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Abstract

Summary: Accurate gene prediction is essential for successful metagenome analysis. We present KOunt, a Snakemake pipeline, that precisely

quantifies KEGG orthologue abundance.

Availability and implementation: KOunt is available on GitHub: https://github.com/WatsonLab/KOunt. The KOunt reference database is
available on figshare: https://doi.org/10.6084/m9.figshare.21269715. Test data are available at https://doi.org/10.6084/m9.figshare.22250152 and

version 1.2.0 of KOunt at https://doi.org/10.6084/m9.figshare.23607834.

1 Introduction

Accurate and effective sequence annotation is key in interpret-
ing metagenomic sequence data. The KEGG database is a pop-
ular reference database that groups proteins into functional
orthologs, termed KEGG orthologs (KOs) (Kanehisa et al.
2022). Several tools that identify KO abundance exist with
varying aims. FMAP is a functional analysis pipeline that aligns
reads to a KEGG filtered UniProt reference database and calcu-
lates gene family abundance (Kim et al. 2016). DiTing uses
KofamKOALA to identify KOs and calculates relative abun-
dance (Xue et al. 2021). Both HumanN2 and Metalaffa pro-
vide conversion between UniRef90 hits and KOs; HumanN2
also allows searching against a legacy version of the KEGG
database (Franzosa et al. 2018, Eng et al. 2020).

Here, we describe KOunt, a reproducible workflow which
uses freely available software to calculate KO abundance in
metagenomic sequence data, taking multiple approaches to
improve the annotation of proteins and reads that initially do
not have a hit. Unlike other KO abundance tools, KOunt
gives the user the option to calculate the abundance of the
RNA KOs in the metagenomes and also cluster the proteins
by sequence identity to report the diversity within each KO.
KOunt has been used to successfully quantify KO abundance
in rumen microbiome samples (Martinez-Alvaro et al. 2022).

2 Features

KOunt uses Snakemake to generate a scalable, reproducible
workflow, utilizing freely available software (Koster and

Rahmann 2012, Griining et al. 2018). The pipeline is accom-
panied by reads subsampled from ERR2027889 to quickly
test that installation has completed successfully. Reads are
trimmed, assembled, proteins predicted, and coverage calcu-
lated with Fastp, Megahit, Prodigal, and BEDTools, respec-
tively (Hyatt et al. 2010, Quinlan and Hall 2010, Li et al.
2015, Chen e al. 2018). Complete proteins are annotated
with a KO using KofamScan and can be filtered by coverage
evenness (Aramaki ef al. 2020). These proteins are subse-
quently clustered by 100%, 90%, and 50% sequence identity
with CD-Hit and MMseqs2 to quantify the diversity within
each KO (Li and Godzik 2006, Steinegger and S6ding 2017).

Users then have the option of using the custom KOunt
databases to further annotate proteins and reads without a
hit. Proteins and reads are aligned against the KOunt protein
and RNA databases with Diamond and MMseqs2 and then
assessed for RNA presence using kallisto (Bray et al. 2016,
Buchfink et al. 2021). An in-depth description of the pipeline
is available in Supplementary Information.

3 Results and discussion

To benchmark KOunt against other KO abundance software,
we ran KOunt, FMAP, and DiTing with simulated metage-
nomic reads of organisms from the human and rumen gut
microbiotas; the methods for this are available in
Supplementary Information. Figure 1 illustrates the KO abun-
dance, summed across the 10 samples, of the 3 approaches
compared to the ground truth data. KOunt had the highest
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Figure 1. Comparison of ground truth KO abundance and DiTing, FMAP and KOunt KO abundance. (a) Ground truth versus DiTing KO abundance, (b)
Ground truth versus FMAP KO abundance, (c) Ground truth versus KOunt KO abundance

correlation with the ground truth data (r=0.98 = 0.0003)
when compared with FMAP (r=0.87 = 0.002) and DiTing
(r=0.83 = 0.003). DiTing both missed high abundance KOs
and overestimated several, such as K07497 whose abundance
increased from 294342 in the ground truth results to
483177. FMAP had a better correlation to the ground truth
(r=0.87 = 0.002) but was still missing many high abundance
KOs. KOunt was able to annotate the high-abundance KOs
missed by the other approaches; many of these were RNA,
which KOunt accurately quantified unlike DiTing and
FMAP. When comparing only the KOs identified by all meth-
ods, KOunt was still more accurate (r=0.98 + 0.0004) than
FMAP (r=0.97 = 0.0006) or DiTing (r=0.92 = 0.0017).

Of the 12945 KOs present in the reads according to the
KEGG annotation, KOunt found the most at 11343, fol-
lowed by FMAP with 10735 and DiTing with 9681. Whilst
KOunt performed the best at identifying KOs reported in the
ground truth, it also found the largest number of KOs (1575)
not reported by the ground truth, versus 1228 and 188 by
FMAP and DiTing, respectively (Supplementary Figure S1).
This could indicate that KOunt finds more false positives than
the other approaches; however, we think it’s likely that, due
to the multitude of approaches KOunt uses to quantify pro-
teins, KOunt is identifying proteins that were not in the
KEGG database when the genomes were originally
annotated.

Many proteins from microbiomes cannot be annotated to a
known protein sequence, for example 40% of the 170 million
proteins in the Unified Human Gastrointestinal Genome col-
lection are unannotated (Almeida et al., 2021). Therefore,
retaining as many reads as possible while maintaining accu-
racy is paramount. Across the 10 samples, FMAP and DiTing

assigned on average 78 million and 79 million reads, respec-
tively, to a KO; KOunt outperformed both, capturing an aver-
age of 116 million reads per sample. Whilst this is clearly
beneficial, as 150 million reads are in the simulated datasets,
there is still a need for improved protein annotation of refer-
ence datasets.

KOunt also clusters the proteins identified by KofamScan
by sequence identity, allowing investigation of the diversity
within KOs. In this dataset, without evenness filtering, 3 mil-
lion proteins were identified by KofamScan, which grouped
into 0.4 million 90% clusters and 0.2 million 50% clusters.
K03406, methyl-accepting chemotaxis proteins, was the KO
with the largest number of 50% clusters (1311) identified
with KOunt, as a protein needs to have just 50% similarity to
one of the proteins in a cluster to be included in that cluster,
this illustrates the vast amount of diversity within this KO.
The grouping of homologous proteins enables further investi-
gation of highly abundant clusters and those with abundance
associated with traits of interest.

To conclude, we present KOunt, a reproducible, scalable
pipeline which accurately calculates raw KO abundance from
metagenomic sequencing reads. Furthermore, KOunt also
reports the number of 90% and 50% sequence identity clus-
ters in each KO, showing the protein diversity within the KOs
and facilitating exploration of groups of unannotated
proteins.
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