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In recent years, there has been a strong desire to meet the challenge of electrification of vehicles in order
to achieve the decarbonization objective. However, as sales of electric vehicles have increased, there is a
significant lack of infrastructure to support the charging of this type of vehicle. The infrastructural defi-
ciencies are even more evident in the interurban environment, where the autonomy in kilometers of the
battery is a critical issue. To minimize the substantial economic costs involved in installing sufficient
charging points to ensure any interurban journey, it is necessary to establish mechanisms that evaluate
appropriate locations to deploy the necessary stations. Accordingly, this paper proposes using an evolu-
tionary approach to calculate the most suitable locations in an interurban environment for electric charg-
ing stations. For this purpose, different input information is taken into account in the allocation process.
The proposed algorithm has been tested using real data from the USA. The results assess the current
infrastructure and show the advantages of the locations proposed by the algorithm.
� 2023 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Road transport continues to have the largest share of EU and
USA freight and passenger transport performance. This results,
for example, that around 26% of total USA energy consumption in
2020 was for the transportation of people and goods, and the value
is similar in Europe. Moreover, almost the entire transport sector is
dependent on oil, a scarce fossil resource in most of the industrial-
ized world, with the aggravating factor of the impact of emissions
associated with fuel combustion on people’s health and global
warming. To date, efforts to move towards more sustainable
mobility models have not been sufficient to counteract the effects
of the growth in the number of trips and the distances traveled by
vehicles to move people and goods.

To reduce the impacts associated with the current mobility
model, we need a firm commitment to comprehensive works that
reconsider mobility in the interurban network and focus on infras-
tructure design towards a lower use of fossil resources based on
demand management, the promotion of collective and alternative
modes of transport, the reduction of polluting emissions, and the
use of renewable energies.

In this sense, the use of electric vehicles (EVs) is currently a cru-
cial element in developing policies aimed at a significant reduction
in the use of fossil resources and gas emissions. However, the mas-
sive introduction of EVs is being delayed, among other factors, by
the lack of charging infrastructures. The report elaborated by
BlombergNEF1 indicates that annual sales of electric vehicles were
around 5.6 million units in 2021, compared to 2.1 million recorded
in 2019 and 3.1 million in 2020. In other words, 7.2% of new cars sold
globally in the first half of this year were electric, an increase of 4.6%
in two years. Despite all this, global road transport emissions are ris-
ing again after the 2020 drop due to the Covid-19 pandemic. This
makes it clear that there is still much work to decarbonize the road
transport sector.

The lack of EV charging infrastructure is a worldwide problem.
Even though EV sales have been growing, according to Statista, in a
sustained manner over the last few years,2 EV penetration contin-
ues to be relatively low. Using the USA as an example, in 2025, pen-
etration is expected to be 25%, while it is not expected to exceed 30%
in 2030. While there has been a clear increase, yet not sufficient, in
electric vehicle sales over the past year, increasing from 543,610 to
just over a million, the growth in public charging points in the
USA has not quite matched that, rising from 98,422 to 128,554 in
the same period, an increase of only about 31% (according to the
2022 EV Charging Station Report elaborated by Zutobi3).
-all-elec-
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This problem of lack of infrastructure is generalized in other
countries and can lead to what is known as ‘‘range anxiety” [1,2],
which implies the presence of stress in drivers in case they do
not have enough energy to get to their destination. In recent years,
we can find initiatives that have tried to facilitate finding electric
charging points by providing better and updated information on
the available network of charging points. We can highlight initia-
tives such as Electromaps,4 Plugsurfing,5 Ionity,6 or Plugshare.7

While providing useful information to the user, all these services
are useless if the infrastructures are insufficient.

Within recent works, different approaches have been used to
analyze the distribution of electric charging stations in urban areas.
A review of different works along these lines can be found in [3].
Most existing works try to estimate the number and location of
charging stations needed in a city to optimize some parameters
related to vehicle utility. However, the location problem at the
interurban level has received much less attention. Planning for
an interurban deployment of charging stations presents specific
challenges with respect to urban deployment. On the one hand,
traveled distances are longer, increasing the drivers’ risk to experi-
ence range anxiety. Longer trips also imply larger power expenses,
and thus electric batteries with higher capacity are favorable. On
the other hand, the power of the charging stations must also be
assessed. While most urban-centered works focus on fast chargers,
an interurban network may be better supplied by a different type.
Finally, according to a charging station’s specific (non-urban) loca-
tion, access to the electric grid with adequate power may not be
possible.

According to this, the main contribution of this work is to deter-
mine an optimal set of charging point locations that make up a net-
work of EV charging stations in a given interurban area. The
proposed network must guarantee EV charging for any journey
within this area. To this end, the proposal considers establishing
a maximum distance between adjacent charging points so that
EVs have sufficient autonomy to make journeys within the consid-
ered interurban area. The advantages of such a system are multiple
since it allows obtaining the best possible locations for a network
of charging stations, improves the confidence of EV drivers, and
minimizes the investment in the installation of charging points,
ensuring a potentially better service of the proposed stations.

The proposed approach has been tested on the territory of the
USA, although it can be extended to any geographical area for
which the necessary information is available. For this purpose, dif-
ferent data sources have been used, analyzed, and processed as
input for the proposed algorithm. The primary purpose of the
experiments was to test the locations proposed by our algorithm
against the current deployment of charging stations.

The rest of the paper is structured as follows: Section 2 analyzes
the related state of the art; Section 3 describes the proposed algo-
rithm for the interurban EV charging stations location; Section 4
describes in detail the data used, the experimental setup and the
results obtained from the experiments carried out; finally, Section 5
shows the conclusions and future work.

2. Related work

In this section, we comment on relevant works for the topic at
hand. First, we assess review papers that highlight the topic’s
research gaps. Then, works that discuss the adoption of EVs and
the impact this could have on power demand are mentioned. After
that, we analyze works that propose EV charging infrastructure
4 https://www.electromaps.com/.
5 https://www.plugsurfing.com/.
6 https://ionity.eu/en.
7 https://www.plugshare.com.
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distributions following various methodologies. Finally, our own
approach is presented together with the motivation for each of
the employed techniques.

L. Adenaw and S. Krapf [4] highlight the lack of a common set of
criteria for the emplacement of EV charging infrastructure. Their
review of the state of the art clusters the employed influencing fac-
tors, analyzing how they affect charging demand. T. Unterluggauer
et al. [5] identify many research gaps, among which the need for a
shift to large-scale and real-world case studies stands out. Around
59.6% of the reviewed literature tackles urban allocation of charg-
ing stations, while only 10.6% focused on highways, which could be
understood as nationwide traveling. In addition, they point out the
need to coordinate planning activities both in the transportation
and the power distribution network in order to deploy an efficient
charging infrastructure.

The main motivation for the nationwide deployment of EV
charging infrastructure is a transition to purely electric-powered
transportation. This, in turn, will have a strong impact on a coun-
try’s energy demand. A. Mangipinto et al. [6] use an EVs charging
transactions dataset from the Netherlands, provided by ElaandNL,
to assess the impact that an uncontrolled deployment of EVs would
have on the power system on a national level. Their model shows a
potential rise of 35–51% of the peak power demand, depending on
the country. Their results indicate that the best way to palliate this
is the application of smart charging strategies and not the improve-
ments in battery density or changing infrastructure. In this line, L.
Knapen et al. [7], employ activity-based models to forecast
prospective EV energy needs in Belgium’s Flanders area. Their
models identify certain areas of the region that may be used for
smart-grid design, despite the fact that, as the writers point out,
precise data on EV electricity use in real-world scenarios is lacking.

Many works present approaches for the planning, deployment
and evaluation of EV charging infrastructure. H. M. Abdullah
et al. [8] propose an EV infrastructure planning and analysis tool,
which relates the feasibility of charger deployment with the rate
of EV adoption. Their case study, however, is set on a university
campus. Analyzing works with a nationwide approach, L. Victor-
Gallardo et al. [9] describe a series of heuristic algorithms used
by Costa Rica’s administration to designate the sites of 34 charging
stations. Their approach innovates with the inclusion of road alti-
tude, although the model is limited by a strong bias toward the
allocation of stations in heavily inhabited areas. A. Colmenar-
Santos et al. [10] present configurations for a nationwide fast-
charging network in Spain. Their technique considers a maximum
distance between stations based on highway speed restrictions,
weather patterns, and the mean autonomy of commercial EVs pre-
senting, however, the bare minimum number of stations, as their
goal is to deploy the cheapest infrastructure possible. F. Xie and
Z. Lin [11], set their deployment in the USA. Their methods are
based on mathematical modeling and consider only the main inter-
state highways for the placement of stations. The authors demon-
strate, however, how applying a state-independent perspective for
the deployment of stations, following their modeling, yields worse
results than the interstate approach. Finally, A. Ramirez-Nafarrate
et al. [12] evaluate the existing charging station infrastructure for
a concrete intercity trip between two cities of Mexico through a
simulation-based approach. Their results show how current infras-
tructure falls way behind the requirements and suggests locations
for new chargers.

Given the described research gaps, our work proposes a large-
scale deployment (interstate level) of charging infrastructure in
the whole USA (real-world setting). Regarding emplacement crite-
ria, our model considers station coverage, in terms of reachability
and uniquely covered area; Points of interest (POI) for charger loca-
tion; residential population and traffic flow. The locations of cur-
rent petrol stations in the USA are used as a candidate to deploy
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an electric charging station. This presents a combinatorial problem
that is solved through a genetic algorithm (GA), an evolutionary
approach that obtains near-optimal solutions in a reasonable com-
puting time. We bypass the reviewed previous work’s limitation by
setting a target budget for the infrastructure, thus not aiming for
minimal costs but for the best service. In addition, we
implemented evaluation metrics that penalize solutions that
deprive sparsely populated areas of service and ensure an EV trav-
eling between any two points of the country will not run out of
power.

The work of J. Jordán et al. [13] presents a multi-agent simula-
tion platform that integrates an early version of a GA for charging
infrastructure deployment. Such a version included aspects such as
the input of POIs and the Voronoi division of the area to populate.
Subsequently, J. Palanca et al. [14] refine the algorithm, presenting
a multi-objective version that balances utility and cost. Both of the
aforementioned works, however, have an urban-centered scope,
being their use cases applied to the city of Valencia (Spain) and
Lima (Peru), respectively. It was not until the current research that
the interurban perspective was applied. With it came many design
modifications to the GA, including new metrics for the evaluation
of individuals (pua and ld, in Section 3), as well as improved data
processing (Section 4.1). Finally, the current paper is an extension
of the work of J. Jordán et al. [15], setting the experimentation on a
new and more complex use case in the USA. In addition, we present
an extended set of experiments comparing our results with the
current network of electric charging stations in the USA.

3. Proposed method for interurban EV charging stations
distribution

An intelligent decision support system that simplifies and
enhances human work is beneficial to make a distribution of charg-
ing stations, especially in the case of placing an extensive set of sta-
tions over a vast territory such as a country or a set of countries.
Moreover, since the number of possible locations is large (e.g.,
existing gas stations), an optimization algorithm such as mixed-
integer linear programming (MILP) would have a low performance
compared to the meta-heuristic exploration of genetic algorithms
(GAs). On the other hand, MILP would not be applicable since our
utility function is non-linear, as we will see below.

A GA has been developed to place a set of charging stations in
an interurban environment based on the available geographical
data. This GA receives as input a large set of points of interest
where charging stations could be placed. In addition, the GA will
also determine the number of stalls to be placed in each of the sta-
tions that are decided to be installed. This way, more stalls will be
placed to cover areas where more demand is expected. Thus, for a
set of n points where a station may be placed (we call them Points
of Interest or PoIs), a GA individual is represented as an array of n
integers. The integer value indicates the stalls to be placed in that
PoI and can range from 0 to a maximum number specified as an
input parameter.

3.1. Utility

In addition to receiving the PoIs, the GA receives geopositioned
data on population, traffic density, and social network activity as
input. This way, a PoI will be selected as a charging station depend-
ing on the amount of these data falling within the area of influence
of that PoI.

Thus, we define the utility of the placement of charging stations
(with the specific number of stalls at each station) as a function of
the amount of population, traffic density, and social network activ-
ity in the area of influence of the PoI in which one or more stalls are
placed as specified in Eq. 1:
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utility ðindiv idualÞ ¼
X

8si>02individual
si � ðpi �xP þ ti �xT þ ai �xAÞ ð1Þ

where si indicates the number of stalls included in the PoI i;pi; ti,
and ai are the population, traffic density, and social network activity
covered by the i-th PoI; and xP ;xT , and xA, are the weights used to
calibrate each factor’s relevance.

To calculate the area of influence of a PoI, the intersection
between two geometric elements is used: a circumference cen-
tered on the PoI with a defined influence radius, and the Voronoi
polygon corresponding to the PoI. To do this, the Voronoi diagram
is calculated with the PoIs where a stall will be placed. This way,
each PoI where a station is placed has a Voronoi polygon that
depends on the polygons of the neighboring PoIs with a station.
Thus, by intersecting the circumference and the Voronoi polygon,
the area of influence of the station is obtained, which will be larger
or smaller depending on whether it has other stations nearby. To
calculate the utility of a given station, only the information (popu-
lation, traffic density, and social network activity) that falls within
this area of influence is considered.

Fig. 1 shows an example with several charging stations located
in the USA, where we can see the area of influence of each one of
them in gray. As the area of influence is formed by the intersection
between the Voronoi polygon and the circumference centered on
the station (with a radius of 100 km in this case), when several sta-
tions are nearby, their areas are reduced depending on their prox-
imity. This reduces the utility obtained by placing stations too
close to each other since they cannot cover so much area of influ-
ence alone. However, the area of influence is almost complete
(with the 100 km radius circumference) when there are no nearby
stations, as in the station on the right of this example.

3.2. Distance to nearest station and percentage of uncovered area

Although one of the priorities is to cover as much demand as
possible in the most active areas (regarding population, traffic den-
sity, and social network activity), it is also necessary to prioritize
the coverage of all possible interurban areas with the network of
charging stations. This can guarantee the possibility of charging
vehicles for travelers with intercity journeys. For the GA to con-
sider this, two metrics have been included to be minimized: the
longest distance to the nearest station of all stations (ld) and the
percentage of uncovered area (pua).

One of the objectives of having a suitable network of electric
vehicle charging stations is that the distance between one station
and the next should be as short as possible. This would reduce
the so-called ‘‘range anxiety” as users would be sure to find a
charging station within the limits of their vehicle’s range. There-
fore, one of the measures to be minimized in the GA is the longest
distance to the nearest station of all stations (ld). To do this, the
distance to the nearest station is calculated for each station to be
placed. We keep the largest of all these n distances, as this would
mark the worst case in which a user would have to travel that dis-
tance to find a charging station. Thus, a GA individual would be
categorized as more suitable the smaller this measure is.

This value is calculated using Delaunay triangulation (related to
the Voronoi diagram) to obtain the neighbors of each PoI where a
stall is placed. In this way, we only calculate the distances to the
neighbors. Moreover, since this computation will be done for each
individual to be evaluated with the GA, the computation can be
reduced by having the distances between all PoIs precomputed.
To complement the previous measure, the percentage of uncov-
ered area (pua) is considered. This measure is defined as the areas
not covered by the influence radius of the charging stations to be
positioned in the total study area. Thus, a lower percentage of
uncovered area in an individual of the GA is considered adequate.



Fig. 1. Example of charging stations with their area of influence composed of its
corresponding Voronoi polygon and the circumference centered on the charging
station with the defined influence radius of 100 km.
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The calculation of the pua is performed by aggregating the pre-
viously defined area of influence (intersection between the Voronoi
polygon and the circumference centered on the PoI with the
defined radius of influence) of all stations and making the differ-
ence with the polygon that defines the total area of the interurban
area of the problem.

3.3. Fitness and evolutionary algorithm

The fitness function comprises the aforementioned utility and
the ld and pua metrics. Thus, the GA is multi-objective since it will
maximize the utility, and minimize the ld and pua metrics.
Hence, the Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[16] is used. NSGA-II aims to optimize all objectives by obtaining
solutions near the Pareto frontier. Thus, an objective is not
improved at the cost of penalizing another since the solutions
are not Pareto-dominated.

We selected the uniform technique as a crossover operator as it
performs well under general conditions. This operator randomly
selects each attribute (gene) from one of the two parents to gener-
ate a child. On the other hand, the uniform integer technique is
used as a mutation operator, which generates an integer to modify
a gene if an independent mutation probability is exceeded. The
selection operator is that of the NSGA-II since it keeps the best
individuals with respect to the objectives based on the Pareto
frontier.

To summarize, Fig. 2 shows the steps performed by the genetic
algorithm to select the best solution, as shown in this section.
8 http://overpass-api.de.
9 https://www.biggestuscities.com/.

10 https://www.fhwa.dot.gov/policyinformation/hpms.cfm.
4. Experimentation

In order to evaluate the algorithm proposed in this work, a ser-
ies of experiments will be carried out on the territory of the USA.
The objective of the set of experiments is to test the locations pro-
posed by our algorithm and compare them with the current
deployment of charging stations. In addition, the coverage of the
territory will be tested.

4.1. Exploratory data analysis

As seen in previous sections, to calculate the most suitable dis-
tribution of charging stations in interurban territories with the
algorithm proposed in this work, a set of datasets must be pre-
pared and pre-processed to be ingested by the genetic algorithm.
These datasets are: points of interest (PoI), population data, traffic
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density, and social network activity. Table 1 summarizes the main
characteristics of each dataset. Next, we analyze these datasets and
present relevant data about them.
4.1.1. Points of interest
In this work, the GA presented uses an array of points as a can-

didate solution or individual where it is evaluated whether or not
to place a charging station. When a 0 appears in the array, it indi-
cates that a station will not be placed at that point, and when a
positive number appears, it indicates that a station is proposed
to be placed at that point (the number indicates the number of
stalls at that station).

Each position of the array is linked to a position of a dataset of
Points of Interest that are set as input. For this problem, we have
selected as Points of Interest a set of gas stations downloaded from
OpenStreetMap (OSM) using the Overpass API8 (data captured in
April 2022). This API allows us to download a specific type of ame-
nity from OSM, and we selected the fuel amenity since it is an excel-
lent initial distribution for possible charging stations around the US
territory and, in addition, each fuel station presumably has an elec-
trical power supply available. Fig. 3 shows the location of the 36,508
fuel stations included as Points of Interest to the GA. The structure of
the dataset is a list of coordinates representing each PoI.
4.1.2. Population
The population is one of the three values used to compute the

utility function of the GA. In an interurban context, population
density is a value that cities have, so the larger the city’s popula-
tion, the greater the attraction of charging stations within its lim-
its, as presumably its car fleet will be larger.

The USA has a number of cities, towns, and villages of 19,502 (as
of July 2019). Among them, 16,610 have 10,000 inhabitants or less,
and only 10 have more than one million inhabitants (see Fig. 4).

At this point, two circumstances have led to the decision-
making process. On the one hand, almost 20,000 cities and towns
are a huge number for the utility function to work efficiently since
it has to perform spatial joins with each of them. In addition, most
of them (84%) have a small population (below 10,000) which has
little influence on the utility function. On the other hand, it is not
very easy to obtain complete and updated datasets of the USA pop-
ulation due to the particular census process carried out in the
country. For this reason, it was decided to take a reduced dataset
of the 1,000 most populated cities and towns in the USA9 This is
a sufficiently large and well-distributed dataset to be representative.
Fig. 5 shows the selected city shapes’ bounding boxes. Bounding
boxes have been selected to buffer a city’s influence area and sim-
plify the spatial intersection with each Point of Interest since a four
coordinates box is much simpler than a complex multipolygon that
perfectly fits the shape of a city. This way, as is shown in Fig. 5, the
dataset is composed of a list of cities represented by four coordinates
(the bounding box), the city name, and its population.
4.1.3. Traffic density
Traffic density is another data used for the utility function of the

GA. In this case, for the United States, we have decided to use only
the principal arterial information from the Highway Performance
Monitoring System (HPMS) of the Federal Highway Administration
(US Department of Transportation).10 The HPMS is a national high-
way data system that contains information on the country’s high-
ways’ size, condition, performance, traffic, and operation. Fig. 6 (a)
shows an example of the traffic intensity in Alabama. The color code

http://overpass-api.de
https://www.biggestuscities.com/
https://www.fhwa.dot.gov/policyinformation/hpms.cfm


Fig. 2. Genetic algorithm steps.

Table 1
Main characteristics of the employed datasets.

Dataset Name Size Date Origin

Points of Interest 36,508 2022 OpenStreetMap
Population 1,000 2021 US Government
Traffic 8,098 2017 Highway Performance

Monitoring System (US)
Social 335,338 2015–2019 Twitter API

Fig. 3. Fuel stations used as Points of Interest.

Fig. 4. Number of US cities, towns, and villages by population.

Fig. 5. US cities and towns bounding boxes.

11 https://www.tesla.com/findus.

J. Jordán, P. Martí, J. Palanca et al. Neurocomputing 529 (2023) 214–221
refers to the traffic intensity. The darker the color, the higher the
intensity (zoom made for visibility reasons).

In this case, to make the spatial join of the utility function more
efficient again, these roads’ traffic intensity values have been
assigned to the corresponding polygons according to the geohash
coding. Geohash is a geocoding system created in 2008 for the pub-
lic domain that encodes a geographic position into a character
array. It is a hierarchical spatial data structure that subdivides
space into grid-like cubes, which is one of many applications of
what is known as a Z-order curve. The dataset’s structure is a list
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of elements composed of four coordinates (the geohash cell) and
the accumulated traffic density in that box during the measured
period (2017). These are 8098 cells that represent the US area cov-
ered by the traffic dataset with the geohash representation.

4.1.4. Social network activity
Finally, the third input that the utility function of the GA uses is

social network activity. The goal of this data is to know where
there is more activity of people. To this end, we collected geo-
located tweets in the USA. This clearly represents how the activity
is distributed throughout the territory. Although the social net-
works do not represent 100% of the activity, they are sufficiently
representative to compare the territories with each other.

We have collected tweets in the USA for five years, excluding
the pandemic years, which are outliers. Fig. 6 (b) shows a heatmap
of the distribution of the collected tweets. In this case, we have also
imputed each tweet to the corresponding geohash cell to optimize
the utility function. The dataset is a list of elements composed of
four coordinates (for the geohash cell) and the number of tweets
located inside each cell during the measurement period (2015–
2019).

4.2. Experimental setup and results

A series of experiments were run to test our evolutionary
approach, varying the total number of charging stalls to be dis-
tributed. In addition, a maximum number of 16 stalls for a single
charging station was set (based on the stall distribution of Tesla11

charging stations). The algorithm can assign several stalls ranging
from 0 to 16 to each PoI, ensuring that the total number of stalls is
preserved. Therefore, a problem solution is identified by its number
of charging stations (PoIs with more than 0 stalls) and the number of
stalls in each station. The rest of the input data is described in
subSection 4.1. Regarding the utility of a problem solution, the influ-
ence (weight) of population, traffic and social network activity data
was equal; i. e: xP ¼ xT ¼ xA ¼ 1

3 in Eq. 1. Finally, the influence

https://www.tesla.com/findus


Fig. 6. Maps of traffic density and tweets activity.

Table 2
Results of experiments conducted for the placement of different numbers of charging stalls in the USA. The number of stalls, number of stations, utility, the longest distance to the
nearest station of all stations in km (ld), and the percentage of the uncovered area (pua) are shown.

stalls stations utility ld pua

proposals 1000 1000 0.01078 273.6 6.62
1500 1500 0.01714 245.8 4.73
2000 2000 0.02295 201.1 4.09
2500 2500 0.02848 183.4 3.93
3000 3000 0.03292 182.2 3.97
5000 3022 0.03538 164.6 3.93
7500 3789 0.04195 164.6 3.91
10000 4050 0.04679 164.6 3.90
15000 4207 0.04955 197.1 3.88
18000 4490 0.05106 182.2 3.88
20000 4604 0.05673 164.6 3.88

alternative 3000 632 0.01983 368.9 38.17
tesla 18023 1755 0.03688 343.7 15.75
tesla [ alt. 19398 2202 0.03102 343.7 15.16
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radius (see Section 3.1) of a charging station was set to 100 km
(62.14 miles).

The meta–parameters of the GA were set as follows: population
(l) = 150, children per generation (k) = l

2 ¼ 75, crossover rate = 70%,
mutation rate = 20%, generations = 350.

The results of the experimentation are gathered in Table 2. We
present different proposals, one per line, according to the number
of distributed charging stalls. Moreover, each proposal presents
the number of charging stations among which the stalls have been
divided. A number of stations equal to the number of stalls indicate
a solution in which each station has a single stall. The values that
evaluate a solution (utility, ld and pua) are also presented. Please
be aware that our algorithm aims to maximize the former while
reducing the last two. The values shown for concrete proposals
are the best solution obtained after running five instances of the GA.

Besides our infrastructure proposals, we show in the last three
lines of Table 2 the number of stalls, stations, and the evaluation
(according to our metrics) of three infrastructures: the alternative
infrastructure contemplates all electric charging stations present
in the National Renewable Energy Laboratory (NREL)12 of the US
Department of Energy which do not belong to the Tesla company.
On the other hand, tesla infrastructure represents the electric sta-
tions deployed by the Tesla company. Finally, tesla [ alt. presents a
union of both infrastructures. These existing charger networks have
served as an inspiration to assess the deployment of a similar num-
ber of charging stalls. In addition, we will use them to compare the
quality of our proposals.

Going over our proposals, it stands out how with simply 2000
stations, we achieve coverage of 95.91% of the USA area. Compared
12 https://developer.nrel.gov/docs/transportation/alt-fuel-stations-v1/.
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with the currently implemented stations (tesla [ alt.), our algo-
rithm reduces the uncovered area from 15.16% to 4.09%. This is
coherent with our algorithm’s optimization criteria, which is con-
cerned with reducing areas and distances without charging infras-
tructure. Such a criterion probably differs from the one chosen to
deploy the currently existing infrastructure, which would also
explain the high ld it presents. Fig. 7 shows a visualization of var-
ious charging infrastructures, emphasizing their differences in area
coverage.

Solutions ranging from 1000 to 3000 stalls assign only one stall
per charging station, as this is the way to maximize coverage. How-
ever, this may be inconvenient as the stations could not serve more
than one vehicle at a time. Because of that, we kept increasing the
number of stalls until reaching a magnitude comparable to the
existing infrastructure (approx. 20,000 charging points). Once we
surpass the 3000 stall barrier, the GA begins assigning more than
one stall to some stations. It is interesting to observe the evolution
of the number of stations with respect to the number of stalls.
Opposite to what one might expect, the number of stations grows
with a lower slope than the number of stalls. As it can be seen in a
proposal like that of 15,000 stalls, a higher number of stalls does
not necessarily imply a more optimized solution. The search pro-
cess in a multi-objective GA is partially guided by the individuals
generated in the initialization. For the discussed proposal, the algo-
rithm has optimized utility and pua, which caused relative negli-
gence of the ld, which has a higher value with respect to
proposals with fewer stalls. Even so, an increment of around
30 km over the minimum ld found (197.1 vs. 164.6) is a slight devi-
ation, both algorithmically and in real life.

The pua decreases as the number of stalls is incremented and
reaches a minimum of 3.88%. The ld experiences a decrease as
the station network becomes more numerous, but the minimum

https://developer.nrel.gov/docs/transportation/alt-fuel-stations-v1/


Fig. 7. Charging stations distributions. Each station (dot) is drawn together with its area of influence (intersection of the influence circumference and the Voronoi diagram).
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of 164.6 km is achieved sooner with the proposal of 3022 stations.
If a station was placed at each PoI, the ld would not go below
164.6 km, however, the pua would be 0.55%. Thus, we can assume
that while the algorithm has reached the global minimumwith the
ld, it has not been optimal to lower the pua. Even with more than
20,000 charging stalls, the area covered by the infrastructure and
the longest distance among any two stations would remain similar
to those previously assessed. The reason for this is twofold: on the
one hand, the number of possible station locations is limited by the
PoIs. On the other hand, some locations have no data on popula-
tion, traffic density, or social network activity; therefore, the place-
ment of a station would not yield any utility.

As illustrated by the results, our algorithm is strongly inclined
to mainly ensure the charging network’s coverage. Even those
areas where the data (population, traffic density, and social net-
work activity) is not present are ensured to have a nearby charging
station, thus guaranteeing the completion of a journey that departs
anywhere inside the USA territory, finishing in any other location.
This is extremely useful not only for regular private vehicle drivers
but also for transporting goods and people on a larger scale. We
want to clarify that the current charging station infrastructure is
not presented as an objectively worse deployment with respect
to our proposals. Instead, networks like those of Tesla and the alter-
native seem to have followed other priorities for allocating their
stations.

5. Conclusions

In this paper, an evolutionary technique based on genetic algo-
rithms has been presented to propose the best possible location for
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the distribution of electric vehicle charging stations in interurban
environments. When considering the deployment of this type of
station along with a vast territory, one of the main objectives will
be to maximize the availability of the stations while minimizing
the cost. This will mean always having a station within reach of
the approximate autonomy of the vehicle and covering the largest
possible percentage of the territory; hence, the coverage of the
charging stations is the maximum possible without increasing
costs. The genetic algorithm proposed in this work is specially
adapted to interurban environments, using value information that
the utility function of the algorithm will be able to use for decision
making. The algorithm mainly uses population density, traffic den-
sity, and activity (measured from social networks) to decide where
it is more interesting to place a station and howmany stalls to con-
sistently provide service (without oversizing the stations).

Extensive experimentation has been carried out on the USA ter-
ritory to evaluate the algorithm. For this purpose, information has
been collected (mainly from open sources) on the inputs required
by the utility function. Also, data on Points of Interest candidates to
be selected for installing a charging station have been loaded into
the algorithm. Finally, the results obtained by the algorithm have
been compared with the current deployment of electric charging
stations in the United States. These results have shown how the
utility of the distribution and the station’s territory coverage is
improved for a similar number of stalls.

In future work, it is proposed to include more actual costs for
the installation and deployment of the stations, taking into account
not only a fixed cost per station and additional costs for each stall
but also the distance to the nearest electric transformation center
and the cable run required from the center to the installation.
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