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Eco-driving optimization of a signalized route with
extended traffic state information

Francisco Arnau, Benjamı́n Pla, Pau Bares, Augusto Perin

Abstract—Literature suggests that driving style and conditions
play a major role in vehicle energy consumption. In this sense,
this work focuses on vehicle speed planning using information
from the environment, through vehicle-to-infrastructure (V2I),
and from nearby vehicles, with vehicle-to vehicle (V2V) infor-
mation to reduce fuel consumption over a signalized route. By
knowing the traffic lights scenario of the route in advance and the
current position and speed of the preceding vehicle, the proposed
algorithm decides the ego-vehicle speed profile during a given
horizon to minimize fuel consumption. The proposed strategy
solves the optimal control problem in each prediction horizon
through Dynamic Programming (DP) with a simplified model.
The scenario and the optimal solution are updated periodically
to make up for scenario prediction and modelling uncertainties.
Experimental tests were conducted on a test bench to evaluate the
fuel consumption of the simulated speed profile when compared
to the preceding vehicle. Results show that a reduction of almost
20% in fuel consumption is possible without penalizing travel
time while keeping it real-time feasible.

Index Terms—eco-driving, speed planning, DP, traffic lights

I. INTRODUCTION

URBAN mobility is a major player in the current society
from both environmental and economic points of views.

For instance, it represents up to 40% of the CO2 emissions of
road transport and 70% of the emissions levels. Besides being
an energy and health-related problem, urban mobility is also
an economic issue once traffic congestion in Europe accounts
for an estimated EUR 130 billion annually [1]. To reduce the
greenhouse gases (GHG) in the transportation sector, stricter
legislations are being proposed. Regarding to 2021 legislation,
the aim is to reduce the average fleet CO2 emissions of new
light vehicles by 37.5% in 2030 [2].

Having that in mind, many researchers are searching for
approaches to tackle not only the powertrain-related emissions
but also managing the driver behavior, which can have a
significant impact on GHG depending on the driver’s skill,
experience, and awareness [3]. New technologies are pushing
the implementation of advanced driver assistance systems
(ADAS) and the usage of the newly available information from
the environment. Intelligent speed adaptation (ISA) came up
firstly to deal with traffic accidents and injury-related problems
associated with urban mobility. However, not only accidents
can be reduced, but also CO2 emissions can be mitigated
through speed advisory [4].

New ADAS technologies can be implemented with the
decreased cost of embedded systems, such as GPS on traffic
players. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
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(V2I) can provide data about the environment and route condi-
tions, allowing robust communication and feasible implemen-
tation of control strategies. Eco-driving can be regarded as any
technique used to smartly route a vehicle to the most efficient
path or speed profile. The goal can be minimizing fuel, energy,
or even pollutants. Eco-driving can be promoted on different
levels, such as making driving decisions that promote higher
average speeds, avoiding traffic jams, advising or choosing
speed profiles that reduce the need for braking or the time
spent idling, or even in cases with enough connectivity, avoid
red traffic lights intersections [5] [6]. According to [7], the use
of eco-driving techniques can potentially reduce up to 15% the
energy usage in a route.

Green Light Optimal Speed Advice (GLOSA) is a well-
reviewed algorithm in the eco-driving study that has been
investigated by several authors. It relies on creating a cruising
speed that avoids reaching an intersection during a red light
phase. Authors in [8] review the state-of-the-art in GLOSA
applications, proposing a real-time implementation of a vehicle
dynamics model to validate its effectiveness over mobility and
environmental parameters. Reinforcement Learning (RL) has
also been applied by [9] in situations where little information
can be accessed by the ego vehicle, obtaining fuel savings
when compared to the standard GLOSA algorithm.

Eco-driving can be formulated as an optimal control prob-
lem (OCP), taking advantage of a broad set of algorithms
and techniques [10]. Predictive cruise control (PCC) has been
investigated by [11] using V2V and V2I to mitigate the time
spent idling and also the use of brakes by tracking a speed
reference calculated based on green phase intervals with model
predictive control (MPC). MPC is also used by [12] to predict
the deceleration of a leading truck and therefore minimize the
fuel consumption of an ego-truck over the predicted horizon.
Eco-driving speed planning often relies on other optimization
methods such as dynamic programming (DP). In [13] the
authors take advantage of this control method to formulate
a speed profile that can minimize fuel consumption or NOx

emissions over a real-life daily commute driving cycle. Due
to the uncertainties of traffic signals, [14] uses the available
probabilistic traffic-signal phase and timing (SPAT) to create a
predictive optimal velocity-planning algorithm employing DP,
achieving a substantial reduction in fuel consumption.

One of the main advantages of optimal control methods is
the capability of including constraints into the problem. For
instance, the speed profile optimization in a scenario with
traffic lights and DP is possible, as demonstrated by [15]
in which fuel or NOx emissions could be minimized over
a signalized route with knowledge in advance of the traffic
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lights pattern. However, DP is computational costly when the
problem has too many states, often not being feasible for real-
time (RT) implementation. For that reason, [16] implemented
a bi-level DP method to solve the RT implementation, using
a weighted orientation graph that divides the problem into
passable routes for each traffic light interval.

Therefore, some authors developed optimal speed trajec-
tories by combining DP with other low computational cost
control techniques. [17] combines DP with MPC by calcu-
lating an optimal speed trajectory offline and applying this
reference speed to the host vehicle online through MPC. [18]
employ the Pontryagin’s Maximum Principle (PMP) to find
energy optimal velocity profiles and compares the results to
DP to verify the global optimality of the solution. [19] solves a
pair of algebraic equations equivalent to an OCP and validates
its efficiency in an RT experimental assessment, having close
results to the DP solution.

That being said, some studies also rely on the direct method
(DM) when complexity is an issue, having a large number of
states and controls [20]. Other authors, such [21] make use
of sub-optimal approaches that can still provide significant re-
ductions in travel fuel consumption. [22] developed a pruning
algorithm that evaluates the feasible paths to cross the traffic
lights at a green phase. The comparison between this sub-
optimal approach and a DP also demonstrated exciting gains,
and it is RT allowable.

This paper addresses a case scenario where a vehicle needs
to drive through a given route respecting some boundaries
such as the road speed limit, the state of the traffic lights,
and avoiding colliding with the preceding vehicle. Vehicle to
infrastructure (V2I) such as the traffic lights timing and state is
known in advance by the driver. The route characteristics such
as elevation, road slope, and position can also be evaluated
through GPS information. Vehicle to vehicle (V2V) informa-
tion is also available from the preceding vehicle, which can
provide its current states (position and velocity) at any time.
The goal is to find a speed profile that can respect the boundary
limits imposed with the minimum fuel consumption during the
trip.

Therefore, an optimal speed profile is proposed as a solution
through DP, taking advantage of the available information to
predict the velocity path that minimizes the fuel consumption.
As the future position of the preceding vehicle is not known
beforehand, it is assumed to follow a car-following speed
profile based on the traffic light policy and the optimization
is performed in short-horizon windows to update the solution
periodically, improving the estimation errors. Therefore, the
algorithm optimizes shorter paths instead of the whole route,
solving the problem in a recursive manner.

It is important to mention that although DP is not usually
applied to RT scenarios, due to its large computational burden,
this paper brings the novelty of proposing an algorithm with a
first-order linearization, dealing with only one state (position).
Therefore, a receding algorithm can be executed in short
windows, updating the information of V2I and V2V in a RT
manner, which is further explained in the methodology section.

This study caries out a simulation-based analysis of the fuel
consumption of road vehicle when following different speed

profiles generated by a recursive DP algorithm. Although not
performing any vehicle testing in a road level, the torque
demands of the speed profile obtained in simulations has been
tested in a fully instrumented engine test-bench.

The article is presented in the following order: The method-
ology containing the case study, modelling, and control algo-
rithm is explained first. Then, results obtained by simulations
and experimental tests are shown, followed by conclusions and
discussions about the achieved results.

II. EXPERIMENTAL SETUP

The purpose of the described method is to reduce the fuel
consumption and hence the emitted CO2 in a route with
partial information. A look-up table of the powertrain, as
well as a vehicle model, were used to predict the optimal
torque evolution along the route. Experimental tests have been
performed on a fully instrumented test bench to obtain the fuel
consumption map of the engine and verify the benefits of the
proposed strategy.

Table I shows the characteristics of the four-stroke compres-
sion ignition (CI) engine used, i.e. a commercial passenger car
diesel engine. Measurements of torque and engine speed were
acquired with a Horiba DYNAS3 asynchronous dynamometer.
The dynamometer was controlled by Horiba SPARC integrated
with a HORIBA Automation System STARS. The torque was
controlled by the pedal command in order to control the
engine operating conditions. Electronic control unit (ECU)
parameters, such as pedal position or injected fuel mass, were
controlled in real-time through ETK-port with an ETAS ES910
connected to a dSpace prototyping system. All the signals
received from sensors, those received by the ECU and those
measured at the test bench, e.g. fuel balance or additional
sensors, have been acquired and stored with the STARS and
the dSpace systems.

TABLE I
EXPERIMENTAL ENGINE SPECIFICATIONS.

Parameter Value
Displaced volume 1499 cm3

Bore x Stroke 75 x 84.8 mm
Compression ratio 16.4:1
Maximum torque 300 Nm @ 1750 rpm
Maximum power 96 kW @ 3750 rpm
Emissions standard Euro 6c

III. METHODOLOGY

A. Case Study

A case study is chosen to validate and evaluate the per-
formance of the method. Following the benchmark scenario
proposed in [23], the selected route of this study consists of
a 16 km long commute with 26 traffic lights along the way.
Information about the route slope is also provided.

The vehicle must respect the constraints of the route, such
as not crashing nor overtaking the preceding vehicle. Also,
there is a speed limit of 60 km/h that must be respected. In
this study, the preceding vehicle speed profile is taken as a
baseline reference to evaluate the achievable reduction in fuel
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consumption if enough information is available for the vehicle
to optimize the speed profile. The state (TL) of any traffic light
(i) at a given time (t) is modelled as a boolean depending on
a constant policy only depending on time, i.e. red and green
periods with constant frequency.

TL(t, i) =

{
1 if red
0 otherwise (1)

where i stands for the number of the traffic light (i = 1...26)
and t for the time step.

B. Vehicle Model

Vehicle modelling for control purposes is often regarded in
the literature as semi-rigid bodies where only the longitudinal
dynamics are considered [24]. This paper uses the longitudinal
dynamics for vehicle modelling according to Newton’s second
law of motion,

m
dv(t)

dt
= Fp − Fr − Fb (2)

where m stands for the total mass of the vehicle, dv(t)
dt is the

acceleration, Fp(t) is the motion force applied to the vehicle
from the powertrain, Fr(t) is equal to the sum of all resistive
forces of the vehicle, and Fb stands for the braking force
applied. Often called Road Load Forces, Fr can be considered
the sum of the aerodynamic force Fa, the friction of the road
Ff , and the potential contribution of the gravity Fg:

Fr = Fa + Ff + Fg (3)

which can be modelled as:

Fa =
1

2
ρaCDAfv

2 (4)

Ff = Crmg cosα (5)
Fg = mg sinα (6)

where ρ is the air density, CD is the aerodynamic drag
coefficient, Af the vehicle’s frontal area, the rolling resistance
is expressed as Cr, g the gravity acceleration, and α the road
slope at the current position. Table II contains the vehicle
parameters used in this study.

TABLE II
VEHICLE CHARACTERISTICS.

Parameter Value
Mass [kg] 1700
Frontal area [m2] 2.239
Wheel Radius [m] 0.3
Air density [kg/m3] 1.2
Drag coefficient [Ns2/m2] 0.32
Rolling resistance [-] 0.01
Gravity acceleration [m/s2] 9.81

C. Engine Model

A physical model for the engine would have a high
computational cost, as it is composed of several complex
phenomena, such as combustion. Therefore, one simpler quasi-
steady approach is to use experimental operating engine maps

to model the powertrain. Figure 1 represents the fuel mass map
as a function of both engine speed and demanded torque. This
map is computed by experimental data previously collected
from an engine on a fully instrumented test cell. In order to
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Fig. 1. Fuel map as a function of Torque and Engine Speed acquired from
experimental data.

calculate the crankshaft torque and engine speed to fulfil the
vehicle’s motion, a gear ratio law is imposed as a function of
the vehicle’s speed, so the engine torque can be expressed as:

Te =
FwRw

Gr
(7)

where Rw stands for the wheel radius and Gr is the ratio
between wheel turning speed and engine speed, which follows
a predefined gear change policy to maintain efficient operating
conditions of the powertrain.

D. Recursive Algorithm

Figure 2 shows a scheme of the method used. The core of
the algorithm is the route optimization by defining the optimal
speed profile with the information received from the V2V
communication about the traffic light scenario and the actual
states of the preceding vehicle. Hence, a DP algorithm is run
for the next TH horizon. The method proposes a pre-defined
prediction horizon TH to optimize the trajectory because even
for a single state scenario, the prediction of the complete
route becomes infeasible for RT applications. Therefore, a
shorter prediction horizon TH is chosen, and the optimal path
is recursively updated throughout the route. The optimization
is repeated every TW seconds, so the information is properly
updated, and the sub-optimal optimization converges to the
optimal solution. The output of the system Vopt is translated
to a pedal demand to be the input for the vehicle. The control
system applies this pedal input to the vehicle and engine
model, which updates the states of the ego vehicle.

However, in a RT situation, the V2V information only
provides the surrounding vehicle’s current states. Therefore, an
estimation of the preceding vehicle position along the predic-
tion horizon must be done in advance to correctly optimize the
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Fig. 2. Scheme of the recursive algorithm proposed

speed profile. The current states (velocity and position) of the
preceding vehicle are used to estimate its future states within a
TH horizon, according to the preceding vehicle estimation. In
the proposed algorithm, the expected position of the preceding
vehicle is assumed to follow a velocity pattern based on the
Gipps car-following algorithm [25], which is the core of many
commercial software, being a function that arbitrates between
a free-flow and a gap-controlled regime. With the actual
known states of the preceding vehicle (xpre(0), vpre(0)) and
with the upcoming traffic lights (TL(0...TH , 1...NTL)), an
estimation of the path taken by the preceding car can be done
over the prediction horizon, such as respecting the next traffic
light position (xTL) and speeding to the maximum allowed
speed (Vmax): The algorithm starts by identifying the first

Algorithm 1 Preceding Vehicle Prediction.

Require: xpre(0), vpre(0), TL(0...TH , 1...NTL)
Obtain: xpre(0, . . . , TH), vpre(0, . . . , TH)

for k = 1 . . . TH ,do
xTL ← MIN(TLpos(TL(k, :) == 1) > Xpre(k−1))
gap← xTL(k)− xpre(k − 1)
Vfree ← f(vpre(k − 1), Vmax)
Vsafe ← f(gap, vpre(k − 1))

vpre(k)← MIN(Vsafe, Vfree)
xpre(k)← xpre(k − 1) + vpre(k)∆t
end for

next traffic light intersection at time-step k that is closed (red).
Then, the calculation proceeds to find a free-flow speed Vfree

and a velocity based on the gap to the expected traffic light
Vsafe, choosing the minimum of both.

It is worth mentioning that the predicted position of the
preceding vehicle does not necessarily coincide with the actual
one. The bias at the preceding vehicle position can be corrected
by updating the optimization more frequently, i.e., reducing
TW .

The core of the algorithm is the optimization of the vehicle
speed profile with dynamic programming (DP). DP is a well-
established OCP tool for taking the optimal solution from
the discretized state and control spaces. However, one of
its disadvantages is the so-called “curse of dimensionality”,
as the computation burden increases exponentially as the

number of states increases. DP is the direct application of
Bellman’s Principle of Optimality. States, control actions, and
the time horizon are discretized into discrete steps, splitting
the problem into finite smaller sub-problems and solving each
one individually, such that:

J(x, tk) =

∫ tk+1

tk

L(x, u, t)dt+ J(x, tk+1) (8)

where L is the objective to be minimized as a function of the
states x, the control policy u, and the time step k. A so-called
Cost-to-go function J stands for the cost from step k + 1 to
the end of the problem. By solving step-by-step from the last
time step to the beginning, k = 0, the model calculates all
the possibilities of the sub-problem. Thus, since each step is
optimal, the global solution is guaranteed to be optimal.

In the proposed approach, the merit function L to be
minimized accounts for the total fuel consumed mf , which
is a function of the current position (slope of the path), the
current speed, and the acceleration.

Lk = mf (xk, vk, ak) (9)

It can be appreciated from Equation 2 that the total fuel cost
depends on the position to estimate the slope influence in the
grade and friction forces, on the velocity to estimate the aero-
dynamic drag, but it also depends directly on the acceleration
to estimate the inertial forces, so from the formal point of
view, requires two states (speed and position). Nonetheless,
the current work proposes a first-order linearization to estimate
the acceleration as a function of the optimal velocity profile,
being the acceleration:

ak =
vk+1 − vk

∆t
(10)

where vk is the input to optimize the problem, and vk+1 is the
vehicle speed minimizing the cost-to-go J(x, tk+1) obtained
recursively from the final timestep, where the terminal vehicle
speed is imposed, and hence depends only on the future vehicle
position:

vk+1 = fDP (xk+1) (11)

The acceleration demand ak from Equation 10 is translated to
an engine torque demand through the vehicle model equations
and the desired vehicle speed vk is translated to an engine
speed since the gear ratio is pre-defined. Therefore, for each
time-step, the instantaneous fuel consumption is assessed using
the fuel map of Figure 1.

On the one hand, this implementation has a significant
drawback: it defines the optimal velocity profile associated
with the possible positions at each time-lapse but does not
consider the initial speed. But on the other hand, it reduces
the number of states, alleviating the computational cost of the
algorithm. DP suits the addressed problem once it is restricted
to deal with a single state, position x(k), and a single input
v(k). In this way, the DP is feasible for RT purposes within a
window of reasonable size. Hence, the evolution of the state
can be expressed as:

xk+1 = xk + vk∆t (12)

Although having a single state x(k), the algorithm evaluates
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the effect of velocity and acceleration by storing the optimal
path. This information is used backward to calculate the cost
associated with increasing or decreasing the velocity, thus
minimizing the fuel spent on accelerations while taking ad-
vantage of the route slope. However, because the acceleration
is only based on the future conditions and does not consider
the initial speed when the DP is initiated, the vehicle needs
to reach the optimal position and speed, which might lead
to unwanted sharp accelerations. To avoid such undesired
behaviour an additional term is lumped into the function to
penalize this variation between the DP matrices, such that m′

f

is the fuel associated with the acceleration required a′k to reach
the desired speed from the initial conditions, following:

a′k =
(vk − v0)

k ∆t
(13)

where v0 is the initial speed. Note that the time step k on the
denominator makes the penalty harder on the initial positions,
where the discrepancies start, while it has an almost negligible
effect at TH . Another additional cost Lres is proposed to con-
sider the physical restrictions. The hard constraints imposed
are the following:

• The vehicle should never overpass the preceding car
position with a predefined margin, i.e. in this work a
margin M of 10 meters is used

xk ≤ xk,pre −M (14)

• The vehicle should always respect the traffic lights:

if xTL > xk then xTL ≥ xk + vk∆t (15)

• The vehicle cannot exceed the maximum allowed speed,
and neither achieve a negative speed (going backwards)

0 ≤ vk ≤ vmax (16)

• The maximum braking, as well as the maximum acceler-
ation are limited

−abrake ≤ ak ≤ amax (17)

Note that this is an essential condition to assure solution
feasibility since the vehicle speed is used as model input.
In addition, if any of these restrictions are broken, a cost of
J∞ = 105 mg is added.

Also, a final condition is imposed to maintain the desired
distance to the preceding car, giving an advantage to the
final positions that end within the space between M and
2M , where no cost is added. If the vehicle ends up at the
expected preceding vehicle position or if it does not move,
x(TH) = x(0), a cost of J∞ is assigned. When the vehicle
achieves intermediate positions, a linear function is used.
Figure 3 shows the final cost associated where no cost is
associated if the end position of the ego vehicle is between
M and 2M from the final preceding vehicle position. The
final cost function is composed of the fuel consumption, a
term representing the fuel consumed at the initial acceleration
required to achieve the optimal path m′

f , and an additional
cost Lres if any restriction is not met.

Lk = mf (xk, vk, ak) + β m′
f + Lres (18)

Fig. 3. Cost associated to the final position

where β stands for a tuning parameter.
It is worth mentioning that as the prediction horizon TH is

updated every TW seconds, the model might face unexpected
situations during this interval, as the constraints of the route
i.e., the deceleration of the preceding vehicle, can change due
to a hard braking maneuver. Therefore, to avoid crashing, a
condition is imposed when the gap between the ego vehicle
and the preceding vehicle is less than M . It consists in
applying the same Gipps car-following algorithm used for the
preceding vehicle estimation, arbitrating over a free-flow speed
and a gap-controlled regime.

IV. RESULTS

Regarding the recursive DP algorithm, the chosen horizon,
i.e., how far the future states are estimated, directly impacts
the optimization performance and its computational burden.
For that reason, an analysis of the impact of the horizon TH

is done, which is presented in Figure 4a. In all the simulations
proposed, the updating time TW is set to 10s, and only the
time horizon is varied. The fuel savings are referred to the
fuel consumed by the preceding vehicle.

Until a prediction of 100 seconds ahead, the fuel savings
increase sharply. It can be attributed to the fact that the traffic
lights in this study have a constant phase duration of 60
seconds. Therefore, in the cases where the horizon TH is
shorter or too close to this value, the algorithm might not
be able to adapt the speed profile in such a way that stopping
at the next intersection can be avoided. In addition, a further
increase in TH did not bring enough benefit compared with
the increased computational time.

The influence of the updating period on the performance of
the algorithm is evaluated in Figure 4b. The updating period
TW is varied from 5 to 40 seconds interval, maintaining
a prediction horizon TH of 100 seconds. It can be stated
that from an updating period of 20 seconds onwards, the
fuel savings decrease primarily due to the lack of accuracy
of the predictions of the preceding vehicle position. This is
explained due to the nature of the algorithm, once updating
is mandatory to keep track of the preceding vehicle position.
When applying more than 20 seconds of updating period, the
ego vehicle could not follow the speed-planning trajectory
since it must actuate to avoid crashing due to deviations in
the estimations of the preceding car. Although an updating
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Fig. 4. (a) Influence of the prediction horizon TH on the fuel consumption
and on the computational time and (b) influence of the updating period TW

on the fuel consumption and on the computational time.

period of 5 seconds improves fuel savings, it penalizes the RT
factor, doubling the time to accomplish the route. Therefore,
for the rest of the analysis, a prediction horizon TH of 100
seconds and an updating period TW of 10 seconds are chosen
by offering good fuel consumption reduction with acceptable
computational time, operating in an RT scenario.

TABLE III
FUEL COMPARISON BETWEEN METHODS

Method Fuel consumption [g] Fuel savings [%]
Preceding Vehicle 609 0.0 (baseline)
(Car-following Model)
Ego Vehicle 487 -19.96%
(Recursive DP)
Ego Vehicle 468 -23.02%
(Offline DP)
Ego Vehicle 447 -26.60%
(2 States Recursive DP)

To evaluate the potential of the proposed strategy, i.e.,
recursive solution of DP in a moving window, its performance
is compared with three cases: the preceding vehicle, based
on the car-following model, the DP computed offline to the
complete route and another recursive DP with two states.
In this sense, Figure 5 shows the paths taken in the four
cases. It can be noticed that the offline DP, which cannot be
applied for RT purposes since it relies on knowing the total
future information of the preceding vehicle in advance, takes

a different trajectory.

TABLE IV
COMPUTATIONAL TIME COMPARISON BETWEEN METHODS

Method Computational Time [s] Real-time Factor
Preceding Vehicle - -
(Car-following Model)
Ego Vehicle 174.6 11.5
(Recursive DP)
Ego Vehicle 79.3 25.2
(Offline DP)
Ego Vehicle 4890.4 0.41
(2 States Recursive DP)

Table III presents the compared fuel reduction between the
methods, and Table IV shows the computation time taken
for each algorithm. Using an offline DP benefit the total
fuel consumption by 3%. However, it would not apply to
a real-time scenario once the V2V and V2I information is
loaded beforehand. Therefore, the traffic scenario prediction
is impossible since it demands to be updated to have correct
predictions.

For the sake of the analysis, another algorithm uses two
states (position and velocity) and one control action (pedal
position). It uses the same constraints and the same V2V
and V2I information. Using two states improves the fuel
consumption since it has the smoothest trajectory, cruising in
an overall longer constant speed profile. This can be attributed
to the fact that by having the velocity as a state, the final
time-step velocity is known, minimizing sudden changes in
velocity. Although showing a considerable reduction in fuel
consumption, Table IV shows that using two states on a
recursive algorithm approach is not possible for RT purposes
once the time taken to run the simulations are much higher
than the real time of the route.
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Fig. 5. Paths taken by the different speed profiles.

Figure 6 presents the data of torque, engine speed, and fuel
consumption for both the modelled and the experimental data,
respectively. In addition to the smaller velocity oscillations,
the overall torque amplitudes are also lower in the proposed
recursive DP algorithm. Results for the cycle average engine
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Fig. 6. Comparison of engine torque, engine speed and instantaneous fuel consumption between model and experiment for (a) Preceding vehicle. (b) Ego
vehicle.

power are 35.2% less than the cycle average engine power of
the preceding vehicle.

It is expected that high accelerations oscillation requires
high torque demands from the powertrain, thus being a
scenario to be avoided. Therefore, maintaining a constant
speed by avoiding stopping at the traffic lights is a sensible
suboptimal strategy to be applied once the inertial term is
minimized. In addition, by keeping a constant velocity, energy
dissipation is reduced when the braking effort is diminished.

Figure 7 shows the accumulated fuel in the simulations and
the test bench for the speed profile of the preceding vehicle,
for the proposed algorithm, and the DP computed offline.
Estimating the preceding vehicle’s position within a moving
window horizon and its recursive solution allows to strongly
improve the fuel consumption of the preceding vehicle and
approximate the offline DP. Of course, the offline DP has a
better fuel consumption, providing a fuel reduction of 23%
since it exploits the full knowledge of the route in advance.

Nevertheless, using several DPs on smaller horizons has
proved advantageous since almost all the traffic lights could
be avoided at the red phase, cruising in a so-called ”green
wave”. The results from the experimental setup demonstrate
minimal deviation from the torque and engine speed inputs.
Furthermore, the results present a good correlation when
comparing the mass fuel injected with the modelled one.
The difference in fuel consumption between the simulated
preceding vehicle and that obtained by applying the recur-
sive proposed algorithm with a single state is 19.96%, and
the difference to the experimental results is 17.47%. Little
difference can be noticed, mainly due to the transient aspects
of the engine, which could not be included in this study since
the fuel consumption simulated is based on steady-state look-
up tables from experimental data.
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Fig. 7. Accumulated fuel consumption for the model and experimental setup.

V. CONCLUSIONS

This work presented a speed planning algorithm to minimize
fuel consumption over a signalized route with several traffic
lights and a preceding vehicle by taking advantage of traffic
information from the nearby vehicles (preceding vehicle) and
also information from the infrastructure, such as the traffic
lights phase and timing and GPS information like road slope.

The approach consisted of using an optimal control problem
tool such as DP, but in order to be able to predict the behaviour
of the preceding vehicle, i.e., maintain a safe distance and
avoid crashing, the problem was addressed as a sub-optimal
approach. Splitting the horizon into several smaller horizons
and thus running a recursive DP algorithm, the method can
predict the preceding vehicle position by implementing an
estimation algorithm based on a known car-following model
and recursively updating it to keep track of the actual position
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of the preceding car. Therefore, it would not be possible for a
RT case to use a standard DP approach since the disturbances
should be known in advance.

Even though being a sub-optimal approach, a significant
improvement in fuel consumption could be achieved. In the
case study, the proposed algorithm improves the fuel economy
of the previous vehicle by 17.47%, leading to a simulated 3%
penalty with regard to the offline DP that cannot be applied
in a real scenario. In addition, using a real-life traffic scenario
with several nearby vehicles, lanes and intersections would
be an interesting study to further prove the potential of the
approach.

Future works using real-life traffic scenarios can be in-
vestigated. For instance, applying a recursive optimization
algorithm in a multi-lane route, with several vehicles and
intersections, would be an interesting study to further prove
the potential of the approach. Furthermore, different kinds of
predictions models can be applied. Instead of using a determin-
istic traffic prediction, other models using traffic probability
and machine learning might be an interesting alternative to
improve the traffic prediction.
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