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Simple Summary: Viroids are the smallest infectious agents currently known. Despite consisting of a
relatively small RNA molecule that does not code for any protein, viroids manage to reproduce their
genomes and completely invade a host plant when they successfully enter into an initial single cell,
frequently inducing a disease. This article recalls viroid discovery about 50 years ago and reviews our
current knowledge about most aspects of viroid biology, including the structure of viroid molecules
and taxonomic classification, the mechanisms of viroid genome replication and movement, how
viroids transmit from plan to plant and how they induce disease in the host plants. Finally, the article
also reviews recent efforts to transform these infectious agents into tools useful in biotechnology.

Abstract: Viroids are a unique type of infectious agent, exclusively composed of a relatively small
(246–430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding
nature, the more-than-thirty currently known viroid species infectious of higher plants are able to
autonomously replicate and move systemically through the host, thereby inducing disease in some
plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing
current hypotheses about their evolutionary origin, this article reviews our current knowledge about
these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in
rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and
Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current
knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host
factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved.
Systemic movement through the infected plant, plant-to-plant transmission and host range are also
discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has
acquired remarkable importance, and also for the initiation of potential biotechnological applications
of viroid molecules.

Keywords: circular RNA; non-coding RNA; infectious agent; host plant; rolling-circle replication;
hammerhead ribozyme; RNA silencing

1. Overview of Viroids

Viroids constitute a group of intracellular parasites of higher plants, composed of a
small RNA (246 to 430 nt), covalently closed and single-stranded but highly structured,
given its high self-complementarity. Their short sequences do not code for any protein in
either the viroid RNAs or the complementary strands. They lack a protective protein coat
and depend on sequences and motifs in their RNAs to parasitize host plant cell structures
in order to replicate autonomously and complete their infectious cycles. Several crop and
ornamental plants are among viroids host species; since the infective process leads to host
diseases in many cases, viroids are economically relevant as well as interesting from a
biological point of view.
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2. Discovery and Possible Origin of Viroids

The process that led to the discovery of viroids began in the late 1960s with studies that
focused on elucidating the causative agent of potato spindle tuber disease [1], which was
suspected of viral etiology [2]. Diener and Raymer, and Singh and Bagnall isolated from
diseased plants a low molecular weight free RNA, with characteristics of double-stranded
RNA (dsRNA), capable of inducing the infection [3,4]. Later it was proposed that the causal
agent of this disease must depend entirely on the host enzymes for its replication, as it
was composed of a genome smaller than those of known viruses, too small to encode the
genetic information necessary for its replication, but it did not need an auxiliary virus
to do so [5]. Therefore, the existence of a new type of pathogens, similar but different
from viruses and RNA satellites, was proposed. T.O. Diener coined the term “viroid”
(virus-like) to describe these RNAs. Although this proposal was not initially well accepted
by many scientists, similar causal agents were soon described for citrus exocortis and
chrysanthemum stunt, which contributed to its consolidation [6,7]. Later works refined the
molecular and mechanistic knowledge of these pathogens.

Viroid origin is an enigma; several hypotheses have been considered. One type of
hypothesis suggests that viroids originate from or are the origin of primitive RNA viruses,
as well as deriving from introns, transposable elements or other cell RNAs [8–11]. The recent
discovery of the amazing deltavirus diversity [12] and previously unnoticed properties of
ambiviruses [13] may support the virus-viroid evolutionary relationship. A completely
different hypothesis is that viroids and other current catalytic RNAs are remnants of the
“RNA world” [14,15]. In this hypothesis, RNA was the basis of life, given its ability to
store information and catalyze its own synthesis before the unfolding of these functions in
DNA and proteins. Existing viroids can no longer replicate on their own, possibly having
lost that function when they became strict plant parasites. Currently, viroids are classified,
together with satellite RNAs, defective interfering particles, and prions, as subviral agents
and are considered the smallest infectious agents described to date. It has been proposed
that viroids and viroid-like satellite RNAs (some of them previously known as virusoids)
have a monophyletic origin, with the family Avsunviroidae acting as an evolutionary link
between them [14,16,17], although this proposal is controversial.

3. General Structure and Phylogenetic Classification of Viroids

Currently, 33 different viroid species and several sequence variants have been biologi-
cally and molecularly characterized. Based on structural characteristics and their impact
on biological properties, viroids have been classified by the International Committee on
Virus Taxonomy (ICTV) into two families (Table 1). The family Pospiviroidae, named after
its type species, potato spindle tuber viroid (PSTVd) [18], to which most viroids belong,
adopt rod-shaped structures containing conserved sequences and structural motifs: the
central conserved region (CCR) and the terminal conserved region (TCR) or the terminal
conserved hairpin (TCH; Figure 1A). The sequence of the CCR and the presence or absence
of TCR and TCH allow the members of this family to be classified into five genera (Table 1).
Five distinct domains have been mapped in these viroids [19]: the central domain (C),
containing the CCR and flanked by the pathogenic (P) and variable (V) domains to its
left and right, respectively, and two terminal domains, right (TR) and left (TL), the latter
containing the TCR or TCH (Figure 1A). Although they are named by specific functions,
there is a more complex correlation between different parts of the viroid genome and the
biological functions they perform [20–22]. These viroids replicate and accumulate in the
nucleus [23–27] by an asymmetric rolling circle mechanism.
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Table 1. ICTV taxonomic classification of viroids (2020). The 33 viroids are grouped into two families:
Pospiviroidae, with five genera, and Avsunviroidae, with three genera. The type species of each genus is
highlighted on a gray background. For each species, the abbreviation of its name is indicated.

Family Pospiviroidae
Genus Pospiviroid PSTVd Potato spindle tuber viroid

CEVd Citrus exocortis viroid
CSVd Chrysanthemum stunt viroid
CLVd Columnea latent viroid
IrVd-1 Iresine viroid 1
PCFVd Pepper chat fruit viroid
TASVd Tomato apical stunt viroid
TCDVd Tomato chlorotic dwarf viroid
TPMVd Tomato planta macho viroid

Genus Hostuviroid HSVd 1 Hop stunt viroid
DLVd Dahlia latent virus

Genus Apscaviroid ASSVd Apple scar skin viroid
ADFVd Apple dimple fruit viroid
AGVd Australian grapevine viroid
CBLVd 1 Citrus bent leaf viroid
CDVd 1 Citrus dwarfing viroid
CVd-V 1 Citrus viroid V
CVd-VI 1 Citrus viroid VI

GYSVd-1 Grapevine yellow speckle
viroid 1

GYSVd-2 Grapevine yellow speckle
viroid 2

PBCVd Pear blister canker viroid

Genus Cocadviroid CCCVd Coconut cadang-cadang
viroid

CTiVd Coconut tinangaja viroid
CBCVd 1 Citrus bark cracking viroid
HLVd Hop latent viroid

Genus Coleviroid CbVd-1 Coleus blumei viroid 1
CbVd-2 Coleus blumei viroid 2
CbVd-3 Coleus blumei viroid 3

Family Avsunviroidae
Genus Avsunviroid ASBVd Avocado sunblotch viroid
Genus Pelamoviroid PLMVd Peach latent mosaic viroid

CChMVd Chrysanthemum chlorotic
mottle viroid

AHVd Apple hammerhead viroid
Genus Elaviroid ELVd Eggplant latent viroid

1 Names of some viroid species have been re-established by ICTV. This particularly affects citrus viroids, such as
CBCVd (formerly citrus viroid IV), CBLVd (formerly citrus viroid I), CDVd (formerly citrus viroid III), HSVd
(formerly citrus viroid II) and CVd-V and VI (formerly citrus viroid-OS).

The family Avsunviroidae on the other side, is much smaller. Named after its type
species, avocado sunblotch viroid (ASBVd) [28], they do not contain CCR or other conserved
motifs typical of the former family, but they contain functional hammerhead ribozymes
in the RNA of both polarities (Figure 1B). These viroids replicate and accumulate in
chloroplasts [26,29–31] by a symmetric rolling circle mechanism. Three of its members,
peach latent mosaic viroid (PLMVd), chrysanthemum chlorotic mosaic viroid (CChMVd),
and apple hammerhead viroid (AHVd) [32–34], have a branched conformation stabilized
by kissing-loops and pseudoknots, and are classified in a single genus (Pelamoviroid), while
ASBVd and the eggplant latent viroid (ELVd) adopt quasi-rod-like conformations [28,35].
These form genera with a single member currently described: Avsunviroid, characterized by
a high content (62%) in A+U, distinctive among the other viroids [36], and Elaviroid, with
intermediate properties between the previous genera [35] (Table 1 and Figure 1B).
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an imperfect hairpin (hairpin I). Both the characteristic CCR sequence of PSTVd and the hairpin that 
forms are shown in the upper and lower inserts, respectively. (B) Avsunviroidae viroids adopt rod-
shaped, branched or semibranched secondary structures (genus Avsunviroid, Pelamoviroid and Elavi-
roid, respectively). They contain conserved sequences of hammerhead ribozymes (HHR) that are 
functional in positive and negative strands (light and dark gray boxes, respectively, with the self-
cleavage sites indicated by solid or empty arrowheads, respectively). In PLMVd, ‘kissing-loops’ ter-
tiary interactions are indicated by lines. The insert includes the sequence of the HHR of ELVd with 
the classic representation that gives name to these ribozymes (left) next to the same HHR in both 
polarities according to the data of X-ray crystallography and NMR. Tertiary interactions between 
loops 1 and 2 are shown with lines. HO- and >P, 5′-hydroxyl and 2′,3′-phosphodiester groups, re-
spectively; CCR, central conserved region; HHR, hammerhead ribozyme; N, any nucleotide; TCR, 
terminal conserved region; and TCH, terminal conserved hairpin. 

4. Viroid Replication 
A rolling circle mechanism was proposed for viroid replication, with differences be-

tween both families [37,38]. This proposal was based on (i) the non-detection of homolo-
gous DNAs in infected tissues [39–41], (ii) the circular nature of viroids [42,43] and (iii) 
the presence of longer-than-unit RNAs, apparently with tandem repeats of both polarities 

Figure 1. Structural characteristics of the viroids in the families Pospiviroidae and Avsunviroidae.
(A) Members of the family Pospiviroidae adopt a rod-shaped secondary structure that has been
functionally separated into five domains (TL, P, C, V and TR; differentially shaded). They contain
conserved motifs: the features of the CCR (blue box) and the presence of TCR or TCH (orange and
pink boxes, respectively) define the characteristics of each genus, as indicated. Together with the
conserved sequence of the upper strand of the CCR, the flanking variable nucleotides (indicated by
arrows) form an imperfect hairpin (hairpin I). Both the characteristic CCR sequence of PSTVd and the
hairpin that forms are shown in the upper and lower inserts, respectively. (B) Avsunviroidae viroids
adopt rod-shaped, branched or semibranched secondary structures (genus Avsunviroid, Pelamoviroid
and Elaviroid, respectively). They contain conserved sequences of hammerhead ribozymes (HHR)
that are functional in positive and negative strands (light and dark gray boxes, respectively, with the
self-cleavage sites indicated by solid or empty arrowheads, respectively). In PLMVd, ‘kissing-loops’
tertiary interactions are indicated by lines. The insert includes the sequence of the HHR of ELVd with
the classic representation that gives name to these ribozymes (left) next to the same HHR in both
polarities according to the data of X-ray crystallography and NMR. Tertiary interactions between
loops 1 and 2 are shown with lines. HO- and >P, 5′-hydroxyl and 2′,3′-phosphodiester groups,
respectively; CCR, central conserved region; HHR, hammerhead ribozyme; N, any nucleotide; TCR,
terminal conserved region; and TCH, terminal conserved hairpin.

4. Viroid Replication

A rolling circle mechanism was proposed for viroid replication, with differences
between both families [37,38]. This proposal was based on (i) the non-detection of homolo-
gous DNAs in infected tissues [39–41], (ii) the circular nature of viroids [42,43] and (iii) the
presence of longer-than-unit RNAs, apparently with tandem repeats of both polarities (by
convention, the + polarity is assigned to the most abundant circular RNA), in infected
plants [37,38,44–47].

Plants infected with PSTVd do not accumulate circular forms of − polarity [48,49], so
the replication is restricted in this viroid and apparently the other members of its family
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to the asymmetric variant of the rolling circle mechanism (Figure 2A). Circular RNAs (+)
are repeatedly transcribed, producing linear concatemers of RNAs of complementary (−)
polarity. These RNAs enter directly into a new replication cycle, generating oligomers of +
polarity, which are processed (cleaved and ligated) by host enzymes to generate circular (+)
monomers of the viroid. On the other hand, Avsunviroidae members follow the symmetric
pathway (Figure 2B). Circular monomers (+) are repeatedly transcribed, producing viroid
concatemers of − polarity. The self-cleavage activity of the hammerhead ribozymes in the
concatemer generates monomeric units that are circularized by host factors, resulting in
circular intermediates of − polarity which can enter a new round of replication to generate
more circular (+) viroids.
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Figure 2. The rolling-circle mechanism in its (A) asymmetric and (B) symmetric variants is proposed
for the replication of viroids of the families Pospiviroidae in the nucleus and Avsunviroidae in chloro-
plasts, respectively. In both cases, the positive and negative viroid RNA polarities are represented
in orange and blue, respectively. Host proteins and viroid RNA motifs involved in the replica-
tive cycle are indicated. Arrowheads indicate RNA cleavage sites. -P, -OH and >P, 5′-phosphate,
5′-hydroxyl and 2′,3′-phosphodiester groups, respectively; HF?, unknown host factor; HHR, ham-
merhead ribozyme; IMPa-4, importin alpha-4; NEP, nuclear-encoded chloroplastic DNA-dependent
RNA polymerase; RPL5, ribosomal protein L5; TFIIIA-7ZF/-9ZF, transcription factor IIIA splicing
variants with seven or nine zinc fingers, respectively; and Virp-1, bromodomain-containing protein 1.
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The first step in the replication of the Pospiviroidae family members is their entry into
the nucleus, which appears to be dependent on interaction with host factors [50]. The
participation of a bromodomain-containing protein 1 (Virp1) in the process has recently
been demonstrated in citrus exocortis viroid (CEVd) [51]. Virp1 can also bind efficiently
to PSTVd [52–55], interacting with a C-loop conserved in nuclear-replicating viroids [56].
This protein of unknown function contains a nuclear localization signal, and it localizes
in such organelle [53,55], being also able to mediate the nuclear import of the satellite
RNA of cucumber mosaic virus [57], also containing a C-loop [56]. These latter authors
also showed the likely involvement of importin alpha-4 (IMPa-4) in the viroid trafficking
process. However, CEVd can also be imported independently of Virp1, while additional
nuclear localization domains have been described in PSTVd, in the upper strand of the
CCR and/or hairpin I [58]. Thus, additional cell factors and viroid signals may mediate
the import process. For instance, hop stunt viroid (HSVd) contains open reading frames
encoding short peptides with nuclear localization signals and is associated with polysomes,
raising a possible novel viroid trafficking strategy [59].

Replication takes place specifically in the nucleoplasm [27]. Viroids of the family
Pospiviroidae hijack the host DNA-dependent RNA polymerase II (Pol II) [60–62], an ability
apparently shared with the complementary (-) strand [63]. The Pol II involved in this
process, however, has a remodeled architecture with a reduced number of components
in contrast to the polymerase complex on DNA templates [64]. In the case of PSTVd, the
transcription factor TFIIIA-7ZF is also required [65], being essential for the polymerase
to use RNA as a template, while other canonical factors of general transcription do not
participate, suggesting different transcription machinery [64]. The binding sites of Pol II and
TFIIIA-7ZF are found in the left terminal region of the PSTVd (+), where the transcription
start site is consequently found (nucleotide U359 or C1) [66]. A study [67] suggests that the
polymerase recognizes the general rod structure between loops 1–5 rather than its specific
sequence, while TFIIIA-7ZF has been mapped to the lower strand between nucleotides
331–347 (loops 3–5) [65]. The CCR is also essential for PSTVd replication. Loop 15 can adopt
a Loop E structure characterized by 5–6 consecutive non-Watson–Crick base pairs. This
structure is also present in the 5S rRNA, mediating its binding to cellular proteins, such as
TFIIIA or the ribosomal protein L5 (RPL5). PSTVd loop E interacts with RPL5 [68], affecting
its ability to regulate TFIIIA splicing and favoring the production of the 7ZF variant over
the 9ZF, thus benefiting its own transcription [69]. It remains to be resolved whether the
processes described with PSTVd are general to other members of its family.

The multimeric strands of both polarities produced during replication have different
sublocations. Those of − polarity remain anchored in the nucleoplasm, giving rise to
more + multimers; those of + polarity are selectively transported to the nucleolus [27],
an organelle in which several cell RNAs are processed. Therefore, the existence of some
transport mechanism capable of discerning between both polarities is expected. In this
sense, it has been proposed that Loop E, which only occurs in PSTVd (+), is involved in this
transport through its interaction with the RPL5 protein, which is related to the movement
of ribosomal RNAs [68].

The + oligomers are then cleaved into monomeric units. The cleavage takes place
between the nucleotides G96 and G97 in the upper strand of the CCR in PSTVd, and
in equivalent sites in other viroid species, always between two G. The sequence of the
upper strand of the CCR, together with a short flanking inverted repeat, forms a stem-
loop structure with a central CG-rich region and a terminal YCGR tetraloop (hairpin
I). Two consecutive hairpins in + oligomers interact via kissing loops to form a quasi-
double-stranded structure that is recognized and processed by a type-III RNase, which
cleaves at the hairpin loops (now a dsRNA region) of the two units at once, releasing
a monomeric linear unit of the concatemer. Although the enzyme responsible for this
cleavage is formally unknown, current evidence points to the involvement of a host RNase
III since these act on dsRNA, and the viroid cleavage generates RNA termini expected for
these enzymes: 2-nt overhangs 3′ ends with 5′-phosphomonoester and 3′-hydroxyl terminal
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groups [70,71]. Upon cleavage, the monomers likely rearrange into rod-like structures,
stabilizing the new 3′ and 5′ ends by base pairing with the lower strand, while loop 15
acquires the abovementioned Loop E structure [70]. The host DNA ligase 1, whose usual
substrate is DNA and consumes ATP, recognizes and ligates the 5′-phosphomonoester and
3′-hydroxyl ends of the linear replicative intermediate, both in vitro with a recombinant
enzyme produced in Escherichia coli and in vivo, as suggested by silencing assays [72].
However, the details that mediate the recognition of the replicative intermediate by the
enzyme are currently unknown.

On the other hand, the viroids of the family Avsunviroidae are the only infectious
agents able to enter the chloroplast, where they replicate in the thylakoid membrane [26,73],
although the specific trafficking mechanism of these pathogenic RNAs to the chloroplast
is unknown. Viroid import seems to be mediated by a viroid localization signal, either
sequences or specific structural motifs, which in ELVd have been mapped in the left ter-
minal region (nucleotides 52–150) [74]. Nuclear-expressed transcripts containing these
sequences are efficiently transported to chloroplasts, leading these authors to hypothesize
an initial step of the viroid infection in which the ELVd is transported from the cyto-
plasm to the nucleus prior to being exported to the chloroplast. It has been shown that
a region of ELVd (nt 16–182) can effectively mediate transcript import into the nucleus;
interestingly, this region is partially overlapping with that required for its import into
the chloroplast [75]. The cellular factors involved in the intracellular movements of the
Avsunviroidae are, however, unknown.

It has been proposed that the nuclear-encoded chloroplastic RNA polymerase is the
main host factor involved in the replication of these viroids [76,77]. Less known are the
mechanisms by which the enzyme is recruited since the transcription start sites are not
conserved between species. In ASBVd, this site is located at U121 and U119 in the + and
− RNA, respectively, in the AU-rich right terminal loop of the predicted quasi-rod-like
structure of both polarities [76]. In PLMVd, positions A50/C51 and A284/A286 have been
determined as the transcriptional start for the + and − strands, respectively [78,79], both
located in short stems within conserved hammerhead ribozymes motifs. Although it is
speculated that in both ASBVd and PLMVd, specific promoter sequences are necessary for
polymerase recognition, the involvement of structural motifs cannot be ruled out. Such
is the case of the ELVd, in which these sites (U138 and A48 for the + and − strands,
respectively) are not related at the sequence level. Thus, it has been proposed that the
polymerase (and/or accessory factors) hijack is dependent on some common but unknown
structural feature [80].

The linear concatemers of both polarities are processed by hammerhead ribozymes
present in their sequences, generating viroid linear monomeric units without the need for
host enzymes [32–35,81]. Hammerhead ribozymes are small RNA domains with autocat-
alytic activity. First discovered in satellite RNAs [82] and shortly thereafter in viroids [81],
they are more widely distributed than initially anticipated, having been identified in all
domains of life [83–85]. Structurally, hammerhead ribozymes are composed of three stems
(named Helix I, II and III), which may or may not be capped by terminal loops, all sur-
rounding a set of 15 highly conserved nucleotides that mediate catalysis. The ribozymes
of all family Avsunviroidae viroids are type III, as this stem houses the 5′ and 3′ ends of
the ribozymes. Despite their name, derived from the original two-dimensional represen-
tations [81,86], ribozymes fold into a γ-shaped structure in which stems I and II establish
with each other essential interactions for efficient catalysis under physiological condi-
tions [87–89]. These interactions are stabilized by divalent metal ions, usually Mg2+; its
additional involvement in catalysis is currently discussed [90–94]. In any case, hammerhead
ribozymes induce cleavage in RNA through a transesterification reaction that converts a
5′,3′-phosphodiester bond into a cyclic 2′,3′-phosphodiester, also generating a 5′-hydroxyl
end. The process is potentially reversible, although the efficiency of the reverse reaction
in viroid ribozymes is highly variable and generally low [95,96]. Furthermore, the ASBVd
+ RNA interacts with two chloroplast RNA-binding proteins, PARBP33 and PARBP35,
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usually involved in the stabilization, maturation and editing of chloroplast transcripts [97].
PARBP33 acts as an RNA chaperone for the viroid, facilitating the self-cleavage of viroid
oligomers in vitro and possibly in vivo.

After the cleavage, the monomers are efficiently circularized by the chloroplastic
isoform of the host tRNA ligase, at least in the ELVd, as has been shown both in vitro and
in vivo [98]. The main function of this enzyme is to ligate the 5′-hydroxyl and 2′,3′-cyclic
phosphodiester ends generated with the excision of introns in pre-tRNAs during the tRNA
maturation process [99]. Its function in viroid processing can be replaced by an enzymatic
activity of the unicellular green algae Chlamydomonas reinhardtii [100,101], while eggplant
tRNA ligase can process the other members of the family in vitro [98]. Thus, suggesting
both the involvement of this kind of enzyme in the processing of all the Avsunviroidae and a
conserved mechanism of enzymatic recruitment and processing among them. The exact
nature of the viroid-enzyme interaction is unknown, although the quasi-rod-like structure
in the central part of the ELVd (containing the ligation site in an internal loop) appears to
be necessary for ligation [98,101]. Other domains outside this region, however, appear to
be not necessary for circularization [102,103]. In this sense, the role of the hammerhead
ribozyme domain has been proposed as a mediator of ELVd-ligase recognition in addition
to its role in the monomerization of replication concatemers [104].

5. Movement of Viroids within the Plant

The viroid progeny must leave the organelle where replication occurs to colonize the
rest of the plant, developing a systemic infection. Viroid spread occurs proximally between
cells symplastically connected by plasmodesmata [105] and through the phloem in long-
distance transport [106,107] (Figure 3). However, exceptions to this have been described,
such as some citrus viroids in which movement through phloem is restricted [108]. Together
with the existence of mutations that specifically affect systemic infection [21,109], this
suggests that the movement depends on interactions with host cellular components.

Several host factors have been proposed to be involved in viroid movement, such
as the chaperone-type cucumber phloem protein 2 (CsPP2), which is the most abundant
component of cucumber phloem exudate. It forms a ribonucleoprotein complex with
HSVd in vitro [110] and spread the infection through intergeneric grafts, suggesting its
contribution to the long-distance phloem trafficking of HSVd [111]. The same group
described two additional phloem proteins which are translocatable through intergeneric
grafting (a phloem-specific lectin and an unidentified 14 kDa protein) and able to bind
ASBVd, suggesting that similar mechanisms could govern the expansion of chloroplast
viroids [112]. On the other hand, silencing a Nicotiana tabacum phloem protein of unknown
function (Nt-4/1) seems to enhance PSTVd transport to young developing leaves [113,114]
evidencing its possible role in the vascular movement of the viroid, although how it
does so is unknown. Other authors also proposed the role of small RNAs derived from
loops 7 and 8 of PSTVd in movement regulation by silencing CalS11 and CalS12, callose
synthases that regulate plasmodesmata function by reducing the transit space through
callose deposition [115]. Callose-mediated plasmodesmata size exclusion limit has already
been related to viral expansion [116–118]. Whether movement through plasmodesmata
occurs as free RNAs or is associated with plant proteins remains unsolved.

In addition to these host factors, several PSTVd RNA motifs have been related to its
movement, being common for specific motifs to mediate transport from or to specific areas
of the plant, possibly by interacting with different factors [21,22,109,119–121].



Biology 2023, 12, 172 9 of 22Biology 2023, 12, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 3. Proposed mechanisms of host defense responses, viroid pathogenesis and intercellular 
movement. Plant RNAi response is responsible for much of the viroid symptoms. dsRNA replicative 
intermediates and the cytoplasmic passage of viroids triggers the production of vd-sRNAs in plant 
cells. vd-sRNA-loaded RISC targets viroids and inhibits the expression of host genes containing 
complementary sequences post-transcriptionally by mRNA degradation and translation inhibition 
and possibly transcriptionally via RNA-directed DNA methylation. RDRs may transform sRNA 
fragments into additional DCL and RISC substrates. Viroid may also be recognized by cell mem-
brane PAMP receptors stimulating plant innate immunity, resulting in the alteration of host gene 
expression. Additional interactions with proteins and host factors are responsible for global epige-
netic changes, alternative splicing and interference with translational machinery, thus, are also in-
volved in the development of symptoms. Viroids use plasmodesmata for proximal movement and 
phloem for systemic transport, likely interacting with specific (and in some cases unknown) host 
factors. RNAi response genes can increase intercellular movement. CalS11/CalS12, callose synthase 
11 and 12, respectively; CmmPP2/Lec17/14UP, Cucumis melo phloem protein 2, phloem lectin 17 and 
uncharacterized protein of 14 kDa, respectively; DCL, Dicer-like protein; DRM, domains rearranged 
methylase; eEF1, eukaryotic elongation factor 1; HDA6, histone deacetylase; HF?, unknown host 
factor; Nt-4/1, Nicotiana tabacum 4/1 protein; PAMP, pathogen-associated molecular pattern; RISC, 
RNA-induced silencing complex; RDR6, RNA-dependent RNA polymerase 6; RNApol, RNA poly-
merase; RPL5, ribosomal protein L5; RPS3a, ribosomal protein S3a; and vd-sRNA, viroid-derived 
small RNAs. 

Several host factors have been proposed to be involved in viroid movement, such as 
the chaperone-type cucumber phloem protein 2 (CsPP2), which is the most abundant com-
ponent of cucumber phloem exudate. It forms a ribonucleoprotein complex with HSVd in 

Figure 3. Proposed mechanisms of host defense responses, viroid pathogenesis and intercellular
movement. Plant RNAi response is responsible for much of the viroid symptoms. dsRNA replicative
intermediates and the cytoplasmic passage of viroids triggers the production of vd-sRNAs in plant
cells. vd-sRNA-loaded RISC targets viroids and inhibits the expression of host genes containing
complementary sequences post-transcriptionally by mRNA degradation and translation inhibition
and possibly transcriptionally via RNA-directed DNA methylation. RDRs may transform sRNA
fragments into additional DCL and RISC substrates. Viroid may also be recognized by cell membrane
PAMP receptors stimulating plant innate immunity, resulting in the alteration of host gene expression.
Additional interactions with proteins and host factors are responsible for global epigenetic changes,
alternative splicing and interference with translational machinery, thus, are also involved in the
development of symptoms. Viroids use plasmodesmata for proximal movement and phloem for
systemic transport, likely interacting with specific (and in some cases unknown) host factors. RNAi
response genes can increase intercellular movement. CalS11/CalS12, callose synthase 11 and 12,
respectively; CmmPP2/Lec17/14UP, Cucumis melo phloem protein 2, phloem lectin 17 and uncharac-
terized protein of 14 kDa, respectively; DCL, Dicer-like protein; DRM, domains rearranged methylase;
eEF1, eukaryotic elongation factor 1; HDA6, histone deacetylase; HF?, unknown host factor; Nt-4/1,
Nicotiana tabacum 4/1 protein; PAMP, pathogen-associated molecular pattern; RISC, RNA-induced
silencing complex; RDR6, RNA-dependent RNA polymerase 6; RNApol, RNA polymerase; RPL5,
ribosomal protein L5; RPS3a, ribosomal protein S3a; and vd-sRNA, viroid-derived small RNAs.
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6. Host Defense and Pathogenesis

During their infectious cycle, viroids must be able to interact with various host factors
while overcoming the plant’s defensive strategies to stop pathogenic infection (Figure 3).
The dependence of viroids on cellular factors to complete its biological cycle make it likely
that hijacking host resources may be a direct and main cause of the phenotypic effects
of the infection. However, additional causes for symptom development may explain the
lack of linearity between titer and symptoms (especially considering the existence of latent
viroids that, despite being asymptomatic, reach significant concentrations in the infected
tissue) as well as the effect of specific nucleotide changes able to transform mild strains into
aggressive strains.

The almost dsRNA structure of viroids of both polarities, and potentially its dsRNA
replication intermediates, make them ideal for the generation of RNA interference (RNAi)
responses. RNAi describes a series of highly conserved mechanisms in eukaryotes that regu-
late gene expression and protect against exogenous and endogenous genetic elements, such
as viruses or transposons. RNAi is triggered by small RNAs, usually dsRNA, with high
sequence homology to the RNAs to be silenced at transcriptional or post-transcriptional
levels via epigenetic modifications in DNA and histones that repress the transcription
process and mRNA degradation or translational repression. Several studies have de-
tected viroid-derived small RNAs (vd-sRNAs) of both polarities in infected plants, first in
PSTVd [122,123] and later in multiple viroid species of both families [124–127]. Viroids seem
to be substrates for degradation via host RNAi defense. The viroid titer is reduced, and the
onset of infection symptoms is delayed by the overexpression of Argonaut proteins [128]
or by the experimental introduction of vd-sRNA [129–132]. Viroid overaccumulation is
achieved by silencing RNA-dependent RNA polymerases (RDR) 1 and 6, responsible for
generating small secondary interfering (siRNAs) [133–135], as well as in co-infections with
viruses that express silencing suppressors or through the ectopic expression of these sup-
pressors [136]. Similarly, salicylic and gentisic acids appear to enhance the resistance against
CEVd in tomato plants by inducing factors that mediate RNA silencing [137]. Despite this
evidence, the resistance of mature viroids against RNAi-mediated degradation has also
been described [133]. Unlike plant viruses, viroids do not express silencing suppressors.
This resistance thus must reside in the viroid compact secondary structure, its association
with proteins that prevent their recognition by the RNAi machinery and/or the fact that
viroids of both families replicate in organelles where RISC is not that active [133,138–140],
particularly in the chloroplast, in which the RNAi machinery has not been detected [141].
It is assumed that chloroplastic viroids produce vd-sRNAs during transit through the
cytoplasm before reaching this organelle [142].

An important part of viroid pathogenicity derives from the generated vd-sRNAs that
can be directed against host mRNAs and trigger the induction of disease symptoms. This
hypothesis, which was raised on a theoretical framework [140], was initially demonstrated
with the cucumber mosaic virus Y RNA satellite [143] and later in a PLMVd variant that
induces extreme leaf chlorosis or peach calico [144]. This conspicuous symptom only occurs
if the viroid sequence variant contains the insertion of a specific 12–13-nt hairpin [145].
Two vd-sRNAs derived from the peach calico-associated insert are homologous to the
mRNA encoding the chloroplastic heat shock protein 90 (cHSP90). Thus, vd-sRNAs may
induce mRNA degradation and promote chloroplast destabilization, leading to peach calico
symptoms [144]. Similar observations of vd-sRNA’s involvement in the downregulation of
host genes have been reported in various viroids [146–150]. Notably, vd-sRNAs derived
from the virulence-modulating region of PSTVd induce the silencing of a potato transcrip-
tion factor (StTCP23), inducing the conspicuous spindle tuber symptom [150]. Secondary,
trans-acting, phased vd-sRNAs have also been proposed, thus expanding the repertoire of
silencing targets [151]. Interestingly, the distribution of vd-sRNAs is not uniform through-
out the viroid RNA, but rather vd-sRNAs are concentrated in specific regions of the RNA
molecules of both families, many of which had been previously described as pathogenicity
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determinants [123,126,127,131,152,153]. It is likely that the secondary structures of these
regions are more susceptible to being processed by the RNAi machinery [124,131,153].

PSTVd and CEVd also induce the expression of genes of the RNA-dependent DNA
methylation (RdDM) pathway in tomatoes [149,154], and members of both families can
induce transcriptional silencing by methylating their own transgene [139,155–158]. In
addition, trans-methylation of the partial sequence of PSTVd has been achieved exper-
imentally after infection with tomato apical stunt viroid (TASVd), with which it shares
some sequence homology [157], and the methylation of some promoters of endogenous
genes has been described after PSTVd infection [149,159]. However, the molecular basis
of host gene methylation and the functional impact for both the plant and the viroid need
to be clarified [160]. Direct interactions have been described between HSVd and histone
deacetylase 6 (HDA6), reducing its activity and promoting epigenetic alterations [161].
It has been hypothesized that this interaction favors the spurious recognition of the vi-
roid as an RNA template for replication and has been related to the hypomethylation of
the 5S rRNA gene and transposable elements, increasing its transcription [162–164]. In
this sense, transcriptomic studies have shown extensive changes in gene expression as a
result of nuclear [149,165,166] and, to a lesser extent, chloroplastic viroid infection [167].
Infection of orange trees with citrus dwarfing viroid (CDVd) even produces differential
expression alterations in the scion and rootstock [168]. Other global effects have also
been observed with PSTVd infection, such as the deregulation of long non-coding RNAs,
alteration of microRNA and phasiRNA function, and changes in the splicing pattern of
coding transcripts [165]. In this regard, the PSTVd interacts with at least one splicing
factor, RPL5, interfering with its function [68,69]. However, it is unknown whether this
interaction can induce the described effects or whether interactions with other regulators
are required instead.

On the other hand, affecting the translational machinery seems to be an important
mechanism of viroid infection. In addition to the transcriptional reactivation of rRNA
genes and the PSTVd-RPL5 interaction, it has been described that members of the family
Pospiviroidae and/or derived RNAs interfere with the activity of the eukaryotic elongation
factor 1 [169], the maturation of the 18S subunit [170], repress the ribosomal protein
S3a [147] and induce the ribosomal stress response [171].

Finally, it is speculated that, as occurs with viral dsRNAs [172], the almost dsRNA
structure of viroids or their replicative intermediates are recognized as pathogenic molec-
ular patterns by the plant immune system. The induction of several proteins related to
this process during viroid infection has been described [149,171], and thus, the immune
response could be partly responsible for viroid symptomatology. In this sense, it has
been proposed, as for viral genomes, that post-transcriptional modifications on viroid
RNA might prevent its detection by host immunity mechanisms [173]. Given the dynamic
complexity of the host-viroid interaction during the infection process, a recent study pro-
vides an overall vision that gives temporal relativity to many of the abovementioned host
changes [174].

7. Host Range and Symptoms

Most viroids infect dicotyledonous plants, with some exceptions, such as the coconut
cadang-cadang viroid (CCCVd), the coconut tinangaja viroid (CTiVd), or the tentative
Dendrobium viroid (DVd) [175], which infect monocots. Some viroids, such as HSVd
and PSTVd, have a wide host range, while others, such as Coleus blumei viroids and those
of the family Avsunviroidae, are mainly restricted to their natural hosts [176]. Generally,
members of the family Pospiviroidae produce late, nonspecific, systemic symptoms. Those
attributed to PLMVd and other members of the family Avsunviroidae are, on the contrary,
earlier, specific, and local [176]. Pathogenicity depends on the genomes of both the viroid
and the host plant, as well as the environmental conditions. Viroids cover a wide range
of symptoms (Figure 4), from asymptomatic infections to those that induce plant death,
and in general, can be considered similar to those induced by viruses. At the macroscopic
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level, viroids induce epinasty and chlorosis of the leaves, deformation in flowers, fruits
and reserve organs, stem and bark cracking, growth retardation, dwarfism, etc. At the
subcellular level, they induce malformations of cell walls and chloroplasts, formation of
plasmalemmasomes and electron-dense deposits in the cytoplasm and chloroplasts [142].

Recent research has identified viroid-like RNAs, possibly viroids according to the
described features, infectious and inducing symptoms in filamentous fungi [177]. This
observation is in line with other reports in which viroid or viroid-like RNAs were associated
with fungi [178–181], although some of these reports are controversial [182].
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Figure 4. Typical symptoms of viroid infection in various crops. In all cases, mock-inoculated
or symptomless plants are on the left, and viroid-infected plants are in the center and/or on the
right. (A) PSTVd induces potato tuber malformations (image modified from original credited to
William M. Brown Jr., Bugwood.org, accessed on 16 January 2023). (B) Symptomless infections
induced by ELVd in eggplant (cv. Black Beauty). (C) Peach calico-inducing variants of PLMVd
induce severe chlorosis in peach leaves (left image adapted from https://doi.org/10.3389/fpls.20
12.00288, accessed on 16 January 2023; right image modified from original credited to H.J. Larsen,
Bugwood.org). (D) CSVd infection induces stunting and earlier blooming in chrysanthemum (top),
resulting in flower breaking and deformation (bottom) (top image modified from original credited to
J. Dunez, Bugwood.org, accessed on 16 January 2023; bottom image modified from original credited
to European and Mediterranean Plant Protection Organization, Bugwood.org, accessed on 16 January
2023. (E) Co-inoculation of citrus trees with CBLVd and CDVd induces symptomless infections in
trees (left), while co-inoculation of CEVd and CBCVd induces bark scaling characteristic of CEVd
infection (center) or severe bark cracking characteristic of CBCVd infection (right). Parts of this
figures have been adapted from [144,183–185].
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8. Transmission between Plants and Control Strategies

Several strategies are used by viroids for its dissemination, some of which are facili-
tated by modern agricultural practices (Figure 5). The most effective strategy is the vegeta-
tive propagation of viroids through bulbs, tubers, rhizomes, or grafts [186,187], followed by
mechanical transmission, especially during manipulations that involve mechanical damage
to the plants, such as pruning and harvesting, and allows direct transmission by plant-to-
plant contact or the use of contaminated agricultural machinery [35,186,187]. The presence
of viroids in harvest residues, either fresh or processed, also poses a potential source for
infection [188–190]. Much lower efficiency has been described for seed transmission of
several viroids [35,187,191,192], as well as for infected pollen [191,193]. Spatial analyses
of infection spread suggest viroid transmission through roots, which has been proven
under experimental conditions [194–196]. The spread of viroid-like RNAs through parasitic
plants and phytopathogenic fungi has also been proposed [179,181,197,198]. Insects are
potential vectors of transmission, possibly by spreading infected pollen [192], and certain
insect species could mediate the direct transmission of viroids of both families between
plants [198–200], although the efficiency of these transmissions seems to be very low and
unimportant from an epidemiological point of view. It has been described that the efficiency
improves with the transencapsidation of the viroid RNA with an insect-transmitted plant
virus, probably given the adaptation of the virus to its vector and its ability to efficiently in-
fect plant cells [201]. Natural animal practices, such as goats rubbing their horns against the
bark of infected trees, may also contribute to long-range viroid spread between cultivated
and wild plants [202].
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Figure 5. Some mechanisms of viroid transmission between plants.

Effective commercial methods for the control of viroid infections are currently lacking,
relying only on good agronomic practices to prevent, detect and eradicate the infection.
Additionally, several strategies have been proposed for the control of viroids, such as genetic
improvement of resistant varieties [203,204], cross-protection with latent viroids [205,206], or
the generation of resistant transgenic plants, including RNAi-based strategies [129,132,207].
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9. Biotechnological Aspects of Viroids

General research on viroids has led to important discoveries in RNA and plant biology,
as recently reviewed [208]. In addition, viroids can be useful biotechnological tools, as
with plant viruses. The ELVd has been used to overproduce recombinant RNAs in E.
coli, such as aptamers and long dsRNAs with insecticidal activity [102,103,209–211]. The
insertion of the RNA of interest in a particular position of the ELVd (+) RNA still allows
the hammerhead ribozymes self-processing and ligation by a tRNA ligase, which is co-
expressed, generating chimeras in which the circular viroid scaffold, compact and possibly
associated with the ligase, is responsible for increasing the half-life of the RNA of interest
and its accumulation in the bacteria. Also, recombinant clones of this same viroid carrying
plant-specific sequences have been recently shown useful for dissecting gene functions in
eggplant [212]. The range of applications of the viroids of the family Avsunviroidae can be
further expanded as they are the only known pathogens capable of efficiently entering the
chloroplast, an organelle of biotechnological interest. For example, chloroplasts lack RNAi
machinery; thus, dsRNAs accumulating in there are not processed by the plant, and their
uptake by insects is not hindered. Viroids inducing dwarfing have also been proposed as
molecular tools to improve the high-density planting of citrus trees [168].

10. Conclusions

Viroids are the smallest infectious agents known to date. Despite extreme simplicity
in terms of size and lack of protein-coding-capacity, viroid RNAs complete a complex
infectious cycle in the infected plants, which includes genome replication, subcellular,
cell-to-cell and long-distance movement and counteraction of host defense, frequently
inducing a disease. Since viroids’ discovery about 50 years ago, a lot of knowledge has
been gathered to understand viroid biology, but a lot is still missing, and some intriguing
questions are currently being faced by viroid researchers. What is viroids’ evolutionary
origin? Are viroids widespread in other taxonomic groups outside higher plants? Are
viroids definitively non-coding RNAs, or may they still encode some functional peptides?
How do these naked RNAs survive in the hostile environment of an infected cell? Do
viroid RNAs contain other unnoticed ribozyme activities? Is viroid intracellular trafficking
more complex than expected, combining phases in different organelles? Can viroid mighty
molecular features be further exploited for biotechnological applications? We trust these
and some other intriguing questions about viroid biology will be answered by the current
and next generations of viroid researchers.
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