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Data-driven AI is rapidly gaining importance. In the context of AI planning, a constraint 
programming formulation for learning action models in a data-driven fashion is proposed. 
Data comprises plan observations, which are automatically transformed into a set of planning 
constraints which need to be satisfied. The formulation captures the essence of the action model 
and unifies functionalities that are individually supported by other learning approaches, such as 
costs, noise/uncertainty on actions, information on intermediate state observations and mutex 
reasoning.

Reliability is a key concern in data-driven learning, but existing approaches usually learn action 
models that can be imprecise, where imprecision here is an error indicator of learning something 
incorrect. On the contrary, the proposed approach guarantees reliability in terms of perfect 
precision by using constraint propagation. This means that what is learned is 100% correct 
(i.e., error-free), not only for the initial observations, but also for future observations. To our 
knowledge, this is a novelty in action model learning literature. Although perfect precision might 
potentially limit the amount of learned information, the exhaustive experiments over 20 planning 
domains show that such amount is comparable, and even better, to ARMS and FAMA, two 
state-of-the-art benchmarks in action model learning.

1. Introduction

AI planning is a deliberative task to build a plan of actions that, starting from an initial state, achieves a set of goals [1]. 
Planning requires the definition of action models by using a particular language, such as STRIPS [2], Functional Strips [3], ADL 
(Action Description Language [4]), or the de facto standard language PDDL (Planning Domain Definition Language [5]). In any 
of these languages, an action model describes the semantics of actions, classically represented in terms of preconditions, which 
are required before executing an action, and postconditions/effects, which are asserted after the action is executed. With these 
languages, a planning expert sits down and defines the full semantics of actions according to the physics of the planning scenario [6]. 
However, building action models from scratch has shown limited because of the difficulty, tedious and error-prone of manually 
specifying precise and complete action models [7–11], which is becoming a bottleneck for the applicability of planning technology 
to real-world scenarios with action concurrency [12–15]. Motivated by these limitations, there is a growing interest in the planning 
community for learning action models, as a particular case of data-driven learning, to help reduce the expert effort and improve the 
reliability of the models [7,11,16–18].
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1.1. Learning action models

Learning is the process of gaining knowledge by studying from experience or observation. In AI planning, learning an action 
model is the process of acquiring the preconditions and effects of actions, by identifying common structures, from input observations. 
Observations might include sequences of state changes, input graphs that depict the state space, sample instances, input constraints, 
world transitions, expert demonstrations or, more typically, traces of plan executions [6,12,13]. Consequently, learning here is a 
cognitive task that can be considered as inverse planning [19]: planning requires an action model to create plans, whereas learning 
requires an observation of plans to create an action model.

The interest in learning is growing up because it allows us to acquire procedural knowledge that enhances the model of actions, 
which has a positive impact in future planning tasks. Reliability is a great challenge in learning. Reliable forms of precision, safety 
and robustness are essential to fully exploit such learned model, and are also rapidly gaining interest (see, for instance, the new 
specific workshop for Reliable Data-Driven Planning and Scheduling1 in ICAPS). A learned model can be used to automatically 
elaborate similar models for similar scenarios, e.g., knowledge transfer or transfer learning [16], but this makes little sense if the 
models contain errors and/or are unreliable (transferring incorrect knowledge is not recommendable).

There is a wide number of scenarios that benefit from the discovery of a precise model of actions: recognition of past behavior for 
prediction and anticipation, diagnostic expertise, goal recognition, learning causality models, recommendation, programming and 
modeling, teleoperation, macro recording, sensing and controlling, robotics motion capturing and planning, explainable planning, 
etc. [7,14,16,18,20–23]. Learning is appealing because these scenarios include a huge number of tasks, which require accurate expert 
knowledge and manual tasks that are impractical for complex domains. Reliability is appealing because the learned models need to 
be precise, i.e., error-free, and faithful to the real world to be practical. After all, decision making is of little interest if the underlying 
model is incorrect; e.g., a diagnostic or recommendation is more limited if it relies on an incorrect model.

1.2. Current limitations and motivation

In the planning context, current (machine) learning approaches are mainly inductive and require large datasets of observations, 
e.g., hundreds and even thousands of plan traces, to compute a statistically significant model that optimizes some quality metrics 
over a reference or ground truth model [6,11,24–26]. Several metrics are available, mostly inherited from pattern recognition and 
classification literature [27]. Validation tests to measure missing information, accuracy and error rates2 are the most simple metrics. 
They simply evaluate true+false positive/negative values. Precision and recall are more often used; they are more informative than 
accuracy and error rates, as they are based on a better understanding and measure of relevance. Briefly, precision provides a notion 
of soundness (or how correct the learned model is compared to the reference one), while recall gives a notion of completeness (or 
how much the learned model covers the reference one) [12,13].

Precision and recall are both desired but somewhat conflicting: learning more complete models tends to include some imprecision, 
whereas more precise models tend to be less complete. Consequently, the main limitation of an optimization-based learning task 
over a set of observations is twofold: it cannot guarantee soundness (the learned model may contain erroneous information) nor 
completeness (the learned model may not satisfy a particular observation, i.e., the model is unsafe). In other words, these approaches 
might learn action models that are incorrect and with undesirable side effects, i.e., models that are not 100% precise and could be 
potentially risky.

The motivation of this paper is clear. Learning a 100% complete action model is desirable. But learning a 100% precise model, 
without errors, is more desirable, and a key issue to address reliability. Moreover, in many scenarios (e.g., anticipation, detection of 
causal relationships and recognition of goals by proactive assistants), precision becomes essential: if one wants to learn something 
practical, it must be correct. Metaphorically speaking, learning that 2+2=5 is unacceptable for a reliable scenario.

There are four key aspects that are desirable when learning action models (and have an impact in the applicability of the learning):

1. Use of a limited number of observations. In many real-world applications it is expensive, or even impossible, to collect large datasets 
of observations [16], or to retrieve the complete transitions given by a complex state space [8,28,29]. This is particularly difficult 
when the observations come from repetitive processes performed by humans, like in learning by demonstration [21].

2. The learned model must satisfy all the input observations and not only some of them. Statistical-based learning approaches might 
learn a little from each observation, but not a model that is 100% valid for any individual sample. In terms of safety, one is 
interested in learning a model that meets all the observations [30].

3. The model must be learned with perfect precision. The learned model must be correct not only for the input collection of 
observations, which is always limited, but also for any new observation (also an indication of robustness). All in all, what 
is learned must be 100% precise for all valid (current+future) observations, and what has no absolute precision must not be 
learned.

4. The learned model must tolerate some uncertainty. In terms of robustness, one is also interested in learning a model that supports 
some uncertainty, e.g., in the observed actions.

This paper presents an approach for learning action models in classical planning and contributes to meet all these general aspects.

1 https://icaps22 .icaps -conference .org /workshops /RDDPS.
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2 Metrics to measure errors are common as, unfortunately, errors are taken as granted.
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1.3. Contributions

This paper uses the PDDL formalism for classical planning, where actions have preconditions, effects and also a cost to be learned. 
The preconditions and effects are defined as Boolean predicates. The cost is learned as a numeric value, a characteristic that is ignored 
in most existing approaches. Although the numeric information is restricted to costs, this could be easily generalized to other numeric 
expressions such as resource usage, rewards, penalties, etc. The observations are plan traces, in the form of actions, their start times 
and total cost. No conflicting observations are present, that is, one observation never contradicts another. This might seem a bit 
strong, but it is a required assumption when one wants to satisfy all the observations.

This paper proposes a Constraint Programming (CP) approach, which takes advantage of a very powerful type of constraint 
reasoning named constraint propagation [31–33]. Constraint propagation is an inference process that detects and removes 
inconsistent variable assignments that cannot participate in any feasible solution. It explicitly forbids assignments to variables 
because at least one of the constraints cannot be satisfied. Constraint propagation is typically used to reduce a CP problem to 
another, equivalent but simpler. Moreover, it can be used for consistency tests so that the knowledge derived is propagated and 
reused for acquiring new additional knowledge [34]. Such knowledge is propagated in the CP formulation to find out what cannot 
be valid in such formulation (because it violates some constraints) and what must be valid (because it is necessary to satisfy the 
constraints). This is the essence of learning action models with perfect precision.

The main contributions of this work are:

• It automatically builds a flexible CP formulation to model the constraints of an arbitrary collection of observed plan traces. It 
accepts different levels of input data: states, actions, exclusion relationships, etc.

• It requires information on the initial and goal state of each plan trace, the sequence of actions that are planned together with 
their start times, and the plan cost. Unlike some other approaches, the goal state does not need to represent a full state with all 
the predicates, but only those that represent the planning goals. Also, the intermediate states between actions are not required 
at all, i.e., the state trajectory is totally unknown.

• It supports input knowledge on mutual exclusion relationships, which can be optionally included. This is a significant difference 
w.r.t. other works, because exclusion relationships are traditionally ignored in the literature.

• It only requires a few tens of plan traces, whereas other learning approaches require datasets with hundreds of plan traces and 
thousands of actions. In the experiments, no more than 50 traces are used.

• It learns from plan traces with some uncertainty. The actions of the plan are assumed flawless, but there is uncertainty on the 
exact time when they happen. This noise is common in real-world applications, where observations are captured by inaccurate 
sensors or that could be occasionally damaged: one knows that an action has been executed, but (s)he is unsure on its time. 
This makes a difference to some other systems, which assume that plan traces are noiseless, and increases the robustness of the 
learning.

• It learns cost action planning models precisely. It differs from existing approaches in the incremental way it learns, as constraint 
propagation learns only the model structure that must be true: it learns a safe model that satisfies all the observations and is also 
100% precise. Although ensuring perfect precision might limit the amount of information that is learned (i.e., the recall) only to 
what is correct, the extensive experiments prove that the amount of information that is learned is comparable (and even higher 
in some domains) to other approaches that cannot guarantee perfect precision. That is, the model learned is not only precise, 
but also very complete. The experiments are tested on more than 20 planning domains, whereas most learning approaches use 
no more than 10 domains.

Although this work is inspired by [13,35], it introduces three important extensions that make it different, represented above 
as contributions. First, it is a more compact and simplified representation, as it now works with a classical (non-durative) action 
model. Second, it observes plan traces where the start time of actions is uncertain, which implies noisy observations. Third, and more 
importantly, it proposes a novel constraint propagation to learn as much as possible from a minimal amount of observations and 
ensure perfect precision.

1.4. Organization of the paper

This paper is organized as follows:

• Section 2 formalizes the terminology on planning, CP and learning. It also introduces the quality metrics, essential for evaluating 
the learned models in the paper, and discusses the related work in detail.

• Section 3 constitutes the core of the paper from the formulation point of view. It describes the CP formulation, in terms of the 
variables and constraints, and provides a working example.

• Section 4 is the core of the paper from the algorithmic point of view. It proposes the algorithms for learning preconditions, 
effects and costs via constraint propagation, and prove their properties.

• Section 5 presents a complete evaluation of the quality of the learned models. It provides the setup of the experiments, how 
different elements (i.e., plan library and noise) affect the learning, and compares this approach to others.

• Section 6 discusses the lessons learned after the analysis of the results.
150

• Section 7 concludes the paper. It highlights the limitations of this work and provides opportunities for future research.
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(:types locatable city flevel - object

aircraft person - locatable)

(:predicates (at ?x - locatable ?c - city) (in ?p - person ?a - aircraft)

(next ?l1 ?l2 - flevel) (fuel-level ?a - aircraft ?l - flevel))

(:action board

:parameters (?p - person ?a - aircraft ?c - city)

:precondition (and (at ?p ?c) (at ?a ?c))

:effect (and (not (at ?p ?c)) (in ?p ?a) (increase (cost) 1)))

(:action refuel

:parameters (?a - aircraft ?c - city ?l1 - flevel ?l2 - flevel)

:precondition (and (fuel-level ?a ?l1) (next ?l1 ?l2) (at ?a ?c))

:effect (and (not (fuel-level ?a ?l1)) (fuel-level ?a ?l2)

(increase (cost) 2)))

Fig. 1. Types, predicates and two operators of the PDDL domain named zenotravel. Other (not shown) operators are debark, fly and zoom.

2. Formalization and related work

The objective of this section is twofold. On the one hand, to formalize the concepts and notation on classical planning, CP, 
learning, and the metrics used in the paper. On the other hand, to present related work and highlight the main differences w.r.t. the 
proposed approach.

2.1. Planning concepts

The planning scenario is defined by following the PDDL structure, which separates the planning domain, problem and plan.

2.1.1. The domain

Let us assume a hierarchy of types  and a set of Boolean predicates  , with a list of typed parameters over  . PDDL defines a set 
of  -parameterized operators  to model a planning domain. The number and type of the parameters restrict the subset of predicates 
to be used per operator. Each operator 𝑜 ∈  has a set of positive preconditions (𝗉𝗋𝖾(𝑜)) and a set of positive and negative effects 
that are asserted and retracted, respectively (𝖾𝖿𝖿 (𝑜) = {𝖾𝖿𝖿+(𝑜) ∪ 𝖾𝖿𝖿−(𝑜)}); 𝗉𝗋𝖾(𝑜), 𝖾𝖿𝖿+(𝑜), 𝖾𝖿𝖿−(𝑜) ⊆  . An operator can be applied when 
its preconditions hold, and the effects happen after its application. The STRIPS version of learning for preconditions and effects is 
assumed [6,12,24], which means: 𝖾𝖿𝖿−(𝑜) ⊆ 𝗉𝗋𝖾(𝑜), 𝖾𝖿𝖿+(𝑜) ∩ 𝖾𝖿𝖿−(𝑜) = ∅ and 𝗉𝗋𝖾(𝑜) ∩ 𝖾𝖿𝖿+(𝑜) = ∅. The definition of 𝑜 is extended with 
𝖼𝗈𝗌𝗍(𝑜), a positive value that represents the cost of applying 𝑜. This is very valuable for keeping track of the plan cost and allows 
planners to optimize it. For simplicity, the cost is assigned to the operator. If the cost depends on the parameters of the operator, 
e.g., a cost that depends on the distance traveled, different operators with different costs should be defined.

A planning domain is defined as 𝛿 = ⟨ , ,⟩. Fig. 1 depicts part of a transportation domain named zenotravel. There are 
some predicates, such as (at ?x - locatable ?c - city), (in ?p - person ?a - aircraft) or (next ?l1 ?l2 -
flevel) defined over a hierarchy of types locatable, city, person, etc. The predicates are defined over the types and model 
relations in the domain. For instance, (at ?x - locatable ?c - city) represents the fact that a locatable (aircraft or

person) is at a city, (next ?l1 ?l2 - flevel) represents that fuel level ?l1 is before ?l2, etc. Operators3 use predicates 
as preconditions and effects. For instance, board takes a person p at a city c and loads him/her in an aircraft a. Clearly, p and a
must be initially at the same city and the person is finally in a, and no longer at c. refuel changes the fuel level of an aircraft a
located at a city from ?l1 to the next level ?l2. In PDDL the cost is modeled as a particular numeric effect that increases a cost
expression, represented as 𝖼𝗈𝗌𝗍(𝑜) for simplicity; in the example, 𝖼𝗈𝗌𝗍(board)= 1 and 𝖼𝗈𝗌𝗍(refuel) = 2 no matter their parameters.

Mutual exclusion (mutex) constraints When two predicates in  cannot hold simultaneously in 𝛿, they are mutex. For instance, 
in zenotravel, ⟨(at ?x - locatable ?y1 - city), (at ?x - locatable ?y2 - city)⟩ are mutex if ?y1 ≠ ?y2: in this 
domain ?x cannot be at two different cities simultaneously. Similarly, ⟨(at ?x - person ?y1 - city), (in ?x - person 
?y2 - aircraft)⟩ are mutex, as a person ?x cannot be at a city ?y1 and in an aircraft ?y2. The domain expert knows this 
while modeling because it is part of the physics of the domain, but this knowledge is not explicitly represented in PDDL. This is only 
specified if every time one predicate is asserted the other is immediately retracted and vice versa (contradictory effects).

Static information  may contain predicates that never change in 𝛿, which are known as static. Static predicates are also part 
of the physics of the domain and they are relevant for the grounding stage, prior to the planning itself. Note the (next ?l1 

3 PDDL uses the construct action instead of operator. To avoid confusion in the notation, this paper distinguishes between operators, i.e., templates with parameters, 
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and actions, i.e., instantiated operators where all parameters are grounded to constant values.
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1: (refuel plane1 city0 fl1 fl2)

1: (board person2 plane2 city1)

1: (board person1 plane1 city0)

2: (zoom plane1 city0 city1 fl2 fl1 fl0)

2: (zoom plane2 city1 city2 fl3 fl2 fl1)

3: (debark person1 plane1 city1)

...

Fig. 2. Fragment of a parallel plan for zenotravel with a cost .

?l2 - flevel) predicate in Fig. 1, which represents the natural order between ?l1 and ?l2, or imagine a potential predicate

(fuel-station ?c - city), indicating that there is a fuel station in ?c, to be used as a precondition for refuel. Those 
predicates will never be used as effects (never asserted/retracted) since no operator can change the physics of zenotravel: one fuel 
level is always before another, and fuel stations do not (dis)appear in cities. Since static predicates always hold, they could eventually 
be present as preconditions in all the operators, which hinders learning. Static information is not labeled explicitly in PDDL, but can 
be easily detected.

Input knowledge for learning Most planners perform some kind of reasoning to discover mutex constraints and static information, 
thus improving the planning task. Similarly, learning can also be improved by providing additional input knowledge. First, giving 
the list of all predicates 𝑝𝑖, 𝑝𝑗 ∈  that are mutex in 𝛿, defined as the set 𝜇(𝛿) = {⟨𝑝𝑖, 𝑝𝑗⟩}. Second, restricting the set of predicates 
 ′ ⊆  , where  ′ contains no static predicates. This knowledge is very valuable for learning, as seen below.

2.1.2. The problem

Let us assume a domain 𝛿 = ⟨ , ,⟩. Given a set of  -typed constant values (aka objects),  and  are defined.  is the 
set of Boolean predicates instantiating these values in  , thus defining a mapping between  and  as used in Section 3.2. 
is the set of actions, which are instantiated from the operators . All the parameters in  are grounded, and the same for their 
preconditions+effects, which are thereby instantiated and mapped in  . The number of instantiations depends on the parameters 
and the possible values for each parameter. For instance, from Fig. 1 and given the constant values {plane1 - aircraft, person1 
- person, city0 - city}, ={ (at plane1 city0), (at person1 city0), (in person1 plane1)} and ={(board 
person1 plane1 city0)} are obtained. A state  is defined as an assignment of true/false values to predicates in  .  is a full 
state if || = || and a partial state if || < ||.

A classical planning problem 𝜌 for 𝛿 is defined as 𝜌 = ⟨𝛿, ,,,⟩, where the initial state  is a full state (|| = ||), and  is 
the goal state. Although  can be a partial or full state (|| ≤ ||), in PDDL it is typically defined as a partial state.  is the set of 
potential actions that can be used to reach  from .

2.1.3. The plan

Let us assume a problem 𝜌 = ⟨𝛿, ,,,⟩. A plan trace, or simply a plan, for 𝜌 is a tuple 𝜋(𝜌) = ⟨{⟨𝑡1, 𝑎1⟩, ⟨𝑡2, 𝑎2⟩… ⟨𝑡𝑛, 𝑎𝑛⟩},⟩. 
Each ⟨𝑡𝑖, 𝑎𝑖⟩ contains an action 𝑎𝑖 ∈ and 𝑡𝑖 as the time when 𝑎𝑖 happens. Note that different actions can happen at the same time 
(𝑡𝑖 = 𝑡𝑗 for 𝑎𝑖 ≠ 𝑎𝑗 is possible), as parallel plans are used. Also, actions in  can have several occurrences in 𝜋(𝜌) provided they happen 
at different times (𝑡𝑖 ≠ 𝑡𝑗 for 𝑎𝑖 = 𝑎𝑗 is possible).  is the cost of the plan. 𝜋(𝜌) induces a chronologically-ordered sequence of full 
states ⟨0…𝑒𝑛𝑑⟩, where 0 =  and  ⊆ 𝑒𝑛𝑑 . The plan length (aka makespan) is the time of the state 𝑒𝑛𝑑 . A plan does not need to 
be optimal in terms of length or cost, but all their actions are assumed to be relevant and play a role in the plan. In other words, if 
an action is removed, the plan becomes invalid. Fig. 2 shows a fragment of a parallel plan for zenotravel, with the timestamps and 
actions.

2.2. The CP paradigm

In CP constraints are declared over a set of decision variables that represent the properties a solution must satisfy. This paper 
focuses on the particular case of a Constraint Satisfaction Problem (CSP), namely ⟨ ,,⟩, where  is a set of variables,  represents 
the domain for each variable and  is a set of constraints among the variables in  that restrict their possible values in .

2.2.1. CSP solving

A CSP is typically solved by using search methods that find an evaluation of values in the corresponding domains to a subset 
of variables 𝑒𝑣 ⊆  . An evaluation of values to variables is consistent if it does not violate any of the constraints in . Such an 
evaluation is complete if it includes all variables in  , that is, |𝑒𝑣| = ||. An evaluation is a solution for the CSP if it is both 
consistent and complete.

A CSP can have many solutions, i.e., different consistent and complete evaluations. It is important to note that in absence of a 
metric over  one is dealing with a pure satisfaction problem, rather than a Constraint Optimization Problem. Thus, many solutions 
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2.2.2. Constraint propagation

Constraint propagation is a reasoning mechanism used in CP that reduces an original CSP to another simpler, without changing its 
solutions, by enforcing consistency [31,32]. Several types of consistency can be considered, such as node, arc and path consistency, 
which are supported by most propagators with linear, quadratic and cubic complexity, respectively.

Given ⟨ ,,⟩, constraint propagation performs a transformation process that infers a new ⟨ ,′,′⟩. The objective is to create 
new domains in ′, more reduced than , for the variables  . ′ is a new set of constraints, where some constraints in  are 
strengthened, others are removed because they become redundant, and others are new. Ideally, one wants to reduce the domain of 
each variable 𝑥 ∈ to just one single value, which would return a solution to the CSP.

Most CSP solvers use some kind of constraint propagation before solving. Unlike CSP solving, constraint propagation usually 
returns an incomplete evaluation of values to variables, i.e., |𝑒𝑣| ≤ ||. Rather than solving the CSP completely, constraint 
propagation reduces the domain of some (no necessarily all) variables to just one value.

If 𝑝𝑟𝑜𝑝 ⊆  is the set of variables with their domains reduced to one value via propagation, any possible solution to the CSP will 
only need to assign values to the variables in  ⧵𝑝𝑟𝑜𝑝. 𝑝𝑟𝑜𝑝 is likely to be incomplete, but the values of 𝑝𝑟𝑜𝑝 will be correct for any 
possible solution to the CSP.

2.3. Learning from multiple plans. Learning variants

Let us consider a planning domain 𝛿 = ⟨ , ,⟩ and a set of empty operators ?. The sets  and ? are equal, but by empty 
we mean that the preconditions, effects and costs are completely unknown in ?. The name (or a unique identifier) and parameters 
of operators in ? must be known. This assumption is minimally necessary to identify common structures and, consequently, very 
frequent in literature. The parameters are needed to automatically generate a set of candidate predicates that can be potentially 
learned in every operator. For example, board(?p - person ?a - aircraft ?c - city){} and refuel(?a - aircraft 
?c - city ?l1 - flevel ?l2 - flevel){} are empty operators for the operators of Fig. 1. Let us also consider a set of n
problems for 𝛿, where each 𝜌𝑖 = ⟨𝛿,𝑖,𝑖,𝑖,𝑖⟩, and their corresponding observed plans Π𝑛(𝛿) = {𝜋(𝜌1) … 𝜋(𝜌𝑛)}, where each 𝜋(𝜌𝑖) is 
as given in Fig. 2. For simplicity in the notation, each plan 𝜋(𝜌𝑖) in the library is extended with its 𝑖 and 𝑖, retrieved from 𝜌𝑖. The 
plans use the domain 𝛿, so their actions are always consistent. This means the plans are non-conflicting and they do not induce an 
over-constrained problem.

The learning task is formalized from a collection of plans Π𝑛(𝛿) as the tuple 𝑛 = ⟨𝛿,Π𝑛(𝛿), 𝜇(𝛿),?⟩, where the mutex information 
given in 𝜇(𝛿) can be optionally empty.

In the literature, a learning task 𝑛 presents different variants w.r.t. the information on the domain, problems and plans:

1. Given a domain 𝛿 = ⟨ , ,⟩, the predicates in  can contain, or not, static information. A domain without static predicates has 
a positive impact in learning. Similarly, the learning task benefits from having the mutex information in 𝜇(𝛿).

2. Given a problem 𝜌𝑖 = ⟨𝛿,𝑖,𝑖,𝑖,𝑖⟩, 𝑖 is a full state, but 𝑖 can be a partial (|𝑖| < |𝑖|) or a full state (|𝑖| = |𝑖|). Having 𝑖
defined as a full state is more informative for learning.

3. The collection of plans in Π𝑛(𝛿) has an arbitrary size, from one to thousands of plans. Plans in Π𝑛(𝛿) can be sequential or 
parallel, i.e., with concurrent actions. The actions in each 𝜋(𝜌𝑖) can be fully known or not, and the sequence of intermediate 
states between actions (aka state trajectory [12]) can be observed, or not, as part of the plan trace. Having a full knowledge on 
actions and states is positive for learning. Additionally, both actions and states can be observed with or without noise. From the 
action perspective, noise implies: i) uncertainty on the exact time when an action happens (the one supported in this work), ii) a 
missing action that is not observed, or ii) an action that is observed when it should not. From the state perspective, noise implies 
that intermediate states are observed with errors. Obviously, noiseless observations are preferred for learning.

These variants lead to different learning approaches. The main advantage of the proposed approach is that it unifies 1, 2 and 
partly 3, as discussed in Section 2.5.

A solution for the learning task 𝑛, denoted as (𝑛), is an approximation in ? to the original operators in , used as the 
reference model. It is an approximation because the learned operators are not always identical to the original ones, as some 
preconditions/effects/costs can be missing. (𝑛) must satisfy all plans in Π𝑛(𝛿) (completeness) and they must imply no contradictions 
nor mutexes in the states induced by their executions (soundness). Formally, (𝑛) must be consistent with the information given 
in 𝑛. This means that if actions 𝑖 in every 𝜋(𝜌𝑖) are instantiated again according to the preconditions+effects+cost of operators 
in (𝑛), all plans in Π𝑛(𝛿) are consistent: i) 𝑖 is achieved from 𝑖; ii) if observed, the sequence of intermediate states between 
actions encompasses the original state trajectories in every 𝜋(𝜌𝑖); and iii) the observed cost of 𝜋(𝜌𝑖) is consistent with the learned 
costs. Intuitively, all actions could be instantiated from the operators (𝑛), and Π𝑛(𝛿) would remain consistent.

Fig. 3 shows a possible (𝑛) that approximates the original operators of Fig. 1. As can be seen, the preconditions, effects and 
cost that appear are all correct. However, the precondition (at ?a ?c) is not learned in board nor in refuel. The cost is not 
learned in board, but it is learned in refuel. Therefore, the learned model is incomplete but 100% precise.

2.4. Popular metrics used in learning

A learning task 𝑛 must fill in the operators in ? by reasoning over the observations of a collection of plans Π(𝛿). Consequently, 
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learning can be considered as an automated design task to create a new model (𝑛) that is syntactically similar to the reference 
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(:action board

:parameters (?p - person ?a - aircraft ?c - city)

:precondition (and (at ?p ?c))

:effect (and (not (at ?p ?c)) (in ?p ?a)))

(:action refuel

:parameters (?a - aircraft ?c - city ?l1 - flevel ?l2 - flevel)

:precondition (and (fuel-level ?a ?l1))

:effect (and (not (fuel-level ?a ?l1)) (fuel-level ?a ?l2)

(increase (cost) 2)))

Fig. 3. Example of two operators learned for zenotravel.

model . The common metrics used in learning action models are inspired by those used in pattern recognition and classification [27], 
and keep their notation. Let TP, FP, TN, FN be true positive, false positive, true negative, and false negative, respectively, in (𝑛)
calculated over a number N of preconditions and effects in . For each operator, TP stands for a precondition/effect that is in both 
(𝑛) and , whereas a TN is not present in any of them. In terms of TP and TN, (𝑛) and  are syntactically identical. FP stands 
for a precondition/effect that is in (𝑛) but not in , whereas a FN is in  but not in (𝑛). In terms of FP and FN, (𝑛) and 
show differences. From the most basic metrics to the most elaborate ones they are:

• Missing information and error counting, defined as FN. Intuitively, one count of error occurs if an action precondition or effect 
is not learned when it should.

• Accuracy and error rate. Accuracy is defined as (TP+TN)/N, while error rate is defined as (FP+FN)/N (note that Error 
rate=1-Accuracy). Accuracy provides relative indicators over the total number of preconditions or effects in , and error rate 
the opposite.

• Precision (aka positive predictive value) and recall (aka sensitivity). Precision is the fraction of relevant instances among the 
learned ones, and provides a notion of how error-free and sound (𝑛) is. It is defined as TP/(TP+FP). Precision=1 means no 
FP. Recall is the fraction of the total amount of relevant instances that are learned, and provides a notion of how complete (𝑛)
is. It is defined as TP/(TP+FN). Recall=1 means no FN. In perfect learning, Precision=Recall=1, which implies no FP/FN.

• F1 score. It is the harmonic mean of the precision and recall, which analyzes equally both values in one metric. It is defined as 
2⋅Precision⋅Recall/(Precision+Recall). In perfect learning F1=1.

2.5. Related work

Classification tasks have been addressed by learning and machine learning. Particularly, they have been solved by natural 
language inference, recurrent and convolutional neural networks, Markov networks, deep learning models, etc. [27]. These 
approaches use regular expressions, rules and grammars to identify and classify entities into pre-defined categories from thousands 
of observations. Learning action models in planning is a type of classification that aims at identifying common structures (mainly 
preconditions and effects) that are consistent with the input observations. Formally, these observations induce a set of constraints 
the learned models must satisfy. Therefore, CP paradigms are, a priori, a good starting point for investigation.

2.5.1. Use of CP in constraint learning

A major bottleneck in the use and resolution of CP, and particularly CSPs, is modeling, so constraint acquisition has been studied 
in the last decades as a type of learning. Such acquisition is an interactive process between the user and the machine that consists 
in learning a constraint network from solutions, and non-solutions, of the problem to be formulated. Similarly, inductive logic 
programming [36,37] yields model-theories by constructing first-order clausal theories from examples of solutions and environment 
knowledge. In [38], authors use event calculus to learn action models from positive and negative solutions. In all these cases, 
information about (state) changes and some degree of interactivity with the user are required.

CONACQ [39] is an approach that is capable of learning a constraint network from a set of traces and a library of constraints, 
and has been applied to learn robot behavior in the form of actions [40]. It uses an ad-hoc CP formulation, which relies on 
preconditions+effects verification and requires sequential positive+negative plan traces. Although used for learning, it is more 
related to planning, as the solution represents one possible execution, of many, of the sequence of actions that then might need to be 
manually adjusted.

ConstraintSeeker [41] and ModelSeeker [42] are also related to constraint acquisition, as they exploit regular structures of 
constraint problems to find common patterns that apply to group elements. ConstraintSeeker uses the input samples to return a 
ranked list of matching constraints over a constraint catalog that are presented to normal users, while ModelSeeker generalizes 
models from positive+negative traces and suggests potential solutions. Both approaches may require interaction with a user, and 
focus more on categorization than on real learning.

QuAcq [43] learns constraint networks by asking the user to classify partial queries, that is, examples the user needs to classify 
as solutions or non-solutions. MultiAcq [44] is an extension of QuAcq to make the acquisition process more efficient. In particular,
154

MultiAcq tries to learn more than one constraint (explanation) by query.
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Table 1

Learning variants of approaches in recent literature (in chronological order).

Name Mutex info 𝑖 Intermediate 
information

Noisy 
observations

Cost learning

ARMS unsup partial acts req

states sup

unsup unsup

LAMP unsup partial acts req

states sup

unsup unsup

AMAN unsup partial

full

acts req

states unsup

mistaken acts unsup

RIM unsup partial acts req

states unsup

unsup unsup

LOCM unsup partial acts req

states unsup

unsup unsup

LOCM2 unsup partial acts req

states unsup

unsup unsup

ASCoL unsup partial acts req

states unsup

unsup unsup

NLOCM unsup partial acts req

states unsup

unsup sup

LOUGA unsup partial

full

acts req

states sup

unsup unsup

FAMA unsup full acts sup

states sup

unsup unsup

Cube-Space AE unsup full acts unsup

states req

noisy states unsup

FOSR unsup - state space unsup unsup

FLGP unsup - state space unsup unsup

SAM unsup full acts req

states req

unsup unsup

PAL unsup partial

full

acts unsup

states req

unsup unsup

LBCRL unsup - state space unsup unsup

LPDVR unsup full acts unsup

states unsup

unsup unsup

LvCP sup partial

full

acts req

states sup

start times of 
acts

sup

All in all, constraint acquisition and inductive logic programming alleviate the significant expertise required for CP modeling. 
Having many constraints allows for good models, but they are not 100% precise. Although there are several approaches, which even 
make use of heuristics to accelerate convergence, the main drawback is that they require a number of queries that could be too large 
for a human user. Also, they require a strong interaction and common knowledge to communicate between the user and the machine.

From a planning perspective, there are three important differences between constraint acquisition/induction and learning action 
models. First, the underlying constraint model in planning is known as it mainly relies on causal links. The constraints do not need 
to be acquired, but satisfied. Second, the solution of constraint acquisition/induction is closer to a set of constraints rather than to 
a real model of actions. Informally, the solution found is similar to the CP formulation proposed in this work (see Section 3). Third, 
positive and negative traces are needed in acquisition/induction, which in planning is uncommon (negative plans in planning are 
useless). There is, however, an important similarity between them: they both provide an interesting approach to learn via constraint 
reasoning. This means that their learning is knowledge-based, rather than statistics-based.

2.5.2. Learning action models

Learning classical action models in recent literature has been addressed by different approaches, which do not exploit CP 
sufficiently. A comprehensive description and classification of them is presented in [7,45]. Therefore, the relevant works are 
organized according to the learning variants and the metrics presented in Sections 2.3 and 2.4, which are shown in Tables 1 and 2, 
respectively.

As a summary, Table 1 depicts whether: i) knowledge on mutex information 𝜇(𝛿) is (un)supported; ii) 𝑖 can be a partial or a 
full state; iii) intermediate information is required (mandatory), supported (optional) or unsupported for actions and states; iv) noisy 
information is (un)supported; and v) learning action costs is (un)supported. Table 2 depicts: i) the metric that is used for evaluating 
the learned model, in some cases individualized for preconditions and effects and in others for the entire model without distinction; 
ii) if the precision of the learned model can be guaranteed; iii) the dataset size (w.r.t. the number of plans and actions); and iv) the 
number of tested domains.

One of the most incipient works in planning learning was [46], as a way to improve partially known action models by using 
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intermediate states in plans. ARMS [6] was a pioneer approach to learn action models, without cost, from scratch. In particular, the 
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Table 2

Evaluation and metrics of the learning task in recent approaches. “-” means that this information is not provided in the paper.

Name Metric used Precision guaranteed? Dataset size

(plans & acts)

Domains

ARMS pre: error counting

eff: redundancy

no 160 plans

1600-4320 acts

6

LAMP pre: error rate

eff: error rate

no 100-200 plans

1300-6200 acts

4

AMAN pre: error rate

eff: error rate

no 40-200 plans

-

3

RIM model accuracy no 30-150 plans

-

3

LOCM model adequacy (similar 
to accuracy)

no - 5

LOCM2 - no - 10

ASCoL false positive/negative of 
static relations

no 1-24 plans

8-360 acts

15

NLOCM error counting in 
operators cost

no 100-1000 plans

1000-10000 acts

40

LOUGA pre: error rate

eff: error rate

no 160 plans

800-3200 acts

5

FAMA pre: precision+recall

eff: precision+recall

no 1-10 plans

10-100 acts

15

Cube-Space AE model accuracy no 360 plans

30 acts

6

FOSR validation test (similar to 
accuracy)

no - 4

FLGP validation test (similar to 
accuracy)

no - 6

SAM model safety no 3-9 plans

-

12

PAL - no 112 plans

-

3

LBCRL - no - 4

LPDVR model differences (similar 
to accuracy)

no - 8

LvCP pre: precision+recall+F1
eff: precision+recall+F1
cost: precision+recall+F1

yes 10-50 plans

30-3250 acts

22

action model is initially unknown; it only requires the sequence of actions as noiseless plans, and the information of observable states 
can be omitted. ARMS uncovers a number of constraints, as a set of clauses, from the actions of the input plans to confine the space of 
learned models. Each clause is associated with a weight representing the priority in satisfying the constraint, thus building a weighted 
propositional MAX-SATisfiability problem. As an optimization problem, it tries to minimize the error counting and redundancy rates 
which returns models that are not 100% precise (see Table 2).

LAMP [11] supports more expressiveness than ARMS and learns action models with quantifiers and logical implications from 
observations of plans and partial intermediate states. LAMP encodes propositional candidate formulas that are passed to a Markov 
Logic Network for selecting the most likely subsets of candidates, which are finally transformed into learned action models. These 
models summarize the observed plans as much as possible, but they can be imprecise.

AMAN [26] was the first successful approach to learn action models where observed actions are allowed to be with noise 
(observation of state information is unsupported). This means that some actions in a plan may be mistakenly observed, giving 
birth to uncertainty. AMAN generates a set of domain models, builds a probabilistic graphical model to capture the physics of the 
domain and finally learns the model that best explains the observed plans. Again, the learned model can be partially imprecise.

Similarly to ARMS, RIM [47] uses a MAX-SAT approach, where the constraints are derived from the plan traces, as well as the 
preconditions+effects from an incomplete action model. This allows RIM to learn a refined model of actions and macro actions that 
maximize the model accuracy, although it cannot guarantee 100% of precision.

LOCM [48] started a family of inductive learning systems that use Finite State Machines to collect the transitions in the plan 
traces. LOCM induces action models without the need of initial, goal or intermediate states. LOCM2 [49] generalizes the domain 
representation of LOCM to allow multiple state machines, with each machine characterized by a set of transitions. This allows

LOCM2 to deal with a higher coverage of domains where action models can be learned, but no metrics for adequate comparisons are 
used in its evaluation [49]. Following the path of LOCM and LOCM2, ASCoL [50] does not learn an action model in its own, but it 
exploits graph analysis to automatically identify static relations missed in already acquired action models. NLOCM [51] is a Numeric 
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extension of LOCM that extends the finite state automata of LOCM to identify the structural elements and deal with numeric weights 



Information Sciences 628 (2023) 148–176A. Garrido

on the transitions. NLOCM uses LOCM2 as a previous step to learn the action model, and then uses CP to learn action costs from 
plan traces (with only the final cost of the plans as extra information). Basically, it encodes a linear constraint, such that the sum of 
the costs of the individual actions equals the cost of the entire plan, as in the proposed approach. NLOCM also considers the operator 
parameters that are important for incurring cost, which is beyond the work of this paper. NLOCM is the first, and only approach in 
recent literature, that supports cost learning. However, it does not support noisy observations, nor guarantees perfect precision and 
requires huge datasets.

LOUGA [24] combines an ad-hoc and a genetic algorithm to learn preconditions and effects, respectively, from plan traces where 
the goals are not strictly necessary. LOUGA supports partial intermediate states. For the effects, an individual is encoded where each 
gene represents whether a predicate is part of the positive, negative effects, or none of them. The preconditions are learned by using 
a more efficient and specific algorithm. According to [24], LOUGA shows better results than ARMS in a few domains, but it cannot 
guarantee perfect precision.

FAMA [12] automatically compiles the task of learning actions into a planning task which is solved by a planner. It supports 
incomplete, or empty, plan traces and information on intermediate states that can be partial, which reduces the required observability 
to the minimum. However, it requires both an initial and final (goal) full state. FAMA provides better values for precision and recall 
than ARMS, but it cannot guarantee 100% of precision.

Cube-Space AE [52] proposes the Cube-Space AutoEncoder neuro-symbolic architecture, which is trained to produce an effective 
discrete state transition model to learn symbolic representations of an action model. It uses neural networks to extract the action 
effects from (probably) noisy image-based observations of the environment, which means the domains need to be image-based; it 
requires both the initial and goal full state as raw visual inputs. It is mainly focused on learning effects and, according to the authors, 
the precondition learning needs to be improved. It cannot ensure perfect precision.

A SAT formulation to learn First-Order Symbolic Representations from non-symbolic data, which is denoted here as FOSR, is 
introduced in [8]. It emphasizes a different idea to learn from state graphs rather than from plan traces. In particular, the objective is 
to find the simplest model (first-order representations structured in terms of objects and relations) which explains the structure of the 
input graphs that capture the state space. The main advantage is that it does not assume knowledge of the operators or predicates, as 
they are all learned from the input. However, the resulting domain representation is only correct for the observed problems, and not 
necessarily for others, which means perfect precision is not guaranteed. In [28], a Formulation to Learn General Policies (or models), 
which is denoted here as FLGP, is presented. Similarly to [8], the learning scheme uses state spaces, in terms of sample instances, 
which do not require their plans. The idea is to learn policies mapped from the state transitions. This formulation is represented as 
an optimization task and solved via Weighted Max-SAT. It cannot guarantee 100% of precision.

TempAMLSI [9] is a Temporal Action Model Learning approach based on grammar induction, which learns a deterministic 
finite automaton corresponding to the regular grammar generating the action traces. Unlike most learning approaches, it requires 
positive+negative traces to induce the preconditions and effects of the actions; it learns an intermediate classical domain and then 
converts it into a temporal domain. TempAMLSI supports a high level of action concurrency for temporal planning, beyond the scope 
of this paper, so it is not included in the Tables 1 and 2, which restrict to classical planning.

SAM [30] is a Safe Action Model learning approach that deals with reliability in terms of model safety. It learns an action 
model that is sound w.r.t. all the observations and guarantees the actions achieve the intended effects to meet the goals, like in the 
proposed approach. SAM does not aim at learning a 100% precise model, but one that is sufficient for finding a safe plan for all 
the observations. Additionally, it requires plan traces that include not only all the actions but also all the intermediate states, which 
means a high level of observability.

PAL [53] interleaves planning, acting and learning using an initial (possibly incomplete and incorrect) draft planning domain and 
a sequence of intermediate states. It uses a different approach for learning, which focuses on finding an abstraction of the continuous 
environment, with continuous states, into a finite set of states that can scale up to large state spaces. However, it cannot guarantee 
perfect precision.

The thread initiated in [8] is continued in recent works. First, in [29], with Language-Based Causal Representation Learning, 
which is denoted as LBCRL. The internal structure of the states is recovered from state graphs, where the states are black-boxes with 
unknown structure. It learns the representations over a first-order causal domain-independent language, like PDDL, with a known 
structure (syntax) and semantics. The representation is expressed and solved using a SAT solver. The authors state their approach 
is evaluated on four domains, but no additional results are provided. The idea of learning causality is very useful in other works, 
particularly in those for industrial automation [14], to describe the behavior of the models mathematically. Second, [54] presents 
a formulation to Learn Planning Domains on Visual Representations, denoted here as LPDVR, representing the initial and goal 
states. The idea is to learn the domain along with the grounding of the (learned) predicates so that they can be evaluated on any 
parsed image, which requires vision modules for object recognition to map images into the parsed representations. In all these woks, 
precision cannot be ensured.

The proposed approach is based on the works in [13,35]. It uses a similar CP formulation to encode preconditions and effects. The 
model learned in those works is for temporal planning rather than for classical planning, so they are not included in the comparative 
Tables 1 and 2. In [13], only one plan is observed for learning (one-shot learning), which is extended in [35] with more plans. 
Both works support mutex information, but they do not support noisy observations on the start time of the actions, nor guarantee 
perfect precision learning, which are key differences. The distinctive features of the proposed approach, named LvCP (Learning via

Constraint Propagation) in the Tables, w.r.t. other works are its flexibility and coverage. First, it deals with, and without, static 
information and supports mutex information. Second, the problem goals 𝑖 can be defined as partial or full states. Third, the plans 
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can include both parallel and sequential actions. A partial or full sequence of intermediate states is unnecessary, but can be supported 
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Variables: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ∈ {1..4}
Reference model to be learned: {𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3, 𝑥4 = 4, 𝑥5 = 4}
Constraint1: 𝑥2 > 1
Constraint2: 𝑥1 + 𝑥2 = 3
Constraint3: 𝑥3 + 𝑥4 = 7

Fig. 4. CSP solving vs. constraint propagation in learning. A motivating example.

as part of the plan observations as well. Fourth, noise is supported in the form of uncertainty on the timestamps of actions, which 
means a more robust model. Fifth, action costs can be learned. Sixth, it learns an action model that meets all the observations, which 
means a safe action model like in SAM. Seventh, the constraint propagation approach ensures perfect precision, which is a novel 
feature that differs from all existing approaches. Additionally, the experiments also evaluate the recall and F1 score, individualized 
for preconditions, effects and cost.

2.5.3. CSP vs. SAT

Constraint satisfaction and propositional SATisfiability are closely related frameworks [55]. Currently, SAT solvers are very 
efficient and some approaches use SAT in one way or another, such as CONACQ, MultiAcq, ARMS, RIM, FOSR, FLGP or LBCRL. 
From the modeling point of view, CSP formulations can be mapped into SAT ones and vice versa. However, non-boolean variables 
make the SAT encoding more tedious. On the contrary, there is no need of clauses to ensure that a CSP variable is given a value, nor 
to ensure that each CSP variable is given only one value [55]. Hence, the CSP encoding is easier. This is the first reason why using a 
CSP formulation is more appealing in this work.

From the propagation point of view, in many cases there is a direct correspondence between a propagation method for CSP and 
another one for SAT [56]. But it has been proved that different encodings can have a serious impact on the level of consistency 
achieved [55]. First, translating a CSP to SAT can be beneficial only if some particular encodings are used. Second, propagation on 
SAT encodings does less work than achieving some levels of consistency on the original CSP. The interest in propagation is the second 
reason to use a CSP formulation rather than a SAT one. Note, therefore, that one positive consequence is that most of the constraints 
of the formulation in Section 3 can be turned into SAT clauses and managed by modern SAT solvers.

3. CP formulation

3.1. Motivating example. Ensuring perfect precision via constraint propagation

In order to show how constraint propagation guarantees perfect precision, the example in Fig. 4 is used. There are five integer 
variables 𝑥1… 𝑥5 whose values need to be learned, provided some observations that impose the three constraints depicted. Rather 
than learning an action model from plan traces, it learns here the values of the variables from the constraints observed; but the 
underlying idea is the same. The reference model to learn is {𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3, 𝑥4 = 4, 𝑥5 = 4}. Any value learned that does not 
match with the reference value will be imprecise. Obviously, any current or future observation must be consistent with that model 
because there are no conflicting observations.

When solving the CSP, a possible solution/model is 𝑠𝑜𝑙1 = {𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 4, 𝑥4 = 3, 𝑥5 = 1}. But in fact, there are other 
possible solutions, e.g., 𝑠𝑜𝑙2 = {𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 4, 𝑥4 = 3, 𝑥5 = 2}, 𝑠𝑜𝑙3 = {𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3, 𝑥4 = 4, 𝑥5 = 1}, etc. These solutions 
are imprecise. Since every solution gives value to all variables, none of the three solutions matches without errors the reference 
model, because 𝑥5 is learned incorrectly. Moreover, these solutions are only valid for the current set of constraints. Given a new 
“Constraint4: 𝑥1 + 𝑥5 > 4”, these solutions will lead to a contradiction or inconsistency, which is highly undesirable: if one learns 
something, it must be correct not only for the current observations, but also for any future observation.

Let us now consider a constraint propagation approach. From Fig. 4, the iterative process runs over the values of the domains and 
posts constraints to check the (path) consistency of the model. If constraint 𝑥1 ≠ 1 is posted, the propagation detects a contradiction. 
This means that 𝑥1 = 1 in every possible solution. Then, it tries 𝑥2 and posts 𝑥2 ≠ 1, but the propagation does not find an inconsistency. 
After unposting that constraint, it posts 𝑥2 ≠ 2 and the propagation detects an inconsistency. Therefore, 𝑥2 = 2 in every solution. 
Finally, it tries {1..4}-values with 𝑥3, 𝑥4 and 𝑥5, but no inconsistencies are detected. This means these three variables are still open 
and not learned.

Note that solving this CSP finds solutions that assign values to all five variables, but they introduce imprecision in form of errors. 
On the contrary, propagation only returns {𝑥1 = 1, 𝑥2 = 2}, which is incomplete but 100% precise. Constraint propagation makes 
no assumption about the part of the solution in which there is insufficient information to learn with perfect precision. Moreover, 
{𝑥1 = 1, 𝑥2 = 2} do not need to be rechecked for new observations. If Constraint4 is also given, the values for 𝑥1 and 𝑥2 are still 
correct. After posting+propagating 𝑥5 ≠ 4, an inconsistency is detected, which means that 𝑥5 = 4. Consequently, the propagation 
finds the evaluation {𝑥1 = 1, 𝑥2 = 2, 𝑥5 = 4} which matches perfectly the reference model for the three variables. As can be seen, it 
learns less but better. If future constraints for this model are given, everything that has been assigned/learned remains correct and 
the model keeps its robustness.

The computational complexity of the process of successive propagation steps depends on the domain size of the unassigned 
variables and the complexity of the propagation in itself. The propagation steps are run several times, but it is important to note that 
each propagation has polynomial complexity. On the contrary, solving has a non-polynomial complexity.

Note that if the model has only one solution, the result of solving subsumes that of propagation. But when several solutions are 
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possible, which is very common when the number of observations is limited, assigning values to  ⧵ 𝑝𝑟𝑜𝑝 variables is imprecise 
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Table 3

Formulation of variables. Without loss of generality, domains of X1 and X4 are modeled in ℤ+.

Id. Variable Domain Description

X1 𝖼𝗈𝗌𝗍(𝑜) ℤ+ ∪ {0} cost of 𝑜

X2 𝗉𝗋𝖾(𝑝, 𝑜) {false, pre} symbolic var with the type of precondition 𝑝

X3 𝖾𝖿𝖿 (𝑝, 𝑜) {false, add, del} symbolic var with the type of effect 𝑝

X4 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ℤ+ ∪ {0} start time of 𝑜𝜋
X5 𝗌𝗎𝗉(𝑝𝜋 , 𝑜𝜋 ) ∅ ∪ {𝑜′

𝜋
} ∈ 𝜋 supporters for causal link ⟨𝑜′

𝜋
, 𝑝𝜋 , 𝑜𝜋⟩

and risky. On the contrary, when reliability and precision are important, constraint propagation is an appealing way to learn, and 
addressing a learning task 𝑛 via constraint propagation is very promising.

3.2. Preprocessing

The CP formulation represents a learning task 𝑛 = ⟨𝛿,Π𝑛(𝛿), 𝜇(𝛿),?⟩, as defined in Section 2.3, which encodes the preconditions, 
effects and cost of each operator, and the actions of the observed plans. In order to learn the preconditions+effects of an operator, 
the approach first needs to populate a potential set of candidate predicates.

Given the domain 𝛿 and the set ?, this approach defines the alphabet of 𝑜 ∈ ?, denoted as 𝛼(𝑜), as the set of all predicates 
𝑝 ∈  whose types belong to the types of the parameters of 𝑜. For instance, according to the types, predicates and parameters of

board in Fig. 1, 𝛼(board)={(at ?p - person ?c - city), (at ?a - aircraft ?c - city), (in ?p - person ?a 
- aircraft)}.

The candidates of an operator 𝑜 are defined as the two-set tuple 𝛾(𝑜) = ⟨{𝑝𝑖}𝗉𝗋𝖾,{𝑝𝑖}𝖾𝖿𝖿 ⟩, where 𝑝𝑖 ∈ 𝛼(𝑜). {𝑝𝑖}𝗉𝗋𝖾 denotes all 
candidates that can be preconditions of 𝑜, whereas {𝑝𝑖}𝖾𝖿𝖿 denotes all candidates that can be either positive or negative effects 
of 𝑜, identified as 𝖾𝖿𝖿+(𝑜) or 𝖾𝖿𝖿−(𝑜) respectively; |𝛾(𝑜)| = 2 ⋅ |𝛼(𝑜)|. Note that |𝛾(𝑜)| represents the number of candidates of 𝑜, no the 
number of possible combinations of subsets of preconditions+effects, which is exponential.

In this preprocessing step, a mapping between the operators in the domain and the actions in a plan is created. For each 𝜋 ∈Π𝑛(𝛿), 
let 𝑜𝜋 be an action in 𝜋 that is the result of grounding an operator 𝑜 ∈ ?. Let 𝑝 ∈ 𝛼(𝑜) be a predicate of 𝑜, which can be used as 
a precondition/effect, that is instantiated for an action 𝑜𝜋 , and denoted as 𝑝𝜋 . For instance, given the operator 𝑜=(board ?p 
- person ?a - aircraft ?c - city) and the predicate 𝑝=(at ?p - person ?c - city), it creates a mapping with a 
possible action 𝑜𝜋=(board person1 plane1 city0) and 𝑝𝜋=(at person1 city0). The underlying idea of this mapping is 
to simplify the CP formulation: if 𝑝 is learned as a precondition of 𝑜, any 𝑝𝜋 and 𝑜𝜋 must be consistent with such decision in 𝜋. 
For instance, if (at ?p - person ?c - city) is learned as a precondition of (board ?p - person ?a - aircraft ?c -
city), then (at person1 city0) will be a precondition of (board person1 plane1 city0); and analogously for another 
action 𝑜𝜋=(board person2 plane2 city0) and its precondition (at person2 city0).

3.3. Variables

The decision variables are inspired by [35], but the current model is more compact. They are organized in two blocks, as depicted 
in Table 3. The former are the variables for each 𝑜 ∈? and 𝑝 ∈ 𝛼(𝑜) (X1..X3). The latter are the variables for 𝑜𝜋 and 𝑝𝜋 , which must 
be repeated for every plan 𝜋 ∈Π𝑛(𝛿) (X4..X5).

X1 models the cost of the operator.4 X2 represents whether 𝑝 is, or not, a precondition in 𝑜, labeled as pre and false, respectively. 
X3 represents if 𝑝 is learned as a positive or negative effect in 𝑜 (add or del, respectively); false means that 𝑝 is not an effect. X4 is the 
start time of action 𝑜𝜋 ; its value can be known (noiseless observations) or unknown (noisy observations with uncertainty on the start 
time). X5 represents the cause-effect relationship, aka causal link: action 𝑜′

𝜋
supports 𝑝𝜋 , which is required by 𝑜𝜋 . If 𝗉𝗋𝖾(𝑝, 𝑜)=false, 

meaning that 𝑝 is not a precondition of 𝑜 (and, consequently, 𝑝𝜋 is not a precondition of 𝑜𝜋 ), then 𝗌𝗎𝗉(𝑝𝜋, 𝑜𝜋) = ∅, which denotes an 
empty supporter.

The number of variables of the formulation is polynomial in the number of predicates and actions in the plans. Let 𝑈𝛼 be the 
upper bound on the size of the alphabets of the operators. Let 𝑛 be the number of input plans in 𝑛, and 𝑈𝜋 be the upper bound on 
the number of actions in these plans. The number of variables is bounded by O(𝑈𝛼 ⋅ 𝑛 ⋅𝑈𝜋).

In addition to actions in 𝜋 ∈ Π𝑛(𝛿), where Π𝑛(𝛿) = {𝜋(𝜌1) … 𝜋(𝜌𝑛)}, two dummy actions5 are created per problem 𝜌 ∈ {𝜌1… 𝜌𝑛}, 
where 𝜌 = ⟨𝛿, ,,,⟩. First, 𝗂𝗇𝗂𝗍𝜌 represents  (𝖼𝗈𝗌𝗍(𝗂𝗇𝗂𝗍𝜌) = 𝗌𝗍𝖺𝗋𝗍(𝗂𝗇𝗂𝗍𝜌) = 0). For 𝗂𝗇𝗂𝗍𝜌 it does not create 𝗉𝗋𝖾 and 𝗌𝗎𝗉 variables because 
it has no preconditions. 𝗂𝗇𝗂𝗍𝜌 has as many 𝖾𝖿𝖿(𝑝𝑖, 𝗂𝗇𝗂𝗍𝜌)=add as 𝑝𝑖 ∈  and 𝖾𝖿𝖿(𝑝𝑗 , 𝗂𝗇𝗂𝗍𝜌)=del for the false predicates ¬𝑝𝑗 ∈ , as  is 
a full state. Second, 𝗀𝗈𝖺𝗅𝜌 represents  (𝖼𝗈𝗌𝗍(𝗀𝗈𝖺𝗅𝜌) = 0 and 𝗌𝗍𝖺𝗋𝗍(𝗀𝗈𝖺𝗅𝜌) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝜋), with the plan length of 𝜋). 𝗀𝗈𝖺𝗅𝜌 has as many 
𝗉𝗋𝖾(𝑝𝑖, 𝗀𝗈𝖺𝗅𝜌)=pre as 𝑝𝑖 ∈ , thus supporting both a partial or a full goal state. 𝗀𝗈𝖺𝗅𝜌 has no 𝖾𝖿𝖿 variables because it has no effects.

4 The cost is defined per operator. If the cost really depends on the parameters, different per instantiated action of the same operator, we would need to create a 
dummy operator per action, with the same preconditions+effects but different cost. This would be equivalent to have a domain with more operators but with the 
same structure.
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5 Dummy actions are mapped to dummy operators with the same name.
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Table 4

Formulation of planning and mutex constraints.

Id. Constraint

C1 if (𝖾𝖿𝖿 (𝑝, 𝑜)=del) then 𝗉𝗋𝖾(𝑝, 𝑜)=pre

C2 if (𝗉𝗋𝖾(𝑝, 𝑜)=pre) then 𝖾𝖿𝖿 (𝑝, 𝑜) ≠add

C3 ∀ 𝑜: (∃ 𝗉𝗋𝖾(𝑝, 𝑜) ≠false) and (∃ 𝖾𝖿𝖿 (𝑝, 𝑜) ≠false)

C4 iff (𝗉𝗋𝖾(𝑝, 𝑜)=false) then 𝗌𝗎𝗉(𝑝𝜋 , 𝑜𝜋 ) = ∅
C5 if (𝖾𝖿𝖿 (𝑝, 𝑜)=false) then ∀ 𝑜′

𝜋
that requires 𝑝𝜋 : 𝗌𝗎𝗉(𝑝𝜋 , 𝑜′𝜋 ) ≠ 𝑜𝜋

C6 if (𝖾𝖿𝖿 (𝑝, 𝑜)=add) and (𝖾𝖿𝖿 (𝑝, 𝑜′)=del) then 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ≠ 𝗌𝗍𝖺𝗋𝗍(𝑜′
𝜋
)

C7 if (𝗌𝗎𝗉(𝑝𝜋 , 𝑜𝜋 ) = 𝑜′
𝜋
) then 𝗌𝗍𝖺𝗋𝗍(𝑜′

𝜋
) < 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 )

C8 if (𝗌𝗎𝗉(𝑝𝜋 , 𝑜𝜋 ) = 𝑜′
𝜋
) and (∃𝑜𝑡ℎ𝑟𝑒𝑎𝑡 ∣ 𝖾𝖿𝖿 (𝑝, 𝑜𝑡ℎ𝑟𝑒𝑎𝑡)=del) and (𝑜𝜋 ≠ 𝑜𝑡ℎ𝑟𝑒𝑎𝑡

𝜋
) then

(𝗌𝗍𝖺𝗋𝗍(𝑜𝑡ℎ𝑟𝑒𝑎𝑡
𝜋

) < 𝗌𝗍𝖺𝗋𝗍(𝑜′
𝜋
)) or (𝗌𝗍𝖺𝗋𝗍(𝑜𝑡ℎ𝑟𝑒𝑎𝑡

𝜋
) > 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ))

C9 ∀ 𝑜′
𝜋
: (∃ 𝗌𝗎𝗉(𝑝𝜋 , 𝑜𝜋 ) = 𝑜′

𝜋
)

C10
∑

𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑜𝜋 ) ⋅ 𝖼𝗈𝗌𝗍(𝑜) =𝜋

C11 ∀ ⟨𝑝𝑖, 𝑝𝑗 ⟩ ∈ 𝜇(𝛿):
C11.1 not ((𝗉𝗋𝖾(𝑝𝑖, 𝑜)=pre) and (𝗉𝗋𝖾(𝑝𝑗 , 𝑜)=pre))

C11.2 not ((𝖾𝖿𝖿 (𝑝𝑖, 𝑜)=add) and (𝖾𝖿𝖿 (𝑝𝑗 , 𝑜)=add))

C11.3 if (𝖾𝖿𝖿 (𝑝𝑖, 𝑜)=add) and (𝗉𝗋𝖾(𝑝𝑗 , 𝑜)=pre) then 𝖾𝖿𝖿 (𝑝𝑗 , 𝑜)=del

The formulation of variables is both operator- and action-oriented, but including observations of intermediate partial/full states 
is straightforward. To do this, an observation 𝗈𝖻𝗌 needs to be defined, analogous to 𝗀𝗈𝖺𝗅. 𝗈𝖻𝗌(𝑝, 𝑡) is a dummy action that starts at 
time 𝑡, with only one precondition 𝑝, which is the value observed for 𝑝 (𝗉𝗋𝖾(𝑝, 𝗈𝖻𝗌(𝑝, 𝑡))=pre, 𝗌𝗎𝗉(𝑝, 𝗈𝖻𝗌(𝑝, 𝑡)) ≠ ∅), and no 𝖾𝖿𝖿 variables 
at all. The formulation can include as many observations as necessary.

3.4. Constraints

Table 4 depicts the constraints, which are organized in three blocks. First, the constraints that deal only with operators (C1..C3). 
Second, the constraints that combine operators and actions (C4..C10). Clearly, the operator variables impose constraints that must 
be consistent with the actions and vice versa. Third, the constraints when mutex information is given in 𝜇(𝛿) (C11).

C1 and C2 are, respectively, necessary for the STRIPS assumption that negative effects are required as preconditions, and 
preconditions are not part of the positive effects. C3 ensures that every operator has at least one precondition and one effect. 
Although C3 might seem too restrictive, it is included to improve the learning; e.g., an operator without preconditions can start 
indiscriminately, whereas learning an operator without effects is of little use in a plan. Obviously, C3 could be removed if necessary. 
C4 is an if-and-only-if constraint which represents that if 𝑝 is not a precondition in 𝑜, its instantiated version 𝑝𝜋 will not be used as a 
supporter in 𝑜𝜋 , and vice versa. Intuitively, no precondition means no need to be supported. Note, however, that C4 does not prevent 
𝑝𝜋 to be achieved. It only means that 𝑝 is not a precondition in 𝑜 and, consequently, 𝑝𝜋 is not a precondition of 𝑜𝜋 . Similarly in C5, 
if 𝑝 is not an effect in 𝑜 then no instantiated action 𝑜𝜋 will be a supporter of the mapped 𝑝𝜋 for any other action 𝑜′

𝜋
. C6 ensures that 

if two operators have contradictory effects, their instantiated actions cannot happen at the same time. In planning, this avoids effect 
interference. C7 represents the causal link ⟨𝑜′

𝜋
, 𝑝𝜋 , 𝑜𝜋⟩, which means that the supporter 𝑜′

𝜋
of 𝑝𝜋 must happen before the requirer 𝑜𝜋 . C8 

encodes the way to solve a possible threat to the causal link ⟨𝑜′
𝜋
, 𝑝𝜋, 𝑜𝜋⟩: if there exists a threatening operator 𝑜𝑡ℎ𝑟𝑒𝑎𝑡, its mapped action 

𝑜𝑡ℎ𝑟𝑒𝑎𝑡
𝜋

cannot break the causal link and it must be moved forward or backward (aka promotion or demotion in planning). C9 encodes 
that every action in the plan is used as a supporter. This means that actions in plans appear due to at least one causal relationship. C9 
could be removed if necessary, but it is assumed that every action in a plan is relevant. C10 encodes the linear constraint for the cost 
𝜋 of plan 𝜋, where 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑜𝜋) is the number of instances of 𝑜𝜋 in 𝜋.6 Finally, C11 includes the constraints to ensure that two 
mutex predicates cannot hold together. C11.1 represents that two mutex predicates cannot be preconditions of the same operator. 
C11.2 is the analogous constraint for positive effects. Finally, C11.3 is useful to learn negative effects. Given two mutex predicates 
⟨𝑝𝑖, 𝑝𝑗⟩, if 𝑝𝑖 is a positive effect, then 𝑝𝑗 must be a negative effect, provided 𝑝𝑗 appears as a precondition.

The number of constraints of the formulation is also polynomial in the number of predicates and actions in the plans. If 𝑈𝛼

represents the upper bound on the size of the alphabets, 𝑛 is the number of plans, and 𝑈𝜋 is the upper bound on the number of 
actions, the number of constraints is bounded by C8, i.e., O(𝑈𝛼 ⋅ 𝑛 ⋅ 𝑈3

𝜋
). Intuitively, 𝑈𝜋 to the third power is because solving C8 

implies dealing with three actions.

3.5. A simple working example

Let us consider the operator board of Fig. 1, with 𝛼(board)={(at ?p - person ?c - city), (at ?a - aircraft ?c 
- city), (in ?p - person ?a - aircraft)}. Let us also consider the two actions (board person2 plane2 city1) and

(board person1 plane1 city0) of the plan of Fig. 2. According to Table 3, the variables of the formulation are depicted 

6 Note that the cost learning enforced by C10 is independent from the remaining part of the model, as it only involves the X1 variable; it could be calculated a 
posteriori by linear regression of the costs. Hence, although X1+C10 could be modeled separately from the precondition+effect model, the formulation unifies all the 
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elements to be learned.
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𝖼𝗈𝗌𝗍(board)
𝗉𝗋𝖾((at ?p - person ?c - city),board)
𝗉𝗋𝖾((at ?a - aircraft ?c - city),board)
𝗉𝗋𝖾((in ?p - person ?a - aircraft),board)
𝖾𝖿𝖿 ((at ?p - person ?c - city),board)
𝖾𝖿𝖿 ((at ?a - aircraft ?c - city),board)
𝖾𝖿𝖿 ((in ?p - person ?a - aircraft),board)
𝗌𝗍𝖺𝗋𝗍((board person2 plane2 city1))
𝗌𝗎𝗉((at person2 city1),(board person2 plane2 city1))
𝗌𝗎𝗉((at plane2 city1),(board person2 plane2 city1))
𝗌𝗎𝗉((in person2 plane2),(board person2 plane2 city1))
𝗌𝗍𝖺𝗋𝗍((board person1 plane1 city0))
𝗌𝗎𝗉((at person1 city0),(board person1 plane1 city0))
𝗌𝗎𝗉((at plane1 city0),(board person1 plane1 city0))
𝗌𝗎𝗉((in person1 plane1),(board person1 plane1 city0))

Fig. 5. Example of CP variables for board.

if (𝖾𝖿𝖿 ((at ?p - person ?c - city),board)=del) then

𝗉𝗋𝖾((at ?p - person ?c - city),board)=pre

if (𝖾𝖿𝖿 ((at ?a - aircraft ?c - city),board)=del) then

𝗉𝗋𝖾((at ?a - aircraft ?c - city),board)=pre

if (𝖾𝖿𝖿 ((in ?p - person ?a - aircraft),board)=del) then

𝗉𝗋𝖾((in ?p - person ?a - aircraft),board)=pre

if (𝗉𝗋𝖾((at ?p - person ?c - city),board)=pre) then

𝖾𝖿𝖿 ((at ?p - person ?c - city),board) ≠add

if (𝗉𝗋𝖾((at ?a - aircraft ?c - city),board)=pre) then

𝖾𝖿𝖿 ((at ?a - aircraft ?c - city),board) ≠add

if (𝗉𝗋𝖾((in ?p - person ?a - aircraft),board)=pre) then

𝖾𝖿𝖿 ((in ?p - person ?a - aircraft),board) ≠add

not ((𝗉𝗋𝖾((at ?p - person ?c - city),board)=pre) and

(𝗉𝗋𝖾((in ?p - person ?a - aircraft),board)=pre))

not ((𝖾𝖿𝖿 ((at ?p - person ?c - city),board)=add) and

(𝖾𝖿𝖿 ((in ?p - person ?a - aircraft),board)=add))

if (𝖾𝖿𝖿 ((at ?p - person ?c - city),board)=add) and

(𝗉𝗋𝖾((in ?p - person ?a - aircraft),board)=pre) then

𝖾𝖿𝖿 ((in ?p - person ?a - aircraft),board)=del

if (𝖾𝖿𝖿 ((in ?p - person ?a - aircraft),board)=add) and

(𝗉𝗋𝖾((at ?p - person ?c - city),board)=pre) then

𝖾𝖿𝖿 ((at ?p - person ?c - city),board)=del

Fig. 6. Example of CP (C1, C2 and C11.*) constraints for board.

in Fig. 5. The constraints are created for these variables according to Table 4, and are shown in Fig. 6. Most constraints are 
straightforward (e.g., the first six constraints in Fig. 6 represent C1 and C2 for board). C5, C8 and C9 constraints, which use 
universal and existential quantification, need to be programmatically unrolled in the solver by using array-based constraints.

The mutex constraints are also straightforward. Let us optionally consider that ⟨(at ?p - person ?c - city), (in ?p -
person ?a - aircraft)⟩ are mutex. According to C11.*, the last four constraints of Fig. 6 need to be formulated.

4. On the use of constraint propagation for perfect precision learning

Once the CP formulation for a learning task 𝑛 is created, the typical next step is to solve it. As discussed in Section 3.1, a solving 
process gives value to all variables and, when several solutions are possible, this leads to imprecision. On the contrary, constraint 
propagation is used to ensure perfect precision on what is learned. The idea is to analyze the candidates 𝛾(𝑜) = ⟨{𝑝𝑖}𝗉𝗋𝖾,{𝑝𝑖}𝖾𝖿𝖿 ⟩ of 
every operator 𝑜 ∈ ? to learn only those 𝗉𝗋𝖾(𝑜) ∈ {𝑝𝑖}𝗉𝗋𝖾 and 𝖾𝖿𝖿+(𝑜), 𝖾𝖿𝖿−(𝑜) ∈ {𝑝𝑖}𝖾𝖿𝖿 that guarantee 100% of precision. Similarly it 
is proceeded with 𝖼𝗈𝗌𝗍(𝑜).

Initially, all 𝗉𝗋𝖾(𝑜), 𝖾𝖿𝖿+(𝑜), 𝖾𝖿𝖿−(𝑜) are empty. The propagation approach follows the algorithm described in Fig. 7, which iteratively 
propagates constraints over the formulation created for all operators (step 1). The algorithm repeats until no further propagation 
occurs (loop of step 2). Steps 3–9 are for preconditions. The initial domain of 𝗉𝗋𝖾(𝑝, 𝑜) is {false,pre}. If “𝗉𝗋𝖾(𝑝, 𝑜) ≠ false” is posted and 
the propagation7 detects an inconsistency, then 𝑝 cannot be a precondition (detecting “𝗉𝗋𝖾(𝑝, 𝑜) = false” is equivalent to “𝗉𝗋𝖾(𝑝, 𝑜) ≠
pre”). Otherwise, “𝗉𝗋𝖾(𝑝, 𝑜) ≠ pre” is propagated to detect if 𝑝 must be a precondition. Note that after learning that 𝑝 must, or cannot, 
be a precondition, 𝑝 is removed from {𝑝𝑖}𝗉𝗋𝖾 as it is no longer a candidate (steps 6 and 9). This is useful if the algorithm is applied 
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7 This propagation simply invokes the function of the solver to check path consistency.
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1: for all 𝑜 ∈? do

2: repeat

3: {learning preconditions}

4: for all 𝑝 ∈ {𝑝𝑖}𝗉𝗋𝖾 do

5: if propagate(“𝗉𝗋𝖾(𝑝, 𝑜) ≠ false”) detects an inconsistency then

6: remove 𝑝 from {𝑝𝑖}𝗉𝗋𝖾 {post “𝗉𝗋𝖾(𝑝, 𝑜) = false”}

7: else if propagate(“𝗉𝗋𝖾(𝑝, 𝑜) ≠ pre”) detects an inconsistency then

8: add 𝑝 to 𝗉𝗋𝖾(𝑜) {post “𝗉𝗋𝖾(𝑝, 𝑜) = pre”}

9: remove 𝑝 from {𝑝𝑖}𝗉𝗋𝖾
10: {learning positive and negative effects}

11: for all 𝑝 ∈ {𝑝𝑖}𝖾𝖿𝖿 do

12: if propagate(“𝖾𝖿𝖿 (𝑝, 𝑜) ≠ false”) detects an inconsistency then

13: remove 𝑝 from {𝑝𝑖}𝖾𝖿𝖿 {post “𝖾𝖿𝖿 (𝑝, 𝑜) = false”}

14: else if propagate(“𝖾𝖿𝖿(𝑝, 𝑜) ≠ add”) detects an inconsistency then

15: add 𝑝 to 𝖾𝖿𝖿+(𝑜) {post “𝖾𝖿𝖿(𝑝, 𝑜) = add”}

16: remove 𝑝 from {𝑝𝑖}𝖾𝖿𝖿
17: else if propagate(“𝖾𝖿𝖿(𝑝, 𝑜) ≠ del”) detects an inconsistency then

18: add 𝑝 to 𝖾𝖿𝖿−(𝑜) {post “𝖾𝖿𝖿(𝑝, 𝑜) = del”}

19: remove 𝑝 from {𝑝𝑖}𝖾𝖿𝖿
20: until no propagation occurs

Fig. 7. Algorithm for learning preconditions and effects via propagation.

1: {solve to find a complete evaluation 𝖼𝗈𝗌𝗍(𝑜) = 𝑒𝑣(𝑜), ∀ 𝑜 ∈?}
2: solve-CSP()

3: {learning the costs}

4: for all 𝑜 ∈? do

5: if propagate(“𝖼𝗈𝗌𝗍(𝑜) ≠ 𝑒𝑣(𝑜)”) detects an inconsistency then

6: 𝖼𝗈𝗌𝗍(𝑜) ← 𝑒𝑣(𝑜) {post “𝖼𝗈𝗌𝗍(𝑜) = 𝑒𝑣(𝑜)”}

7: remove 𝑜 from ?

Fig. 8. Algorithm for learning costs via solving+propagation.

several times, as in every new application the size of the candidates will be reduced and the loop will be shorter. Ideally, one wants 
to finish with an empty {𝑝𝑖}𝗉𝗋𝖾, meaning that every predicate is assigned a false or pre value. However, this is not always possible as 
in some cases 𝑝 cannot be ensured to be or not a precondition; that is, in the current formulation both options are still possible and 
no inconsistency is detected. Like in the motivating example of Section 3.1, some variables may remain open (not learned). Steps 
10–19 are for effects, and the behavior is similar to preconditions. The initial domain of 𝖾𝖿𝖿 (𝑝, 𝑜) is {false,add,eff}, which entails one 
more propagation step. Steps 12–13 learn if 𝑝 cannot be an effect. Steps 14–16 learn positive effects, whereas 17–19 learns negative 
effects. Again, one wants to finish with an empty {𝑝𝑖}𝖾𝖿𝖿 , but this is not always possible.

Additionally, the approach needs to learn the cost of the operators. The underlying idea of the propagation process is similar to 
the one for preconditions and effects. However, there is an important difference here: the domain of 𝖼𝗈𝗌𝗍(𝑜) variables is unknown 
and could be potentially large. In other words, propagating constraints for all the values of the domain “𝖼𝗈𝗌𝗍(𝑜) ≠ 1”, “𝖼𝗈𝗌𝗍(𝑜) ≠ 2”, 
“𝖼𝗈𝗌𝗍(𝑜) ≠ 3”, etc. to detect inconsistencies is neither sensible nor practical. A mixed approach of solving+propagation is used, which 
still guarantees perfect precision.

The part of the model for learning costs is given by the X1 variables and the C10 constraints of Tables 3 and 4, respectively. 
Therefore, the algorithm only needs to give values (i.e., solve) to the X1 variables. Although the solving process can return an 
imprecise solution, the assigned value to each variable can be used for the propagation and detection of inconsistencies. Clearly, if a 
constraint that negates a variable-value assignment leads to an inconsistency, such a value must be assigned to that variable in every 
possible solution, which means that it matches the reference cost with absolute precision.

The algorithm in Fig. 8 describes the process. Step 2 solves the resulting CSP and retrieves the first solution found, which returns a 
possible evaluation 𝑒𝑣(𝑜) to each 𝖼𝗈𝗌𝗍(𝑜). This evaluation is used in propagation (steps 3–7). In step 5, if “𝖼𝗈𝗌𝗍(𝑜) ≠ 𝑒𝑣(𝑜)” is posted and 
the propagation detects an inconsistency, it can guarantee that 𝖼𝗈𝗌𝗍(𝑜) = 𝑒𝑣(𝑜). Consequently, 𝖼𝗈𝗌𝗍(𝑜) does not need to be rechecked in 
future applications of this algorithm (step 7). If no inconsistency is detected, 𝖼𝗈𝗌𝗍(𝑜) cannot be precisely learned yet and the value of 
𝖼𝗈𝗌𝗍(𝑜) remains open.

Formal properties

Lemma 1. Guarantee of precision. The propagation process ensures learning with perfect precision.

Proof. Let us consider 𝛿 = ⟨ , ,⟩, where  is the reference model and 𝑛 = ⟨𝛿,Π𝑛(𝛿), 𝜇(𝛿),?⟩ is the learning task. Let us 
also consider an operator 𝑜 ∈ ? in the formulation created for 𝑛. The three decision variables are 𝖼𝗈𝗌𝗍(𝑜), and 𝗉𝗋𝖾(𝑝, 𝑜)/𝖾𝖿𝖿(𝑝, 𝑜)
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given a predicate 𝑝. The possible values to propagate are: {value1=𝑒𝑣(𝑜)} for 𝖼𝗈𝗌𝗍(𝑜); {value1=false, value2=pre} for 𝗉𝗋𝖾(𝑝, 𝑜); and 
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{value1=false, value2=add, value3=del} for 𝖾𝖿𝖿 (𝑝, 𝑜). The algorithm will consider each of these variables, denoted here simply as 
var, and its possible values {value1, value2, value3}, which depend on var.

If constraint “var ≠ value1” is posted and propagated, two situations are possible. If an inconsistency is detected, it means that at 
least one constraint for 𝑛 is violated, and “var = value1” must hold to avoid such a violation and to satisfy all constraints in 𝑛 . 
Therefore, value1 is learned precisely for var in 𝑜 ∈? and matches in the corresponding 𝑜 of the reference model . In short, a true 
positive (TP) has been found in 𝑜. On the contrary, if no inconsistency is detected, the value for var could be value1 or other, as it 
cannot be ensured yet. In consequence, the algorithm needs to continue and try with value2 and, whenever necessary, with value3. 
In general, if an inconsistency is detected within this iterative algorithm, it ensures a value for var; otherwise, no value for var can 
be guaranteed.

Let us now consider that a new (non-conflicting) plan for  is observed. Now, there exists a Π𝑛+1(𝛿) and the learning task becomes 
𝑛+1. On the one hand, any new assignment found by propagation in 𝑛+1 must satisfy 𝑛, because 𝑛 is a subtask of 𝑛+1. On the 
other hand, any assignment that was found by previous propagation in 𝑛 must satisfy 𝑛+1, because it was learned as a matching 
(TP) in . In other words, the new assignments must satisfy the previous observations, and the previous assignments must satisfy the 
new observations. This ensures learning with perfect precision for the current observed plans (Π𝑛(𝛿)) and any future one (Π𝑛+1(𝛿)), 
which, indirectly, is also good for robustness. This is applicable to variables for preconditions, effects and costs. □

Lemma 2. The computational complexity of each propagation step in Algorithm of Fig. 7 is polynomial in the number of variables of the 
formulation.

Proof. The propagation step depends on the type of consistency to be guaranteed in the constraint network. Path consistency is 
used, with cubic complexity in the number of variables of the formulation. As indicated in Section 3.3, the number of variables 
of the formulation is bounded by O(𝑈𝛼 ⋅ 𝑛 ⋅ 𝑈𝜋 ). Consequently, the complexity of each propagation step in Fig. 7 is bounded by 
O((𝑈𝛼 ⋅ 𝑛 ⋅ 𝑈𝜋)3). Note that the number of variables of the real formulation might be higher if the solver internally creates dummy 
variables to deal only with binary constraints. □

Lemma 3. The computational complexity of each propagation step in Algorithm of Fig. 8 is polynomial in the number of X1 variables.

Proof. The only type of variable of the formulation involved for cost propagation is X1 (see C10 in Table 4). The size of X1 is given 
by the number of operators ||. If path consistency is used, the complexity of each propagation step in Fig. 8 is bounded by O(||3).8
Again, the number of variables might be higher if the solver creates dummy variables. □

Note that both algorithms imply several propagation steps. But, the main advantage of these two algorithms is that they can be 
applied in different ways. For instance, given a learning task 𝑛 with a collection of n plans, one can create a complete formulation 
for the n plans and run the algorithms only once, just in the end. Alternatively, one can create the formulation incrementally and run 
the algorithms after processing k plans. Applying the algorithms 𝑛

𝑘
times might require more running time, but in some cases it pays 

off: the execution of each propagation step becomes simpler and faster, as the candidate sets 𝛾(𝑜) shrink and some 𝖼𝗈𝗌𝗍(𝑜) are learned 
and made fixed.9 This also reduces the complexity and number of propagation steps in future applications of the algorithms, which 
is an additional benefit. In this work, the algorithm for learning preconditions and effects in Fig. 7 is run after each plan is processed 
(k=1, so n times per 𝑛), and the algorithm for learning costs in Fig. 8 only one time in the end (k=n, so one time per 𝑛).

5. Evaluation

This section evaluates the CP formulation in different IPC10 domains. From a quality perspective, it learns an action model and 
assess the learned model vs. the reference model given by the domain in terms of precision, recall and the F1 score. A variable of the 
formulation that finally has an instantiated value is considered as learned. If it is correctly learned, it is measured as TP or TN. If the 
value is wrongly learned, it is measured as FP (although this is impossible when precision=1). If the variable is not instantiated, it 
is measured as FN.

This section runs experiments, to depict the previous quality indicators and running times, under different types of learning 
variants to analyze the impact of:

• Learning in planning domains that contain, or not, static information and use mutex information whenever available.

• Ranging the size of the input collection of observed plans, from 1 to 50 plans.

• Considering noise in the observations; in particular, uncertainty on the exact time when actions are observed.

8 Despite the complexity of the propagation of step 5 is polynomial, the complexity of the complete Algorithm in Fig. 8 is non-polynomial because of the 
“solve-CSP()” invoked in step 2.

9 Intuitively, this can be seen as a way to improve the learning power of the propagation, that is, how informative each propagation step is. Typically, the number 
of propagation steps reduces in successive executions of the algorithm.
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10 International Planning Competition, https://www .icaps -conference .org /competitions.

https://www.icaps-conference.org/competitions
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Table 5

Features of the planning domains and input datasets used in the experiments.

static info no static info

name # ops # pred # alpha # pred # alpha # acts # init # goals

blocksworld* 4 27 52 11 25 3

depot* 5 37 64 11 35 2

driverlog 6 28 64 26 48 13 47 6

elevator/miconic 4 16 36 12 20 36 270 9

ferry* 3 14 22 14 18 6

floortile 7 44 182 37 64 7 55 3

grid 5 31 88 27 74 7 36 1

gripper* 3 14 20 15 18 4

hanoi 1 8 30 7 18 5 34 2

logistics 6 24 36 22 32 65 73 10

npuzzle 1 7 12 6 8 3 38 12

openstacks 3 19 46 17 34 9 42 4

pathways 5 24 100 19 32 8 96 1

pegsol-netbenefit 1 10 24 9 12 5 135 31

pegsol-sequential 3 29 72 27 48 8 145 24

satellite 5 26 50 18 36 22 61 8

scananalyzer 3 29 224 26 64 11 51 8

sokoban 3 33 108 26 48 15 276 2

storage 5 38 86 33 66 6 39 1

transport-seq 3 20 36 17 24 14 42 2

visitall 1 5 12 4 8 20 113 14

zenotravel 5 28 56 24 36 6 23 3

From a comparative perspective, this approach is contrasted vs. ARMS and FAMA, which have become benchmarks in action 
model learning. The idea is to analyze the impact of input knowledge on mutex information and observability of intermediate states 
between actions. Finally, although the formulation is mainly designed to be addressed via constraint propagation, its behavior is 
also analyzed when it is addressed via a CSP solving task, where perfect precision cannot be guaranteed (recall that the solving task 
assigns values to all variables, which might introduce imprecision in form of errors, as shown in Section 3.1).

5.1. Setup

The experiments use the STRIPS version of 22 well-known IPC domains,11 18 of which have static information. The domains used 
are those that can be parsed; other domains do not use types or use constants, which are unsupported functionalities in the current 
parser. Two versions are learned: with and without static predicates. Table 5 presents the domains and their main features in terms 
of total number of operators, predicates to learn and alphabet size for the two given versions. There are 4 domains that do not use 
static predicates: they are marked with “*” and only have the no static version. Understanding the mutex information is not easy, so 
it is only given when it is very intuitive, ranging from 1 (pegsol-netbenefit, satellite and visitall) to 12 (floortile) pair/s of predicates. 
This means the mutexes used as input are usually incomplete.

The input dataset is populated with up to 80 parallel plan traces per domain. The planning problems come from the IPC examples, 
after arbitrarily modifying their initial and goal states. All plans are generated by LPG [57], so plan optimality is not guaranteed. 
The three last columns of Table 5 represent average values for the number of actions in the observed plans, number of predicates in 
the initial state and in the goals. Note that all goals are defined as partial states, which makes the learning task more difficult.

Two important facts can be noticed in Table 5. First, the alphabet size of the static versions is larger than the no static versions 
(e.g., over 2x in sokoban and floortile, and over 3x in pathways and scananalyzer), which shows the increase in the complexity of 
learning with static information. Second, the number of actions and goals does not need to be particularly large; up to 15 actions 
and 10 goals are enough in most domains.

The formulation has been implemented in Choco (http://www .choco -solver .org), an open-source Java library that provides an 
object-oriented API for CP. Choco not only allows us to model a problem and solve it, but it also provides a propagation method, as 
a set of filtering algorithms, to eliminate values from domain variables that can lead to contradictions. This method is the one that is 
invoked in the propagation steps of the algorithms of Figs. 7 and 8. The running time per learning task is limited to 300 s on an Intel 
i5-6400 @ 2.70GHz with 8GB of RAM. If this limit is exceeded, the task is considered unsolvable.

5.2. Quality evaluation

5.2.1. Size of the CP formulation

For this experiment, 50 learning scenarios 1, 2… 50 are created, with an input collection of 1, 2 … 50 noiseless plans, 
respectively, taken from the input dataset. Each scenario is an aggregation of tasks. In particular, there are 30 different tasks 
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11 The cost of each operator is arbitrary. In the tests, the cost is given by the length of the operator name.

http://www.choco-solver.org
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Table 6

Average size of the formulations 1, 2 … 50 .

static info no static info

name # vars # consts # vars # consts

blocksworld* 100 45064

depot* 122 8422

driverlog 127 22817 100 21804

elevator/miconic 209 11325 144 7606

ferry* 96 110988

floortile 132 9487 62 3184

grid 131 22136 105 21424

gripper* 71 38558

hanoi 61 6568 40 4400

logistics 134 13333 114 10746

npuzzle 41 415 30 292

openstacks 127 42056 96 22412

pathways 109 3431 54 894

pegsol-netbenefit 89 1204 68 1003

pegsol-sequential 132 11464 105 11253

satellite 116 31670 91 28083

scananalyzer 99 6624 66 3291

sokoban 165 5241 81 2701

storage 101 8295 73 6758

transport-seq 124 18935 77 10737

visitall 121 4070 78 3211

zenotravel 73 3854 56 2804

per scenario, with different plans, which means a total number of 50 ⋅ 30 = 1500 learning tasks. It is important to note that, in each 
scenario, the algorithm for learning preconditions and effects via propagation (see Fig. 7) is run once per plan in the task (1 time in 
1, 2 times in 2… 50 times in 50), but the algorithm for learning costs (see Fig. 8) is executed only once per task (1 time in 1, 
2… 50).

In order to have a clear picture of the size of the formulations for the 1500 tasks, Table 6 shows the average values on the 
number of variables and constraints for the static and no static versions. The size of the formulations highly depends on the domain 
complexity, that is, the number of operators, predicates and how they are related. There is an important difference between the static 
and no static versions. The number of variables and constraints can be more than 2x in static vs. no static.

5.2.2. Impact of the size of the collection of plans

This section analyzes the relevance and scalability in terms of the number of input plans. It runs the learning tasks, from 1 to 50, 
with noiseless plans. For space reasons, the individual results for recall and F1 per each of the 22 domains are not included here, but 
for the interested reader the 44 figures are available on-line to explore the behavior in every particular domain.12 In those figures, 
the recall and F1 lines are practically constant through all the tasks in most domains. The average results, only for 10, 20… 50, for 
recall and F1 are shown in Figs. 9 and 10, respectively. Note that the learning tasks are addressed via propagation, so the precision 
is always 1. The number of input plans has little impact, as the difference between the results for 10 and 50 is around 0.2 and 0.1 
for recall and F1, respectively. The amount of information that can be learned via propagation tends to converge after 20-30 plans. 
The recall and F1 scores are over 0.6 and 0.7, respectively, for the preconditions+effects, and a little lower for the cost.

Table 7 focuses on 50 and depicts the recall and F1 score per domain. It shows the individual indicators for preconditions 
and positive+negative effects, in the static and no static versions, and cost. Cost learning is not affected by having, or not, static 
information because it only depends on the actions. Three important conclusions can be extracted here:

• Static information is harmful for learning preconditions and makes the learning task more complex. Actually, in planning, static 
information is only used for grounding matters and is usually ignored while planning. This complexity is particularly significant 
in sokoban, which models the popular puzzle game with large amounts of static predicates. In sokoban, mutex information is not 
intuitive and difficult to capture, so negative effects are not learned. Despite this, the average results are still good in the static 
version, mainly for the effects. In average, the no static version can reach over 10% of global improvement in the recall thanks 
to a better learning of preconditions.

• Finding a unique interpretation about how the structure of the domain impacts on the quality of the learning is difficult (or 
impossible). We have not found a set of factors that leads to a better/worse learning. In general, the learning is better if the 
number of operators and their parameters is small, but a high number of predicates and, concretely, high values of the alphabet 
make the learning more difficult. The number of constant values (objects) defined in the problem is less important, because their 
use is restricted by the parameters in operators. After all, the learning relies on observed actions, which are grounded versions 
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Fig. 9. Average results of the recall w.r.t. the input plans: 10 …50 .

Fig. 10. Average results of the F1 score w.r.t. the input plans: 10 …50 .

of the operators. Using more negative effects hinders the learning, but the relations between the predicates and how they appear 
(together or separately) in the operators seems to have a stronger effect in the learning. Consequently, there is no a clear answer 
about which factor is the most decisive.

• The cost is perfectly learned in many domains. However, there are domains where it is impossible to learn the exact cost, 
particularly when operators work in pairs. For instance, board and debark in zenotravel always appear in pairs, as no person 
remains forever in an aircraft, but other operators appear freely. In blocksworld all operators work in pairs: unstack is always 
planned with stack or put-down, as a block is always grabbed+ungrabbed in the plans. This means that the number of 
occurrences of two operators in a plan is the same, which leads to an inconclusive C10 constraint of Table 4. For instance, 
𝑥 ⋅ (𝖼𝗈𝗌𝗍(𝑜1) + 𝖼𝗈𝗌𝗍(𝑜2)) = 4 leads to several solutions when 𝑥 = 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑜1) = 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑜2) = 1: {𝖼𝗈𝗌𝗍(𝑜1) = 1, 𝖼𝗈𝗌𝗍(𝑜2) = 3}, 
{𝖼𝗈𝗌𝗍(𝑜1) = 2, 𝖼𝗈𝗌𝗍(𝑜2) = 2}, {𝖼𝗈𝗌𝗍(𝑜1) = 3, 𝖼𝗈𝗌𝗍(𝑜2) = 1}, etc. The propagation step can find out the cost of the two operators as a 
pair, but cannot guarantee the individual costs.

Focusing on the running time, that is, the time for learning via constraint propagation, Table 8 compares the average values for 
the learning tasks 10… 50 in all the domains and their static and no static versions. Dealing with static information is harmful 
and increases the running times. There are some domains where the time is much larger in the static versions than in the respective 
no static versions (e.g., elevator, floortile, pathways and transport-seq). On average, the time for the static version is up to two times 
higher in 40 and 50 vs. the no static version. This shows that the static information has a negative impact in the scalability, though 
still tractable.

Using a larger collection of plans in a learning task typically increases the running time in the range 10… 30. However, when 
the learning task is more constrained (and this happens when more plans are used, i.e., in the range 30… 50), the propagation 
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algorithm learns more information and the number of future propagation steps decreases. In other words, each propagation step is 
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Table 7

Average metrics for preconditions, effects and cost in 50 . Learning is done via propagation, so Precision=1. Each x/y pair stands for recall/F1 score. Bold font 
represents perfect learning, i.e., F1=Precision=Recall=1.

static info no static info

name 𝗉𝗋𝖾 𝖾𝖿𝖿+ 𝖾𝖿𝖿− global 𝗉𝗋𝖾 𝖾𝖿𝖿+ 𝖾𝖿𝖿− global cost

blocksworld* 0.89/0.94 0.89/0.94 0.89/0.94 0.89/0.94 0.00/0.00

depot* 0.53/0.69 0.80/0.89 0.80/0.89 0.71/0.83 0.20/0.33

driverlog 0.47/0.64 0.93/0.97 0.93/0.97 0.78/0.88 0.54/0.71 0.93/0.97 0.93/0.97 0.80/0.89 0.17/0.29

elevator/miconic 0.44/0.62 1.00/1.00 1.00/1.00 0.81/0.90 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.25/0.40

ferry* 0.50/0.67 0.75/0.86 0.75/0.86 0.67/0.80 0.33/0.50

floortile 0.63/0.77 1.00/1.00 1.00/1.00 0.88/0.93 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

grid 0.22/0.36 0.81/0.90 0.54/0.70 0.52/0.69 0.29/0.45 0.81/0.90 0.54/0.70 0.55/0.71 0.20/0.33

gripper* 0.33/0.50 0.50/0.67 0.25/0.40 0.36/0.53 0.33/0.50

hanoi 0.75/0.86 1.00/1.00 0.50/0.67 0.75/0.86 1.00/1.00 1.00/1.00 0.50/0.67 0.83/0.91 1.00/1.00

logistics 0.67/0.80 1.00/1.00 1.00/1.00 0.89/0.94 0.80/0.89 1.00/1.00 1.00/1.00 0.93/0.97 0.17/0.29

npuzzle 0.67/0.80 1.00/1.00 1.00/1.00 0.89/0.94 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

openstacks 0.54/0.71 0.89/0.94 0.89/0.94 0.78/0.87 0.70/0.82 0.89/0.94 0.89/0.94 0.83/0.91 1.00/1.00

pathways 0.08/0.14 0.81/0.89 0.20/0.33 0.36/0.53 0.75/0.86 0.83/0.91 0.20/0.33 0.59/0.75 1.00/1.00

pegsol-netbenefit 0.75/0.86 1.00/1.00 1.00/1.00 0.92/0.96 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

pegsol-sequential 0.82/0.90 1.00/1.00 1.00/1.00 0.94/0.97 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

satellite 0.06/0.11 0.50/0.67 0.25/0.40 0.27/0.42 0.22/0.36 0.50/0.67 0.25/0.40 0.32/0.49 0.20/0.33

scananalyzer 0.36/0.53 0.50/0.67 0.50/0.67 0.45/0.63 0.50/0.67 0.50/0.67 0.50/0.67 0.50/0.67 0.67/0.80

sokoban 0.00/0.00 0.11/0.20 0.00/0.00 0.04/0.07 0.63/0.77 0.67/0.80 0.56/0.71 0.62/0.76 1.00/1.00

storage 0.44/0.62 1.00/1.00 0.80/0.89 0.75/0.86 0.69/0.82 1.00/1.00 0.80/0.89 0.83/0.91 1.00/1.00

transport-seq 0.40/0.57 0.60/0.75 0.60/0.75 0.53/0.70 0.84/0.91 0.97/0.99 0.97/0.99 0.93/0.96 0.33/0.50

visitall 0.35/0.52 0.87/0.93 0.73/0.85 0.65/0.79 0.70/0.82 0.87/0.93 0.73/0.85 0.77/0.87 1.00/1.00

zenotravel 0.57/0.73 1.00/1.00 1.00/1.00 0.86/0.92 0.80/0.89 1.00/1.00 1.00/1.00 0.93/0.97 0.60/0.75

Average 0.46/0.63 0.83/0.91 0.72/0.84 0.67/0.80 0.71/0.83 0.86/0.92 0.75/0.86 0.78/0.87 0.61/0.76

Table 8

Average running times (s) for learning via propagation w.r.t. the input plans: 10 … 50 . Information is shown for the two versions: with and without static predicates.

static info no static info

name 10 20 30 40 50 10 20 30 40 50

blocksworld* 4.87 5.71 5.06 3.12 2.52

depot* 1.33 1.41 1.49 0.98 0.44

driverlog 4.64 3.98 5.32 4.92 4.68 3.37 2.81 3.40 3.06 2.72

elevator/miconic 1.23 1.24 1.39 1.46 1.60 0.01 0.01 0.01 0.01 0.01

ferry* 8.16 8.97 8.60 7.73 6.58

floortile 1.84 1.87 8.56 7.20 5.33 0.07 0.04 0.14 0.09 0.09

grid 6.00 6.97 12.19 10.93 9.78 4.71 5.39 9.75 8.51 7.45

gripper* 2.22 2.66 4.26 4.56 3.61

hanoi 0.60 0.86 0.87 0.83 0.39 0.17 0.21 0.19 0.19 0.08

logistics 1.40 0.62 0.29 0.24 0.58 0.47 0.20 0.09 0.07 0.20

npuzzle 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

openstacks 5.27 6.68 6.50 8.27 6.95 2.00 2.25 1.80 1.84 1.49

pathways 0.77 0.96 1.29 1.08 0.86 0.02 0.02 0.03 0.03 0.03

pegsol-netbenefit 0.03 0.04 0.06 0.07 0.05 0.01 0.01 0.01 0.01 0.01

pegsol-sequential 1.57 1.35 1.33 2.27 5.34 0.79 0.47 0.16 0.25 0.60

satellite 1.25 3.28 4.17 6.93 7.33 0.70 1.78 2.26 3.82 4.04

scananalyzer 0.62 0.46 0.49 4.35 4.47 0.09 0.04 0.05 0.26 0.28

sokoban 1.93 1.41 1.58 4.13 4.71 0.16 0.11 0.14 0.41 0.47

storage 3.58 3.50 2.78 1.16 0.52 1.59 1.47 1.17 0.51 0.21

transport-seq 4.10 1.94 1.59 1.29 2.02 1.18 0.31 0.07 0.07 0.12

visitall 0.23 0.15 0.19 0.23 0.25 0.09 0.06 0.08 0.12 0.11

zenotravel 0.13 0.41 0.44 0.71 0.41 0.02 0.06 0.06 0.10 0.06

Average 1.96 1.99 2.73 3.12 3.07 1.46 1.55 1.77 1.63 1.42

more informative/powerful, thus detecting more inconsistencies and learning more information. This highly depends on the structure 
of the domain and the internal relations between its predicates and/or actions, so a unique explanation cannot be generalized.

5.2.3. Impact of noise in the start time of actions

Rather than using a collection of plans where the start time of the actions is observed correctly, this section now includes 
uncertainty on those times (to deal with certain noise) and runs two experiments: i) 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ± 2, and ii) 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ± 4. In the former, 
there is uncertainty of 5 possible values on the start time and in the latter the uncertainty is of 9 values: the plan lengths remain 
167

unchanged, but the start times are now blurred. It is important to note that noisy observations do not mean that some constraints 
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Table 9

Average metrics for preconditions and effects in 50 when noise on the action start time is considered. Only the no static version of the domains is shown. Learning is 
done via propagation, so Precision=1. Each x/y pair stands for recall/F1 score. Bold font represents perfect learning, i.e., F1=Precision=Recall=1.

𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ± 2=5 possible start times 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ± 4=9 possible start times

name 𝗉𝗋𝖾 𝖾𝖿𝖿+ 𝖾𝖿𝖿− global 𝗉𝗋𝖾 𝖾𝖿𝖿+ 𝖾𝖿𝖿− global

blocksworld 0.89/0.94 0.89/0.94 0.89/0.94 0.89/0.94 0.89/0.94 0.89/0.94 0.89/0.94 0.89/0.94

depot 0.53/0.69 0.80/0.89 0.80/0.89 0.71/0.83 0.53/0.69 0.80/0.89 0.80/0.89 0.71/0.83

driverlog 0.33/0.50 0.57/0.73 0.57/0.73 0.49/0.66 0.33/0.50 0.57/0.73 0.57/0.73 0.49/0.66

elevator/miconic 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

ferry 0.50/0.67 0.75/0.86 0.75/0.86 0.67/0.80 0.50/0.67 0.73/0.84 0.73/0.84 0.65/0.79

floortile 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.98/0.99 0.97/0.98 1.00/1.00 0.98/0.99

grid 0.23/0.37 0.70/0.82 0.42/0.59 0.45/0.62 0.23/0.37 0.70/0.82 0.42/0.59 0.45/0.62

gripper 0.33/0.50 0.50/0.67 0.25/0.40 0.36/0.53 0.33/0.50 0.50/0.67 0.25/0.40 0.36/0.53

hanoi 1.00/1.00 1.00/1.00 0.50/0.67 0.83/0.91 1.00/1.00 1.00/1.00 0.50/0.67 0.83/0.91

logistics 0.80/0.89 1.00/1.00 1.00/1.00 0.93/0.97 0.80/0.89 1.00/1.00 1.00/1.00 0.93/0.97

npuzzle 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

openstacks 0.27/0.43 0.39/0.56 0.39/0.56 0.35/0.52 0.27/0.43 0.39/0.56 0.39/0.56 0.35/0.52

pathways 0.75/0.86 0.83/0.91 0.20/0.33 0.59/0.75 0.75/0.86 0.83/0.91 0.20/0.33 0.59/0.75

pegsol-netbenefit 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

pegsol-sequential 0.51/0.68 0.51/0.68 0.53/0.70 0.52/0.68 0.44/0.62 0.44/0.62 0.44/0.62 0.44/0.62

satellite 0.11/0.20 0.40/0.57 0.25/0.40 0.25/0.40 0.11/0.20 0.40/0.57 0.25/0.40 0.25/0.40

scananalyzer 0.50/0.67 0.50/0.67 0.50/0.67 0.50/0.67 0.50/0.67 0.49/0.66 0.50/0.67 0.50/0.67

sokoban 0.63/0.77 0.67/0.80 0.56/0.71 0.62/0.76 0.63/0.77 0.67/0.80 0.56/0.71 0.62/0.76

storage 0.53/0.69 0.84/0.91 0.64/0.78 0.67/0.80 0.53/0.69 0.80/0.89 0.60/0.75 0.64/0.78

transport-seq 0.57/0.73 0.60/0.75 0.60/0.75 0.59/0.74 0.57/0.73 0.60/0.75 0.60/0.75 0.59/0.74

visitall 0.70/0.82 0.87/0.93 0.73/0.85 0.77/0.87 0.70/0.82 0.87/0.93 0.73/0.85 0.77/0.87

zenotravel 0.60/0.75 0.84/0.91 0.57/0.73 0.67/0.80 0.50/0.67 0.77/0.87 0.57/0.73 0.61/0.76

Average 0.63/0.77 0.76/0.86 0.64/0.78 0.68/0.81 0.62/0.76 0.75/0.85 0.64/0.78 0.67/0.80

might be unsatisfied. The learned model must satisfy all the constraints, including those induced by the noise. This is also an 
indication of the robustness of the model.

Table 9 shows the results of recall and F1 for 50, now focusing on the no static version of the domains. The cost learning is not 
affected by the noisy observations, so the results in the last column of Table 7 remain unchanged no matter the noise. The intuition 
is that dealing with noise will make the metrics worse. After all, the plans are now more uncertain and the formulation might not be 
able to learn much information with perfect precision. In fact, the C7 and C8 constraints of Table 4, which formulate the causal links 
and threat resolution, are much more complex when uncertainty on the start times is present. The negative impact of the noise in the 
learning grows in those domains where the potential number of causal links is larger. However, the results show that the impact of 
noise is not very harmful and the model remains robust; the average recall/F1 is 0.78/0.87 without noise, 0.68/0.81 with 5 possible 
start times and 0.67/0.80 with 9 possible start times. It is also noticeable that, despite the noise, the perfect learning is achieved in 
4 domains.

Focusing on the running time, Table 10 compares the average values for the learning tasks 10… 50 in all the domains and the 
two versions of uncertainty on the start time of the actions. Like in Table 9, only the no static version of the domains is shown. Two 
conclusions can be extracted from this experiment:

• Including noise in the start time of actions has a negative effect in the running time. Now, solving a learning task requires more 
time because the amount of information that can be precisely learned is more reduced. Intuitively, the learning power of each 
propagation step is reduced (being less informative), which means that more propagation steps are run. This can be noted by 
comparing the values of Table 10 with the values of Table 8, where no noise is included. In Table 8, the average times are below 
2s for the version without static predicates, whereas in Table 10 all average times are over 2s.

• Including more or less uncertainty does not modify the formulation size of a learning task. Therefore, there is no difference 
between 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ± 2 and 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ± 4 in terms of variables/constraints of the formulation. Although more uncertainty might 
reduce the learning power of the propagation, which leads to more propagation steps, there is not a substantial difference in the 
average times of 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ±2 and 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ±4. This shows that the model is also robust w.r.t. the running time for different levels 
of uncertainty.

5.2.4. Semantic vs. syntactic evaluation

As pointed out in Section 2.4, most metrics used in learning are syntactically-oriented, as they evaluate the learned model w.r.t. a 
reference or unique ground truth model. However, one learned model might slightly differ from a reference one, while the underlying 
model is still consistent. In other words, two syntactically-different models can be semantically equivalent. This is the reason why 
many learning approaches also use a semantic-oriented evaluation to assess whether the learned model can reproduce, with no 
contradictions or inconsistencies, unknown samples or plan observations [6,12,13,24,35]. In short, these approaches split the initial 
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plan dataset into two disjoint sets: one for learning and one for testing. The idea is to assess how well the learned model captures 
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Table 10

Average running times (s) for learning via propagation w.r.t. uncertainty on the start time of the actions. The input plans are 10 … 50 . Only the no static version of 
the domains is shown.

𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ± 2 𝗌𝗍𝖺𝗋𝗍(𝑜𝜋 ) ± 4

name 10 20 30 40 50 10 20 30 40 50

blocksworld 5.13 5.71 5.31 3.21 2.50 8.79 5.96 5.15 3.45 2.50

depot 2.15 2.08 1.55 0.95 0.40 2.70 2.75 1.57 0.95 0.42

driverlog 4.74 4.68 6.75 8.31 8.61 4.25 4.02 6.13 7.42 7.67

elevator/miconic 0.10 0.09 0.08 0.08 0.09 0.12 0.09 0.07 0.08 0.09

ferry 10.81 11.27 9.75 8.62 7.55 11.95 12.77 11.69 9.08 7.20

floortile 0.20 0.05 0.14 0.11 0.10 0.20 0.11 1.03 0.18 0.10

grid 5.04 5.63 10.21 9.53 8.22 4.42 4.82 8.85 8.09 7.22

gripper 5.61 2.71 4.19 4.67 3.63 5.17 2.53 3.96 4.36 3.41

hanoi 0.15 0.20 0.18 0.18 0.08 0.15 0.19 0.18 0.18 0.07

logistics 1.05 0.42 0.18 0.13 0.31 1.29 0.41 0.17 0.12 0.29

npuzzle 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

openstacks 3.54 5.04 5.59 8.37 7.44 3.63 5.16 5.36 7.99 7.07

pathways 0.06 0.06 0.07 0.06 0.05 0.06 0.06 0.09 0.07 0.06

pegsol-netbenefit 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

pegsol-sequential 1.04 1.41 2.21 4.37 7.59 0.96 1.32 2.11 4.21 9.69

satellite 8.41 2.01 2.69 4.48 4.74 7.55 1.82 2.41 4.05 4.31

scananalyzer 0.21 0.04 0.05 0.23 0.42 0.92 0.23 0.06 0.23 0.39

sokoban 0.16 0.11 0.14 0.40 0.44 0.15 0.10 0.12 0.37 0.43

storage 2.99 3.22 2.45 0.94 0.43 2.74 2.97 2.22 0.87 0.39

transport-seq 1.47 0.70 0.50 0.44 0.91 1.38 0.64 0.44 0.41 0.84

visitall 0.08 0.07 0.08 0.11 0.10 0.07 0.06 0.07 0.10 0.09

zenotravel 0.10 0.37 0.28 0.38 0.21 0.10 0.41 0.33 0.51 0.31

Average 2.41 2.09 2.38 2.53 2.45 2.57 2.11 2.37 2.40 2.39

the physics of the planning domain or, equivalently, how precise is the learned model to explain unknown samples. Formally, the 
semantic success ratio is defined as 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 = 𝑃𝑆

|𝑑𝑎𝑡𝑎𝑠𝑒𝑡| , where 𝑃𝑆 counts the number of positive samples on a test 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 that 
are consistent with the learned model.

A semantic evaluation of the proposed constraint propagation approach is straightforward. By Lemma 1, what is learned is 100% 
precise and consistent for any present or future plan observation of the reference model. If several action models are semantically 
equivalent, learning via constraint propagation will be restricted to the common part of those models. Therefore, the model learned 
will be consistent with all models, which means success ratio = 1.

5.3. Comparison to ARMS and FAMA

This section compares the proposed approach to ARMS and FAMA, which are two successful approaches for action model learning. 
They both show important gain when the sequence of intermediate states between actions is also observed. Therefore, they define an 
observability degree, ranging from 0% to 100%, that measures the probability of observing a predicate 𝑝 in a state at time 𝑡. This can 
be easily included in the proposed formulation by using 𝗈𝖻𝗌(𝑝, 𝑡) dummy actions. FAMA requires the definition of the goals as a full 
state, which is easily supported by the formulation. ARMS and FAMA do not support cost learning, nor uncertainty on the start time 
of the actions, so the comparison is restricted to the cases and the 12 domains manageable by them, i.e., blocksworld, driverlog, ferry, 
floortile, grid, gripper, hanoi, npuzzle, satellite, transport-sequential, visitall and zenotravel. All domains used in the comparison represent 
the versions with static information.

The experiment given in [12] has been reproduced to learn from a dataset of 10 sequential plans (10), with 10 actions each, 
per domain. Figs. 11, 12 and 13 depict the average results for precision, recall and F1 score, respectively. ARMS and FAMA cannot 
reason on mutex information, so for the LvCP approach, the results with and without mutex information are shown. Learning via 
Constraint Propagation always returns perfect precision, no matter if mutex information is given or not. This can be seen in Fig. 11, 
where precision=1 for LvCP. As expected (see Fig. 12), the recall values are slightly lower in LvCP since ensuring precision reduces 
the amount of information learned. However, it is important to note that: i) LvCP with mutex information shows better recall than

ARMS in low (0-30%) observability degrees, and ii) mutex information is only relevant for learning in low observability degrees. 
Once the observability degree of 40% is passed, the mutex information becomes irrelevant, particularly for the negative effects that 
can now be directly observed. In other words, mutex information is beneficial only in absence of intermediate state observations, and 
its practical effectiveness disappears when the observability degree increases. In Fig. 13, the F1 score of LvCP is very competitive 
and shows a constant behavior beyond the observability degree of 40%.

Focusing on the running time, Tables 11 and 12 show the average values for the observability degrees when reasoning and not 
reasoning with mutex information, respectively. Three conclusions can be extracted here:

• Increasing the observability degree has not a significant impact in the running time when the collection of plans is not high 
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(only 10 plans are considered in this experiment). We have run some additional experiments with more than 10 input plans and 
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Fig. 11. Average results of the precision for different observability degrees.

Fig. 12. Average results of the recall for different observability degrees.
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Fig. 13. Average results of the F1 score for different observability degrees.
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Table 11

Average running times (s) for learning via propagation with mutex information for different observability degrees (0 … 100%). Only the static version of the domains 
is shown.

name 0 10 20 30 40 50 60 70 80 90 100

blocksworld 4.64 2.73 2.13 2.35 1.82 2.19 2.34 2.33 2.34 2.46 2.49

driverlog 1.00 1.08 1.00 1.23 1.02 1.08 1.05 1.13 1.20 1.22 1.22

ferry 1.16 0.97 0.88 1.00 0.90 1.00 1.03 1.03 1.05 1.16 1.10

floortile 8.91 8.83 9.07 8.30 8.44 8.85 9.10 10.03 10.35 10.76 10.90

grid 6.54 5.02 5.96 6.53 5.81 6.07 5.42 5.56 5.35 5.65 5.66

gripper 1.12 0.80 0.71 0.77 0.68 0.68 0.72 0.73 0.79 0.85 0.87

hanoi 1.25 1.46 2.13 1.69 1.68 1.91 2.07 2.22 2.42 2.66 2.68

npuzzle 0.38 0.43 0.59 0.49 0.60 0.56 0.62 0.63 0.68 0.78 0.73

satellite 0.40 0.40 0.68 0.33 0.40 0.38 0.47 0.46 0.53 0.55 0.54

transport-seq 0.62 0.54 0.67 0.52 0.57 0.62 0.60 0.69 0.76 0.84 0.84

visitall 1.54 1.13 1.36 1.38 1.42 1.63 1.54 1.71 1.79 1.91 1.96

zenotravel 1.14 1.32 1.30 1.00 1.00 1.07 1.06 1.06 1.11 1.19 1.17

Average 2.39 2.06 2.21 2.13 2.03 2.17 2.17 2.30 2.36 2.50 2.51

Table 12

Average running times (s) for learning via propagation with no mutex information for different observability degrees (0 … 100%). Only the static version of the 
domains is shown.

name 0 10 20 30 40 50 60 70 80 90 100

blocksworld 4.31 2.22 1.87 1.85 2.24 2.18 2.21 2.31 2.54 2.45 2.54

driverlog 1.31 1.11 0.92 1.07 1.15 1.03 1.04 1.15 1.22 1.19 1.22

ferry 1.41 1.15 1.36 1.27 0.88 1.10 1.11 1.07 1.14 1.13 1.19

floortile 8.79 8.96 8.66 8.54 8.82 9.41 9.94 10.38 11.98 10.29 11.01

grid 6.54 6.67 5.98 5.28 5.12 4.93 6.37 5.76 5.79 5.40 5.80

gripper 1.48 0.76 0.79 0.66 0.66 0.76 0.95 0.79 0.84 0.81 0.90

hanoi 1.50 1.40 1.58 1.74 2.05 2.13 2.46 2.64 2.81 2.78 3.00

npuzzle 0.56 0.42 0.41 0.50 0.52 0.55 0.63 0.67 0.76 0.70 0.76

satellite 0.40 0.37 0.31 0.40 0.38 0.39 0.50 0.53 0.48 0.49 0.54

transport-seq 0.61 0.59 0.67 0.57 0.63 0.67 0.85 0.77 0.73 0.78 0.87

visitall 1.40 1.21 1.30 1.31 1.41 1.52 1.85 1.79 1.78 1.88 2.01

zenotravel 1.46 1.24 1.08 1.11 1.07 1.12 1.53 1.19 1.12 1.17 1.30

Average 2.48 2.18 2.08 2.03 2.08 2.15 2.45 2.42 2.60 2.42 2.60

the running time starts to increase when the observability degree is over 50%, because of the overhead of using 𝗈𝖻𝗌(𝑝, 𝑡) dummy 
actions in many plans.

• The most interesting observability degree for the running time moves around 30-60%. Intuitively, such a degree provides 
enough observations to improve the learning power of the propagation while it is not too high to provoke an overhead due to 
the observations.

• The differences on average values between Tables 11 and 12 are minimal, which shows that reasoning with mutex information 
is not very complex (the C11.* constraints are not expensive).

Solving the learning task The main advantage of learning via constraint propagation is that the learned model is 100% precise, 
though it might be incomplete. On the contrary, if one needs to learn a complete model (i.e., all variables want to be learned), one 
will probably need to instantiate variables without enough information. This means that absolute precision cannot be ensured, that 
is, precision ≤ 1. In such a case, one only needs to use a CSP solving approach, as described in Section 2.2.1. This is the test that is 
presented here, where the running time per learning task remains limited to 300 s.

The experiment of [12] is reproduced again, but rather than learning via constraint propagation, it now solves the CSP and 
retrieves its first solution (note that in a satisfaction problem all solutions are equally valid). The objective is to find a complete 
action model to check how much the recall increases, how much the precision decreases, and to compare the new results vs. Figs. 11, 
12 and 13. Intuitively, one expects to obtain higher values of recall, as more information is learned, but values of precision below 1, 
as perfect precision cannot be guaranteed now.

Figs. 14, 15 and 16 depict the new average results for precision, recall and F1 score, respectively, under a CSP solving approach. 
The precision results are very good: they are always over 0.9. Also, they practically keep a constant line for solving with and without 
mutex information. The recall values are very close to 1: 0.98-0.99 values for observability degrees higher than 20%. In comparison to 
Fig. 12, the recall has increased around 0.15-0.2. The results for F1 are also very good and keep a constant line. The main conclusion 
is that the solving approach for the CP formulation presents very high and steady indicators, which are better than the ones for

ARMS and FAMA, particularly in terms of precision and F1 score. Although learning a complete action model cannot ensure absolute 
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precision, the loss of precision is less than 10%, while the increase in the recall is close to 20%. This means that the CP formulation 
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Fig. 14. Average results of the precision for different observability degrees under a solving approach (now Precision ≤ 1).

Fig. 15. Average results of the recall for different observability degrees under a solving approach (now Precision ≤ 1).

is very appealing for learning, both for perfect and imperfect precision. Also, the use of mutex here, where partial observability on 
the intermediate states is available, becomes unnecessary.

Finally, Tables 13 and 14 show the running times under a solving approach for different observability degrees when reasoning 
and not reasoning with mutex information, respectively. The twofold conclusions that can be extracted are:

• When the collection of plans is not high, e.g., 10 like in this case, using a solving approach for the learning task is very fast. 
Also, increasing the observability degree has not a significant impact in the running time, which means the observations do not 
provoke much overhead. Obviously, the running time increases in learning tasks where the collection of plans is above 30-40.

• A comparison between Tables 11 and 12 (learning via propagation) and Tables 13 and 14 (learning via solving) shows that the 
running times for a solving approach are lower. However, it is important to recall that the values in Tables 11 and 12 imply 10 
executions (once per plan in 10) of the propagation algorithm of Fig. 7, whereas the values in Tables 13 and 14 imply only 
one solving task. In other words, the computational complexity of a propagation step is better than the complexity of solving. 
However, the algorithm of Fig. 7 is run several times, and also its multiple propagation steps, whereas the solving task is run 
only once.

6. Discussion and lessons learned
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This section analyzes and discusses the main results obtained from the evaluation and the lessons learned:
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Fig. 16. Average results of the F1 score for different observability degrees under a solving approach (now Precision ≤ 1).

Table 13

Average running times (s) for learning under a solving approach with mutex information for different observability degrees (0 … 100%). Only the static version of the 
domains is shown.

name 0 10 20 30 40 50 60 70 80 90 100

blocksworld 0.51 0.70 0.56 0.90 0.65 0.92 0.74 5.15 0.83 1.16 0.88

driverlog 0.19 0.18 0.18 0.19 0.21 0.22 0.22 0.21 0.23 0.23 0.25

ferry 0.49 0.52 0.51 0.60 0.56 0.60 0.60 0.62 0.65 0.69 0.70

floortile 0.52 0.48 0.48 0.51 0.56 0.53 0.55 0.74 0.60 0.62 0.63

grid 0.51 0.50 0.60 0.72 0.57 0.54 0.56 0.58 0.61 0.60 4.06

gripper 0.52 0.59 0.97 1.25 0.65 0.67 0.86 0.75 0.92 0.84 0.84

hanoi 0.44 0.39 0.63 0.57 0.53 0.54 0.55 0.60 0.80 0.67 0.74

npuzzle 0.26 0.35 0.35 0.34 0.38 0.42 0.62 0.45 0.46 3.74 3.69

satellite 0.08 0.09 0.10 0.10 0.09 0.12 0.11 0.11 0.15 0.13 0.13

transport-seq 0.17 0.15 0.16 0.18 0.36 0.20 0.22 0.21 0.23 0.26 0.26

visitall 1.53 5.72 1.01 1.34 1.30 1.35 1.17 1.25 1.28 1.36 1.39

zenotravel 0.15 0.17 0.24 0.17 0.19 0.21 0.21 0.19 0.21 0.21 0.21

Average 0.45 0.82 0.48 0.57 0.50 0.53 0.53 0.91 0.58 0.88 1.15

Table 14

Average running times (s) for learning under a solving approach with no mutex information for different observability degrees (0 … 100%). Only the static version of 
the domains is shown.

name 0 10 20 30 40 50 60 70 80 90 100

blocksworld 3.68 0.54 0.67 0.66 0.67 0.70 0.75 0.77 1.05 0.86 0.97

driverlog 0.21 0.18 0.18 0.18 0.24 0.21 0.21 0.20 0.24 0.26 0.23

ferry 1.25 0.50 0.54 0.53 0.58 0.58 0.62 0.87 0.68 0.65 0.73

floortile 0.51 3.09 0.48 0.48 0.57 0.52 0.65 0.61 0.68 0.58 0.63

grid 3.26 0.54 0.53 0.51 4.63 0.55 0.72 0.72 0.61 0.74 0.62

gripper 0.54 0.59 0.60 4.14 0.64 0.82 1.05 1.14 0.82 0.79 0.87

hanoi 0.71 0.55 0.44 0.51 0.59 0.52 0.62 0.65 0.91 0.66 0.87

npuzzle 3.15 0.29 0.30 0.30 0.36 0.38 0.43 0.46 0.52 0.48 0.54

satellite 0.13 0.09 0.08 0.10 0.12 0.12 0.14 0.11 0.11 0.14 0.15

transport-seq 0.18 0.16 0.17 0.17 0.20 0.21 0.23 0.23 0.23 0.22 0.26

visitall 6.50 0.86 6.29 0.93 1.02 1.07 1.81 1.20 1.29 1.31 8.72

zenotravel 0.16 0.18 0.17 0.16 0.18 0.31 0.21 0.19 0.21 0.37 0.22

Average 1.69 0.63 0.87 0.72 0.82 0.50 0.62 0.60 0.61 0.59 1.23

• The static information, which is typically used for grounding matters in many planning domains, increases the size of the 
alphabet of an operator 𝑜 (𝛼(𝑜)) and the candidate predicates to be used as preconditions/effects (𝛾(𝑜)). Consequently, dealing 
with static information increases the size of the formulation, which has a negative effect in its complexity, the quality of the 
learning, the running time and the scalability in general.

• A priori, the intuition is that one will need many observed plans to learn with perfect precision. However, this is not necessarily 
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the case. Almost identical results are obtained when 20 or more plans are considered. This is an important difference w.r.t.
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other works that need hundreds of plans (see Table 2). In other words: i) the CP formulation learns as much as possible from a 
minimal amount of observations, and ii) it does not require many plans that increase the running times, particularly when static 
information is present.

• The cost is perfectly learned (F1=1) in many domains, which is an unsupported feature of most approaches in literature (see 
Table 1). However, there are domains where such perfect learning is impossible because one operator and its inverse always 
appear together, e.g., blocksworld. Actually, this is not a limitation of the formulation in itself, but it is intrinsic to the domain 
definition.

• The use of mutex is only useful to learn negative effects. This is a direct consequence of the PDDL formalism for predicates. 
If a state variable per predicate could be defined, similarly to the SAS+ formalism, asserting a new value would automatically 
mean to delete the previous value, thus making negative effects and mutex reasoning unnecessary. After all, there is no necessity 
to learn negative effects if they are not required nor directly observed. This is an open issue that requires further research. 
However, when the observability degree increases or the sequence of intermediate states is observed, such mutex reasoning 
becomes irrelevant. In any case, reasoning on mutex is not computationally complex.

• Having noisy observations does not affect the formulation size, but it has a negative impact in the learned model because it 
includes uncertainty. In fact, finding the right causal links in a formulation with noise is more difficult, thus reducing the power 
of the propagation algorithm. Fortunately, the quality of the learning is not significantly worse and, the difference between 
having a small vs. medium amount of noise is minimal, also in terms of the running time. This is an indication of the approach 
to learn robust models.

• Learning via propagation is excellent for precision, but less complete; although the experiments achieve solutions with 
around 70% of recall. The computational complexity of each propagation step is polynomial (see Lemma 2 and 3), but the 
propagation steps need to be run several times. On the contrary, learning via CSP solving is more complete, but less precise and 
computationally more complex (it is non-polynomial); although the solving process needs to be run only once. The experiments 
have shown that both learning options are interesting as the formulation leads to safe, very precise and complete learned models, 
no matter if propagation or solving is used.

7. Conclusions

This work has proposed a constraint propagation approach to learn a planning action model with perfect precision. Starting from 
an arbitrary collection of plan observations and a set of empty operators, it formulates all the necessary constraints to learn the 
preconditions, effects and costs. Since it model constraints in terms of Partial-Order Causal-Link (POCL) planning, thus explicitly 
modeling the causal links and threat resolution, it can better capture the causality of the observed plans and, consequently, of the 
action model.

The general contribution of this work is its adaptability to accept different levels of input data. It unifies features that are 
individually supported by other approaches in literature: input knowledge on mutex when available, partial and full goal states, 
information on intermediate states, noise on action start times, and cost learning. Using a CP approach has several advantages for 
learning, which form the specific contributions of the work.

First, the definition of variables in the formulation facilitates the use of an empty model of operators or a more complete 
one. For instance, one might start from a partial model where some preconditions, effects or costs are known. This can be easily 
done by restricting the domain of the variables, e.g., 𝗉𝗋𝖾(𝑝, 𝑜)=pre means that one knows that 𝑝 is a precondition of 𝑜, whereas 
𝖾𝖿𝖿(𝑝, 𝑜)=false means that 𝑝 is not an effect of 𝑜. This definition of variables tolerates uncertainty/noise on cost, actions or observations 
of intermediate information. This is very useful, as dealing with noise is indispensable in some real scenarios that require robust 
approaches.

Second, the learned model satisfies all the constraints imposed by the observations (aka safe learning), and not just some of them 
like in other approaches. This means that what is learned is 100% correct for the current observations. Moreover, the number of 
observations is very flexible: from one to many. In the experiments, what is learned via propagation tends to converge after 30-40 
plan observations, and the complexity of using more plans does not pay off. Additional experiments, with more than 50 plans in 
some domains, have been studied, but the learning task becomes very expensive and the results hardly improve.

Third, the learning process can be addressed from two perspectives. On the one hand, using CP propagation learns with perfect 
precision; i.e., what is learned is 100% correct and reliable not only for the current observations, but also for any new observation 
over the original planning model (aka robust learning). Although obtaining a complete solution just by propagation is uncommon, it 
is possible, and more often than expected, that many variables have domains that are reduced to just one value. Intuitively, learning 
via propagation learns only what is correct, and keeps open those decisions where no more knowledge can be extracted. This is 
indispensable when reliability is a key issue, where it is better to learn step by step in a safe way, rather than learning and having to 
retract later. The propagation algorithms can be run from 1 to n times, which allows for an incremental update of the action model 
with new information without the necessity to retract previously learned part of the model. On the other hand, one can use a CSP 
solver to learn a complete model (expecting higher values of recall), but without ensuring perfect precision in the cases where more 
than one model can be learned from the given observations. Solving the formulation means solving a satisfaction problem. Although 
different metrics to specify preferences over the space of possible solutions have been investigated, a metric that always leads to the 
best learned models has not been found. Obviously, any learned model can be tuned by experts before its application to real-world 
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planning.
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Fourth, the formulation is solver-independent, meaning that an arbitrary solver can be used for its resolution. Also, most of the 
constraints are logical implications that can be turned into Conjunctive Normal Form (CNF) clauses to use SAT and Satisfiability 
Modulo Theories (SMT) solvers. This investigation remains as future work.

This work has some limitations. First, the CP formulation shows scalability problems when addressing learning tasks 𝑛 in 
complex planning domains with values of 𝑛 over 50-75. The size of the formulation grows significantly when the collection of input 
plans is large, particularly in domains with a lot of static information, and the running time might become intractable. Second, this 
work assumes no conflicting observations. This assumption could be relaxed to use sensors that are not flawless. This would require 
to define soft constraints in the formulation and satisfy as many observations as possible: an optimization-based learning task would 
be necessary, rather than a satisfaction one, and the idea of safe learning would disappear. Third, a more general concept of noise 
within the plans could be used, where some actions are not properly observed or observed when they should not. Again, this is 
equivalent to work with conflicting observations and would require optimization instead of satisfaction. This would likely reduce the 
power of the propagation approach.

Solving these limitations is part of future work. Additionally, there are some challenges that need more research. First, adopting 
a SAS+-inspired formalism to avoid the necessity of negative effects and mutex reasoning. Second, using stronger, more powerful, 
propagation algorithms to learn more complete action models and deal with optimization tasks. The important tradeoff here is the 
amount of learning vs. the complexity of the approach. Finally, analyzing the usability of the model learned with perfect precision 
and limited recall for other planning tasks, such as simplification of planning domains, plan validation or goal recognition.
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