Document downloaded from:

http://hdl.handle.net/10251/205722

This paper must be cited as:

Wubben, J.; Hernandez, D.; Cecilia-Canales, JM.; Imberdn, B.; Tavares De Araujo Cesariny
Calafate, CM.; Cano, J.; Manzoni, P.... (2023). Assignment and Take-Off Approaches for
Large-Scale Autonomous UAV Swarms. IEEE Transactions on Intelligent Transportation
Systems. 24(5):4836-4847. https://doi.org/10.1109/TITS.2023.3242765

The final publication is available at

https://doi.org/10.1109/TITS.2023.3242765

Copyright |nstitute of Electrical and Electronics Engineers

Additional Information

Assignment And Take-oft Approaches For
Large-scale Autonomous UAV Swarms

Jamie Wubben!, Daniel Herndndez!, José M. Cecilia', Baldomero Imberén?,

2

Carlos T. Calafate!, Juan-Carlos Cano!, Pietro Manzoni®, Chai Keong Toh?

'Departament of Computer Engineering (DISCA)

Universitat Politecnica de Valéncia, Valencia, Spain
2Departament of Computer Science

Universidad Catélica de Murcia (UCAM), Murcia, Spain
3GLG Group, San Francisco, USA
Email: jwubben@disca.upv.es, dhervicQdoctor.upv.es, jmcecilia@disca.upv.es, bimbernon@Qucam.edu,
{calafate,jucano,pmanzoni}@disca.upv.es, ck_away@hotmail.com

Abstract—In the last decade, the popularity of UAVs has
increased tremendously. Nowadays, many researchers are in-
terested in UAV swarms. Coordinating a swarm of UAVs is
a complicated task and many problems should be addressed
before wide-spread adoption. In this work, we focus on the
take-off for large-scale UAV swarms, with an extra focus on
the assignment phase. The assignment phase is the first take-
off stage whereby we decide which UAV on the ground goes to
which place in the air. A good assignment algorithm, is quick,
and at the same time reduce the total distance travelled as
much as possible. We assess the performance of three different
assignment algorithms: a heuristic, the original Kuhn-Munkres
algorithm (KMA), and the KMA adapted for GPU use. Each
algorithm was tested while varying the number of UAVs, as
well as the type of flight formation. During the experiments,
we measured the calculation time, total distance travelled, and
number of flight paths crossing. In terms of total distance
travelled, the KMA always outperforms the heuristic. However,
the KMA takes longer (orders of magnitude) to calculate the
assignment. Realistically, the KMA algorithm can only be used
as long as the swarm does not contain more than 500 UAVs.
From that point the GPU version of the KMA is faster. We can
conclude that, in most cases, it is recommendable to use the
KMA for the assignment as it will reduce the distance travelled
to a minimum and, consequently, also reduce the number of
flight paths crossing.

Index Terms—UAV networks, Swarm takeoff, swarm forma-
tions, Kuhn-Munkres, GPU acceleration

Nomenclature

0 Empty set
P! ... Postion of UAV i in the air

Pgmund Postion of UAV i on the ground
CUDA Compute Unified Device Architecture

GPU Graphics processing unit
HPC High perfromance computing
KMA Kuhn-Munkres algorithm

n Integer number, often the number of UAVs
O(..) Big O notation

I. Introduction

Unmanned Aerial Vehicles (UAVs), more commonly
known as drones, are now frequently used in many

developed countries. Drones are used by the public for
various entertainment applications, such as racing and
aerial photography [1]. Also, the industry is using them, for
applications such as: surveillance, thermal inspections, or
in the film industry [2]. New applications in different fields
arise rapidly. Especially intelligent transportation systems
are benefiting tremendously from the rapid innovation in
the UAV field as demonstrated in [3], [4] and [5]. Although
many applications already exist, drone swarms bring new
opportunities as they can collaboratively complete com-
plex tasks with higher efficiency and lower cost, especially
in harsh environments [6].

While drone swarm technology is advancing quickly,
there are still many challenges remaining. Some of these
challenges are of administrative nature (e.g., legislation
issues), while others - communication among drones,
providing resilience and safe takeoff/landing - require
future research from a computational, algorithmic and
communication perspective. One of the main challenges
of large-scale autonomous UAV swarms is the takeoff
procedure [7].

The takeoff problem can divided into two phases: (1)
the assignment phase and (2) the takeoff procedure. In the
assignment phase, it is decided which UAV on the ground
will occupy a certain aerial position. At this first stage,
three parameters should be considered: (i) the overall
computation time, (ii) the total distance travelled by all
UAVs, and (iii) the number of potential collisions between
UAVs, i.e., flight paths that cross each other. Afterward, in
the takeoff procedure phase (phase 2), the order in which
the UAVs will take off is determined. One way to guarantee
a collision free takeoff is to let the UAVs that have to
fly the furthest start first, and proceed to take off each
UAV sequentially, i.e., one-by-one. However, sequentially
taking off each UAV takes a lot of time, and it grows with
the number of UAVs. To reduce this ever-growing takeoff
time, multiple UAVs must take off at the same moment
(i.e., simultaneously). However, this can lead to collisions
in many cases. Therefore, while calculating the swarm

position assignment (in phase 1), it is important that
the number of potential collisions is taken into account.
After all, if the number of collisions is minimized in phase
1, it will be easier to avoid all of them in phase 2.
Since the number of possible collisions is strongly related
to the total distance travelled (i.e. the fewer UAVs fly,
the smaller the chances to collide), and since calculating
all possible collisions for all possible assignments is very
computationally expensive, we opted for minimizing the
total distance travelled in the assignment phase.

The contributions of this paper can be summarized
listed as follows:

1) We present three assignment algorithms: a heuristic,
the sequential Kuhn-Munkres Algorithm (KMA),
and the KMA adapted for GPUs to decrease the
overall calculation time.

2) We evaluate the three assignment algorithms in
terms of performance, total distance travelled by all
UAVs, and the number of possible collisions between
UAVs. During the evaluation, the ground and air
formations are varied as well as the number of UAVs,
with an emphasis on large-scale swarms, to assess the
scalability of the solutions proposed.

3) Several GPU-based edge computing solutions are
evaluated to figure out which platform can provide
a real-time solution to the assignment problem for
UAV swarms.

An important aspect of the UAV swarm takeoff process
is the time needed to take off all UAVs safely. Individually,
each UAV can take off rather quickly. However, when the
number of UAVs grows, the time needed for all the UAVs
to be deployed can become excessively long. This time is
very valuable because (i) it depletes the (already limited)
battery life, and (ii) during that time the UAVs are not
used for their actual purpose (e.g. bridge inspections,
search missions, etc.). As shown in [8], this problem is very
prominent, and can impede the deployment of swarms as
little as 25 UAVs. However, this problem can be avoided
with intelligent takeoff procedures (phase2). This leads
us to the importance of our current work; in order for
those intelligent takeoff procedures to work optimally (and
hence reduce the takeoff time) they need to be provided
with (close to) optimal ground-to-air assignments. Hence,
in this work, we evaluate different assignment algorithms
while taking into consideration how these algorithms could
be used in practice. In fact, some of these assignment
algorithms could be easily executed on small on-board
computers, whilst others would require onboard GPUs, or
the use of dedicated servers.

This paper is organized as follows: in Section II we
provide an overview of related works. In Section III, we
explain in details the problem being addressed. In the
following section (Section IV), we introduce the three
assignment algorithms. Then, in Section V, we introduce
our simulator called ArduSim, as well as the four GPU
platforms being tested. We evaluate the three assignment
algorithms in Section VI. Finally, in Section VII, we

conclude our work, and raise directions for future work.

II. Related work

The amount of research focused on UAVs has increased
steadily in the last decade. Nowadays, some research to-
wards swarms of UAVs is also becoming popular. However,
for practical reasons, performing real experiments with
many UAVs is difficult. For that reason, many challenges
related to real deployments remain untackled.

After carefully checking the related literature on the
takeoff of UAV swarms, particularly of the VTOL type,
we found no other related works than our own [9].
Nevertheless, we can find several works on the wider topic
of UAV swarms.

The authors of [10] provided a nice example on how
a swarm of UAVs can work together as a team. They
were focused on a specific problem, namely path planning.
Although path planning for UAVs has been extensively
studied, their work was special because they restricted
themselves to a low altitude urban environment with het-
erogeneous Global Navigation Satellite Systems (GNSS)
coverage. As shown in their work, this would be impossible
to achieve with a single UAV.

Mirzaeinia et al. [11] addressed the problem of the
increasing number of drones in smart cities. This makes
it more difficult to find the optimal station for each drone
after it has completed its mission. When a drone finishes
its mission, it is assigned a destination landing station
to be recharged. Adverse weather situations can result
in having the drone assigned to a station to take shelter.
Their proposal uses the Kuhn-Munkres Algorithm (KMA)
to match drone charging stations. In their study, three
different scenarios were investigated. The first scenario
used drones with the same energy level. The second sce-
nario, used drones with a different energy level, and finally
there is a third scenario where drones and stations had
different energy levels. The results showed that a reduction
in energy consumption of 30-90% can be achieved by
applying this algorithm to drone station pairing, compared
to an algorithm using a randomly preassigned station.

Eventually, we would prefer to execute all applications
autonomously. However, we are not quite there yet, and
thus in some cases it is still necessary that humans
intervene. To that end the authors of [12], created a
Layered Adjustable Autonomy (LAA) model for UAVs.
In their solution, the agents (i.e. the drones) are given
the choice to perform tasks autonomously, or with the
help of humans. This adjustable level of autonomy can be
updated internally by an agent, or externally by the pilot.
They have tested their approach (indoors) with various
tasks, and their results show that their model is able to
manage human-agent interactions.

Futhermore, in our work, we also compare GPU so-
lutions within UAVs. This is a trend that is gaining
momentum, as shown in the following works. Most of
the GPU-enabled UAVs use Jetson from Nvidia [13]
as the main computing unit. An interesting work was
provided by S. Mittal [14], where he presented a survey

of techniques for accelerating neural-network applications
on the Jetson platform. These techniques can apply to
other embedded systems too. The author compares them
with the Jetson and other computing systems. He then
proceeds by reviewing algorithm-level optimizations in the
same style. Finally, there is an extensive section on various
application areas such as agriculture [15], or even drone
navigation [16].

Finally, the assignment problem in general, has been
studied by mathematicians. They introduce the assign-
ment problem as a combinatorial optimization problem,
where there are a number of agents and a number of tasks
to be performed. For each agent performing a task, there is
a cost involved. The goal is to minimize the total cost. An
assignment problem can be either balanced or unbalanced,
depending on the number of agents and number of tasks.
When the number of agents is equal to the number of
tasks, we speak of a balanced assignment problem. For the
specific case of UAV swarm assignment, the assignment
problem will always be balanced. Currently, there are
three options to solve this problem: Global methods, local
methods, and heuristics. A global method promises to
find the optimal solution. Currently, the Kuhn-Munkres
algorithm (explained in section IV-B) is the fastest option
available. In some specific cases, local methods can work
better, however this is not guaranteed. Those algorithms,
called auction algorithms, are used for example by Causa
and Fasano [17] who worked on a strategic path planning
for multi-UAVs, and by the authors of [18], who presented
a dynamic task and resource assignment algorithm.

The last option is to use a metaheuristic. This will
provide a suboptimal solution (in terms of reducing cost),
but it is typically much faster than the previous solutions.
In the literature, several metaheuristic algorithms have
been applied to the assignment problem in general terms.
Table I shows a comparison between those algorithms in
different platorms; i.e. sequential, multicore and GPUs (we
refer the reader to Kumar et al. [19] for insights). Results
show the average execution time (of all their experiments)
for various metaheuristics. They conclude that "for small
size instances, the metaheuristic Tabu search shows the
least average runtime on GPU, and Crow search algorithm
has the least average runtime on CPU, while for larger size
instances Crow search algorithm shows the least execution
time in GPU.” [19]. Although this comparison can give
us a basic understanding about the execution time of
various metaheuristics, they have not been used in the field
of UAVs. Hence, Section 77 focuses on those algorithms
that have been particularly designed for the drone swarm
assignments as they provide metrics such as the number
of flight paths crossing, calculation time overhead, and
total distance travelled. We focus specifically on the
applicability of the assignment algorithms for large-scale
UAV swarms in real-world scenarios. To that end, we use
a realistic multi-UAV emulator that relies on a software-
in-the-loop approach, in order to really evaluate the
practicality of these algorithms in the field of UAV swarms.

TABLE 1
Comparison between various metaheuristics in terms of CPU and
GPU time.
Name Execution time | Execution time
CPU [s] GPU [s]
Iterated Local Search 9.515 0.333
Simulated annealing 9.953 1.128
Genetic algorithm 5.102 0.669
Particle swarm optimization | 17.526 0.841
Crow search algorithm 1.570 0.285
Tabu search 2.334 0.152

III. Problem statement

The final goal that we want to achieve is taking off
a swarm quickly while ensuring that none of the UAVs
collide during the process. As stated earlier, the entire
takeoff process can be divided into two phases. In the first
phase (the assignment), we must decide which UAV on the
ground goes to which place in the air. In the second phase
(the takeoff procedure), we can manipulate the order of
the UAVs taking off; changing the order can speed up the
entire takeoff process, but it must be ensured that the
UAVs do not collide. The goal of this work is to find an
assignment algorithm that calculates an assignment which
minimizes the total distance travelled. Notice that this, in
turn, will reduce the number of possible collisions, which
will make phase II easier, and thus the overall takeoff time
is reduced while avoiding all collisions.

A. The assignment problem (Phase I)

In order to take off all UAVs, we must first pre-assign
each UAV on the ground a position in the air. Typically,
when the UAVs are on the ground, they are placed at a
random position, and usually close to each other. When
the UAVs take off, they fly to a certain position in the air,
which depends on the desired formation (e.g., linear, circle
or matrix). Since it is usually not relevant which UAV
occupies which position in the formation (homogeneous
swarms), it is in our best interest to assign the positions
in a manner such that the overall travelled distance by the
UAVs is minimum. A graphical representation is given in
Figure 1.

One solution might be to analyze all possible solutions
(brute force), and then select the one where the distance
is minimal. However, as shown in Figure 2, we can have
many different solutions for a swarm of just four UAVs. As
shown in our previous work [9], this brute force algorithm
has a time complexity of O(n! * n?), and thus practical
restrictions impede its use on swarms with more than 15
UAVs.

Hence, our next logical option is to reach a compromise,
as we no longer search for the optimal solution, but
one that comes close to it. Our heuristic, which is fully
explained in Section IV-A, is able to provide a solution
within O(n?). However, this compromise might affect the
performance (i.e., total distance travelled and number of
possible collisions) of the takeoff sequence. Fortunately,

Fig. 1. Graphic presentation of a possible UAV swarm flight
assignment.

Fig. 2. All possible solutions that exist with only four UAVs.

the assignment problem was already studied in the math-
ematics field a long time ago in graph theory. In fact, the
Kuhn-Munkres Algorithm (KMA) [20] (also referred to
as the Hungarian algorithm) is able to reach the optimal
solution within O(n?). In Section IV-B, we will explain
how the algorithm works, and how we have implemented
it in our ArduSim simulator. Later, in Section IV-C, we
also describe how this algorithm can be adapted for GPU
use.

IV. Assignment algorithms
A. Heuristic algorithm

The heuristic that we present here, offers a trade-
off between calculation time and accuracy (i.e., total
distance travelled). We first presented this heuristic in
[9]. This algorithm was created to cope with the very
slow calculation time of the brute-force algorithm. It can
quickly generate an assignment that, for a low number
of UAVs, slightly deviates from the optimal solution. The
heuristic consists of determining a location on the ground,
which is central to the UAVs deployed. Then, this central

position is used to compute the distance towards all
positions in the desired flight formation, which are then
sorted in descending order. Using this sorted list, the UAV
closer to each of these positions is then assigned to it. All
details are explained in algorithm 1. This algorithm is able
to calculate an assignment very fast (O(n?)) because it
reduces all the ground locations to a single point. However,
since in general formations are symmetrical, the total
distance travelled (see Equation 1) will only be slightly
higher, compared to the theoretically optimal/brute-force
solution. For further details, please refer to our previous
work [9].

Algorithm 1
flightFormation)

Heuristic(numUAVs, groundLocations,

Require: groundLocations.size = numUAVs A
flightFormation.size = numUAVs

centerLocation = mean(groundLocations)
airLocations = f(centerLocation, flight Formation)
airList = ()
for loc in airLocations do

airList < (loc, loc.distance(centerLocation))
end for
sort airList in descending distance order
fit=10
for aLocation in airList do

bestError = MAX VALUE

for glLocation in groundLocations do

error = gLocation.distance(aLocation)
if error < bestError then
bestError = error

15: bestID = gLocation.ID
16: end if
17: end for
18: fit «+ (id, groundLocations[bestID], aLocation)
19: groundLocations.remove(bestID)
20: end for
21: return fit

= e
Wb o

P(iem'al)

Total distance = Z dist(P,

=1

N — total No.of UAV s.

dist — euclidean distance

ground?

B. The Kuhn-Munkres algorithm (KMA)

The Kuhn-Munkres Algorithm (KMA) was developed
by James Munkres in 1957. He based his work on an
algorithm first developed by H. W. Kuhn [21], who in
turn was inspired by two Hungarian mathematicians.
Therefore, the algorithm is also known as the Hungarian
or the Munkres algorithm. In the original problem, the
authors were trying to match a set of n persons to a set
of n jobs in the most cost-efficient way. Each person had
a specific cost for a job; after some matrix operations on
those costs (detailed in Algorithm 2) an optimal solution
was guaranteed within O(n3). However, as one might
imagine, the KMA can be used for many applications
as long as a cost matrix is provided. In our work, the

cost matrix is an m X n matrix where n is equal to the
number of UAVs, and the elements are calculated by the
euclidean distance between a ground and an air location
(see Algorithm 2).

Towards this end, the first step to be taken is to
set a slack matrix of size numUAVs x numUAVs, and
fill it out using function distanceMatrizCalc(). The
distance matrix is calculated by using Algorithm 3, where
function d returns the FEuclidean distance. Then, the
Subtract_row_ minima() function is executed; it subtracts
the smallest entry in each row from each entry in
that row in the distance matrix; it is followed by Sub-
stract_ column_ minima(), which subtracts the smallest
entry in each column from each entry in that column
in the distance matrix. After minimum row and column
values are subtracted, we draw lines (1) over rows and
columns in order to cover all zeros in the matrix using
the smallest number of lines possible (Cover_all_zeros()
function). If the minimum number of covering lines is
equal to numU AV s, then an optimal assignment of zeros
is possible, and the process is finished. If the minimum
number of covering lines is less than numUAVs, an
optimal assignment of zeros is not yet possible. In that
case, we need to determine the smallest entry not covered
by any line. Afterward, we subtract this entry from each
uncovered row, and then add it to each covered column,
and finally run the Cover_all_zeros() function again.

Algorithm 2 Kuhn-Munkres CPU(numUAVs, groundLo-
cations, flightFormation)

Require: groundLocations.size = numUAV's A
flightFormation.size = numU AV s
1: DistanceMatriz = distanceMatrizCalc(numU AV s, A

groundLocations, flight Formation, error M atrix)

2: SLACK = distanceMatrizCalc()

3: Substract_row_minima(SLACK, A
DistanceM atrix)

4: Substract__column_minima(SLACK, A
Distance M atrix)

5: while true do

6: Cover__all_zeros(l,DistanceMatrix)

7 if All Columns Covered then

8.

: return > optimal found
9: else
10: Get__smallest_ line(DistanceMatrix)
11: end if

12: end while

Algorithm 3 distanceMatrixCalc(numUAVs, groundLoca-
tions, flightFormation, errorMatrix)

Require: groundLocations of size numUAV s A
flight Formation of size numU AV s A
errorMatriz of size numU AV s x numU AV s

1: for i € {0,...,numUAVs} do

2: for j € {0,...,numUAVs} do

3: errorMatriz[i][j] < d(groundLocationsli],
flight Formation[j])?

4: end for

5: end for

C. The Kuhn-Munkres adapted for GPUs

Several GPU implementations have been proposed in
the literature for the KMA [22], [23], [24]. Moreover, they
have been applied to different problems such as real-time
image systems for multiple bee activity monitoring [25],
or the subcarrier assignment problem [26]. To the best
of our knowledge, our work introduces for the first time
the application of KMA to drone location assignments
at swarm takeoff. Particularly, our starting point is the
NVIDIA CUDA [27] based proposal by Lopes et al. [28].
This solution is a general GPU adaptation to the linear
assignment problem through the KMA, focusing on steps
2 to 6 (see Algorithm 4). Some modifications of this code
have been made to adapt the GPU algorithm to the drone
swarm problem. Firstly, the size of the distance matrix n
is rounded up to the next power of 2; this allows the
GPU to work more efficiently. Later, upon assigning the
solution, we only take into account the results of the first k&
positions that match with the number of UAVs. Algorithm
4 summarizes the entire procedure, and we refer the reader
to [24] for insights on the CUDA implementation.

Algorithm 4 : Kuhn-Munkres GPU(numUAVs, groundLo-
cations, flightFormation)

Require: groundLocations.size = numUAVs A
flightFormation.size = numUAVs
Step 1 — Look for the maximum number of zeros in the cost

matrix. CUDA Parallel reduction is applied at this step [29].

Step 2 — A initial assignment is made, identifying each zero
as a possible assignment. In this case, the vector zeros and
the cost matrix are used for this assignment.

Step 3 — The search structures are initialized to find alter-
native routes. When all columns are covered the algorithm
ends.

Step 4 — Alternative routes are searched. Now, an optimiza-
tion of the assignment is performed.

Step 5 — New alternative routes are proposed and the vectors
are updated for a new evaluation in Step 3.

Step 6 — A CUDA reduction is applied to obtain the
minimum value of the cost matrix. This minimum value is
subtracted if the row and column are uncovered or added
otherwise. Finally, it identifies and saves the elements of the
slack matrix marked with 0. Then, return to Step 4.

The implementation is composed of several CUDA
kernels. The first kernel performs an initial matching
where each GPU thread will look for a zero of the
slack matrix. Whenever a thread finds a zero, it fills
this position out using distanceMatrixCale(). This is
performed atomically in order to avoid race conditions
between threads (we refer the reader to [24] for insights).
Moreover, two CUDA kernels are needed to perform the
graph search initialization and termination testing due to
global synchronization requirements. The former is for the
initialization, and the later to perform the step itself. Once
the matrix is initialized, the second kernel sets up a thread
per item in the matrix which covers the column associated
with it. Then, if there is a starred zero in that column,
it counts the overall number of starred zeros using an
atomic-add. Step 4 is implemented using a kernel with the

graph split in blocks processed by GPU thread-blocks (see
[24]). The graph is split by distributing the zeros across
the GPU blocks. It consists of repeatedly processing each
zero as described by the KMA in parallel until all zeros are
covered, or an alternative path is found. Step 5 basically
applies the alternating paths, and it is carried out using
two CUDA Kernels. The former performs a forward pass
that builds the green vector, and the latter performs the
reverse pass that applies the alternating path. Multiple
paths may be visited at the same time, since the former
kernel has a thread for each row, and the latter kernel has
a thread for each column. Step 6 consists of two kernels as
well: the former kernel for the add—subtract operation, and
a final kernel to do the final reduction. After the reduction
kernel, the minimum found is added to the elements that
are covered by the rows and by the columns, and it is
subtracted from the elements that are uncovered.

V. Hardware and software environment

In this section, we first detail the ArduSim simulator,
which is used for evaluating the quality of the three assign-
ment algorithms. Secondly, we shortly explain the various
ground and air formations used during the experiments.
Lastly, the details of the different GPU platforms, where
the performance evaluation is carried out, are given.

A. ArduSim

The multi-UAV simulator/emulator ArduSim is avail-
able under the Apache License 2.0. This tool has many
useful features, and it was formally presented in [30], and
kept up to date in our GitHub project [31]. The most
relevant characteristics of ArduSim are detailed below.

e Protocol deployment: ArduSim is designed to test
protocols in a simulator, and then deploy the proto-
cols quickly and reliably on real UAVs. To accomplish
this, ArduSim (as a simulator) uses the same proto-
cols and standards as real UAVs would use. In order
to make the deployment straightforward, all this is
abstracted inside the core of ArduSim. Deployment
on real UAVs is done by adding a Raspberry Pi (a
single board computer) to the UAV, and connecting
it via a serial connection to the flight controller (in
our case the open-source flight controller Pixhawk).
When deploying the UAVs in a real experiment, the
Raspberry Pi will use that serial connection to send
and receive messages to/from the flight controller.
Since nearly all UAV open-source controllers on the
market use the MAVLink communications protocol
[32], ArduSim-based developments can be deployed
on flight controllers from various manufacturers.

e Scalability: ArduSim is designed to be a multi-UAV
flight simulator. Therefore, it can scale to a large
number of UAVs. The only limitation is the hardware
and protocol used in the simulator.

e UAV-to-UAV communication: ArduSim uses the wire-
less standard 802.11a, in ad-hoc mode, to communi-
cate, both between UAVs themselves, and between

UAVs and the ground station. When ArduSim is
used as a simulator, communication is accomplished
with virtual links. Whenever protocols are thoroughly
tested, they can be deployed on real UAVs. In this case
ArduSim will send the messages via User Datagram
Protocol (UDP) broadcasts.

o API: Many different protocols need similar functions:
taking off, landing, communicating between UAVs,
etc. Ardusim gives access to these through an Ap-
plication Programming Interface (API) in order to
achieve faster protocol development.

o Data logging: ArduSim extensively logs data in vari-
ous formats after a UAV flight, making development
and debugging user friendly.

B. UAV formations used

In our study, we noted that swarm formations can
have an influence on the performance of the assignment
algorithms. Hence, the three most common UAV forma-
tions are evaluated; i.e., Circular, Linear, and Matrix
formations. At the start of an experiment, the UAVs are
placed on the ground in a random manner. We placed
them in a square with sides of 400 meters, and with a
minimum distance of 7.5 meters between all the UAVs.
The UAVs then have to go towards their locations in
the flight formation (Circular, Linear, or Matrix) at an
altitude of 50 meters. Figure 3 shows the three swarm
formations used in our experiments. Their characteristics
are described below.

e Circular formation: Given the number of UAVs, a
circumference is drawn with the smallest possible ra-
dius so that each drone is placed along the periphery,
and a minimum euclidean distance of 50 meters is
established between two neighboring UAVs.

o Linear formation: Starting from the center, new UAVs
are placed along the line every 50 meters, and on both
directions, to keep the formation symmetrical.

e Matrix formation: To obtain the matrix shape inde-
pendently of the number of drones in the formation,
each drone is added alternately between the quad-
rants of two perpendicular axes and, when the square
is completed, each axis is extended by 50 meters to
create a larger square; the process continues until all
the UAVs are assigned a coordinate.

C. GPU platform

We focused on four different architectures to assess the
performance of the proposed solutions (see Table II): a
High Performance Computing (HPC) node called Pedra,
and three low-power edge computing devices from the
NVIDIA Jetson family (i.e., Jetson nano, Jetson TX2, and
Jetson AGX Xavier). Although Pedra cannot be mounted
directly on UAVs (due to its weight, size, and energy
consumption), it could be used via a cloud solution when
the mobile internet speed and coverage are sufficient.
The main purpose of this comparison is to determine
whether the Kuhn-Munkres Algorithm (KMA) adapted

40

20

200
0
_ 0
200 100 5
100 oo
Circular formation
40
20
200
0
—~200 0
0
200 _s09
Lineal formation
40
20
200
0
_ 0
W0 op
100 200,500

Matrix formation

Fig. 3. UAVs formations for the experiment.

for GPUs reduces the calculation time, and whether it
can be performed on the edge in a reasonable time frame
and, if so, which platform is the most suitable.

VI. Evaluation

This section presents a detailed evaluation of the assign-
ment algorithms on the different targeted architectures.
We evaluated the assignment algorithms under three
different criteria: (i) the total distance travelled, (ii) the
number of possible collisions, and (iii) the calculation
time. Since the obtained assignment is the same in both
the original Kuhn-Munkres Algorithm (KMA) and the
GPU-adapted KMA, the results for the first two criteria
(i.e. total distance and number of possible collisions) will
be the same. Therefore, in the first two experiments,
just the original KMA will be mentioned. In the last
experiment, however, we do distinguish between the two
KMA versions.

A. Total distance travelled

In our first experiment, we evaluate the difference in the
total distance travelled by all UAVs. The original work
of the KMA [20] contains the proof that the KMA will
always return the minimal cost (in our case, the minimal
total distance travelled). This means that our heuristic
will always have a higher total distance travelled (in rare
cases it might be equal). Nevertheless, to evaluate the
effectiveness of our heuristic, it is interesting to compare
both distances. Therefore, we conducted the following
experiment: we placed a number of UAVs on the ground
in a random way, and calculated the assignment using
the heuristic as well as the KMA. We experimented with
three different air formations (Circle, Linear, Matrix), and
also varied the number of UAVs; the results are shown in
Figure 4. As we can see in the figures, and as expected, the
total distance travelled is somewhat higher when using our
heuristic. As shown on the zoomed-in view, the difference
between the two algorithms remains relatively constant.
On average, this extra distance is of 2879 m, 2378 m, 2457
m for the circle, linear, and matrix formation, respectively.
Although this might seem a lot, one must remember
that this is the total distance for all UAVs (on average
1000 UAVs). Nevertheless, we can see that there is a
substantial difference between using the KMA and our
heuristic, and w.r.t the total distance travelled, the KMA
clearly outperforms the heuristic. Furthermore, we can
also observe that the total distance travelled is different
for each formation. This is because some formations, such
as the matrix formation, are a lot more compact (i.e. more
UAVs fit in the same area) than others (linear).

B. Number of possible collisions

For our second experiment, we measured the number
of possible collisions. During the flight, we measured
the distances between all the UAVs constantly; whenever
two UAVs are closer than 5 meters (typical GPS error)
a collision counter is increased. Both UAVs are also
allowed to continue their flight, and might virtually collide
with other UAVs at another time instance. Again, we
experimented with three formations and a variable number
of UAVs. The results are shown in Figures 5 and 6. As
shown, the KMA performs better for all formations. In
some cases, such as the circle and the matrix formation,
it nearly avoids all collisions. In the linear formation it
is still performing better than the heuristic; however, the
number of collisions are still quite high. Due to its one
dimensional character, there are more possible collisions
for the linear formation.

C. Computation time

Up to now, the KMA has shown to clearly perform
better than our heuristic. However, as expected from the
pseudocode given before (see Section IV), the computation
time for the KMA will be higher. In order to know
how large the difference actually is, we performed various

TABLE II
Specification of the various GPU platforms used in our experiments.

Platform Pedra Jetson AGX Xavier Jetson TX2 | Jetson Nano
CPU Intel Silver 4216 NVIDIA Carmel ARM v8.2 | ARMvS ARM Cortex-A57 MPcore
GPU (NVIDIA) GeForce RTX 2080 Ti | Volta Pascal Maxwell
Memory [GD] 376 DDR4 32 LPDDR4x 8 LPDDRA4 4 LPDDR4
Size [mm] N/A 105 x 105 50 x 87 70 x 45
Weight [g] N/A 280 85 61
Energy consumption [W] | N/A 10-30 7.5 3-5
experiments (again with three formations, and varying the TABLE III
number of UAVS). Peak performance difference of CPU vs GPU.
‘ Pedra | AGX Jetson TX2 | Jetson
As shown in Figure 7, our heuristic is able to generate a Xavier Nano
Speed-up | 40x | 62x | 62x | 45x

drone assignment much faster than the KMA. This figure
shows that our heuristic can always be used withing a
reasonable time. Nevertheless, the same cannot be said for
the KMA. Here we see that, for 750 UAVs, the calculation
time is close to 16 minutes, which is definitely too much for
any practical application. In this figure we also included
the brute force method as a reference. Of course, compared
to the brute force approach, the KMA (which returns the
same answer) is a lot faster.

Similarly to previous experiments, we find that the
actual formation adopted has a significant influence. As
shown in Figures 8 and 9, when the heuristic approach is
used, the calculation time is independent of the formation
itself. This cannot be said when using the KMA. The
KMA performs notably worse when the UAVs are spread
out over one dimension (linear formation). Yet, whenever
the formation is more uniform, over the two dimensions,
the performance is improved.

As shown in the previous experiments, the KMA per-
forms better in terms of total distance travelled, and
number of possible collisions. However, we can only use
it up to 500 UAVs due to time constrains. Fortunately,
the KMA is parallelizable to some extent, and thus we
can decrease the calculation time by using GPUs. We
compared the CPU version (the one which we used in
all previous experiments) with a GPU version for four
different platforms.

All platforms targeted (see Section V-C) have a CPU
and GPU on board. The KMA performance on each
platform depends on two main factors: (a) the drone
swarm formation used, and (b) the number of drones in
the swarm. We can observe (from Figures: 10, 11, and
12) that, for all formations, and for all platforms, the
calculation time for CPUs grows quickly with the number
of UAVs. In most cases, the GPU platform outperforms
the CPU (see Table III). However, the GPU needs a large
computational and parallel workload (i.e. many drones
in the swarm) to outperform its CPU counterpart, and,
therefore, for swarms with less than 500 UAVs, the CPU
often performs better.

Furthermore, we can observe a great difference between
the various formations, especially in the case of the linear
formation, where calculations take 10 times longer than
for the circular formation. In the KMA, steps 1, 2, and
3 are fully parallel, whereas steps 4, 5, and 6 require a
CUDA reduction, which is less appropriate for a GPU.
Therefore, the execution time will depend highly on the
number of times each step is executed. From Table IV,
this percentage is not equal for each formation. The more
time is spent in steps 1, 2, and 3, the higher the speed-up.
Since the Matrix formation is the only formation where
more than half of the time is spent in the parallel part, it
benefits from a high speed-up.

TABLE IV
KMA profiling on GPU. Percentage of each algorithm step
performed on the overall execution time for each formation

targeted.
Steps performed(%) | Circle | Linear | Matrix
Steps 1, 2, and 3 42 % 31 % 59 %
Steps 4, 5, and 6 58 % 69 % 41 %

Concerning the performance differences between dif-
ferent GPUs, the HPC node Pedra offers the highest
performance. However, communication with any external
infrastructure (e.g. GPU-based cloud) is not always pos-
sible, and thus we investigated different edge computing
platforms (AGX Xavier, Jetson TX2, and Jetson Nano).
In order to make a comparison between them, we take
the HPC platform Pedra as a baseline. Results (shown in
Figures 10, 11, and 12) indicate that the AGX Xavier is
up to 1.6x slower; the Jetson TX2 is up to 4.6x slower;
and the Jetson Nano is up to 5.6x slower. These results
are reported for the worst-case scenario, i.e., for a swarm
of 2000 UAVs.

Figure 13 shows the box-and-whisker plot of the speed-
up factor obtained by the GPU included in the HPC-
node, and for the low-power GPUs included in edge
computing devices. The HPC-node outperforms the low-
power GPUs in general terms; yet, there are some cases
where low-power GPUs outperform the HPC node. This is
particularly true in the AGX Xavier, but it also happens
in Jetson TX2 and Nano. When there are fewer drones

700000{ == Heuristic
— KMA
600000
500000
£
— 400000
[
o
C
©
B 300000
a
200000 so000
75000
100000 70000
eso00
0 " gooss
0 250 500 750 1000 1250 1500 1750 2000
Number of UAVs
(a)
le6
== Heuristic
12{ —— KMA
1.0
=08
E
[
2
0.6
3
0
[a)
0.4 150000
10000
0.2 130000
120000
0.0
0 250 500 750 1000 1250 1500 1750 2000
Number of UAVs
(b)
30000 .
== Heuristic /
—— KMA /
25000
20000
£
[
£ 15000
©
]
0
o
10000
5000
0

250 500 750 1000 1250 1500 1750 2000

Number of UAVs

(©)

Fig. 4. The total distance travelled by all UAVs using the heuristic
and KMA for various formations: (a) Circle formation; (b) Linear
formation, and (c) Matrix formation.

—— KMA - to Circle ;
. /
—— KMA - to Matrix /
. . . /
401 ---- Heuristic - to Circle /
---- Heuristic - to Matrix /
Il
/
P ~
C 1
0 30 K
0 /
= 1
o 7
o Il
‘s /
& 20 K
Q ’
e 7
=] P, !
= % -
/
10 7
o~
/l ,’/ s\‘\-
// /’,
e Pl -
,/ ’,/ Sao-"
e ,fff
e e
o -
25 50 75 100 125 150 175 200

Number of UAVs

Fig. 5. A comparison of the heuristic vs. the KMA algorithm in
terms of potential collisions when varying number of UAVs (Circle
and Matrix formations).

5001 —— Hungarian - to Linear /;
---- Heuristic - to Linear /)
400
%)
c
o
2 300
o
9]
“
o
—_
3
200
1S
=}
=
100
0
25 50 75 100 125 150 175 200
Number of UAVs
Fig. 6. A comparison of the heuristic vs. the KMA algorithm in

terms of potential collisions when varying number of UAVs (Linear
formation).

in the swarm, the computational resources of the HPC-
GPU are not sufficiently occupied. In fact, there are
scenarios (e.g. those with very few drones) where only
1% of the GPU resources are utilized. Low-power GPUs
take more advantage of these resources in configurations
with very few drones, being even more efficient than
high-performance GPUs. However, as the computational
workload increases, the computational differences become
more pronounced for HPC environments.

—— Brute-force
—— Heuristic
—— Munkres
103
w,
g 10!
£
C
o
S
o
3 107
©
(@]}
1073
0 250 500 750 1000 1250 1500 1750 2000
Number of UAVs
Fig. 7. Average calculation time for all UAV formations and

assignment algorithms.

—— Circular
—— Matrix
0.04, — Linear
o
—0.03
()
£
F=
C
o
Fe
© 0.02
]
L
©
o
0.01
0.00

0 250 500 750 1000 1250
Number of UAVs

1500 1750 2000

Fig. 8. Calculation time using the heuristic algorithm for various
UAV formations.

VII. Conclusion and future work

An important, but not yet widely addressed problem,
is the UAV swarm takeoff problem. For each UAV on
the ground, a position in the air has to be assigned. The
assignment should keep both the overall distance travelled
by the UAVs, and the number of possible collisions (i.e.
flight paths crossing), to a minimum.

The main contributions of this work are: (i) we pre-
sented three assignment algorithms, (ii) we tested these
algorithms considering many parameters and different
metrics; and (iii) we tested the different algorithms on
several GPU-based edge computing solutions.

10

—— Circular
—— Matrix
1000/ — Linear
0
© 3000
£
=
c
ke
=
B 2000
)
K>
©
O
1000
0
0 250 500 750 1000 1250 1500 1750 2000
Number of UAVs
Fig. 9. Calculation time using the Kuhn-Munkres algorithm for

various UAV formations.

103
102
v
o 10
E
=1
S 100 /’7
® / CPU - nano
3 ---- GPU - nano
G 10t —— CPU - pedra
---- GPU - pedra
., —— CPU - tegrax2
10 ---- GPU - tegrax2
—— CPU - xavier
10-3 ---- GPU - xavier
0 250 500 750 1000 1250 1500 1750 2000
Number of UAVs
Fig. 10. CPU vs GPU: calculation time for the circular UAV
formation.

From our experiments, we conclude the following: first,
we have seen that the total distance travelled by all
UAVs is lower when the Kuhn-Munkres Algorithm (KMA)
is used. The actual differences depend on the specific
formation, but only to some extent. Secondly, we could
also observe that the number of possible collisions is
reduced when the KMA is used. This effect was most
prominent in the matrix and circle formation, and less so
in the linear formation. Thirdly, the calculation time of
the KMA is a lot longer, and the normal CPU version can
only be used up to (at most) 500 UAVs for any practical
use case. Fourthly, the GPU version allows us to speed

10* —=—z=F====

10°

102

10!

CPU - nano
- GPU - nano
CPU - pedra

- GPU - pedra
CPU - tegrax2
- GPU - tegrax2
CPU - xavier

- GPU - xavier

Calculation time [s]
E -
1 o

._.
2
5

.ﬂ
2
b

0 250 500 750 1000 1250
Number of UAVs

1500 1750 2000

Fig. 11. CPU vs GPU: calculation time for the linear UAV formation.

104
103
102
0
(] -
g wy o
£ S
C
o
© 10°
3 - GPU - nano
8 o —— CPU - pedra
---- GPU - pedra
—— CPU - tegrax2
1072 ---- GPU - tegrax2
—— CPU - xavier
10-3 ---- GPU - xavier
0 250 500 750 1000 1250 1500 1750 2000
Number of UAVs
Fig. 12. CPU vs GPU: calculation time for the Matrix UAV
formation.

up the calculation time. A speed-up is only realized if the
number of UAVs is sufficiently high; in most cases this
was of about 500 UAVs. The speed-up provided by the
GPUs ranges between 5x and 62x, depending on: the
number of UAVs, the flight formation adopted (Linear,
Circle, Matrix), and the GPU-architecture. Nevertheless,
even when using GPUs, our heuristic will still calculate
the assignment faster.

With this work, we have demonstrated that the KMA is
the most suitable algorithm to calculate the assignment. If,
however, the application requires a high number of UAVs
in a swarm, the GPU version of the KMA can decrease the
calculation time. If, for some specific reason, the calcula-

11

Speedup factor
FS (%, o

w

-

I

Pedra vs TX2

0 -
Pedra vs Xavier Pedra vs nano

Fig. 13. GPU platforms comparison: speed-up factors for the low-
power GPUs compared to the GPU included on HPC node PEDRA.

tion time still exceeds the limits of an application, then
our heuristic exists. However, when using the heuristic,
a higher price in terms of total distance travelled and
number of possible collisions needs to be paid.

The takeoff problem can be divided into two phases: (1)
the assignment phase, and (2) the takeoff procedure. In
this work, we focused on the first phase while in previous
works such as [33], [34], we have shown that we can achieve
a collision-free semi-simultaneous takeoff procedure using
the assignment as detailed in this work. Hence, our future
work is twofold: first, we will explore other algorithms such
as metaheurstics that have shown an increasing interest in
the last decade for the graph assignment problem; second,
we plan to optimize our collision-free semi-simultaneous
takeoff procedure to further reduce the takeoff time.

Acknowledgments

This work is derived from R&D projects PID2021-
122580NB-100 and RTC2019-007159-5, as well as the
Ramon y Cajal Grant RYC2018-025580-1, funded by
MCIN/AEI/10.13039/501100011033 and “ERDF A way
of making Europe”.

References

[1] S. J. Kim, Y. Jeong, S. Park, K. Ryu, and G. Oh, “A survey
of drone use for entertainment and avr (augmented and virtual
reality),” in Augmented Reality and Virtual Reality, pp. 339—
352, Springer, 2018.

[2] F. Giones and A. Brem, “From toys to tools: The co-evolution
of technological and entrepreneurial developments in the drone
industry,” Business Horizons, vol. 60, no. 6, pp. 875-884, 2017.

[3] X. Li, J. Tan, A. Liu, P. Vijayakumar, N. Kumar, and
M. Alazab, “A novel uav-enabled data collection scheme for
intelligent transportation system through uav speed control,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 4, pp. 2100-2110, 2021.

[4] Y. A. Nijsure, G. Kaddoum, N. Khaddaj Mallat, G. Gagnon,
and F. Gagnon, “Cognitive chaotic uwb-mimo detect-avoid
radar for autonomous uav navigation,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 11, pp. 3121-
3131, 2016.

[5]

[6]

[7]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

[25]

[26]

Y. Lin and S. Saripalli, “Sampling-based path planning for
uav collision avoidance,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 11, pp. 3179-3192, 2017.

W. Chen, J. Liu, H. Guo, and N. Kato, “Toward robust and
intelligent drone swarm: Challenges and future directions,”
IEEE Network, vol. 34, no. 4, pp. 278-283, 2020.

A. Tahir, J. Boling, M.-H. Haghbayan, H. T. Toivonen, and
J. Plosila, “Swarms of unmanned aerial vehicles — a survey,”
Journal of Industrial Information Integration, vol. 16, p. 100106,
2019.

C. Sastre, J. Wubben, C. T. Calafate, J.-C. Cano, and P. Man-
zoni, “Safe and efficient take-off of vtol uav swarms,” Electron-
ics, vol. 11, no. 7, 2022.

F. Fabra, J. Wubben, C. T. Calafate, J. C. Cano, and P. Man-
zoni, “Efficient and coordinated vertical takeoff of uav swarms,”
in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-
Spring), pp. 1-5, 2020.

F. Causa, G. Fasano, and M. Grassi, “Multi-uav path planning
for autonomous missions in mixed gnss coverage scenarios,”
Sensors, vol. 18, p. 4188, 11 2018.

A. Mirzaeinia, S. Bradley, and M. Hassanalian, “Drone-station
matching in smart cities through hungarian algorithm: power
minimization and management,” in ATAA Propulsion and En-
ergy 2019 Forum, p. 4151, 2019.

S. Mostafa, M. Ahmad, A. Mustapha, and M. Mohammed,
“Formulating layered adjustable autonomy for unmanned aerial
vehicles,” International Journal of Intelligent Computing and
Cybernetics, vol. 10, pp. 00-00, 10 2017.

Nvidia, “Nvidia jetson solutions for drones and UAVs ” https:
//www.nvidia.com/pt-br/autonomous-machines/uavs-drones
-technology/, 2021. Accessed: 2021-03-03.

S. Mittal, “A survey on optimized implementation of deep
learning models on the nvidia jetson platform,” Journal of
Systems Architecture, vol. 97, pp. 428-442, 2019.

M. A. Guillén, A. Llanes, B. Imbernén, R. Martinez-Espaifia,
A. Bueno-Crespo, J.-C. Cano, and J. M. Cecilia, “Performance
evaluation of edge-computing platforms for the prediction of low
temperatures in agriculture using deep learning,” The Journal
of Supercomputing, vol. 77, no. 1, pp. 818-840, 2021.

D. Hernandez, J.-C. Cano, F. Silla, C. T. Calafate, and J. M.
Cecilia, “Ai-enabled autonomous drones for fast climate change
crisis assessment,” IEEE Internet of Things Journal, 2021.

F. Causa and G. Fasano, “Multiple uavs trajectory generation
and waypoint assignment in urban environment based on dop
maps,” Aerospace Science and Technology, vol. 110, p. 106507,
2021.

X. Fu, P. Feng, and X. Gao, “Swarm uavs task and resource
dynamic assignment algorithm based on task sequence mecha-
nism,” IEEE Access, vol. 7, pp. 41090-41100, 2019.

M. Kumar, A. Sahu, and P. Mitra, “A comparison of different
metaheuristics for the quadratic assignment problem in accel-
erated systems,” Applied Soft Computing, vol. 100, p. 106927,
2021.

J. Munkres, “Algorithms for the assignment and transportation
problems,” Journal of the society for industrial and applied
mathematics, vol. 5, no. 1, pp. 32-38, 1957.

H. W. Kuhn, “The hungarian method for the assignment
problem,” Naval research logistics quarterly, vol. 2, no. 1-2,
pp- 83-97, 1955.

C. N. Vasconcelos and B. Rosenhahn, “Bipartite graph matching
computation on gpu,” in International Workshop on Energy
Minimization Methods in Computer Vision and Pattern Recog-
nition, pp. 42-55, Springer, 2009.

K. Date and R. Nagi, “Gpu-accelerated hungarian algorithms
for the linear assignment problem,” Parallel Computing, vol. 57,
pp- 52-72, 2016.

P. A. Lopes, S. S. Yadav, A. Ilic, and S. K. Patra, “Fast block
distributed cuda implementation of the hungarian algorithm,”
Journal of Parallel and Distributed Computing, vol. 130, pp. 50—
62, 2019.

T. N. Ngo, K.-C. Wu, E.-C. Yang, and T.-T. Lin, “A real-
time imaging system for multiple honey bee tracking and
activity monitoring,” Computers and Electronics in Agriculture,
vol. 163, p. 104841, 2019.

S. S. Yadav, P. A. C. Lopes, A. Ilic, and S. K. Patra, “Hun-
garian algorithm for subcarrier assignment problem using gpu

27]

28]

29]

(30]

(31]

(32]

33]

(34]

12

and cuda,” International Journal of Communication Systems,
vol. 32, no. 4, p. e3884, 2019.

NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release:
10.2.89,” 2020.

P. Lopes, S. Yadav, A. Ilic, and S. Patra, “HungarianGPU on
GitHub.” https://github.com/paclopes/HungarianGPU, 04
2019. Accessed: 2021-03-03.

M. Harris et al., “Optimizing parallel reduction in cuda,” Nvidia
developer technology, vol. 2, no. 4, pp. 1-39, 2007.

F. Fabra, C. T. Calafate, J.-C. Cano, and P. Manzoni, “Ar-
duSim: Accurate and real-time multicopter simulation,” Simu-
lation Modelling Practice and Theory, vol. 87, pp. 170-190, sep
2018.

GRC, “ArduSim: a novel real-time flight simulator.” https://gi
thub.com/GRCDEV /ArduSim, 2021. Accessed: 2021-03-23.

L. Meier and QGroundControl, “MAVLink Micro Air Vehicle
Communication Protocol” https://mavlink.io/en/, 2007.
Accessed: 2019-05-11.

C. Sastre, J. Wubben, C. T. Calafate, J.-C. Cano, and P. Man-
zoni, “Safe and efficient take-off of vtol uav swarms,” Electron-
ics, vol. 11, no. 7, 2022.

J. Wubben, C. Sastre, C. T. Calafate, J.-C. Cano, and P. Man-
zoni, “Collision-free swarm take-off based on trajectory analysis
and uav groupings,” in 23rd IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM 2022), 06 2022.

