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ABSTRACT In response to the requirements of 5G and beyond, cell-free systems have emerged to ensure
uniform service throughout the area. However, the idea of having no cells leads to a considerably large
monolithic system, which is not scalable. In this context, common sense suggests the creation of clusters
of Access Points (APs) and User Equipments (UEs) that allow the system to be managed locally to some
extent. The clustering procedure has to ensure certain performance for the global system and, at the same
time, ensure its scalability. In this paper, first, scalability is analyzed. Subsequently, we study and compare
two clustering approaches for uplink and downlink. Finally, we propose a combination of clustering and
resource allocation techniques that outperforms the rest of the analyzed state-of-the-art solutions.

INDEX TERMS Cell-free massive multiple-input multiple-output (MIMO), scalability, clustering.

I. INTRODUCTION
The performance of systems based on a cell-centric design
has always been limited by the interference experienced by
UEs at cell borders. New applications for Fifth Generation
(5G) and beyond require seamless deployments to ensure
uniform service over the entire area. A natural solution is the
use of user-centric cell-free systems. In this context and con-
sidering massive Multiple-Input Multiple-Output (MIMO) as
one of the enabling technologies of next-generation systems,
cell-free massive MIMO [1] was proposed to overcome the
high interference levels at the cell borders.

Normally, when talking about cell-free massive MIMO,
and due to the large number of antennas at the network
side, the APs acquire the Channel State Information (CSI)
through the use of uplink pilot signals sent by the UEs,
and then this CSI is used in the design of precoders. To be
able to use this CSI in the downlink, Time Division Duplex-
ing (TDD) mode is considered. In general, at the APs, the
signal is multiplexed/de-multiplexed, converted by the ana-
log/digital and digital/analog converters, and processed by the
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base-band (BB) unit. On the other hand, a Central Processing
Unit (CPU) is in charge of the coordination among all APs.

Some challenges arise when implementing the canon-
ical form of cell-free massive MIMO described before.
First, since all APs must be connected to the same CPU
via front-haul, the system has to withstand a considerable
amount of traffic and signaling, which increases the compu-
tational requirements of the CPU and the front-haul capacity
demands. This problem can be tackled via a user-centric
approach, so that a given UE is served by a subset of APs
close to it that share a CPU, helping to relax the front-
haul performance requirements significantly [2]. In [3], the
authors described four network deployments going from the
conventional cellular network to a cell-free massive MIMO
network considering a user-centric approach. In this work,
several practical aspects are analyzed such as the cost and
complexity of the deployment, limited capacity of back/front-
haul connections, and network synchronization. It is impor-
tant to remember that the objective of cell-free massive
MIMO is to reduce the interference at the cell borders of
traditional cellular systems. Therefore, the subset of APs for
each UE has to be selected taking this objective into account.
In this line, it is possible to identify two different clustering
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approaches depending on how interference is reduced. The
first approach creates a different cluster for each UE, locating
the UEs at the center of their clusters. In this case, the cluster
border is distanced as much as possible. The second approach
includes many UEs in the same cluster and uses interference
cancellation techniques to reduce the interference.

In this work, we will analyze these two approaches for
uplink and downlink under different scenarios in order to
figure out which would be the most suitable in terms of
achievable data rate under certain circumstances. Based on
the obtained results, we will propose a combination of clus-
tering and resource allocation techniques that outperforms the
current solutions in the literature.

The reminder of this paper is organized as follows.
In Section II, the system model is presented. Afterward, the
scalability concept is analyzed in Section III. Section IV
describes the two previously mentioned clustering approa-
ches. The performance of particular clustering solutions from
the two approaches with the corresponding resource alloca-
tion techniques is evaluated in Section V for the uplink, and
in Section VI for the downlink. Finally, Section VII draws the
conclusion.

II. SYSTEM MODEL
In this work, a cell-free massive MIMO system with clus-
ters is considered. In particular, we define the system S =

{{Lm}
M
m=1, {Km}

M
m=1} as a system with M clusters of single-

antenna APs and UEs. The APs and UEs in the m-th cluster
are those inLm andKm, respectively.We assume that the UEs
are exactly in one of those clusters, although APs can be in
several clusters, i.e., Km ∩ Kn = ∅ for all m ̸= n, but this
is not necessarily true for any pair of sets in {Lm}

M
m=1. The

amount of APs and UEs in the system is L = |∪
M
m=1 Lm| and

K = | ∪
M
m=1 Km|, respectively.

Let m̃(k) be the cluster the k-th UE belongs to. Without
loss of generality, we index the UEs in the same cluster
continuously, i.e., the UEs in the m-th cluster are those with
indices k̃(m− 1)+ 1, k̃(m− 1)+ 2, . . . , k̃(m), where k̃(m) is
the largest index of the UEs in the m-th cluster, and k̃(0) = 0.
The channel between the k-th UE and the APs of the m-th
cluster is denoted by Hkm ∈ C|Lm|, where |Lm| is the amount
of APs in the m-th cluster.
Interference cancellation techniques are used for the set

of UEs in each cluster. In particular, some interference can-
cellation is performed between the UEs 1, 2, . . . , k̃(1), also
between the UEs k̃(1) + 1, . . . , k̃(2), etc.

As a performance measure of the system, the total sum data
rate is calculated for both uplink and downlink. In the case
of the uplink, Successive Interference Cancellation (SIC) [4]
is considered in the decoding. This algorithm consists of

(i) decoding the signal of the first UE considering the signal
of the rest as interference, (ii) subtracting the signal decoded
from the first UE from the received signal, (iii) decoding
the signal of the second UE considering the signal from the
third UE onwards as interference, and so on. This reception
technique is known to be capacity-achieving if all the sources
of interference have a known covariance. Specifically, since
the decoding order does not affect the sum rate [5], we assume
that the first signal to be decoded is the one corresponding
to the UE with the highest index, i.e., the UE k̃(m) of the
m-th cluster, and then we follow the decreasing order of the
indices. Therefore, the achievable data rate of the k-th UE in
the uplink with an identity noise covariance is as in (1), shown
at the bottom of the page, whereP is the available power at the
UEs. In (1), the interference has been divided into two terms
according to its origin. In the numerator, the first term is the
noise covariance; the second term includes the interference
from UEs in clusters with indices m < m̃(k), the interference
from the UEs in the same cluster, and the signal of the
k-th UE; and the third term includes the interference from the
UEs in clusters with indices m > m̃(k). In the denominator,
the terms are similar except for the fact that the signal of the
k-th UE is not included.
Analogously, in the case of the downlink, Dirty Paper Cod-

ing (DPC) [6] is considered. This coding technique consists
of adapting the codebooks of the transmitter to a known
interference in such a way that the interference does not affect
the achievable rate. Therefore, the CPU of the AP cluster can
(i) encode the signal of the first UE, (ii) treat this signal as a
known interference for the second UE, and so on. In this case,
the first UE sees the signal from the other UEs as interference,
the second UE sees the signal from the third UE onwards
as interference, etc. As in the case of SIC, this encoding
technique is known to be capacity-achieving if all the sources
of interference have a known covariance. Some works found
an uplink-downlink duality when SIC and DPC are used [7].
In particular, the achievable rates are the same. In [7], it is
shown that the DPC encoding order that achieves certain
achievable rates is the reversed SIC decoding order of the dual
uplink system. Following this principle, we assume that the
encoding order is the reversed order considered for the uplink,
i.e., the encoding follows the increasing order of the UEs’
indices. Therefore, the achievable data rate of the k-th UE
in the downlink with an identity noise covariance is as in (2),
shown at the bottom of the next page, whereQk is the transmit
covariance matrix of the k-th UE. In (2), the interference has
also been divided into two terms according to its origin, and
in a similar manner as in (1). Since single-antenna UEs are
considered, it is not needed to include determinants in the
equation.

RULk = log
|I + P

∑k
i=1Him̃(k)H

∗

im̃(k) + P
∑K

i=k̃(m̃(k))+1Him̃(k)H
∗

im̃(k)|

|I + P
∑k−1

i=1 Him̃(k)H
∗

im̃(k) + P
∑K

i=k̃(m̃(k))+1Him̃(k)H
∗

im̃(k)|
. (1)
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III. ANALYSIS OF THE SCALABILITY
Cell-free massiveMIMO systems in their canonical form rely
on the cooperation of the L APs to serve the K UEs, i.e.,
M = 1. This implies that, as the network grows, so do the
computational requirements of the network and the volume
of data and signaling that has to be exchanged between each
AP and each UE. Due to this, these systems are said to be
non-scalable. It is therefore important to find solutions with
superior performance and good scalability with the network
size. To do this, it is important to agree on the main features
that a scalable system should satisfy. Then, we could design
systems with such features. In this section, we analyze a scal-
ability definition from the state of the art, and subsequently,
we propose a new definition.

A. STATE-OF-THE-ART DEFINITION
In [8], the authors formally defined that the network is scal-
able if the following tasks have finite complexity and resource
requirements for each AP as the number of UEs, K , tends
to ∞:

1) Signal processing for channel estimation;
2) Signal processing for data reception and transmission;
3) Front-haul signaling for data and CSI sharing;
4) Power control optimization.
In [3], a solution was proposed and considered to be fully

scalable. The solution is based on the definition of fixed
clusters of APs, each of them connected to a different CPU.
Each UE selects the best-server AP and a set of serving
APs, up to a maximum quantity of APs. The CPU of the
best-server is in charge of the channel estimation and the
reception/transmission processing. This processing and chan-
nel estimation is done independently for each UE and takes
into account only the serving APs. Therefore, even in the
worst case (all UEs require the maximum amount of serving
APs), the total resource requirements of this solution increase
linearly with the amount of UEs in the network. When the
network grows, all, the amount of UEs, APs, and CPUs grow
with the same proportion and, hence, both the amount of UEs
and the available resources grow with the same proportion.
As a consequence, the system is scalable. However, this
scalability claimed in [3] was questioned by [8], since [3]
does not explicitly limit the number of UEs that can connect
to one AP.

This raises the question of whether all the criteria in the
scalability definition in [8] are necessary in practice. For
instance, although one can argue the necessity of limiting the
amount of UEs that can be served by oneAP, the reality is that
many works in the literature dealing with resource allocation
problems do not consider this limitation. This is due to two
main reasons. First, it is unlikely to saturate the APs by

the amount of UEs, specially considering deployments with
more APs than UEs like in cell-free massive MIMO systems.
Second, real systems have access control mechanisms to
avoid this situation. In this sense, we wonder whether it is
reasonable to criticize the scalability of the solution in [3]
because the amount of UEs served by an AP is not explicitly
limited.

B. PROPOSED DEFINITION
From our point of view, the definition of scalability should
take into account the system viability in terms of computation
and resource requirements as the system increases in size.
To do this, we have to discuss first when a system is viable.
In this context, we can define viability using the system denial
of service probability, i.e., the probability that a UE cannot be
served by the system due to the lack of computational, front-
haul or radio resources. Let Dk be the denial of service prob-
ability for the k-th UE. Then, the denial of service probability
of the system S is defined as

PD(S) = lim
K ′→K

1
K ′

K ′∑
k=1

Dk . (3)

This definition is valid for both the case K = ∞, and the
case K < ∞. In the latter, this definition can be rewritten as
PD(S) =

1
K

∑K
k=1 Dk . We say that a system is viable if the

denial of service probability is below a maximum threshold,
i.e., PD(S) ≤ Pmax < 1.
Let Sm = {{Lm}, {Km}} be a subsystem of the system S

composed of the m-th cluster alone, whose denial of service
probability is PD(Sm). Considering that the m-th cluster is
viable, i.e., PD(Sm) ≤ Pmax, more clusters can be added with-
out affecting the viability of the system if they are designed to
meet the same criterion. This is explained by the fact that the
availability of computational, front-haul, and radio resources
of a cluster does not depend on the rest of the system. It is
worth noticing that with the increase in UEs, these may
experience a deterioration of the received signal but this is
caused not by a reduction in the radio resources available, but
by interference. Considering that for the k-th UE the denial
of service probability is Dk = PD(Sm̃(k)), we say that the
system is viable since following (3), we get, PD(S) ≤ Pmax.
In other words, if we design viable clusters, the overall system
composed of those clusters will also be viable, and certainly,
scalable.

We now look at the canonical cell-free massive MIMO
case, where a unique CPU manages the reception and trans-
mission to all UEs, and collects CSI information from all APs.
Taking into account that the CPU computational capabilities,
as well as the front-haul resources, are limited, the number

RDLk = log
1 +

∑k̃(m̃(k)−1)
i=1 H∗

km̃(i)QiHkm̃(i) +
∑K

i=k H
∗

km̃(i)QiHkm̃(i)

1 +
∑k̃(m̃(k)−1)

i=1 H∗

km̃(i)QiHkm̃(i) +
∑K

i=k+1H
∗

km̃(i)QiHkm̃(i)
. (2)
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of UEs with Dk < 1 is finite. This means that if K = ∞,
the result of (3) is 1. In other words, the canonical cell-
free massive MIMO system is not viable, and of course, not
scalable. Note that this conclusion is valid even if we provide
the CPU with infinite computational capabilities, i.e., the
front-haul still makes the system not scalable.

Therefore, using our (less restrictive) definition of scalabi-
lity, clustering ensures the scalability of the system, if coop-
eration between clusters is not allowed.

IV. CLUSTERING APPROACHES
As shown in Section III, the solution to guarantee scalability
is self-presenting: divide and conquer. However, the division
of the network into clusters and the posterior allocation of
resources should be done in a smart way, trying to take full
advantage of the flexibility of cell-free deployments and user-
centric solutions. In this sense, our work focuses on the
study of the strengths and weaknesses of current clustering
solutions with the aim of proposing more advanced solutions
to achieve better performance.

In what follows, two clustering approaches are analyzed.
The first approach focuses on ensuring that theUEs are closed
to the center of the cluster, thus avoiding edge effects. In the
extreme case of this approach, the UEs are placed at the
center creating a cluster of APs for each individual UE. Due
to this, each cluster of APs serves only one UE as shown
in Figure 1. This approach requires the highest number of
CPUs in a particular area. However, in this case, each CPU
can have lower computational capabilities than in other cases
where a CPU has to serve several UEs. These clusters can
be overlapping. The second approach includes several UEs
in each cluster of APs and focuses on using interference can-
cellation techniques within each cluster to reduce the effect
of interference. In the extreme case of this approach, the AP
clusters are enlarged as much as possible including all the
UEs in their coverage area in order to maximize the amount
of canceled interference in the clusters. This produces disjoint
clusters as shown in Figure 2. For the same average amount
of APs in each cluster, the disjoint cluster approach is the
one that requires the lowest number of clusters in a particular
area, hence, the lowest number of CPUs. However, in this
case, each CPU needs to serve the highest amount of UEs.
Therefore, this solution demands more powerful CPUs but,
at the same time, a smaller number of them.

It is worth noticing that the channel estimation and sig-
naling overheads do not depend directly on the clustering
approach but on the number of APs in each cluster and is,
at least, linearly proportional to the total number of UEs
served. Synchronization is also a critical aspect. With this
respect, in [3], a synchronization mechanism is proposed,
which could be used in any of the clustering approaches.With
this synchronizationmechanism, the overhead is proportional
to the number of APs each AP is collaborating with and to the
number of clusters that contain each pair of AP.

In the following sections, these two approaches are com-
pared in terms of sum data rate. For this purpose, first,

FIGURE 1. Representation of overlapping clusters.

FIGURE 2. Representation of disjoint clusters clusters.

different clustering techniques are analyzed for both uplink
and downlink. Then, conclusions are reached on the suitabil-
ity of using one clustering solution or another, depending on
the characteristics of the scenario and the inherent needs of
each of the transmission modes.

V. ANALYSIS OF THE CLUSTERING SOLUTIONS
FOR THE UPLINK
In this section, we present a clustering solution for each of
the two clustering approaches described in Section IV for
the uplink. Subsequently, we study the performance of the
two solutions in a particular scenario to gain insights into the
performance of the two clustering approaches.

A. USER-AT-CENTER
This solution is part of the first clustering approach in
Section IV. Therefore, each UE is at the center of a custom-
designed cluster and therefore does not experience edge
effects. The clusters of different UEs can overlap. In [8],
the clusters are formed according to the following proce-
dure. The UE appoints the AP with the strongest large-scale
fading channel coefficient as its master AP. The maximum
amount of UEs that one AP can serve is limited. So, when
the UE requests the service, the AP will assign the channel
it considers to be the least affected by interference from the
other UEs it serves. The master AP informs a limited set of
neighboringAPs that it is going to serve this UE. In particular,
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the informed APs are those whose channel with the UE is at
most a ‘‘threshold’’ weaker than the channel of themaster AP.
Then, the informed APs decide whether they serve the UE or
not. To make this decision, the APs have to take into account
other UEs they are serving. Using this clustering solution,
as many clusters as UEs are created, with the UEs being
relatively centered in their respective clusters. This implies
that the last UE of the m-th cluster is m, i.e., k̃(m) = m and
the cluster where the k-th UE belongs to is k , i.e., m̃(k) = k .
Considering this, the achievable data rate of the k-th UE for
uplink and downlink results in, respectively,

RUL-UaCk = log
|I + P

∑K
i=1HikH

∗
ik |

|I + P
∑K

i=1,i̸=k HikH
∗
ik |

, (4)

RDL-UaCk = log
1 +

∑K
i=1H

∗
ikQiHik

1 +
∑K

i=1,i̸=k H
∗
ikQiHik

. (5)

Since this clustering solution creates a different AP cluster
for each UE, it is not possible to cancel interference between
any of the UEs. Therefore, all the UEs in this scenario are
considered interferers by the k-th UE.

B. DISJOINT CLUSTERS
This solution is part of the second clustering approach in
Section IV. For this solution, the APs are grouped into non-
overlapping clusters of a specific size, i.e., |Lm| = N for
all m. Regarding the UE clusters, the clustering process is as
follows. First, the UEs select their master APs as in the previ-
ous solution, i.e., theAPswith the strongest large-scale fading
channel coefficient. Then, the m-th UE cluster is composed
of the UEs whose master AP is in the m-th AP cluster. It is
clear that, following this clustering process, the UE clusters
are composed of several UEs in general. Therefore, since the
signals of the UEs in the same cluster are processed by the
same CPU, some interference cancellation technique could
be used for the decoding/encoding. However, UEs are not
prevented from suffering cluster border effects.

C. COMPARISON OF SOLUTIONS FOR UPLINK
In this section, we study the performance of the two previous
clustering solutions in a particular scenario. The scenario is
a square of 32 by 32 ceiling-mounted APs in a squared grid
with an inter-AP distance of 10 m. In order to avoid scenario
border effects, a wrap-around technique is implemented. The
UEs are randomly distributed in the scenario. The heights of
APs and UEs are 6 m and 1.5 m respectively. The channel
model used is the ‘‘Industrial indoor scenario’’ presented
in [9]. The UEs have 10 mW of available power, and the
noise power at the receivers is 1.5887 · 10−10 mW, which
corresponds to the noise power at 15 ◦C and a transmission
bandwidth of 20 MHz. In this scenario, the AP clusters of the
‘‘disjoint clusters’’ (DC) solution are squared groups of APs
located in a squared grid over the scenario.

First, the results for several configurations of the ‘‘user-at-
center’’ (UaC) solution are obtained. From one configuration
to the other the only parameter that changes is the maximum
number of UEs that can be served by one AP, denoted by α.

FIGURE 3. Achievable data rate in the uplink for the UaC solution.

FIGURE 4. Achievable data rate in the uplink fixing the average cluster
size. The lines for canonical cell-free massive MIMO (CF) are obtained
with only one cluster with and without IC.

As shown in Figure 3, the average data rate per UE decreases
as the number of UEs in the scenario increases. This decre-
ment can be softened by allowing each AP to servemore UEs,
i.e. by increasing α.
In the case of the UaC solution, the size of the AP clusters

is variable. Assuming that the master AP of each UE informs
all APs in the scenario to create the AP cluster of this UE, then
all APs serve min(K , α) UEs. Using this assumption, we can
compute the average AP cluster size as Lmin(K , α)/K . For
instance, in the case of 256 UEs and α = 16, the average
cluster size is 1024 × 16/256 = 64. In order to facilitate the
comparison between the UaC solution and the DC solution
for different cluster sizes, we will compare the data rate of
certain average cluster size of the UaC solution with the data
rate of the same cluster size of the DC solution.

Figure 4 shows the average data rate per UE versus the total
number of UEs in the scenario for UaC and DC solutions for
cluster sizes of 16, 64 and 256 APs. The figure also shows
the average data rate for canonical cell-free massive MIMO
with and without interference cancellation as a benchmark.
Note that canonical cell-free massive MIMO without inter-
ference cancellation is a particularization of the UaC solution,
whereas canonical cell-free massive MIMOwith interference
cancellation is a particularization of the DC solution, both
for N = 1024. In Figure 4, when cluster sizes of 16 APs
and 64 APs or less than 64 UEs are considered, the compared
solutions have similar behaviour. However, when considering
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clusters of 256 APs and more than 64 UEs, the DC solution
clearly outperforms the UaC solution. Objectively speaking,
according to what it is shown, there is no solution whose per-
formance prevails over the other for any number of UEs. This
motivates the definition of a mixed solution in the following
section.

D. MIXED SOLUTION FOR THE UPLINK
This solution is inspired by the idea of merging the best
of the previous solutions: the avoidance of border effects
and the possibility of applying interference cancellation. The
UE and AP clustering is performed as follows. First, the
APs are grouped into non-overlapping cluster cores as for
the disjoint clusters approach. Then, more APs are added
to those clusters. The criterion to follow for such cluster
addition could be, e.g., proximity. As a result, the cores will
be surrounded by other APs of their clusters. Second, each
UE is linked to its best-serving AP, as previously. The cluster
of UEs served by each AP cluster is the set of UEs linked
to the APs in the corresponding core. The latter implies that
the cluster of UEs is centered with respect to the cluster
of APs preventing them from experimenting edge effects.
Figure 5 illustrates this solution. In the figure, four clusters
are delimited by colored solid lines. The core of each cluster is
formed by the APs that have the same color as the mentioned
lines. The UEs are represented in the color of the cluster
they are served by. For the sake of simplicity, for the results
in this section and for the same scenario described in the
previous section, the AP clusters are assumed to be squares of
√

|Lm|×
√

|Lm|APs, whereas the cluster cores are squares of
√

|Lm|/2 ×
√

|Lm|/2 APs at the center of the corresponding
cluster, for m = 1, . . . ,M .
In Figure 6 the achievable data rate per UE for a cluster

average size of 256 APs is shown for the UaC, the DC and the
mixed solutions. The curve of the UaC solution was obtained
following the procedure explained in Figure 4. As can be
noticed, the performance with the mixed solution is better
than the UaC and the DC solutions. Therefore, in this case,
the best performance is not obtained by only (i) avoiding the
cluster border effects or (ii) canceling all the interference of
UEs with the master AP in the cluster. In this case, we need to
use a solution thatmixes the two clustering approaches. In any
case, theDC solution is themost similar to themixed solution.
This highlights the importance of canceling interference.

VI. ANALYSIS OF THE CLUSTERING SOLUTIONS
FOR THE DOWNLINK
In the uplink, the APs can be considered passive receivers,
since they just need to send the signal received to the
corresponding CPUs. However, in the downlink, the APs are
actively transmitting so the available power needs to be allo-
cated to each of those transmissions. This power allocation
becomes more challenging if the clusters are overlapping.
In that case, as each AP could be connected to more than
one CPU, all the CPUs involved would have to cooperate
and this could lead to a non-scalable system. In order to

FIGURE 5. Representation of the mixed solution.

FIGURE 6. Achievable data rate comparison in the uplink for N = 256.

preserve the scalability of the system, suboptimal strategies
should be considered. One of the options is to allocate power
equally as will be detailed later in Section VI-A for the UaC
solution. Another option would be to design a scheme to
make a fixed pre-allocation of power and then optimize the
power allocation in each cluster. However, there is no clear
criterion for such pre-allocation. Due to this and in order
to simplify the subsequent analysis, we will not consider a
mixed solution, which requires the APs to pre-allocate power
to all the clusters they belong to.

A. USER-AT-CENTER
According to [8], in the downlink, the AP clusters are created
as explained in Section V-A. We recall that this clustering
solution produces overlapping AP clusters that serve only one
UE each. Moreover, since the APs serve a maximum of α

UEs (or belong to a maximum of α clusters), they split their
available power into this amount of UEs. This implies that the
APs pre-allocate a certain amount of power for the different
clusters they belong to. Letting P be the available power at the
APs, they use a maximum of P/α for each UE or cluster [8].
The actual power used to transmit to the UEs is obtained by
multiplying P/α by a normalized precoding vector, which,
in the case of the k-th UE, is computed as

wk =
Hkk
|Hkk |

. (6)
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Then, the power used by the l-th AP of the k-th cluster to
transmit to the k-th UE is

P
α

|wkl |2 ≤
P
α

, (7)

which indicates that the total power used to transmit to the
UEs by all APs is, indeed, P/α. This power allocation, which
is proposed in [8], ensures the APs do not use more power
than P, although in a very conservative way. In particular,
on average, the APs use significantly less power than P
to transmit to all the UEs. In order to illustrate this fact,
we assume that each AP serves exactly α UEs. Then, the
average amount of APs serving each UE is

Lserving =
Lα

K
. (8)

As mentioned before, the total power used to transmit to
each UE is P/α, which is split into the APs serving this
UE. Therefore, the average power used per AP and UE is
P/αLserving. Since the APs serve α UEs, the average total
power used per AP is

P
αLserving

α =
PK
Lα

. (9)

We consider here two numerical examples. If α = 4,
K = 256, and L = 1024, the average total power used per
AP would be P/16, and if α = 8, K = 64, and L = 1024,
the average drops to P/128. This conclusion is quite striking,
as it shows that a large part of the available power is unused.

B. DISJOINT CLUSTERS
As in the case of the uplink, we can also consider the creation
of disjoint clusters in the downlink with size |Lm| = N for
all m. As discussed before, the resource allocation in each
cluster should not be conditioned to the particular allocation
performed in neighboring clusters. If not, the effect of each
cluster would propagate throughout the scenario, making the
resource allocation not scalable. In order to avoid this scala-
bility problem, we propose to perform the resource allocation
in each cluster as if they were isolated from the rest, i.e.,
assuming that the interference from the other clusters do not
affect their UEs. Without loss of generality, we are going to
particularize this resource allocation for the first cluster, i.e.,
m = 1. In this case, and taking into account that we neglect
the interference from other clusters, the achievable rate of the
k-th UE is, using (2),

RDL-2k ({Qi}
k̃(1)
i=1 ) = log

1 + H∗

k1

(∑k̃(1)
i=k Qi

)
Hk1

1 + H∗

k1

(∑k̃(1)
i=k+1Qi

)
Hk1

, (10)

for k = 1, . . . k̃(1). The rate expression in (10) is the one used
for the resource allocation, i.e., the computation of the trans-
mit covariances {Qi}

k̃(1)
i=1 . However, the actual achievable rate

is shown in (2), which takes all the interference into account.
The expression in (10) is the one used in the following section
to compute the achievable rate in the figures.

To obtain the transmit covariances, we propose to maxi-
mize the sum data rate in the cluster taking into account the

limited available power in the APs. Mathematically, for the
cluster m = 1, we want to solve

max
{Qk }

k̃(1)
k=1

k̃(1)∑
k=1

RDL-2k ({Qi}
k̃(1)
i=1 ),

s.t. Qk ⪰ 0, k = 1, . . . , k̃(1),

k̃(1)∑
k=1

qkl ≤ P, l = 1, . . . ,N , (11)

where qkl is the l-th element of the main diagonal of Qk .
To find a solution for (11), we can use the algorithm proposed
in [10], which is based on [11]. With the optimum transmit
covariance matrices in (11), the APs use all their available
power. It is worth recalling that this solution is optimum
locally, i.e., for one isolated cluster. The use of all the avail-
able power can be dangerous in terms of the interference
caused to other clusters. Due to this, we also consider a
different resource allocation.

For the alternative resource allocation, we consider that
the available power can be shared among all the APs in
the cluster. By doing this, the optimum covariance matrices
contain, in the eigenvectors, the optimum precoding matri-
ces without the limitation of the power constraints. These
precoding matrices define the optimum power distribution
to maximize the data rate. Due to this, we propose to use a
scaled version of these covariance matrices. The scaling is
necessary to ensure that the power constraints are met. More
specifically, we solve

max
{Qk }

k̃(1)
k=1

k̃(1)∑
k=1

RDL-2k ({Qi}
k̃(1)
i=1 ),

s.t. Qk ⪰ 0, k = 1, . . . , k̃(1),

k̃(1)∑
k=1

Qk ≤ NP. (12)

Let {Q̄k}
k̃(1)
k=1 be the optimum solution of (12). In general,

these covariance matrices do not satisfy the individual power
constraints in each AP. Due to that, we compute

Qk =
P

maxl
(∑k̃(1)

k=1 q̄kl
) Q̄k , k = 1, . . . , k̃(1), (13)

where q̄kl is the l-th element of the main diagonal of Q̄k .
The covariance matrices {Qk}

k̃(1)
k=1 in (13) satisfy the power

constraints in each AP and, since they are scaled versions
of {Q̄k}

k̃(1)
k=1, they have the same eigenvectors and, hence,

they define the same precoding matrices. The optimization
problem in (12) can be solved with the algorithm presented
in [10], or with other techniques that make use of the uplink-
downlink duality like in [12] and [7].

C. COMPARISON OF SOLUTIONS FOR DOWNLINK
In this section, we study the performance of the two pre-
vious clustering solutions in the same scenario described in
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FIGURE 7. Achievable data rate in the downlink for the UaC solution.

FIGURE 8. Achievable data rate in the downlink for the DC solution.

Section V-C, with the same available power at the APs and
the same noise power at the receivers. We start showing the
achievable sum data rate with different configurations of
the UaC solution. Figure 7 shows the sum data rate versus the
number of UEs for the UaC solution for different values of α,
i.e., the maximum number of UEs that each AP can serve.
As it can be observed, the difference between the curves is
not significant, even considering cases where the average
total power used per AP is very low (see Section VI-A). This
suggests that the system is limited by interference.

Regarding the DC solution, the two power allocation
approaches presented are compared for N = 16 and N = 64
in Figure 8. In the legend, the results corresponding to the
cluster-optimal resource allocation are labeled as ‘‘Local
Opt.’’, whereas the results of the suboptimal resource allo-
cation are labeled as ‘‘Subopt.’’. The results highlight that,
although the optimal resource allocation per cluster (neglect-
ing inter-cluster interference) allows for achieving higher per-
cluster rate values, the effect of interference makes the total
data rates worse than those obtained with the suboptimal
resource allocation algorithm. In other words, by using all
the available power in the APs, the sum data rate is more
affected by the interference than benefiting from the trans-
mitted power.

Figure 9 shows the sum data rate versus the number of
UEs for the best result obtained for UaC, i.e. α = 1, the DC
solution with suboptimal resource allocation for cluster sizes,
N , equal to 4, 16, 64, 256, and the canonical cell-free massive
MIMO with DPC. The latter corresponds to the DC solution

FIGURE 9. Achievable data rate comparison in the downlink.

with N = 1024. As can be observed, the DC solution shows
a better performance than the UaC solution. Specifically, the
performance could improve by 2.5 times for N = 256 and
256 UEs in the scenario. Note also that the rate improvement
from one cluster size to another is almost constant, e.g., the
absolute rate improvement from the N = 4 case to the
N = 16 case is similar to that from the N = 16 case to the
N = 64 case. An exception is the rate improvement from the
N = 256 case to the N = 1024 case. As mentioned before,
the latter case corresponds to canonical cell-free massive
MIMO. Since, in this case, there is only one cluster, this
cluster does not suffer from external interference, and this is
the cause of the extra rate gain between the N = 256 and the
N = 1024 cases.

VII. CONCLUSION
In this work, we studied scalability issues of cell-free massive
MIMO. After considering a scalability definition presented in
the literature, we proposed a new definition that is less restric-
tive and includes more systems that are intuitively scalable.

We also studied two clustering approaches to design scal-
able cell-free massive MIMO systems. The first approach is
to design clusters for each UE in such a way that the UEs
are at the center of their clusters, hence avoiding cluster-edge
effects. The second approach is to include several UEs in each
cluster to be able to use interference cancellation techniques
inside each cluster. In the case of the uplink, none of the
two approaches seem to be the best for all cluster sizes and
amounts of UEs. This motivated the development of a clus-
tering solution that mixes the two approaches. This solution
showed the best performances in all tested configurations.
In the case of the downlink, whether or not the clustering
solution allows overlapping AP clusters has a major impact
on the performance. In particular, in order to avoid a global
optimization to make the system scalable, if an AP belongs
to several clusters, pre-allocating certain amount of power
to each cluster is needed. This is an additional resource
management procedure not present in the uplink. This power
pre-allocation makes APs underutilize their available power.
Due to this, a disjoint clustering solution that follows the
second approach, i.e., interference cancellation, provided the
best performance.
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