are those 
based on the equivalent circuit model (ECM), which are simple and 
easily scaled in complexity by adding branches of resistance-capacitor 
(also referred to as RC branches) to represent experimental data [14, 
15]. The main limitation of these models is that they do not consider 
physical phenomena and changes occurring inside the cell driven by the 
electrochemical reaction. Hence, they require extensive experimental 
datasets to accommodate temperature or aging effects. Thus, the reli-
ability while predicting the state of charge (SOC) [16,17] or state of 
health (SOH) is always limited [18], even with the use of advanced 
techniques and neural networks [19]. As an alternative, 
pseudo-two-dimensional electrochemical models based on Newman 
et al. [17] work provide a set of equations capable of replicating the 
physicochemical and electrochemical evolution within the cell compo-
nents, including thermal behavior and aging processes in the prediction 
capabilities of the model [20]. The complexity of solving these equations 
has now become affordable for the onboard systems equipped in the 
vehicles, but these models require a detailed definition of the tuning 
parameters to make them reliable over time. Additionally, this type of 
electrochemical models can be coupled with other sub-models to include 
evaluations on the mechanical and thermal behavior of the cell during 
cycling aging or under very demanding conditions that may induce 
failure modes like thermal runaway [21,22]. By considering these 
extreme cases the tools can be applied to evaluate and design auxiliary 
systems of the battery like the cooling system and ensure their func-
tionality [23]. 

The available parameters to optimize in the Doyle-Fuller-Newman 
(DFN) model include external geometric values that can be readily 
fixed once the cell model is known and many internal physical and 
electrochemical variables difficult to define without disassembling the 
element [24,25]. The definition of these unknown variables by fitting 
performance curves has become a research topic to address, and few 
works can be found discussing which variables should be optimized and 
which method should be applied to find the optimum value in order to 
define a common methodology to follow. Different optimization 
methods have been evaluated in the literature, including techniques like 
Gauss-Newton (GN) method [26], Levenberg-Marquardt (LM) method 
[27], Bayesian framework [28], Particle Swarm Optimization (PSO) 
[29] or Genetic Algorithms (GA) [30,31]. Stochastic optimization al-
gorithms like PSO or GA have shown better performance to fit the 
experimental data with the drawback of increased computational cost. 
However, the most relevant aspect while capturing the cell’s electro-
chemical response is identifying the most relevant parameters to include 
in the optimization [32]. For basic performance data at a constant cur-
rent level (C-rate), some authors have identified that for low power 
outputs and restricted dynamic behavior, a reduced number of variables 
would be capable of replicating the experimental results with good 
precision [29,33,34]. As the model’s validity range is widened by 
including the effects of higher output levels and the ambient tempera-
ture, as well as the thermal evolution of the cell, the required parameters 
to include in the optimization can vary from 16 to 88 [30,31,35,36]. 

As can be observed, depending on the data used for the calibration 
(steady operation, low or high output power, dynamic cycles, cell 
temperature evolution, etc.), the number of parameters to optimize can 
be overwhelming and unacceptable for the definition of a control system 
based on the DFN model. Identifying the most relevant parameters 
within a reduced selection of them and maintaining accuracy on the 
performance predicted with a methodology capable of adapting to 
different cell geometries and chemistries is of interest in developing 

future electric systems. 
The main objective of the current research is to propose a novel 

calibration and validation methodology for a lithium-ion cell P2D 
model. The fitting process uses experimental datasets consisting of sta-
tionary performance curves at several constant C-rates, as well as dy-
namic high-rate driving cycles representative of realistic driving. The 
secondary objective is to verify that the fitting procedure can be carried 
out precisely with a limited set of optimization variables and to assess if 
the method maintains its validity with different cathode chemistries. 

The one-step fitting process of a P2D model described in the present 
research is characterized by singular, innovative aspects. Firstly, the 
sophisticated battery model is fitted to experimental results with a 
reduced number of parameters (optimization variables), reduced usage 
of experimental tests, and an acceptable computing cost. The parameter 
selection is conducted iteratively, fitting key constructive and opera-
tional parameters frequently unknown or subject to variability among 
cell specimens. The fitting of the cell response accounts simultaneously 
for the thermal and the electrical response of the cell, and the method-
ology has prioritized making a reliable prediction of the cell response 
under realistic driving cycles, which is a challenging scenario relevant in 
the automotive context. 

Lastly, all the process is carried out using a commercial code, which 
allows the model scalability and ease of integration with full-vehicle 
models and, at the same time, facilitates the reproducibility of the 
study. All the numerical work consisting of calibrating and validating 
the computational model is performed using the commercial software 
GT-AutoLion within the GT-Power platform from Gamma Technologies 
[37]. 

2. Description of the computational model 

All the numerical simulations included in this work have been per-
formed using the GT-Suite platform from Gamma Technologies. Their 
GT-AutoLion package provides a complete and versatile set of models 
and sub-models prepared for lithium-ion battery cell simulation. Con-
stant current, constant voltage, or dynamic cycle simulations are all well 
within the capabilities of the numerical platform. The basis of this 
package is the pseudo-2D physicochemical model initially developed by 
Doyle, Fuller, and Newman for predicting battery performance from the 
estimation of the reaction rate in which lithium ions and electrons are 
transferred from cathode to anode, considering resistance growth and 
temperature changes during the battery operation. The model is 
accompanied by a database of material properties that covers most of 
the commercially available chemistries in the market for cathode, 
anode, electrolyte, or separator, but it is also possible to modify these 
properties to accommodate the user’s needs. On top of this electro-
chemical model, a series of degradation mechanisms are included to 
account for battery aging, like solid electrolyte interface growth or 
lithium plating, among many others. Also, other sub-models, like 
double-layer capacitance model for a detailed analysis of capacity losses 
[38], or a mechano-electrochemical model for strain prediction from 
active material swelling based on lithium intercalation and thermal 
expansion of the materials [21] are available for more detailed and 
specific studies. These sub-models are very useful for very specific ap-
plications or studies, like aging effects, second life applications or very 
specific applications where the other electronic components have a 
direct effect on the battery performance. Given the complexity of these 
models, the amount of data needed to adequately fit their behavior, and 
the limited relevance they have under normal operation conditions of 
the cells, they have been neglected in the present study. 

For this reason, the present approach focuses on the basic electro-
chemical model under non-extreme operating conditions. It neglects 
aging effects to understand better how this calibration procedure should 
be applied. 

The DFN model is based on the porous electrode theory developed by 
Newman et al. [39], in which electrodes are conceptualized as solid 
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solution particles on the microscopic scale for which species intercala-
tion is modeled based on a surface of exchange and a concentration 
difference. To this approach is then added a longitudinal scale to ac-
count for species transport in the macroscopic scale in the electrode and 
from one electrode to another through the separator, which will create 
the potential difference between both electrodes and define the current. 
A general sketch of the conceptualized P2D model can be found in Fig. 1, 
showing the longitudinal disposition of the anode and cathode solid 
phases submerged in the electrolyte, each modeled as a series of parti-
cles that adsorb and deliver lithium ions and electrons. 

The essence of the electrochemical model is defined through a set of 
ordinary differential equations (ODEs). Particularly, mass balance and 
species conservation have two governing equations, one in the particles’ 
radial direction and one for through-plane macroscopic transport. 
Charge conservation adds another two ODEs for the solid phase and 
electrolyte, respectively, both in the macro scale. The Butler-Volmer 
equation that defines lithium intercalation reaction rates is then uti-
lized to give closure to this ODE system. Because the physicochemical 
properties of the materials are highly dependent on the working tem-
perature of the cell, the temperature evolution requires an additional 
governing equation for thermal balance, in which the thermal behavior 
of the cell assumes a lumped mass with different heat sources (electro-
chemical reactions, internal resistance, and entropic heat generation) 
and heat transfer boundaries (convective heat transfer to the ambient or 
conductive heat transfer to a cooling system for example). The most 
relevant aspects of this ODE system are described in more detail in the 
following subsections. 

2.1. Species conservation in the electrolyte and active materials 

As a general notion, during the redox reactions that take place during 
the operation of a lithium-ion battery cell, a few species appear and 
disappear and are then transported from the anode to the cathode 
through the electrolyte [40]. Lithium stored in the active material is 
separated into lithium ions that travel through the electrolyte and the 
separator and electrons that create an electric current that travels 
through the external circuit. Therefore, lithium ions can be considered 
to only appear on the electrolyte while moving between electrodes. The 

longitudinal transport of lithium ions is governed by Eq. (1), considering 
the porous medium and potential difference: 

∂
∂x
[εce] =

∂
∂x

(

Deff
e

∂ce

∂x

)

+
1 − t0

+

F
jLi (1)  

Where ε is the porosity, ce is the molar concentration of lithium ions in 
the electrolyte, Deff

e denotes the electrolyte effective diffusion coeffi-
cient, F is Faraday’s constant, t0

+ is the transference number, and jLi is the 
reaction current of lithium. 

It is worth mentioning that whenever a diffusion coefficient, ionic 
conductivity, or other transfer parameters are referred to as effective, 
they are accounting for porosity effects through the Bruggeman relation 
[41], in which a transport property (A) has an effective value scaled with 
the porosity of the medium (ε) and the Bruggeman tortuosity exponent 
(p) as defined by Eq. (2): 

Aeff =Aεp (2) 

The values of these exponents have been studied by other authors, 
and a widely accepted hypothesis assumes a value of p = 1.5 for mass, 
thermal, electric, and ionic conductivities [42,43]. 

Once the lithium ions reach the solid electrodes, a reaction to turn 
them into lithium and an intercalation process occur at the microscale. 
Based on Fick’s law of mass diffusion and Ohm’s law for electrical po-
tential distributions, the concentration of lithium in the radial direction 
of the particles in the active materials cs can be described by Eq. (3): 

∂cs

∂x
=

1
r2

∂
∂x

(

Dsr2∂cs

∂r

)

(3) 

Being r the radius of the particle and Ds the diffusion coefficient of 
lithium in the solid phase. 

2.2. Charge conservation in the solid and electrolyte phases 

The involvement of potential differences in the transport of species 
and the current generation also demands considering charge transport in 
the equations. Also, different formulations should be applied given the 
different nature of charge transport through the liquid electrolyte and 

Fig. 1. Conceptual sketch of the pseudo-two-dimensional electrochemical model.  
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through the solid phases of active material. In the DFN model, the 
derivation of the main equations is based on the hypothesis of electro-
neutrality, which defines that, as stated by Newman, “a volume element 
within the porous electrode will be, in essence, electrically neutral because it 
requires a large electric force to create an appreciable separation of charge 
over an appreciable distance” [39,40,44]. 

In the case of solid phases, the electrons are transmitted mainly by 
electric conductivity, so the reaction current can be defined by the for-
mula in Eq. (4): 

0=
∂
∂x

(

σeff
s

∂φs

∂x

)

− jLi − adlC
∂(φs − φe)

∂x
(4)  

where σeff
s is the effective solid-phase conductivity, φs is the solid phase 

potential and jLi is the reaction current of lithium. The additional term 
refers to double-layer capacitance, considering φe as the liquid phase 
potential, adl as the specific interfacial area and C as the specific 
capacitance. 

In the case of the electrolyte, current flow occurs mainly through 
ionic conductivity and diffusional conductivity. The presence of elec-
trons and lithium ions in the electrolyte can lead to the formation of 
metallic lithium, considered one of the main degradation mechanisms in 
the literature, but in this case, such a source of lithium losses is not 
considered. With this assumption, the electric potential through the 
electrolyte is expressed as in Eq. 5 

0=
∂
∂x

(

keff ∂φe

∂x

)

+
∂
∂x

(

keff
D

∂lnce

∂x

)

+ j
Li

+ adlC
∂(φs − φe)

∂x
(5)  

where keff is the electrolyte’s effective ionic conductivity, and ce the Li+

concentration in the electrolyte. The parameter keff
D is the ionic diffu-

sional conductivity that can be obtained by Eq. (6): 

keff
D =

2R0Tkeff

F
(
t0
+ − 1

)
(

1+
dlnf±
dlnce

)

(6)  

with R0 is the gas constant, T corresponds to the temperature, and F is 
Faraday’s constant, t0

+ is the transference number and f± is the molar 
activity coefficient in the electrolyte [45,46]. 

To relate all four main ODEs described for species and charge con-
servation, the Butler-Volmer equation represented in Eq. (7) defines how 
the electrical current through an electrode depends on the voltage dif-
ference between the electrode and the bulk electrolyte. The equation is 
derived considering the charge neutrality principle of an electrode- 
electrolyte interface and governs the net charge production rate by 
summing the forward rate of current production and the backward rate 
of current production [47]. 

jIC = asi0

[
e

αaF
Ru T

(

η− RSEI
as jLi

)

− e
αcF
Ru T

(

η− RSEI
as jLi

)

]
(7) 

In this equation, as is the volume-specific reaction surface area, i0 is 
the exchange current density, α is the charge transfer coefficient, Ru is 
the universal gas constant and RSEI is the resistive film layer. The over-
potential, η, can be defined as the difference between the solid (φs) and 
liquid (φe) phases potentials, minus the open-circuit potential of the 
solid (U): 

η=φs − φe − U (8) 

One of the main concerns of this equation is the symmetry between 
the charge transfer coefficient for the anode (αa) and cathode (αc). Some 
studies show that under extreme temperature conditions, non- 
symmetric behavior can be observed [48]; nonetheless, the most com-
mon hypothesis is that both parameters take the value of 0.5 [47,49]. 
Since no extreme conditions are included in this study, this last hy-
pothesis will be maintained for simplicity. 

2.3. Theoretical capacity and stoichiometry for a battery cell 

During the battery operation, not all the Li content within the active 
material can be cycled. In this sense, the theoretical capacity Cs,max may 
not be the best parameter to represent the working capacity of the 
battery cell. Conventionally, the maximum useable capacity of a cell is 
defined by its first discharge capacity. In addition, other parameters, 
such as the ratio between the mass-specific first charge capacity (qcat

fcc ) 
and mass-specific first discharge capacity (qcat

fdc) divided by their mass- 
specific theoretical capacity (qcat

th ) can be used to express how the cell 
deviates from its maximum capacity, as shown in Eq. (9) and Eq. (10). 

γcat
fcc =

qcat
fcc

qcat
th

(9)  

γcat
fdc =

qcat
fdc

qcat
th

(10)  

Where γ is the ratio of first discharge and first charge capacity. There-
fore, the cathode stoichiometry can be defined as presented in Eq. (11): 

Stoichimetry=
Cs

Cs,max
(11)  

2.4. Thermal balance of the cell 

For the temperature evolution of the cell, an additional differential 
equation is included governing the energy balance over a zero- 
dimensional thermal mass in which heat transfer to the ambient and 
heat generation from the electrochemical model are accounted for as per 
Eq. (12). Heat transfer to the ambient is simplified to convective heat 
transfer to the ambient temperature only since no cooling system or 
external thermal management system are included in the study. A 
realistic prediction of the cell temperature is essential since it will affect 
the transfer properties of the materials. 

ρcp
dT
dt

= q̇gen + q̇conv (12)  

q̇conv =
hAc(T − Tamb)

Vc
(13) 

The heat sources during the cell operation include several mecha-
nisms, to say, the heat generated during the redox reactions (q̇rxn), the 
reversible heat generated during intercalation and de-intercalation 
processes coming from lithium movements (q̇rev), the ohmic heat due 
to electronic and ionic flows within the cell (q̇ohm), and the heat gener-
ated due to contact resistance at the current collectors (q̇c). Irreversible 
entropic heat generation can be accounted for within the term 

( ∂U
∂T

)
, that 

denotes the changes of the open circuit potential with temperature. Eq. 
(14)–(18) show the definition of each of these terms following Bernar-
di’s model [50,51]. 

q̇gen = q̇rxn + q̇rev + q̇ohm + q̇c (14)  

q̇rxn =
1
L

∫ L

0
jLiη dx (15)  

q̇rev =
1
L

∫ L

0
jLi

(

T
∂U
∂T

)

dx (16)  

q̇ohm =
1
L

∫ L

0

[

σeff
(

∂φs

∂x

)2

+ κeff
(

∂φe

∂x

)2

+ κeff
D

(
∂ln ce

∂x

)(
∂φe

∂x

)]

dx (17)  

q̇c =
Rc

AsVc
I2 (18)  
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3. Description of the fitting methodology 

3.1. Description of the experimental datasets 

The experimental data used to fit the electrochemical models come 
from a characterization campaign carried out on two lithium-ion cells 
with a 18,650 format. Researchers of McMaster University published the 
first dataset, including discharges at a constant C-rate, OCV discharges, 
Hybrid Power Pulse Characterization (HPPC), and drive cycles (US06, 
HWFET, UDDS, and LA92) for different ambient temperatures. The 
sample subject to the characterization campaign is an LG Chem 
INR18650HG2 (NMC 811) [52]. 

To verify the successful extension of the methodology to other 
cathode chemistries, the calibration and validation processes defined 
have been reproduced with a Panasonic 18650 PF 2.9 Ah cell (NCA), 
tested by the same authors following the same standards at the Uni-
versity of Wisconsin-Madison [53]. 

The curves used to calibrate the cell are the voltage and temperature 
response under constant or variable current demands in both charging 
and discharging for an ambient temperature of 25 ◦C. A reduced number 
of experimental tests for calibration have been employed, seeking to 
simplify the fitting procedure while maintaining an affordable 
computing cost. The cell undergoes a complete discharge in the curves 
used for calibration and validation. 

3.2. Definition of the manipulable variables 

This section specifies the parameters manipulated by the genetic 
algorithm during the optimization process. Usually, cell manufacturers 
do not provide these technical specifications and are a priori unknown to 
end-users. Notwithstanding, their correct definition is crucial to repre-
senting the cell response and obtaining a predictive electrochemical 
model. Other works in the literature address the problem of parameter 
set identification in an iterative process, reducing an extensive set to 
only the most relevant ones. Other methods, like applying intrusive or 
destructive tests and measurements, can contribute to the model accu-
racy by actually obtaining the real value of some constructive and 
operative parameters. From these works, some guidelines can be 
extracted. 

One of the most elementary parts to be defined in the mode is 
determining the total amount of materials (anode, cathode, separator, 
and electrolyte). According to Forman et al. [30] in which they opti-
mized a total of 88 parameters, they identified the definition of total 
material as the most relevant set of parameters. These depend on a 
multitude of parameters and factors like assembly technology, and they 
can be defined in the model in a series of totally equivalent manners, like 
using volumetric fractions [34], densities, or porosities [31]. Using the 
extensive material properties database included in the Gamma Tech-
nologies platform, the densities remain as defined by the database, and 
the parameters to modify are layer thickness and particle size. To define 
the total amount of lithium, one can find the actual maximum and 
minimum concentrations for anode and cathode as done by Chu et al. 
[35] in their work, where they included a total of 28 parameters in their 
optimization, but in this case, the first charge and discharge specific 

capacities for anode and cathode, as well as their total capacity, will 
serve the same purpose. The rest of the parameters, like volumetric 
fractions or porosities, can be related and computed to these construc-
tive and loading parameters. In the work of Zhang et al. [31], in which a 
total of 27 parameters were considered to characterize a cell behavior, 
they highlighted the relevance of the complete cell’s thermal charac-
terization and heat transfer to the ambient. For the lumped mass 
approach, the mass-specific heat capacity and the convective heat 
transfer coefficient are all the required parameters to tune. For the heat 
sources, the contact resistance was identified to be most relevant in the 
same work. 

Considering the literature on parameter identification, the most 
relevant parameters have been selected for the current study, forming a 
parameter set of 14 variables to consider in the optimization. The 
constructive characteristics and electrochemical design attributes sub-
ject to fitting are listed below:  

• Cathode (tcat), anode (tan), and separator (tsep) thicknesses [μm].  
• Particle size of the anode (Ran) and cathode (Rcat) active material 

[μm].  
• First charge capacity of anode (qan

fcc) and cathode (qcat
fcc ) [mAh/g].  

• First discharge capacity of anode (qcat
fdc) and cathode (qcat

fdc) [mAh/g].  
• Anode (Can) and cathode (Ccat) capacity [Ah].  
• Specific heat capacity (cp) of the cell [J/(kg⋅K)].  
• Convective heat transfer coefficient (h) [W/(m2⋅K)].  
• Contact Resistance (Rc) [Ω⋅m2]. 

The final selection of parameters includes constructive elements, like 
the thickness of each material layer that composes the cell, which may 
show a significant deviation from cell to cell due to the manufacturing 
process [54]. The constructive characteristics can be identified in Fig. 2. 
The total charge capacity of the cell is considered through a series of 
parameters that define the lithium inventory available and the capacity 
of each electrode to allocate the lithium. Finally, thermal effects have 
been modeled through the convective heat transfer and heat capacity, as 
well as other variables intimately related to heat generation, like contact 
resistance. All the previous variables interact in a complex manner to 
define the overall cell behavior. 

The genetic algorithm iteratively modifies the value of the 14 input 
variables within prescribed bounds to minimize the objective function. 
The first selection of variables (initial guess of parameters for the first 
design) of the optimization process corresponds to default database 
conditions given by the software, which are at least a coherent starting 
point. GT AutoLion has an embedded database containing reasonable 
estimations of cell parameters for different cathode and anode chemis-
tries and expressions governing their temperature dependence. 

Those cell parameters that do not participate in the optimization 
process keep the same database default value throughout the fitting 
process. 

3.3. Non-manipulable inputs for the computational model 

The main non-manipulable inputs for the computational simulation 
are the experimental tests’ current, temperature, and voltage profiles. 

Fig. 2. The layered structure of the lithium-ion cells subject to analysis.  
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Two different tests have been used for the calibration process: constant 
C-rate discharge profiles (see Fig. 3) and dynamic currents of different 
magnitudes and signs. The latter profiles are applied in a way that 
represents a driving cycle (see Fig. 4). The rationale for using the con-
stant C-rate curves for calibrating is that the manufacturers usually 
provide this data, so it is frequently available for the end-users. The 
dynamic tests are, in contrast, less accessible to end-users. In the vali-
dation stage, the model is fed exclusively with dynamic profiles. 

As illustrated in the calibration profiles shown in Figs. 3 and 4, at the 
end of the test, the cell is close to its lower cutoff voltage. 

3.4. Performance indicators and objective function for the calibration 
process 

The objective function of the optimization procedure is the mini-
mization of the voltage and temperature error between the simulated 
curves and the actual response when a specific current profile is applied 
to the cell. The objective function is expressed mathematically in Eq. 

(19): 

Eov =
1
n
⋅
∑n

k=1

(

wV ⋅
Ek

V

fV
+wT ⋅

Ek
T

fT

)

(19)  

Ek
V =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫ tkend

tkstart

(
Vk

sim(t) − Vk
exp(t)

)2
dt

(
tk
end − tk

start

)

√
√
√
√
√ (20)  

Ek
T =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫ tkend

tkstart

(
Tk

sim(t) − Tk
exp(t)

)2
dt

(
tk
end − tk

start

)

√
√
√
√
√ (21)  

Where fV and fT are the normalization terms of the voltage and tem-
perature error, respectively. Besides, n is the total number of experi-
mental profiles (signals) used in the calibration process, and the index k 
refers to each voltage and temperature profile participating in the cali-
bration procedure, and wV and wT are the weight factors of the voltage 

Fig. 3. Current, temperature, and voltage constant C-rate curves for the cell LG Chem INR18650HG2.  
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and temperature profiles. The temperature profile is introduced in the 
optimization process but with a lower weight in the objective function 
[55]. The weight of the temperature error term has been adjusted iter-
atively upon analyzing the temperature and voltage discrepancies be-
tween experimental and numerical results (wT = 0.1⋅wV). 

The underlying principle of the calibration iterative fitting process is 
depicted in Fig. 5. It shows the workflow to move from the input data to 
the model setup and optimization process, considering the constraints 
and fitting indicators used to decide if the optimization process has 
converged to a successful solution according to the optimization history. 
The optimization process has been stopped when the rate of change of 
the overall error (Eov) is close to zero. As will be discussed later, this 
leads to acceptable RMSEV values in all the simulations. 

Once the best-fitting constructive and electrochemical characteris-
tics have been found, the cell response is evaluated with other cycle 
profiles different from the one(s) used in the calibration. At this point, 
the quality of the solution is contrasted with the experimental results by 
comparing key performance indicators. 

3.5. Performance indicators for the validation process 

The quality of the fitting in the validation process has been assessed 
by evaluating key goodness of fit indicators. The precision of the 
instantaneous response has been mainly assessed by comparing the Root 
Mean Square Error (RMSE), the 95th percentile error (ΔV95th) and the 
probability density function of the voltage experimental and simulated 
profiles. 

The analysis has been complemented by comparing the total energy 
charged (ch) and discharged (dch) during the tests, as expressed in Eq. 
(22), Eq. (23), Eq. (24), and Eq. (25). The relative error (ε) between the 
energy charged or discharged in the tests and simulations serves as a 
proper global goodness of fit indicator: 

εch =
Ech,sim − Ech,exp

Ech,exp
(22)  

εdch =
Edch,sim − Edch,exp

Edch,exp
(23) 

Fig. 4. Current, temperature, and voltage profiles for the cell LG Chem INR18650HG2.  
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Ech,sim =
∑n

i=1

∫ tif

ti0

Ii
ch,sim(t)⋅V

i
ch,sim(t)⋅dt (24)  

Edch,sim =
∑n

i=1

∫ tif

ti0

Ii
dch,sim(t)⋅V

i
dch,sim(t)⋅dt (25)  

where n is the number of the profile time slots in which charge or 
discharge currents are applied, being delimited by a change in the cur-
rent sign. 

4. Results 

4.1. Calibration based on constant C-rate curves and validation based on 
dynamic profiles 

Lithium-ion cell manufacturers usually provide the cell response (in 

Fig. 5. Flowchart and decision-making of the cell calibration algorithm.  

Table 1 
Optimum operational and constructive parameters obtained in the calibration 
procedure of the cell LGHG2 using constant C-rate profiles.  

Parameter Symbol Units Value 

Cathode thickness tcat μm 51.78 
Anode thickness tan μm 62.84 
Separator thickness tsep μm 16.63 
Cathode first charge capacity qcat

fcc mAh/g 197.25 
Anode first charge capacity qan

fcc mAh/g 373.02 
Cathode first discharge capacity qcat

fdc mAh/g 179.20 
Anode first discharge capacity qan

fdc mAh/g 355.00 
Particle size of the cathode material Rcat μm 2.79 
Particle size of the anode material Ran μm 14.92 
Contact resistance Rc Ω⋅m2 3.70⋅ 10− 4 

Anode capacity Can Ah 3.19 
Cathode capacity Ccat Ah 3.17  
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terms of temperature and voltage) for several constant currents in the 
datasheet. In case of satisfactory calibration of the electrochemical 
model with this data and adequate validation, it would be possible to 
generate a computational model of the lithium-ion cell with simplified 
datasets widely available. Table 1 collects the optimum performance 
and constructive parameters, and Fig. 6 represents the voltage and 
temperature profiles of the three constant C-rate curves used to calibrate 
the model (experimental response, simulated response, and the differ-
ence between both). The goodness of fit indicators corroborates that the 
calibrated model reproduces the cell response precisely. For the OCV 
curve, the discrepancy in the discharge energy corresponds to εdch = −

0.21% while the RSMEV = 0.0367 V, and the 95th percentile error for 
voltage (ΔV95th) equals to 0.088 V, respectively. Fittings with compa-
rable accuracy are observed for the 0.5C (εdch,0.5C = − 0.24%, 
RSMEV = 0.0247 V, ΔV95th = 0.0377) and the 2C discharge curves 
(εdch,2C = − 0.49%, RSMEV = 0.0319 V, ΔV95th = 0.0631 V). 

Since the temperature increase in the cell during the test is small, and 
the discrepancies in the temperature profile are below 1.3 ◦C, it is 
assumed that the thermal response is well captured, and the voltage 
goodness of fit indicators have been considered of greater interest. 

As can be noticed from the plots on the right side of Fig. 6, the 
general trend of the modeling error tends to increase as the battery cell is 
discharged, inducing higher predicting error under low SOC conditions. 

Fig. 7 represents the voltage response when the already calibrated 
cell model is validated with the Mixed-3 dynamic profile. It should be 
noted that the optimum model settings found in the calibration process 
have been imposed. The goodness of fit indicators suggest that the cell 

dynamic response is predicted with good accuracy when the cell is 
calibrated with constant C-rate profiles (εdch = − 1.21%, RMSEV =

0.0531 V, ΔV95th = 0.1107 V), however, the error has increased in 
comparison to the calibration process. The same trend is ratified with 
the validation profile Mixed-8 (εdch = − 0.99%, RSMEV = 0.0463 V, Δ 
V95th = 0.1124 V). The probability density function of the error distri-
bution (see Fig. 8) demonstrates that the discrepancies in voltage pre-
diction are contained within the interval [− 0.1 V, +0.15 V] for both 
validation profiles. It must be outlined that the probability density 
function has been normalized so that the total area of the histogram 
equals 1. 

Taking again the previous comment on the error induced in the 
calibration process, Fig. 7 clearly shows how the committed error in the 
voltage prediction increases towards the end of the cycle, where the SOC 
of the cell is approaching complete depletion of the available energy. 
Also, from Fig. 8, it is possible to observe how there is a voltage peak 
around +0.1 V in the error distribution curve. This error is present 
irrespective of the driving cycle and corresponds to the low SOC region. 

4.2. Calibration and validation based on dynamic profiles 

4.2.1. Cell 1: LG chem INR18650HG2 
An alternative methodology in which the calibration method is 

carried out with dynamic profiles has been proposed to improve the 
validation results of the previous procedure. Table 2 summarizes the 
optimum constructive and operational cell parameters obtained after 
the calibration process. As should be expected, Tables 1 and 2 show 

Fig. 6. Voltage and temperature response for the calibration process for constant C-rate curves. Lithium-ion cell: LG Chem INR18650HG2.  
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similar reported values; the calibration processes have been performed 
for the same cell, but the current profiles used in each case differ. Most of 
the constructive parameters and loading factors have remained almost 
identical, but the most remarkable difference is observed in the cathode 
particle size, which is vital to capturing the cell’s dynamic behavior, 

especially in the low-SOC region. 
Fig. 9 compares the voltage response characterized experimentally 

with the one predicted by the electrochemical model (Subfigure A) for 
the dynamic calibration profile US06. Again, the solution depicted is the 
one that minimizes the overall error objective function, so it includes the 
optimized performance and constructive parameters. As can be 
observed, the model prediction is well-fitted to the results of the 
experimental tests. In terms of global goodness of fit indicators, the 
RMSEV is 0.0220 V and the 95th percentile of the voltage error is 0.0424 
V. With this procedure, no remarkable differences in terms of accuracy 

Fig. 7. Voltage and temperature response (Subfigure A) and absolute value of the voltage and temperature error (Subfigure B) for the Mixed-3 validation profile. 
Lithium-ion cell: LG Chem INR18650HG2. 

Fig. 8. Probability density function of the voltage error for the calibration and 
validation curves. Lithium-ion cell: LG Chem INR18650HG2. 

Table 2 
Optimum operational and constructive parameters obtained in the calibration 
procedure of the cell LGHG2 using dynamic current profiles.  

Parameter Symbol Units Value 

Cathode thickness tcat μm 55.52 
Anode thickness tan μm 68.00 
Separator thickness tsep μm 17.46 
Cathode first charge capacity qcat

fcc mAh/g 197.68 
Anode first charge capacity qan

fcc mAh/g 365.86 
Cathode first discharge capacity qcat

fdc mAh/g 180.84 
Anode first discharge capacity qan

fdc mAh/g 357.61 
Particle size of the cathode material Rcat μm 0.05 
Particle size of the anode material Ran μm 15.61 
Contact resistance Rc Ω⋅m2 3.96⋅ 10− 4 

Anode capacity Can Ah 3.16 
Cathode capacity Ccat Ah 3.05  
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during the calibration are found in comparison to the calibration with 
constant C-rate curves. 

The satisfactory results in the calibration fitting process are also 
corroborated when analyzing the total energy charged and discharged 
during the cycle. The relative discrepancy between the experimental and 

simulated results, εch = − 0.31% and εdch = − 0.15% is relatively low. 
The histogram plot of Fig. 10 is helpful in gaining more insights into 

the error distribution and serves as an overall descriptor of the error 
achieved in the calibration and validation processes. It confirms the 
trend observed in Fig. 9 (Subfigure B): the calibration curve can be fitted 
with good precision, and the error is mainly concentrated in the range 
[− 0.05,0.05] V. In both validation profiles, the error is grouped within 
the range [− 0.1 V, +0.1 V]. The RMSE and the 95th percentile of error of 
the Mixed-3 Profile (RMSEV = 0.0315 V, ΔV95th = 0.0577 V) and the 
Mixed-8 profile (RMSEV = 0.0315 V, ΔV95th = 0.0612 V) confirms that 

Fig. 9. Simulated and experimental voltage response (Subfigure A) and absolute value of the voltage error (Subfigure B) for the US06 calibration profile. Lithium-ion 
cell: LG Chem INR18650HG2. 

Fig. 10. Comparison of the probability density function of the voltage error for 
the calibrated and validated profiles. Lithium-ion cell: LG Chem INR18650HG2. 

Table 3 
Optimum operational and constructive parameters obtained in the calibration 
procedure of the cell Panasonic 18650 PF using dynamic current profiles.  

Parameter Symbol Units Value 

Cathode thickness tcat μm 70.67 
Anode thickness tan μm 82.12 
Separator thickness tsep μm 11.71 
Cathode first charge capacity qcat

fcc mAh/g 207.14 
Anode first charge capacity qan

fcc mAh/g 393.10 
Cathode first discharge capacity qcat

fdc mAh/g 191.81 
Anode first discharge capacity qan

fdc mAh/g 347.97 
Particle size of the cathode material Rcat μm 11.81 
Particle size of the anode material Ran μm 9.93 
Contact resistance Rc Ω⋅m2 6.28 10− 4 

Anode capacity Can Ah 4.04 
Cathode capacity Ccat Ah 3.36  
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the error is very small. Again, the deviation in temperature is very low, 
being the maximum discrepancy between the experimental and nu-
merical results of 0.7 ◦C. 

Fig. 10 shows how in this case, the overall error on the performance 
test curves has been better distributed and not concentrated towards low 

SOC conditions, with a better interpretation of the global cell perfor-
mance. As can be observed in Fig. 10, the prevalence of error at +0.1 V 
identified in Fig. 8 no longer appears. 

Everything points towards a significant improvement in the fitting 
capabilities when using a single dynamic test to calibrate the cell model. 
With a single test, a broader and more continuous spectrum of operating 
conditions is provided to the optimizer, rather than a very scarce and 
discrete set of operating conditions, like the ones used for constant 
current tests, and this significantly improves the accuracy when 
considering dynamic scenarios. Of course, the accuracy of the constant 
C-rate fitting methodology can be improved by providing a more 
extensive dataset, but this would be more time-consuming in terms of 
both experimental efforts and computing costs. 

The alternative methodology of calibrating and validating the cell 
with dynamic profiles has improved the accuracy moderately and has an 
acceptable computing cost. It takes about 50 h to find the optimum 
constructive and operational parameters in the calibration stage, but it 
shows a strong dependence on the experimental test duration. The res-
olution time of each validation profile is about 10 min. The calculations 
have been performed using 1 core of a workstation equipped with an 
Intel Xeon Silver 4214R (2.4 GHz). 

Given the benefits mentioned above in terms of precision, calibrating 
and validating the cell with dynamic current profiles has also been 
adopted to evaluate the other cell specimen with different cathode 
chemistry. 

Fig. 11. Voltage and temperature response (Subfigure A) and absolute value of the voltage and temperature error (Subfigure B) for the Cycle-1 calibration profile. 
Lithium-ion cell: Panasonic 18650 PF. 

Fig. 12. Comparison of the probability density function of the voltage error for 
the calibrated and validated profiles. Lithium-ion cell: Panasonic 18650 PF. 
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4.2.2. Cell 2: panasonic 18650 PF 
The robustness and validity of the model while predicting the 

response of other cell chemistries have been evaluated by reproducing 
the same procedure for the cell Panasonic 18650 PF (NCA). Table 3 
collects the optimum performance and constructive parameters, and 
Fig. 11 represents the fitting of the electrochemical model to the 
experimental calibration curve (Cycle-1). The goodness of fit indicators 
of the calibration curve (RMSEV = 0.0217 V, ΔV95th = 0.0474 V, εch =

0.42% , εdch = 0.11%) verify the proper fitting. Again, all the discrep-
ancies are contained in the interval [− 0.1 V, +0.1 V]. The fitting to the 
validation profiles is also of good quality, as illustrated in Fig. 12 and 
confirmed in the error analysis of the US06 profile (RMSEV = 0.0357 V, 
ΔV95th = 0.0438 V), and Cycle-4 RMSEV = 0.0281 V, ΔV95th =

0.0707 V). Regarding the temperature difference, maximum deviations 
are not exceeding 2.0 ◦C. Hence, the calibration and validation pro-
cedure respond satisfactorily while modeling other cathode chemistries 
(NCA). 

4.3. Performance summary 

Table 4 summarizes the main goodness of fit indicators for the 
different calibration procedures and subsequent validations for the 
different chemistries subject to analysis. 

Both methodologies applied on the cell LG Chem INR18650HG2 
(NMC811) are shown: (i) calibration using three constant current per-
formance tests and (ii) calibration using a single dynamic cycle. Oppo-
sitely, for the Panasonic 18650 PF cell, only the calibration based on the 
dynamic signals has been performed. 

The indicators included in the table correspond with the relative 
error in total energy charged and discharged from the cell, the Root 
Mean Square Error (RMSE) on voltage and temperature, and the 95th 
percentile of error fit well between experimental and simulated outputs. 

5. Conclusions 

In the present research work, a novel methodology for calibrating 
and validating an electrochemical lithium-ion cell model at a reference 
temperature of 25 ◦C has been proposed. The model fits operational and 
constructive parameters of the cell that are a priori unknown to the end- 
users but have a decisive influence on its dynamic response. The fitting is 
conducted automatically using a genetic algorithm and setting an 
objective function. The main conclusions of the research are listed 
below:  

• The set of 14 constructive parameters and physical properties of the 
cell materials selected for the analysis allows for precise fitting for 
the chemistries subject to analysis (NMC 811 and NCA) with a 
reasonable computational cost.  

• Calibrating the model with three constant current tests provides a 
satisfactory fitting of the voltage and temperature curves. Deviations 
in voltage found during the validation process are contained in the 

range of [-0.1 V, +0.15 V] for the NMC 811 cell. The fitting error 
tends to concentrate on the low SOC region, and the maximum RMSE 
of the validation curves is 0.0531 V. 

• A better fitting during the validation stage is achieved if the elec-
trochemical model is calibrated with a dynamic high-rate profile 
rather than constant C-rate curves. With this approach, the 
maximum RMSE for the voltage profiles used to validate the model is 
0.0315 V for the NMC 811 cell and 0.0357 V for the NCA cell. In all 
the calibration and validation profiles, the probability density 
function demonstrates that the discrepancies between the model and 
the experimental results are within the range [-0.1 V, +0.1 V].  

• Given that the working temperature range considered for this study 
has been within nominal values very similar to the ambient tem-
perature, no secondary effects driven by degradation mechanisms 
have occurred, and the parameters selected for considering temper-
ature effects on the calibration methodology have captured the 
tendencies with outstanding fidelity for all cases, yielding a 
maximum global deviation of RMSE of 0.66 ◦C. 

The current work establishes a robust and reliable method to cali-
brate cell models under controlled and stable operations under a con-
stant ambient temperature. Nonetheless, extreme operating conditions 
like fast charging, high power demands with C-rates above 10, or 
working conditions where the ambient temperature can be either 
extremely low or extremely high can significantly affect how the re-
actions inherent to the working principle of lithium-ion batteries are 
hindered or accelerated. 

In future research, the model will be extended to make reliable 
predictions with low and high-temperature effects that some authors 
have linked to changes in the physical properties of the materials related 
to how internal resistance changes. Other models like mechanical stress 
prediction models will be evaluated to state their relevance for said 
studies. 
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Table 4 
Summary of the main goodness of fit indicators for all the calibration and validation profiles for the cells subject to analysis.  

Test profile Type Cell εch [%] εdch[%] RMSEV [V] ΔV95th[V] RMSET [
◦C]

OCV Calibration (Constant C-rate) LG Chem INR18650HG2 (NMC811) – − 0.21 0.0367 0.0884 0.09 
0.5C Calibration (Constant C-rate) LG Chem INR18650HG2 (NMC811) – − 0.25 0.0247 0.0377 0.14 
2C Calibration (Constant C-rate) LG Chem INR18650HG2 (NMC811) – − 0.49 0.0319 0.0631 0.63 
Mixed-3 Validation (Dynamic) LG Chem INR18650HG2 (NMC811) 1.14 − 1.22 0.0531 0.1107 0.34 
Mixed-8 Validation (Dynamic) LG Chem INR18650HG2 (NMC811) 0.62 − 0.99 0.0463 0.1124 0.28 
US06 Calibration (Dynamic) LG Chem INR18650HG2 (NMC811) − 0.31 − 0.15 0.0220 0.0424 0.27 
Mixed-3 Validation (Dynamic) LG Chem INR18650HG2 (NMC811) − 0.24 − 0.13 0.0315 0.0577 0.15 
Mixed-8 Validation (Dynamic) LG Chem INR18650HG2 (NMC811) − 0.35 − 0.08 0.0315 0.0612 0.17 
Cycle-1 Calibration (Dynamic) Panasonic 18650 PF (NCA) 0.42 0.11 0.0217 0.0474 0.57 
US06 Validation (Dynamic) Panasonic 18650 PF (NCA) 0.49 − 0.44 0.0357 0.0438 0.61 
Cycle-4 Validation (Dynamic) Panasonic 18650 PF (NCA) 0.22 0.14 0.0281 0.0707 0.66  
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Notation 

Abbreviatures 
BEV: Battery Electric Vehicle 
CO2: Carbon dioxide 
C-rate: current level relative to total capacity 
DFN: Doyle-Fuller-Newman 
ECM: Equivalent Circuit Model 
EUVI: EURO VI legislation 
FCC: First Charge Capacity 
FDC: First Discharge Capacity 
GA: Genetic Algorithms 
GN: Gauss-Newton method 
HPPC: Hybrid Power Pulse Characterization 
ICE: Internal Combustion Engine 
LCO: Lithium Cobalt Oxide 
LFP: Lithium–Iron-Phosphate oxide 
LM: Levenberg-Marquardt method 
NCA: Lithium Nickel–Cobalt–Aluminum oxide 
NCM: Lithium Nickel–Cobalt–Manganese oxide 
NOx: Nitrogen Oxides 
OCV: Open Circuit Voltage 
ODE: Ordinary Differential Equation 
PSO: Particle Swarm Optimization 
RMSE: Root Mean Square Error 
SEI: Solid Electrolyte Interface 
SOC: State of Charge 
SOH: State of Health 
TRL:: Technology Readiness Levels 

Symbols 
Symbol: Description 
adl: Volume specific interfacial area for double-layer capacitance effect 
as: Volume specific reaction surface area 
Ac: Total cell external area 
As: Area of contact between solid phase and current collector 
ce: Molar concentration of lithium ions in the electrolyte 
cp: Specific heat capacity 
cs: Molar concentration of lithium in the solid phase 
C: Specific capacitance 
Cs: Capacity of the cell 

Cs,max: Theoretical capacity 
De: Electrolyte diffusion coefficient 
Deff

e : Electrolyte effective diffusion coefficient 
Ds: Diffusion coefficient of lithium in the solid phase 
Ech: Total energy input during charge 
Edch: Total energy output during discharge 
Eov: Objective function based on weighted overall error 
ET: Temperature term of the overall error function 
EV: Voltage term of the overall error function 
f±: Molar activity coefficient in the electrolyte 
F: Faraday’s constant 
h: Convective heat transfer coefficient 
i0: Exchange current density 
I: External electric current 
Ich: Electric current during charging operation mode 
Idch: Electric current during discharging operation mode 
jIC: Total internal current 
jLi: Reaction current of lithium 
keff : Electrolyte effective ionic conductivity 
keff

D : Electrolyte effective ionic diffusional conductivity 
L: Total layer longitudinal thickness 
p: Bruggeman tortuosity exponent factor 
qcat

fcc : Mass-specific first charge capacity 
qcat

fdc: Mass-specific first discharge capacity 
qcat

th : Mass-specific theoretical capacity 
q̇conv: Convective heat flow 
q̇gen: Total heat flow generated during cell operation 
q̇ohm: Heat rate generated through internal ohm effect 
q̇rev: Heat rate generated through reversible processes 
q̇rxn: Heat rate generated through redox reactions 
r: Radial dimension 
R0: Gas constant 
Rc: Contact resistance 
RSEI: SEI resistive film layer 
Ru: Universal gas constant 
t: Time 
t0+: Transference number 
T: Temperature 
Tamb: Ambient Temperature 
U: Open circuit potential 
Vc: Cell volume 
Vch: Voltage during charging operation mode 
Vdch: Voltage during discharging operation mode 
Vexp: Voltage from experimental measurement 
Vsim: Voltage predicted in the simulation 
wT: Weight factor for temperature term on the objective function 
wV: Weight factor for voltage term on the objective function 
x: Longitudinal dimension 
αa: Anode charge transfer coefficient 
αc: Cathode charge transfer coefficient 
γcat

fcc : Ratio of first charge capacity 
γcat

fdc: Ratio of first discharge capacity 
ε: Electrolyte porosity 
εch: Relative error in charged energy between simulation and experiment 
εdch: Relative error in discharged energy between simulation and experiment 
ΔEch: Absolute error in charged energy between simulation and experiment 
ΔEdch: Absolute error in discharged energy between simulation and experiment 
η: Over potential 
ρ: Cell density 
σeff

s : Effective electric conductivity of solid phase 
φe: Electrolyte potential 
φs: Solid phase potential 
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