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Abstract: The number and the diversity in nature of daily cyber-attacks have increased in the last few
years, and trends show that both will grow exponentially in the near future. Critical Infrastructures
(CI) operators are not excluded from these issues; therefore, CIs’ Security Departments must have their
own group of IT specialists to prevent and respond to cyber-attacks. To introduce more challenges
in the existing cyber security landscape, many attacks are unknown until they spawn, even a long
time after their initial actions, posing increasing difficulties on their detection and remediation. To
be reactive against those cyber-attacks, usually defined as zero-day attacks, organizations must
have Threat Hunters at their security departments that must be aware of unusual behaviors and
Modus Operandi. Threat Hunters must face vast amounts of data (mainly benign and repetitive,
and following predictable patterns) in short periods to detect any anomaly, with the associated
cognitive overwhelming. The application of Artificial Intelligence, specifically Machine Learning
(ML) techniques, can remarkably impact the real-time analysis of those data. Not only that, but
providing the specialists with useful visualizations can significantly increase the Threat Hunters’
understanding of the issues that they are facing. Both of these can help to discriminate between
harmless data and malicious data, alleviating analysts from the above-mentioned overload and
providing means to enhance their Cyber Situational Awareness (CSA). This work aims to design a
system architecture that helps Threat Hunters, using a Machine Learning approach and applying state-
of-the-art visualization techniques in order to protect Critical Infrastructures based on a distributed,
scalable and online configurable framework of interconnected modular components.

Keywords: critical infrastructures protection; cyberattacks; machine learning; threat hunting;
visualization models; architecture

1. Introduction

In today’s hyper-connected world, the dependency on the internet of production
processes and activities is absolute, leaving useless any service offered, not only by big
companies, agencies and SMEs (Small and Medium Enterprises), but also by critical in-
frastructures if internet access is lost, even for a few hours, thus leading to substantial
economic losses and high severity cascading effects. This fact is well-known and exploited
by cybercriminals who set cyber-attacks the order of the day.

To prevent cyber-attacks or, at least, to address them properly, critical infrastructures
are investing big amounts of money in the improvement of their Information Technology
(IT) security departments by making them bigger. The desired outcome is to avoid data
loss, data exfiltration, maintain the reputation, and, probably the most important concern,
minimize any impact in business continuity. Whether or not the previously stated desired
outcomes are achieved by increasing in number the employee workforce, it is needed to
continuously invest in highly skilled and specialized personnel who, without specific and
useful tools, may end up overflowed by vast amounts of near real-time data and are unable
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to spot complex attacks, which are very quiet and remain in the protected infrastructure for
a long time.

Nevertheless, a huge amount of the actionable data, both in the network and host,
are related to harmless actions of the employees (such as DNS requests or WEB browsing).
Moreover, surveys conducted with Threat Hunters [1] on the traits of those datasets con-
cluded that there were specific and characterizable patterns for each of the studied actions,
resulting in them being harmless or potentially dangerous. Being that Machine Learning
is a scientific field characterized by providing outstanding techniques and procedures
in extracting models from raw data [2], it follows that using well-designed, adequately
tuned and scenario-customized ML algorithms can be helpful in classifying data samples
according to how benign or malign they are.

Furthermore, according to several studies [3–5], human cognition tends to predict
words, patterns, etc. strongly influenced by the context [6], even further if they seem to
be under stress conditions [7]. In fact, those stressful conditions are suffered by Threat
Hunters when they must face big amounts of data in highly dynamic scenarios where the
smallest mistake can have a very high impact. Moreover, Threat Hunting is a complex
decision-making process that encompasses many uncontrolled factors, typically working
with limited and incomplete information and possibly facing unknown scenarios, for
instance, zero-day attacks [8]. As a consequence, paying attention to the previously stated
strong dependency on context in prediction by human cognition, an attack quite similar
in behavior to a non-attack could be seen as such due to human bias; however, a Machine
Learning system could discriminate between both more accurately than humans do. Thus,
with all the data provided by the output of ML systems (such as likelihoods, feasibility
thresholds, etc.), Threat Hunters could be able to understand better what is going on at the
operations theater.

Moreover, it is well known that the human brain processes visual patterns more quickly
and accurately than any textual or speech report, gaining understanding at a glimpse, and
this, naturally, also happens in cybersecurity [9,10]; as a consequence, representing the data
(both raw and ML processed data) properly is also a decisive factor for Threat Hunters
in order to achieve Situational Awareness [11,12] and therefore an early detection of any
threat. Some studies have been trying to classify which advanced visualization fits best for
each kind of attack [13,14].

Lastly, using both Machine Learning and specifically defined data visualizations,
Threat Hunters will be able to generate hypotheses about what is going on in their systems
and networks, being able to quickly detect any threat and even have enough context
information to deal with it.

Systems capable of gathering all those huge amounts of data, processing them (includ-
ing Machine Learning techniques) and providing insightful visualization techniques must
be developed following a properly designed architecture in accordance to the challenges
that such an ambitious approach must face. The most relevant contribution of this work is
an architecture proposal and its implementation devoted to fulfill the stated needs. The
proposed architecture must provide means for dynamic and adaptable addition of ML
techniques at will and the selection of which to use from the existing ones at a given
moment. In addition, big data must be taken into account for vast amounts of data that must
be stored and analyzed. Moreover, due to the time-consuming nature of ML processing,
the architecture must enforce parallelization of as many processes as possible; therefore,
architecture components must be orchestrated to maximize this parallelism. Furthermore,
asymmetric scalability must be enforced in order to be efficient; thus, means should be
instantiated to guarantee that only necessary components are working at a certain time.
The architecture must be implemented in a distributed approach; therefore, communica-
tions, synchronization and decoupling of components and processing must be carefully
envisioned and designed. Lastly, but not least, the whole system must be secured regarding
the type of data it will process.
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2. Motivation and Previous Work

The use of Machine Learning techniques in the field of Threat Hunting is booming:
The research An enhanced stacked LSTM method with no random initialization for malware threat
hunting in safety and time-critical systems [15] is focused on Time-Critical systems, paying
attention to the conditions of those fast-paced situations, benefiting from the automation
and effectiveness of malware detection that ML can provide. Both Intelligent threat hunting
in software-defined networking [16] and Advanced threat hunting over software-defined networks
in smart cities [17] are focused on developing intelligent Threat Hunting approaches on
Software-Defined Networks (SDNs). In contrast, other efforts such as A deep recurrent
neural network based approach for internet of things malware threat hunting [18] and A survey on
cross-architectural IoT malware threat hunting [19] are more oriented toward the Internet of
Things (IoT), a relevant area in the Threat Hunting community where the ML approaches
provide benefits for the IoT specificities, for instance, resource scarceness as computational
capabilities, among others. Finally, there also are works existing in the literature which try
to solve the problem in a general perspective of ML applied to Threat Hunting, such as Know
abnormal, find evil: frequent pattern mining for ransomware threat hunting and intelligence [20]
and Cyber threat hunting through automated hypothesis and multi-criteria decision making [21].

Studies trying to develop a Threat Hunting architecture using an ML approach have
already been conducted. First of all, the article ETIP: An Enriched Threat Intelligence Platform
for improving OSINT correlation, analysis, visualization and sharing capabilities [22] can be found
in the literature. In that work, an architecture which includes all steps, from data collection
to data shown, is proposed; despite that, it is focused on generating IoCs (Indicators of
Compromise) and it suggests using ML in some steps of the process. Another interesting
work is PURE: Generating Quality Threat Intelligence by Clustering and Correlating OSINT [23].
This work, similar to the previous one, tries to develop an architecture to generate and
enrich IoCs using ML at some steps. It gives another perspective on how to do it, despite
the fact that it does not take into account the visualization of the results. It is interesting to
highlight that neither of them define how to generate hypotheses using the generated data.
Finally, the approach SYNAPSE: A framework for the collection, classification, and aggregation
of tweets for security purposes [24] offers a wide and well-designed architecture, from data
collectors to contents in visualization, although it is developed for a very specific data
source (Twitter). Notwithstanding all the efforts already done, there are no specific studies
about Threat Hunting using a Machine Learning approach for Critical Infrastructures in
which an architecture is due to cope with all the stated needs that are proposed and neither
the definition of useful nor specific visualizations are provided.

Regarding useful and specific visualizations for Cyber Situational Awareness, there is
a very relevant work done in Cyber Defense and Situational Awareness [25] which states that
“Visual analytics focuses on analytical reasoning using interactive visualizations”. In order
to support the previous statement, there is a comprehensive and complete survey on the
cognitive foundations of visual analytics done in Cognitive foundations for visual analytics [26].
There is a wide variety of visualization techniques. Firstly, basic visualization charts, which
include scatter plots [27–29], bar charts [30–32], pie charts [31] and line charts [32–34].
Another kind of simple visualization include word clouds [35,36] and decision trees [37,38].
On the other end of the spectrum, there are advanced visualizations. First are those oriented
for pattern detection [39–43]. In addition, there are geo-referenced visualization charts for
assets [41,43,44], risks [45–47] and threats [41,44]. Furthermore, there are also immersive
visualization techniques using 3D models instead of 2D models which have been designed
for optimum visualization with an ultra-wide high-definition screen, wrap-around screen
or three-dimensional Virtual-Reality (VR) goggles, which allows the user to look around
360 degrees while moving [42,44,48–50].

All of them state the difficulties of the Threat Hunting process in terms of situation
understanding in a broad threat-characterization landscape, with fast-changing conditions,
sometimes unknown new threats, incomplete information and hidden features. Further-
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more, several examples of enhancing the process by using ML techniques and useful
visualizations can be found.

Besides academia, companies are also trying to develop specific Machine Learning
techniques and algorithms for their Threat Hunting products to enrich current visualiza-
tions used to understand the cyber situational awareness of the monitored systems. Some
offered products that implement ML algorithms are systems for Security Information and
Event Management (SIEM), Firewalls, Antiviruses, Instrusion Detection System (IDS) and
Intrusion Prevention System (IPS). A few examples are those like Splunk [51], Palo Alto
next generation smart Firewalls [52], IBM immune system-based approach to cyber security
(IBM X-Force Exchange [53,54]) or even Anomali ThreatStream [55].

After conducting deep research on the current state-of-the-art in the area, it can be
concluded that, despite having made several outstanding efforts towards solving specific
areas of the problem, there is no effort to define an architecture where implementation
is rich enough to generate hypotheses about what is going on the system monitored.
As a consequence, there is a lack (1) in the design of a particular unified architecture to
help Threat Hunters with a Machine Learning approach with capabilities to define and
generate (manually or automatically) hypotheses about what is going on and (2) in the
provision of specific and useful visualizations, particularly in the issues detected for Critical
Infrastructures (as might be the case of business continuity) and coping with all detected and
envisioned scenarios. To fill this gap, an architecture with a specific component to define
and generate hypotheses is proposed that must ensure security, scalability, modularity and
upgradeability. It must also constitute a proper framework for developing platforms for
Threat Hunting based on flexible and adaptable Machine Learning over the time. This
work aims to solve this problem and fill the detected gap, mainly in terms of providing a
unified framework that interrelates existing different components from data acquisition to
knowledge generation (emphasizing the hypothesis generation) and visualization, which,
despite being generic, is particularized for Critical Infrastructures Protection.

3. Outline of the System

In a brief and simplified view, a Threat Hunting tool can be seen as a closed-loop
system. The system receives continuous and real-time feeds with, potentially, high-volume
and diverse data inputs and, by means of some aiding subsystems (in this architecture
machine-learning fuelled components), it provides and generates hypotheses on what is
going on with confidence estimators or metrics. Those hypotheses and suggestions are
provided to the end user, which closes the loop by providing feedback by selecting some
selection branches more than others and even pruning complete branches, while seeking
what is more likely to be going on with the given data.

The architecture proposed to help Threat Hunters by using a Machine Learning
approach for Critical Infrastructures Protection is described in the following section. It is
composed of five main layers interconnected in a stacked manner, as shown in Figure 1.
The components within a layer can only communicate one with each other or to other
components in adjacent layers. Moreover, components will provide standardized interfaces
to communicate among themselves, and reusability will be enforced for their design and
implementation.

It is important to state that bias can be introduced in the Threat Hunting process due
to the well-known phenomena in interactive hypothesis-confirmation processes such as
the valley effect for local versus global searches [56], among others, shown in areas as
optimization or genetic algorithm evolutionary fitting [57].

Secondly, this architecture aims to be modular, efficient, and scalable. It is generic
enough that it is able to be used in any kind of Critical Infrastructure but never loses focus
on the main problems that must be tackled. By defining architecture-wide Application
Programming Interfaces (APIs) that must be implemented at any component, creating new
ones (components) is straightforward; the only requirement needed is to implement the
corresponding interface and to provide mechanisms to notify the rest of the components
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about its availability. In addition, another relevant requirement is that each component must
be completely stateless to allow decoupling and parallelization of processes. Moreover,
with the components being stateless, the order of actions to do a simple process is not
relevant, and therefore it can be a pool of available elements that dequeue pending tasks
and, properly orchestrated, proceed to its completion, receiving all the required metadata
(the state) itself.

The proposed architecture is flexible and scalable in terms of resources for its deploy-
ment. If resources are scarce, for instance, in debugging or testing or for an SME setup,
every involved component can reside in a docker container [58] or in virtual machines [59],
and the overall architecture can reside in a single machine. At the other end of the spec-
trum, where we can find setups with huge amounts of resources, the setup can be clustered
using Kubernetes [60] or via cloud using AWS [61] or Azure [61]. From the components
perspective, the type of deployment is transparent and seamless.

Data collectors
SIEMs Logs PCAPs OSINT

Database

Data Model

Data
preprocessing
Components

Numerical
Normalization

Text
Normalization

b

b

b

ML
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b

b
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Authentication management

Figure 1. Proposed architecture. Groups of components from bottom to top and from left to right:
Sections 4.1–4.8.

To achieve that goal, components must be completely decoupled, only knowing the
existence of others on a per-needs basis on an orchestrated schema and communicating
on standardized and predefined interfaces and mechanisms. That way, inner features
of the component are completely isolated to the rest, and flexibility and decoupling can
be reached.

This is one outstanding feature of the architecture that can provide flexibility and
scalability for easily adapting to different and dynamically changing scenarios, depending
on needs and resources. In addition, being able to provide flexibility also makes the
architecture optimum for all kinds of Critical Infrastructures, deploying only the modules
required for each specific one.



Big Data Cogn. Comput. 2023, 7, 65 6 of 26

Another essential feature that must enforce the proposed architecture is the capability
of providing High Availability (HA) [62] to guarantee service continuity (one of the main
concerns of Critical Infrastructures) even in degraded conditions. To achieve that goal,
load-balancing schemas are proposed within the component orchestrator, and, for the
key elements (tagged as crucial through the following exposition) whose service must be
guaranteed at all stakes for the rest to be able to work, backup instances should be ready
in the background to replace the running ones if any issue is detected, therefore avoiding
overall system service interruption.

Security is a crucial concern for any cyber security tool. Therefore, the architecture will
establish security mechanisms to provide Agreed Security Service Levels in terms of security
guarantees. Initially, these Security Service Levels Agreements (SSLAs) will be oriented
to the capability of exchanging messages among components, and each component will
ensure the authenticity [63] of the transmission; in short, the source’s identity is confirmed
and the requested action is allowed.

Another key part of the architecture is the interconnection within platforms imple-
menting it or even with external sources. It does not matter how complex the developed
architecture is; if the Section 4.6.2 is deployed, the implemented system will never lose the
capability of being interconnected and sharing all kind of knowledge.

If several systems are deployed, creating a federation, the architecture will also provide
the ability of sharing data regarding which items are the current active attacks, their input
vectors, the IoC, etc. to warn other members of the federation if the system detects similar
devices on the monitored network or even alert Threat Hunters which devices might be
compromised. This feature is very important because a cyber-attack affecting a Critical
Infrastructure can be propagated to another Critical Infrastructure [64].

In a brief summary, the proposed architecture aims to be distributed, self-adaptative,
resilient and autopoietic [65], achieving that goal by being flexible, modular, and scal-
able but never losing the main objective of solving the detected problems in a fast and
secure way.

The architecture will enforce the usage of standards at all levels to guarantee inter-
operability capabilities of the system, both in terms of data acquisition and, eventually,
data export. Moreover, the usage of standards will provide sustainability of the life-cycle
of developments, both at the hardware and the software faces, as well as flexibility and
modularity in the selection and insertion of new elements and the replacement of existing
ones. To do so, many different standards are proposed to be implemented and they will
be specified in the corresponding sections. Among others, standard COTS (Commercial
off-the-shelf) [66] mechanisms will be enforced at several layers of the architecture.

Several data sources will be implemented and feedback from Threat Hunters will
be received in order to generate proactive security against threats. All this information,
correctly processed, can be used to measure the security levels of the analyzed Critical
Infrastructure.

4. System Architecture

The purpose of each layer is described hereunder from the bottom of Figure 1 to the top.

4.1. Layer 1: Data Collectors

The first layer contains the data collectors which are in charge of gathering data to
feed the overall system. The collected data will be stored and it will be used by the other
components within the system to process it. Both the raw and the processed data will be
used to generate hypotheses about what is going on in the monitored infrastructure.

Any kind of data source is suitable to be implemented if it is interesting for Threat
Hunters. Some examples of data sources could be:

• SIEMs, such as AlienVault [67] or IBM QRadar [68].
• Logs, such as Syslogs from the Operating System (OS), logs from network hardware

devices, etc.
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• PCAPs (Packet Captures, files with information about network traffic) [69].
• Threat Management Platforms (TMP), such as MISP [70].
• Incident Response Systems, such as The Hive [71] or RT-IR [72].
• Advanced Persistent Threat (APT) [73] management tools.
• OSINT (Open Source Intelligence [74]) sources, with their specific need in terms of

normalization due to the wide variety of data typologies.

4.2. Layer 2: Database

The data gathered by the collectors will be stored in the database. In addition, every
required metadata, which must be persistent over time, will also be stored in the database.
Furthermore, the database must provide means for the rest of the components to access the
stored data in an efficient and seamless way. Due to the previous statements, the database
is a critical element and mandatory to be up and running for all the rest of the components
to be working. Therefore, it is considered and shown as a crucial one.

Owing to the high-volume and diverse data stored into the database, this component
must provide load-balancing mechanisms to guarantee proper access and pay strong
attention to security as well as provide per-user policies per data access.

As a design requirement, all data stored must follow a specific data model that must
be used within the overall components of the architecture. This data model must be flexible
enough to be ready to adapt easily to changes and integrate new elements in the future. In
addition, it must be oriented to store and process data related to events and cyber security.
Being sort of the de facto standards, the data model must be compatible with Sigma and
YARA rules.

Sigma rules (Generic Signature Format for SIEM Systems) [75,76] is an open and
generic signature format that allows specialists to describe log events. In addition, with
Sigma, cyber security tools (such as SIEMs) are able to exchange information among them,
with the evident benefits that this interoperability can provide. One of the best features of
using Sigma rules is its Sigma Converter, which allows Threat Hunters to convert the rules
in elements such as Elastic Search Queries, Splunk Searches, as well as their ability to be
reused and integrated into many other systems.

The malware analysis technique YARA [77,78] is used to discover malware based on
its static character strings (the ones allocated inside the program itself) and signatures. It
helps, among other things, to identify and classify malware, find new samples based on
family-specific patterns, and identify compromised devices.

When designing the data model and the database structure, it is compulsory to con-
sider several elements among which aspects stand out, such as writing/reading priorities,
data storing and indexing. This is a critical element as it is the cornerstone for fast and effi-
cient future complex data searches [79], something mandatory from a big data perspective
as the one stood for the proposed architecture.

All this work and effort is needed because of the wide variety of data sources and the
diversity of nature and typologies of data (especially those collected from OSINT sources)
to be gathered by a system which implements this architecture. Each data source will,
potentially, have a different taxonomy and also heterogeneous data that must be processed
and adapted to define the data model before storing it into the database. It is evident that
having a common taxonomy will provide some sort of quantization noise and it could lead
to some information loss; nevertheless, a trade-off will be taken with regards to this aspect.

Adding new data sources is as easy as implementing the matching interface and
casting the received data attributes to their closest mapping in the data model.

Proposed Database and Data Model

After conducting the study of the existing data model solutions, it is proposed the
usage of the Elastic Common Schema (ECS) [80] because it suits the previously stated
necessities due to its wide and general definition of fields related to cyber-data and its
extended usage, maturity, wide community of users and third-party tools ecosystem.
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In Table 1, the most interesting ECS fields can be found in order to be used with the
proposed architecture. Nevertheless, the data model is not limited to those fields, but it can
be enlarged if any component of the architecture needs it.

Coupling Elastic Search (ES) as a data repository with ECS is a widely recommended
approach due to several reasons. First and mainly, both products come from the same
source, thus guaranteeing a long-standing alignment as ECS is defined and in continuous
development by Elastic. In addition, Elastic Search is big data enabled by nature [81] and
follows HA because it can be clustered.

Table 1. Data model highlighted ECS fields.

ECS Field Description

event.dataset Name of the dataset
event.id Unique ID to describe the event

event.ingested Timestamp when an event arrived to the
central data store

event.created The date/time when the event was first read by
an agent

event.starts The date when the event started
event.end The date when the event ended

event.action The action captured by the event
event.original Raw text message of entire event

source.ip IP address of the source (IPv4 or IPv6)
source.mac MAC address of the source
source.port Port of the source

source.hostname Hostname of the source.

destination.ip IP address of the destination (IPv4 or IPv6)
destination.mac MAC address of the destination
destination.port Port of the destination

destination.hostname Hostname of the destination

4.3. Layer 2: Data Preprocessing Components

Raw data, despite being defined in a specific well-designed data model, is not usually
suitable for being used, but, when required, it must be preprocessed. Provided that system
defined preprocessing techniques are finite and they are not specific for one final element,
they can be shared among them.

Regarding the previously set statements, it is considered interesting to have a pool
of preprocessing components to perform the required preprocessing techniques. When
an ML system is being defined, the ML expert will have the possibility of introducing
one step between selecting data from the database and one step between executing the
desired ML technique where the selected data will be preprocessed according to the chosen
preprocessing techniques. Furthermore, there must be the possibility of adding, upgrading
or removing those components according to the necessities of the system.

Some examples of preprocessing components are as follows:

• Sigma Converters: Sigma Converters components allows to convert Sigma rules [75,76]
to Elastic Search Queries, Splunk Searches or any other supported output.

• Number Normalization: Number normalization components are in charge of modi-
fying a dataset of numbers by generating a new dataset with standard deviation 1 and
mean 0, by multiplying all values by a specific factor, setting all minimum values to a
specific threshold, etc.

• Text Normalization: Text normalization components are in charge of modifying texts by
removing all forbidden characters, by adapting sentences to a predefined structure, etc.

• One-Hot Encoders: One-Hot Encoders components convert a categorical classifica-
tion to a numerical classification by assigning a number to each one of the possible
values [82].
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4.4. Layer 2: ML Components

Machine Learning has several techniques, algorithms, etc., and they are evolving day
by day. Instead of having one big element which contains all the ML knowledge, it is
proposed to split it into several small components, each one responsible for doing one
specific task. In addition, the components can be added, upgraded or deleted according to
the requirements.

It is important to highlight that some ML techniques such as neural networks [83–86]
must have external data such as pre-trained models, etc. Those external files are also taken
into account, providing an external repository of data that is ML specific and which can be
accessed by every ML component.

Some of the proposed ML components are as follows:

• APT Clustering: Cluster tactics and techniques with their associated APTs. Thanks to its
hierarchical method to cluster and reduce data, the Birch algorithm is proposed [87,88].

• Anomaly Detection: This detect anomalies at logs and network behavior. Several
ML techniques such as DBSCAN [89,90], Isolation Forest [91,92] or One Class Vector
Machine [93,94] can be used.

• NLP: Natural Language Processing is mainly used for generating intelligence from
analysts reports [95–97].

• Decision trees: Decision trees is an ML technique based on a process to classify data
through a series of rules. The final result is obtained after deriving some specific
characteristics from a pre-defined structure of rules [2,98].

• Neural networks: Several Neural Networks techniques can be used, such as Multi-
Layer Perceptron (MLP), Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN), among others [2,99].

4.5. Layer 3: Big Data, Exchangers, and Generators
4.5.1. Big Data Statistics

The overall system is collecting and generating huge amounts of data per second,
which makes the work of Threat Hunters difficult because they are not able to process all
the data at the proper pace; as a consequence, data is tagged by Threat Hunters manually
depending on the level of criticality. In order to help Threat Hunters in tagging those vast
amounts of data, this paper proposes the automatization of this process by means of ML.

After this previous stage of data tagging, one step further must be taken in terms
of providing means to Threat Hunters to help them in constructing or elaborating Cyber
Situational Awareness. To do so, the usage of visualization techniques must be taken to
provide valuable insights not easily seen by the human eye [100].

This final step is where big data statistics components make the difference, generating
on-demand and real-time specific datasets on what is considered relevant for Threat Hunters.

Some examples could be:

• Which are the types of attacks that have greater occurrence?
• Which are the types of attacks that have greater impact?
• Which are the devices usually attacked?
• Which are the devices not usually attacked but were attacked recently?

4.5.2. Data Exchangers

To speed up incident handling performance, it is mandatory to have proper and
standardized interoperability mechanisms. Basically, the system must have the ability to
request data from external sources and to send data to foreign sinks. This specific ability
will be defined in the proposed architecture using data exchangers.

As defined previously, firstly, this component enables the system to request data from
external sources of information using standardized protocols. Several specific components,
per data originator system and per protocol, will be available in the architecture to request,
on a periodic basis or at a one shot schema, remote data with the required authentication.
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This will be left open for customization by administrator users to set up the data to the
approach that fits best on each data source.

Secondly, this component also allows the system to provide stored data, potentially
filtered following given requests, to any authorized external requester using one of the
standards that best fits its query.

Standard approaches such as JSON data format [101] or XML [101] will be used and
are recommended due to their widespread nature. However, proprietary schemas and
methods will be used when no other approaches are left open, as happens to be with several
proprietary products and systems.

One step further, cyber security standards will also be used in the architecture for data
exchanges. For instance, STIX (Structured Threat Information eXchange) [102] is going to
be used as it is the de facto standard for cyber threat intelligence nowadays [103]. Moreover,
widely used existing standards for cyber intelligence, such as CVE (Common Vulnerability
enumeration) [104] or the SCAP (Security Content Automation Protocol) [105] suite, are
going to be enforced and less extended usage ones would also be considered.

All the previously related standard mechanisms will be implemented in the architec-
ture for both data gathering and delivery, and one of the goals of the proposed approach is
to avoid proprietary data exchange mechanisms at all levels, if possible, and enforce stan-
dards usage. The usage of standards is mandatory for the scalability and extendability of
the platform. One example that is considered is the capability of connecting the system on
demand to external sources such as Virustotal [106], URLHaus [107], among others, which
also do provide their own APIs to request/provide data, mostly based on well-known
standards such as API REST to enrich the data processed by the platform. External data is
beneficial for aspects such as IP/URLs/fqdn, hashes/files, etc., regarding detected IoCs
with relevant intelligence from those well-known and reputed internet repositories.

Regarding the communication mechanisms, other standards such as API REST [108]
for one-shot requests or AMQP [109] to publish/subscribe messaging are to be used to
exchange data.

4.5.3. Hypothesis Generators

In order to help Threat Hunters discriminate which are the most current critical threats
and their likeliness, and as contribution to the current state-of-the-art, we propose a specific
component in charge of generating hypotheses.

Humans follow patterns in every action they do in their life, and even further when
they interact with IT systems. Some of these patterns can cause cyber security events
recognizable by pattern detection tools as a cyber security threat, for example, trying to
gain access to some resource without enough rights, requesting Virtual Private Network
(VPN) access out of business hours, etc. After conducting deep research with cyber security
analysts, it was discovered that the detection of these specific harmless human patterns
can be automated as they have common traits such as a specific user always coming from
the same IP address. In order to automate the detection of harmless human patterns, a
hypothesis generator component must be able to reduce the likelihood of a specific cyber
threat being harmful, following some rules or even with specific ML algorithms. As a
consequence, this component is considered relevant due to the benefits that it provides to
cyber security analysts by freeing them from attending repetitive and harmless threats and
allowing them to focus on those which are harmful.

In order to use this component, Threat Hunters must create rules which will be used
to process the data. A rule consists of one or more filters executed in a specific order set
by Threat Hunters. Each filter returns a numeric value that can be added, subtracted,
multiplied or divided between steps to generate a likelihood of being benign or malign.
The available hypothesis generators filters are classified as follows:

• Simple filters: Basic filtering rules (e.g., if/else rules).
• Complex filters: These rules find context by selecting more data related to the ana-

lyzed one (e.g., find how many times this pattern has been repeated).
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• ML filters: These apply ML techniques from ML components to generate hypotheses.

In addition, each rule has a frequency value used by the Hypothesis Generator compo-
nent to automatically request data to the database, process it and generate a hypothesis.

Regarding the previously set statements, the hypothesis generator component will be
able to reduce or increase the likeliness of a detected threat being harmful according to the
established configuration.

4.5.4. ML Sequences Presets

As said in previous sections, Machine Learning systems are composed of several
components and steps that can be ordered depending on given needs: firstly, collecting
the data; next, preparing it to fit the requirements of each specific ML technique; third is to
process it using Machine Learning techniques; and finally, storing the results that must be
persistent at a data storage.

Therefore, the user will be given the possibility to choose which Machine Learning
components they want to use, and in which order. To do so, the definition and the orches-
tration are proposed to be done by a specific component named ML sequences presets,
which will also hold the responsibility of triggering them.

In Section 4.6.1, there will be a specific interface to create, update and delete definitions
of ML systems.

When a specific system is launched, this component will request the required compo-
nents to start at the required moment as well as to keep track of the status of the execution.

4.6. Layer 4: Interaction Components
4.6.1. HMI

Threat Hunters and Machine Learning experts should be able to interact with the
overall system using a simple, well-designed and easy-to-use graphical interface where all
the required tools and visualizations will be accessible. In the proposed architecture, this
specific task is implemented at the Human–Machine Interface (HMI).

The HMI must be modular enough to allow the configuration of all fields required
by the different components that compose the overall system. Furthermore, the HMI will
represent the data considered as relevant by Threat Hunters in the most efficient way.

As well as with the other components of the system, the access to the HMI will also be
restricted by a user/password combination. The Role-Based policy [110], where each user
has assigned a specific role which defines the allowed permissions, will be enforced for use
in the HMI.

A web-based approach is proposed for the HMI as it is OS-agnostic without losing
usability in desktop environments [111].

4.6.2. External Access Gateway

As specified in Section 4.5.2, the system must be accessible by third-party elements to
gather data in a standardized way. For security reasons, it is interesting to have a specific
element to act as proxy or API Gateway [112,113]; in the proposed architecture, that specific
element is the External Access Gateway.

The main functions of this element are as follows. First, providing the endpoint for
external requests. Second, checking the authentication of the request to decide whether
it must be processed or not. Third, verifying the format of the request to ensure it is
valid. Fourth, checking the authorization of the request to ensure that the requester has
the required permissions to obtain that specific set of data. Fifth, forwarding the request to
Section 4.5.2. Sixth, forwarding the response from Section 4.5.2 to the requester.

4.7. Common Layer: Communications

Being a distributed system introduces several complexities and challenges in the
overall architecture design. For instance, it is necessary to have a communications broker in
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charge of exchanging and forwarding messages between each component and guaranteeing
their proper delivery. As a consequence, the communications broker is a crucial component.

As stated before, all components of the system must send their messages using the
communications broker and, in order to avoid the possibility of any unauthorized agent
sending or receiving messages, the access to the communications broker network will
be restricted and can be considered the first authentication factor, enforcing messages
integrity [63].

In addition, messages will be exchanged using the AMQP [109] protocol and using
several communications patterns: namely, one-to-one, one-to-many, in a broadcast manner,
etc. Not only that, components will be sending messages using a request-response or
subscription-publishing mechanism.

The usage of a communications broker provides many benefits to any distributed ar-
chitecture. First of all, there are several extended-usage platforms that are widely tested by
huge communities ensuring minimal communication issues. Moreover, the new elements
addition process is relayed in the broker procedures and usually consists in connecting the
broker following its mechanisms. Not only that, but networking issues are reduced because
each component only needs to obtain access to the communications broker endpoint, so
network administrators do not need to take care of broadcasting issues or other related prob-
lems. In addition, most brokers, if not all of them, provide real-time broadcast queues and
subscription-publishing mechanisms which allow for immediate data updates. As a side
effect, one-to-many message exchange patterns, such as those provided by communication
brokers, do yield significant bandwidth consumption reduction.

4.8. Common Layer: Authentication Management

In order to manage the authentication of the different components and also the users
that could interact with the system, and the different roles defined in the overall system by
the administrators, there must be a specific component in place, referred to in the proposed
architecture as authentication management. As the first step to be taken by each component
or user is to log into the system to verify the permissions of the assigned role to the user,
this component is crucial.

There are several options, being most outstanding OTP (One-Time Passwords) and
OAuth 2.0. Despite some efforts being done in order to authorize using OTP [114,115], the
proposed protocol is OAuth 2.0 due to the reasons detailed hereunder.

Nowadays, OAuth 2.0 has become the standard authorization protocol for the in-
dustry [116]. It enables a third-party application to obtain limited access to a specific
service [117]. In addition, it can be configured to send not only the username and assigned
role but also metadata when needed. Moreover, there are many implementations which
allow systems administrators to choose which one of them fits best the requirements of
the deployment, and it could be deployed locally or remotely, allowing the use of the im-
plemented application either in isolated or shared networks. To summarize, many OAuth
2.0 implementations offer High Availability, which is a positive reinforcement of other
architecture’s requirements.

5. System Prototype

In order to validate the proposed system architecture a prototype, has been implemented.
A brief view of the different components developed are shown in Figure 2, including each
component in their corresponding layer in Figure 1, regarding the group of components.

The prototype has been evaluated using synthetic data simulating real networks and
hosts by means of a digital twin. A digital twin can be defined as a clone of physical assets
and their data in a virtualized environment simulating the cloned one. Digital twins also
allow to test the physical one at all stages of the life cycle with the associated benefits of
bugs and vulnerabilities detection [118].
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Figure 2. Prototype architecture.

In Figure 3 the implemented digital twin used to simulate a real Critical Infrastructure
setup is detailed, including networks and assets (workstations, servers, network hardware,
etc.) to verify the developed prototype that has been implemented using a virtualization
platform. Three networks have been created. The first one contains all the monitored
systems which will be attacked by an external actor in order to detect threats. The second
one contains all the systems that the system prototype will collect data from. Lastly, the
third network contains all the deployed components of the prototype.

5.1. Components

The components developed and deployed to verify the architecture will be described in
this section. All of the developed components used Python [119–121] as the implementation
language.

Following the same order as in previous sections, the data collectors were developed
beforehand:

• MISP [70].
• OSSIM [67].
• QRadar [68].
• The Hive [71].
• PCAPs [69].
• Syslogs.
• Raw logs.

Regarding the database, Elastic Search was chosen along with Elastic Common Schema
as the data model.

In addition, the data preprocessing components (Section 4.3) that were developed are
the following:

• Sigma Converters.
• Number Normalization.
• Text Normalization.
• One-Hot Encoders.
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Figure 3. Digital twin.

Furthermore, the developed machine learning components (Section 4.4) used for
verifying the architecture were the following:

• APT Clustering components.
• Anomaly detectors.
• NLP.
• Decision trees.
• Neural networks.

A model repository component was also used where pre-trained models were stored
in order to feed the components which require them.

Big data statistics, the hypothesis generator, ML sequence presets and data exchang-
ers components were also developed. It is considered interesting to highlight that data
exchangers were able to query data from MITRE ATT&CK [122–124] as well as export data
using STIX.
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In order to interact with the system, an HMI and an External Access Gateway were also
developed, acting as proxy to authenticate and authorize the requests before forwarding
them to the available data exchangers.

Lastly, RabbitMQ [125–127] was used as a communications broker and a compo-
nent which the OAuth 2.0 protocol implements was developed in order to manage the
authentication.

5.2. Validation

The prototype has been validated layer by layer, following the same path that the data
does, from the collection to the visualization.

The first step was to collect data from several sources. In order to do this, data
collectors for MISP, OSSIM, QRadar and The Hive were deployed and properly configured,
and, for each one of them, it was checked that the content was correctly collected and
normalized following the proposed data model.

After that, the following step was to create Machine Learning systems using the ML
Sequence Presets component. In the prototype, several ML Components along with Data
Preprocessing Components were deployed in order to be used to generate sequences by
concatenating all of those required in the order set by the ML expert. Those ML systems
were executed either for one single shot or for recurrently generating valuable information
about what is happening.

Having raw collected data and information generated by ML systems, the next step
was to test the data exchangers in the two available ways: to export data to and import
data from third parties. On one hand, using the External Access Gateway components,
data was exported to an external system using STIX. On the other hand, data was imported
from MITRE ATT&CK successfully.

As one key element of the proposed architecture, the Hypothesis Generator component
was properly configured to process all the collected data and produce knowledge to
generate valuable intelligence from those hypotheses previously checked and tuned by a
Threat Hunter using the HMI.

The last step was to analyze and visualize all the gathered data, information and
hypotheses to find threats in the monitored infrastructure. Some parts of the HMI regarding
raw and chart data visualizations will be explained hereafter.

5.2.1. HMI: Raw Data Visualizations

The first highlighted generated data is used by Threat Hunters in order to conduct
deep research about which actor is more likely to be targeting the monitored system.
The information displayed relates actions detected by data collectors with some actors
evaluating the relation with an anomaly flag. The data shown is generated using ML
clustering and with data collected from external sources such as MITRE ATT&CK. The
result is shown in Figure 4.

Figure 4. HMI: Data Context data.
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A key of the proposed architecture is the ability of hypothesis generation, and, in order
to do this, there is a specific component called Hypothesis Generator which is in charge of
doing that specific task. The output of that component is listed at a specific visualization at
the HMI which also enables to validate generated hypotheses.

A hypothesis is a group of “Data Context” data which has been executed in a specific
order and, optionally, can be associated to some APT. Once a hypothesis has been generated,
it is shown to Threat Hunters with details containing the action chain to conduct a manual
analysis in order to determine whether it is a threat or not. In Figure 5, there is an example
of what would be seen by a Threat Hunter.

Figure 5. HMI: Hypothesis: APT.

One outstanding feature of the proposed architecture is to provide ML capabilities to
both Threat Hunting and hypothesis generation procedures. The Hypothesis Generators
component is capable of continuously learning from Threat Hunters’ hypothesis resolutions
to distinguish between threats and benign behaviors, and, using the acquired intelligence,
it is able to suggest to Threat Hunters the result of new hypotheses. The results proposed
are shown in a view like the one in Figure 6.

Figure 6. HMI: Hypothesis: Automation.

Another developed capability for the prototype is a hypothesis generator based on an
anomaly detector, which creates results when some behavior deviates from the normal one
of the system. It works by calculating an anomaly factor of the generated event and there is
a configurable threshold which flags whether it is anomalous or not. One example can be
shown in Figure 7.
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Figure 7. HMI: Hypothesis: Anomalies.

5.2.2. HMI: Chart Data Visualizations

As explained in [13,14], visual analysis can help Threat Hunters to solve difficult
problems faster and ensure good results.

Regarding the importance of offering as many useful tools as possible for Threat
Hunters, several configurable visualizations have been developed. It is considered impor-
tant to highlight that color codes are enforced at any kind of visualization to obtain fast
recognition about what is being visualized. Visualized data can also be filtered by Threat
Hunters if they need it. In addition, all visualizations are interactive, offering zoom in,
zoom out and pan capabilities to examine in detail those complex aspects.

Hereunder are some examples of implemented visualizations (Figures 8–11) in which
all of them show the given assets with their existing services per asset and the vulnerabilities
detected for that specific service but displayed using different visualization techniques.

Figure 8. HMI: Chart Force Graph.

In the previous figure, we can find a graph showing the assets (brown color) connected
to the services (yellow color) they have and the vulnerabilities (sky blue color) associated
to them.

The same query to the data storage is shown in Figure 9 (i.e., assets per services per
vulnerabilities) but with a different visualization technique, in this case, circle packing. The
packing visualizations do lose the graph interconnection-display capability but provide
means to see which element encircles another. Therefore, we can see here inside an
asset (brown), its services (yellow circle), and inside each service its vulnerabilities (sky
blue disc).
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Figure 9. HMI: Chart Circle Packing.

Figure 10. HMI: Chart Sun Burst.
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In the above snapshot, the same query is shown (assets per services per vulnerabilities)
with the same color schema (assets displayed with brown color, services with yellow color,
and vulnerabilities with sky blue color) but, in this case, elements are not encircled but laid
on a concentric set of discs, each one representing a layer.

It is remarkable to state that, in all the views, the user can interact at any time with
what is currently displayed; if the users clicks on any figure, a new window with all the
detailed information about the element is shown.

Figure 11. HMI: Chart Tree Map.

The tree map view is quite similar to the circle packing, but in this case it is repre-
senting a Hilbert space decomposition. Again, assets, their services and their associated
vulnerabilities are shown with the same color code and grouped in the shown boxes. It is
important to state that the user can interact with the visualization as they can do in all the
other visualizations.

Implemented visualizations are not limited to these examples but they are composed
of an extended range of techniques, all of them enforcing the capability of helping in
detecting patterns in complex and multi-dimensional datasets. As relevant features, we
can point out that they are graph-based and provide means to show multi-dimensional
interrelated data in a few dimensions’ graph.

5.3. Verification

After the validation process was successfully completed, a verification of the prototype
was conducted with Threat Hunters (i) to ensure that the defined architecture copes with
all the envisioned scenarios outlined in Section 2 and (ii) to validate the performance of the
prototype against other solutions in the existing state-of-the-art.

Because there are no two identical people, it is difficult to ensure that a system is good
enough for everyone, but with enough population, there can be a subjective approximation
if it is fairly good or not. The subjective verification process was split into three stages:
(i) Firstly, the implemented prototype was deployed in the networks monitored by the
Threat Hunters in charge of evaluating it. (ii) After several months (time enough to have
sufficient data in the prototype to obtain valid results through the ML components), the
prototype was used by Threat Hunters in parallel with their own systems. (iii) Lastly,
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Threat Hunters were asked to answer specific surveys (some of whose questions are shown
in Table 2) to determine how valid the system is.

Table 2. Sample of verification survey questions.

Question

Does the prototype give fast access to the information considered as relevant?
Does the prototype receive updated information from external sources?

Does the prototype send information to external sources?
Does the prototype provide tools to easily create/edit/delete preprocessing components?

Does the prototype provide tools to easily create/edit/delete ML components?
Does the prototype help at the decision making process?

Is the prototype easy to use?

The survey answers showed that, generally, the prototype was useful and the proposed
architecture is strong enough to be used as a Threat Hunting tool for Critical Infrastructures.

Aside from the subjective evaluation of the prototype, some calculated metrics of
the hypothesis generator component were also calculated, whose results are presented in
Table 3.

Table 3. Metrics of the hypothesis generator component.

Metric After 1 Month After 6 Months

Percentage of benign events marked correctly by
the prototype 31.56% 83.49%

Percentage of malign events marked correctly by
the platform 23.16% 73.08%

Ratio of likeliness of the hypothesis 24.62% 89.24%
Percentage of attacks detected by the platform 26.74% 86.31%

6. Conclusions

In the previous sections, the architecture and all its features have been presented,
followed by an exhaustive overall validation and verification. The results obtained can
be used to compare given features to others from the tools and systems in the existing
state-of-the-art. This comparison has drawn the following conclusions.

Firstly, it has been pointed out that there is a need to improve the tools used by Threat
Hunters in Critical Infrastructures to improve their daily job. Among all the difficulties
that Threat Hunters must face, a critical one is the vast amount of data that they must
process with the consequent degradation in the process of situation understanding, decision
making and the associated cognitive overwhelm.

This work, alongside others existing in the state-of-the-art, aims to solve that problem
by proposing an architecture in order to help Threat Hunters by coping with the stated
problem by means of a reduction of information presented to them using a Machine
Learning approach that provides suggestions and hints about what is going on.

The current systems and tools stated in the state-of-the-art are mainly focused on
the generation of IoCs, but none of them take into account tools to help Threat Hunters
in the hypothesis generation process. As a consequence, there is gap in the generation
of hypotheses using raw and/or ML processed data to know what is going on in the
system monitored, which the proposed architecture tries to fill by enforcing hypothesis
generation as a main aid to Threat Hunters. Consequently, one of the main contributions
of the work described (and not fully found in similar solutions) is the provided capability
to Threat Hunters to be helped by ML processes in generating complex and elaborated
hypotheses about the current situation and what is more likely to happen in the near future.
Furthermore, a key aspect of this kind of system, namely, visualization, is not fully exploited
through the tools surveyed in the state-of-the-art, whereas in the proposed architecture,
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this element is enforced to help Threat Hunters in elaborating a proper understanding of
the situation and the most likely evolution of events.

The proposed architecture takes into account several aspects. First of all, it is modular
and upgradeable, as elements can be added or removed on demand dynamically, which
gives it the capability of being ready for any kind of critical infrastructure. This is considered
important from our point of view due to the fact that there are no two systems that
are identical and this is not enforced in other papers and projects from the state-of-the-
art. Secondly, it is asymmetrically scalable, so each resource assignment is orchestrated
depending on the needs. Furthermore, it is big data-enabled, which means it can store
and analyze vast amounts of data, and all the stored data is not only used for generating
hypotheses, but Threat Hunters can also use it for conducting a deep study of potential
malicious data or even for measuring the security levels of the Critical Infrastructure that is
being monitored.

It is also able to exchange (request and response) data with external sources using
standardized formats. This specific capability enables it to warn other Critical Infrastruc-
tures when there are common dependencies and when an attack with a similar entry vector
is detected. In addition, as each component is stateless, the order of actions to perform
a simple process is not relevant; therefore, processes can be parallelized to increase the
performance of the overall system. Unlike the papers and projects in the current state-of-
the-art, the proposed architecture follows High Availability enforcement schemas at all the
essential components (database, communications broker and authentication management)
to be confident about the uptime of the deployed system, which is crucial to be used in
critical situations. Furthermore, this type of system is used in IT security departments to
prevent and respond to cyber-attacks. Consequently, the data processed by the system are
very sensitive, so being secure is a significant concern. To address this, the architecture
allows several authentication methods to work safely with the data.

Lastly, the proposed architecture has been validated and verified implementing a
prototype that was tested by Threat Hunters by answering specific surveys (Table 2) and
by analyzing metrics of the hypothesis generator component (Table 3).
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The following abbreviations are used in this manuscript:

API Application Programming Interface
APT Advanced Persistent Threat
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CSA Cyber Situational Awareness
ECS Elastic Common Schema
ES Elastic Search
HA High Availability
HMI Human-Machine Interface
IDS Instrusion Detection System
IoC Indicator of Compromise
IoT Internet of Things
IP Internet Protocol
IPS Intrusion Prevention System
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IT Information Technology
ML Machine Learning
OS Operating System
OSINT Open Source Intelligence
OTP One Time Passwords
SDN Software-Defined Networks
SIEM Security Information and Event Management
SME Small and Medium Enterprise
SSLA Security Service Levels Agreements
TMP Threat Management Platforms
VPN Virtual Private Network
VR Virtual-Reality
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