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Abstract: In this paper, we introduce and examine the notion of a protected quasi-metric. In particular,
we give some of its properties and present several examples of distinguished topological spaces that
admit a compatible protected quasi-metric, such as the Alexandroff spaces, the Sorgenfrey line, the
Michael line, and the Khalimsky line, among others. Our motivation is due, in part, to the fact that a
successful improvement of the classical Banach fixed-point theorem obtained by Suzuki does not
admit a natural and full quasi-metric extension, as we have noted in a recent article. Thus, and with
the help of this new structure, we obtained a fixed-point theorem in the framework of Smyth-complete
quasi-metric spaces that generalizes Suzuki’s theorem. Combining right completeness with partial
ordering properties, we also obtained a variant of Suzuki’s theorem, which was applied to discuss
types of difference equations and recurrence equations.
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1. Introduction

In the realm of general topology, the terms quasi-metric and quasi-metric space were
introduced by Wilson [1], as asymmetric generalizations of the notions of the metric and
metric spaces, respectively (related asymmetric structures were discussed by Niemytzki [2]
and Frink [3]). A systematized study of quasi-metric spaces and their relation to other
concepts of general topology begins with Kelly’s article [4] in the framework of bitopological
spaces. Since then, numerous authors have contributed to the topological development of
quasi-metric spaces and other related structures. In fact, relevant non-metrizable topological
spaces, such as the Alexandroff spaces, the Sorgenfrey line, the Michael line, and the
Khalimsky line, among others, are quasi-metrizable. The books of Fletcher and Lindren [5]
and Cobzaş [6], as well as the survey article by Künzi [7] provide suitable sources to the
study of these spaces.

Applications of quasi-metric spaces to theoretical computer science, the complexity of
algorithms, and to the study of dissipation systems began to be formalized and became
relevant in the last decade of the Twentieth Century (cf. [8–13]). In this period were
also published some articles in which quasi-metric generalizations of several important
fixed-point theorems in metric spaces were obtained (cf. [14–18]).

As expected, these attractive research lines have continued to make significant ad-
vances. On the one hand, in constructing mathematical models in some fields of computer
science and in obtaining (potential) applications to asymmetric functional analysis, the
calculus of variations, aggregations functions, dynamic systems, fractal theory, and ma-
chine learning, among others (cf. [19–25]), and, on the other hand, in developing extensive
research on the fixed-point theory for quasi-metric spaces (due to the numerous articles
published in the last ten years in this field and with the aim not to make the bibliography too
extensive, we will limit ourselves to the references [26–31] and the most-recent ones [32–37]
together with the references therein).
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In a recent paper [38], we gave an example showing that the natural and full quasi-
metric generalization of a nice, and already celebrated, fixed-point theorem obtained by
Suzuki in [39] does not hold. Motivated, in part, by this fact, we here introduce the notion
of a protected quasi-metric. We analyzed some of its properties and give several examples
of noteworthy quasi-metric spaces whose quasi-metric is protected. For instance, the quasi-
metrics naturally induced by the Alexandroff topology, the Khalimski line, the Sorgenfrey
line, and the Michael line, among others, are protected. Furthermore, we obtained a fixed-
point theorem that generalizes Suzuki’s theorem to Smyth-complete quasi-metric spaces,
under the assumption that the involved quasi-metric is protected. Combining right com-
pleteness with partial ordering properties, we also obtained a variant of Suzuki’s theorem,
which was applied to discuss types of difference equations and recurrence equations.

2. Background

In the rest of this paper, the sets of real numbers, rational numbers, non-negative real
numbers, integer numbers, and natural (or positive integers) numbers will be denoted by
R,Q,R+,Z, and N, respectively.

Our main references for the general topology are [40,41].
With the aim of helping non-specialist readers, we next give some basic concepts and

properties that will be used later on.
A quasi-metric on a set X is a function d from X × X to R+ fulfilling the following two

conditions for every u, v, w ∈ X:
(qm1) d(u, v) = d(v, u) = 0, if and only if u = v;
(qm2) d(u, v) ≤ d(u, w) + d(w, v).
We say that the quasi-metric d is a T1 quasi-metric on X if it fulfills the following

condition stronger than (qm1):
d(u, v) = 0, if and only if u = v.
By a (T1) quasi-metric space, we mean a pair (X, d), where X is a set and d is a (T1)

quasi-metric on X.
Given a (T1) quasi-metric d on a set X, the function d∗ defined on X × X as

d∗(u, v) = d(v, u) is also a (T1) quasi-metric on X, called the conjugate (or the reverse) quasi-
metric of d, while the function ds defined on X × X as ds(u, v) = max{d(u, v), d(v, u)} is a
metric on X.

Each quasi-metric d on a set X induces a T0 topology τd on X that has as a base the
family of τd-open sets:

{Bd(u, ε) : u ∈ X, ε > 0},

where Bd(u, ε) = {v ∈ X : d(u, v) < ε} for all u ∈ X and all ε > 0.
We say that a sequence (un)n∈N in a quasi-metric space (X, d) is τd-convergent if

there is u ∈ X such that (un)n∈N converges to u in the topological space (X, τd). Therefore,
a sequence (un)n∈N in (X, d) is τd-convergent to u ∈ X, if and only if d(u, un) → 0 as
n → ∞. In the sequel, we simply write d(u, un) → 0 if no confusion arises.

Clearly, d is T1, if and only if τd is a T1 topology.
We will say that d is a Hausdorff quasi-metric if τd is a Hausdorff (or T2) topology.

If both τd and τd∗ are Hausdorff topologies, we refer to d as a doubly Hausdorff quasi-
metric.

Let (X, τ) be a topological space. If there is a quasi-metric d on X such that τ = τd,
we will say that d is compatible with τ. Then, a topological space (X, τ) is called quasi-
metrizable if there is a quasi-metric d on X compatible with τ.

The absence of symmetry yields the existence of several different notions of the Cauchy
sequence and quasi-metric completeness in the literature (see, e.g., [6]). For our goals here,
we will consider the following ones.

A sequence (un)n∈N in a quasi-metric space (X, d) is called left Cauchy if, for each
ε > 0, there is nε ∈ N such that d(un, um) < ε whenever nε ≤ n ≤ m, and it is called right
Cauchy in (X, d) if it is left Cauchy in (X, d∗). Note that, if (X, d) is a metric space, these
notions coincide with the classical notion of a Cauchy sequence for metric spaces.
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A quasi-metric space (X, d) is called:

• Smyth-complete if every left Cauchy sequence is τds -convergent.
• Left-complete if every left Cauchy sequence is τd-convergent.
• Right-complete if every right Cauchy sequence is τd-convergent.

It is clear that Smyth completeness implies left completeness, but the converse does
not hold, in general (see, e.g., Example 7 below).

It is also well known that the notions of left completeness and right completeness
are independent of each other: for instance, the quasi-metric space of Example 4 below is
right-complete, but not left-complete, whereas the quasi-metric space of [38] (Example 2) is
Smyth-complete (hence, left-complete), but not right-complete.

We finish this section by recalling the following well-known notion.
A relation ⪯ on a set X is said to be a partial order on X if it satisfies the next conditions

for every u, v, w ∈ X:

(i) u ⪯ u (reflexivity);
(ii) u ⪯ v and v ⪯ u, implying u = v (antisymmetry);
(iii) u ⪯ v and v ⪯ w, implying u ⪯ w (transitivity).

It is clear that, if ⪯ is a partial order on X, the relation ⪯∗ on X given by u ⪯∗ v, if and
only if v ⪯ u, is also a partial order on X.

3. Protected Quasi-Metrics

We start this section by introducing the main concept of our paper.

Definition 1. We say that a quasi-metric d on a set X is protected by d∗ (protected, in short) if it
satisfies the following condition:

Whenever (un)n∈N is a sequence in X that τd-converges to some u ∈ X, there is a subsequence
(ujn)n∈N of (un)n∈N such that d(u, ujn+1) ≤ d∗(u, ujn) for all n ∈ N.

A quasi-metric d is doubly protected provided that d is protected by d∗ and d∗ is
protected by d.

Remark 1. In the rest of this paper, the following obvious fact will be used without quoting it
explicitly: If (un)n∈N is a sequence in X such that d(u, un+1) ≤ d∗(u, un) eventually for some
u ∈ X (i.e., if there is n0 ∈ N such that the above inequality holds for all n > n0), then there is a
subsequence (ujn)n∈N of (un)n∈N such that d(u, ujn+1) ≤ d∗(u, ujn) for all n ∈ N.

Remark 2. We have chosen the term “protected” because, roughly speaking, the inequality
d(u, ujn+1) ≤ d∗(u, ujn) may be seen as that value d∗(u, ujn) acting as a “bodyguard” (protector)
for value d(u, ujn+1).

As desirable, every metric is a (doubly) protected quasi-metric. Indeed, let d be a
metric on a set X, and let (un)n∈N be a sequence in X that τd-converges to some u ∈ X.
Since d(u, un) → 0, there is a subsequence (ujn)n∈N such that d(u, ujn+1) ≤ d(u, ujn) for all
n ∈ N. In fact, if d(u, un) < d(u, un+1) eventually, we have a contradiction. As d = d∗, we
have that d is doubly protected.

It seems natural and tempting to propose an alternative statement of Definition 1,
in the next simpler and, apparently, more-manageable terms:

A quasi-metric d on a set X is protected by d∗ provided that it satisfies the following
condition:

Whenever (un)n∈N is a sequence in X that τd-converges to some u ∈ X,
then d(u, un+1) ≤ d∗(u, un) eventually.

Unfortunately, there exist metrics that do not meet this alternative proposal, as the
next example shows.
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Example 1. Let X = N∪ {∞}, and let d : X × X → R+ be defined as:

d(u, v) = 0 if u = v;
d(∞, v) = d(v, ∞) = 2−v if v is odd;
d(∞, v) = d(v, ∞) = 2−(v+2) if v is even;
d(u, v) = 2−u + 2−v if u and v are odd with u ̸= v,
d(u, v) = 2−(u+2) + 2−(v+2) if u and v are even with u ̸= v,
and
d(u, v) = d(v, u) = 2−(u+2) + 2−v if u is even and v is odd.

It is routine to check that d is a metric on X. Let un = n for all n ∈ N. Then, we have
d(∞, un) → 0. However, for n even, we obtain

d(∞, un+1) = d(∞, n + 1) = 2−(n+1) > 2−(n+2) = d(∞, un).

The following easy property of protected quasi-metrics will be fundamental in obtain-
ing our fixed-point results.

Proposition 1. Let d be a protected quasi-metric on a set X. If (un)n∈N is a sequence in X that
τd-converges to some u ∈ X, then there is a subsequence (ujn)n∈N of (un)n∈N such that

d(ujn , ujn+1) ≤ 2d(ujn , u),

for all n ∈ N.

Proof. Since d is protected, there exists a subsequence (ujn)n∈N of (un)n∈N such that
d(u, ujn+1) ≤ d(ujn , u) for all n ∈ N. Hence,

d(ujn , ujn+1) ≤ d(ujn , u) + d(u, ujn+1) ≤ 2d(ujn , u),

for all n ∈ N.

There are several interesting examples of protected quasi-metrics. In this direction,
Propositions 2 and 3 below will be useful.

Let (X, d) be a quasi-metric space. We say that a partial order ⪯ on X is compatible
with τd if the following condition is satisfied:

Whenever (un)n∈N is a sequence in X such that d(u, un) → 0 for some u ∈ X, then
u ⪯ un eventually.

Proposition 2. Let (X, d) be a quasi-metric space. If there are a partial order ⪯ on X that is
compatible with τd and a constant c > 0 such that d(u, v) ≥ c whenever u ⪯̸ v, then d is protected.

Proof. Let (un)n∈N be a sequence in X that τd-converges to some u ∈ X. Then, u ⪯ un even-
tually. Assume, without loss of generality, that u ̸= un eventually. Thus, un ⪯̸ u eventually.
Therefore, d(u, un+1) < c ≤ d(un, u) eventually. We conclude that d is protected.

Proposition 3. Let (X, d) be a quasi-metric space such that τd is the discrete topology on X. Then,
d is protected.

Proof. Let (un)n∈N be a sequence in X that τd-converges to some u ∈ X. Since τd is the
discrete topology, un = u eventually. So, d(u, un) = 0 eventually. We conclude that d is
protected.

It seems natural to ask whether Proposition 3 can be generalized to the case in which
the topology τd is finer than τd∗ . The following example shows that this question has a
negative answer, even in the case that τd = τd∗ .
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Example 2. Let d : R×R → R+ be defined as

d(u, v) =
{

v − u i f u ≤ v,
2(u − v) i f v < u.

It is well known (cf. [29] (Example 3.2)) that d is a doubly Hausdorff quasi-metric on R. In fact,
for each u ∈ R+ and each ε > 0, we obtain

Bd(u, ε) = (u − ε/2, u + ε) and Bd∗(u, ε) = (u − ε, u + ε/2),

which implies that τd = τd∗ = τE, where, by τE, we denote the Euclidean (usual) topology on R.
However, neither d nor d∗ are protected quasi-metrics. Indeed, pick u ∈ R+ and the sequence

(un)n∈N, where un = u − 1/n for all n ∈ N. Then,

d(u, un+1) = 2/(n + 1) > 1/n = d∗(u, un),

for all n > 1, which implies that d is not protected. Similarly (taking the sequence (u + 1/n)n∈N),
we infer that d∗ is not protected.

Example 3. A T0 topology τ on a set X is an Alexandroff topology provided that every intersection
of open sets is an open set [42]. In that case, the relation ⪯ on X defined as u ⪯v, if and only if
u ∈ cl{v}, is a partial order on X (cl{v} denotes the closure of {v} in (X, τ), and note that τ is
not T1 if cl{v} ̸= {v} for some v ∈ X). Moreover, the function dA: X × X → R+, defined as

dA(u, v) =

{
0 i f u ⪯ v,

1 i f u ⪯̸ v,

is a quasi-metric on X compatible with τ.
We proceed to show that dA is doubly protected.
We first note that the partial order ⪯ on X is compatible with τ because, if (un)n∈N is a

sequence in X such that dA(u, un) → 0 for some u ∈ X, we infer that u ⪯ un eventually.
Moreover, we have dA(v, w) = 1 whenever v ⪯̸ w. Hence, d is protected by Proposition 2.

Now suppose that (un)n∈N is a sequence in X such that (dA)
∗(u, un) → 0 for some u ∈ X.

Then, un ⪯ u eventually, i.e., u ⪯∗ un eventually. Since (dA)
∗(v, w) = 1 whenever v ⪯̸∗ w,

Proposition 2 implies that (dA)
∗ is protected.

Example 4. The celebrated Sorgenfrey line [43] is the topological space (R, τS) where the sets of
the form [u,v), with u, v ∈ R and u < v, constitute a base of the topology τS. Solving a question
posed by Dieudonné [44], Sorgenfrey proved in [43] that (R, τS) is normal and paracompact, but
the product space (R× R, τS × τS) is neither normal nor paracompact. It is well known (see,
e.g., [6,27]) that the function dS : R×R → R+ given by

dS(u, v) =

{
v − u i f u ≤ v,

1 i f u > v,

is a doubly Hausdorff quasi-metric on R compatible with τS.
We shall show that dS is doubly protected.
We first note that the usual order ≤ onR is compatible with τS, because if (un)n∈N is a sequence

in R such that dS(u, un) → 0, we infer that u ≤ un eventually. Moreover, we have dS(v, w) = 1
whenever v > w. Hence, dS is protected by Proposition 2.

Similarly, we obtain that (dS)
∗ is protected.

Example 5. The well-known Michael line on R is the topological space (R, τM) where the intervals
of the form (u − ε,u + ε), with u ∈ Q and ε > 0, and those ones of the form {u}, with u ∈ R\Q,
constitute a base of the topology τM. Observe that, in particular, each irrational is an isolated point
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in τM, whereas the basic neighborhoods of each rational are exactly its basic neighborhoods for the
usual topology.

In fact, the Michael line provides a nice and simple example of a normal Lindelöf hereditarily
paracompact space whose product with a separable metric space need not be normal (see [45]).
The function dM : R×R → R+ given by

dM(u, v) =


0 i f u = v,

min{1, |u − v|} i f u ∈ Q,

1 i f u ∈ R\Q and u ̸=v,

is a doubly Hausdorff quasi-metric on R compatible with τM.
We shall show that dM is doubly protected.
We first check that dM is protected. Let (un)n∈N be a non-eventually constant sequence in R

such that dM(u, un) → 0 for some u ∈ R. Then, u ∈ Q, and there exists a subsequence (ujn)n∈N
of (un)n∈N such that dM(u, ujn+1) ≤ dM(u, ujn) < 1 for all n ∈ N :

• If ujn ∈ Q, we obtain dM(u, ujn+1) ≤ dM(u, ujn) =
∣∣u − ujn

∣∣ = (dM)∗(u, ujn).
• If ujn ∈ R\Q, we obtain dM(u, ujn+1) ≤ dM(u, ujn) =

∣∣u − ujn
∣∣ < 1 = (dM)∗(u, ujn).

Consequently, dM is protected.
Now suppose that (un)n∈N is a non-eventually constant sequence in R verifying that (dM)∗

(u, un) → 0 for some u ∈ R. Again, there exists a subsequence (ujn)n∈N of (un)n∈N such that
(dM)∗(u, ujn+1) ≤ (dM)∗(u, ujn) < 1 for all n ∈ N. We can assume, without loss of generality,
that u ̸= ujn for all n ∈ N, and thus, ujn , ujn+1 ∈ Q for all n ∈ N :

• If u ∈ Q, we obtain (dM)∗(u, ujn+1) ≤ (dM)∗(u, ujn) = dM(u, ujn) for all n ∈ N.
• If u ∈ R\Q, we obtain (dM)∗(u, ujn+1) < 1 = dM(u, ujn) for all n ∈ N.

Consequently, (dM)∗ is protected.

Example 6. The famous Khalimsky line constitutes a well-established foundation for a digital
topology (see [46]). It consists of the T0 topological space (Z, τK), where τK is the topology on Z,
which has as a base the family of open sets {{2n + 1}, {2n − 1, 2n, 2n + 1} : n ∈ Z}. Thus, each
odd integer is an isolated point and each even integer n has an open base of neighborhoods consisting
of a unique set, namely {2n − 1, 2n, 2n + 1}.

It is clear that the quasi-metric dK on Z given by

dK(u, v) =


0 i f u = v,

0 i f u is even and v ∈ {u − 1, u + 1},
1 otherwise,

is compatible with τK. Obviously, dk is not a T1 quasi-metric on Z.
We show that dK is doubly protected.
Let (un)n∈N be a non-eventually constant sequence in Z such that dK(u, un) → 0 for some

u ∈ Z. Then, u is even and dK(u, un) = 0 eventually. Therefore, dK is protected.
Now, let (un)n∈N be a non-eventually constant sequence in Z such that (dK)

∗(u, un) → 0
for some u ∈ Z. Then, u is odd and (dK)

∗(u, un) = 0 eventually. Therefore, (dK)
∗ is protected.

Example 7. Denote by τco the co-finite topology on N (proper τco-closed subsets are the finite
subsets of N). It is well known that the quasi-metric dco on N given by

dco(u, v) =

{
0 i f u = v,

1/v otherwise,

is compatible with τco. Note that dco is T1, but not Hausdorff (in fact, the sequence (n)n∈N τco-
converges to any u ∈ N). We show that dco is doubly protected.
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Let (un)n∈N be a non-eventually constant sequence in N such that dco(u, un) → 0 for some
u ∈ N (note that, in fact, we have dco(v, un) → 0 for all v ∈ N). Then, there is n0 ∈ N such that
dco(u, un+1) < 1/u for all n ≥ n0. Since (dco)∗(u, un) = 1/u, we conclude that dco is protected.

Finally, note that, for each u ∈ N, B(dco)∗(u, 1/u) = {u}, so τco is the discrete topology on N.
By Proposition 3, (dco)∗ is protected.

Example 8. Let a ∈ R+ be a constant and φ : R+ → R+\{0} be a bounded function. Put

Fa,φ = { f : R+ → R+ such that sup
u∈R+

(φ(u) f (u)) < ∞ and f (0) = a}.

For each f ∈ Fa,φ, define s(φ f ) = supu∈R+(φ(u) f (u)).
Denote by ⪯ the usual (pointwise) partial order on Fa,φ:

f ⪯ g i f and only i f f (u) ≤ g(u)

,
for all u ∈ R+.

For each f , g ∈ Fa,φ, put

da,φ( f , g) =

{
supu∈R+(φ(u)(g(u)− f (u))) i f f ⪯ g,

1 + s(φg) i f f ⪯̸ g.

We first observe that da,φ defines a function from Fa,φ × Fa,φ to R+. Indeed, it suffices to
consider the case that f ⪯ g. Then, we obtain

φ(u)(g(u)− f (u)) ≤ φ(u)g(u) ≤ s(φg),

for all u ∈ R+. Therefore, da,φ( f , g) ≤ s(φg) < ∞. It is routine to check that da,φ is a quasi-metric
on Fa,φ.

Furthermore, it is a doubly Hausdorff quasi-metric. Indeed, suppose that ( fn)n∈N is a sequence
in Fa,φ such that da,φ( f , fn) → 0 and da,φ(g, fn) → 0. Then, we simultaneously have that f ⪯ fn
and g ⪯ fn eventually, and for each ε > 0, there is nε ∈ N such that

φ(u)( fn(u)− f (u)) < ε and φ(u)( fn(u)− g(u)) < ε,

for all n ≥ nε. From the preceding inequalities and the fact that f ⪯ fn and g ⪯ fn eventually, we
deduce that

|φ(u)( f (u)− g(u))| < 2ε,

for all u ∈ R+. Since ε is arbitrary, we obtain φ(u)( f (u)− g(u)) = 0 for all u ∈ R+, so f = g,
because φ(u) > 0 for all u ∈ R+. Hence, da,φ is a Hausdorff quasi-metric on Fa,φ. Similarly, we
show that the quasi-metric (da,φ)

∗ is Hausdorff.
Finally, we shall prove that da,φ is doubly protected.
Let ( fn)n∈N be a non-eventually constant sequence in Fa,φ such that da,φ( f , fn) → 0 for some

f ∈ Fa. Then, da,φ( f , fn) < 1 eventually, which implies that f ⪯ fn eventually. Hence, ⪯ is
compatible with τda,φ

. Since da,φ( f , g) ≥ 1 whenever f ⪯̸ g, we conclude, by Proposition 2, that
da,φ is protected.

An analogous argument shows that (da,φ)
∗ is also protected.

We conclude this section with two examples of protected quasi-metrics that are not
doubly protected.

Example 9. Given a (non-empty) set X, denote by XF the set consisting of all finite sequences
(finite words, in computer science) of elements of X and, by X∞, the set of all infinite sequences
(infinite words in computer science). Put Xω = XF ∪ X∞.
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Given x ∈ Xω , we design by l(x) its length. Thus, l(x) = j ∈ N if x ∈ XF with x := x1...xj
and l(x) = ∞ if x ∈ X∞.

Now, define [∞] = {x ∈ Xω : l(x) = ∞} (i.e., [∞] = X∞), [n] = {x ∈ XF : l(x) = n} for
n ∈ N, and X = {[n] : n ∈ N} ∪ {[∞]}.

Denoting by u and v the elements of X involved, we define a function d : X×X → R+ as

d(u, v) =



0 i f u = v,
0 i f u = [∞], and v = [n], n ∈ N,

2−n i f u = [n], and v = [∞], n ∈ N,

0 i f u = [n], and v = [m], with n > m,

2−n − 2−m i f u = [n], and v = [m], with n < m.

Then, d is a quasi-metric on X. We show that it is protected. Indeed, let (uk)k∈N be a non-
eventually constant sequence in X such that d(u, uk) → 0 for some u ∈ X. Then, u = [∞], so
d(u, uk) = 0 eventually, which implies that d is protected.

Finally, note that d∗ is not protected because d∗([∞], [n+ 1]) → 0, but d∗([∞], [n]) > d([∞], [n])
for all n ∈ N.

The quasi-metric of the preceding example is not T1. We end this section with an
example where the involved quasi-metric is doubly Hausdorff and protected, but its
conjugate quasi-metric is not protected.

Example 10. Let us recall that the Alexandroff (or the one-point) compactification of N consists
of the set N∪ {∞} endowed with the topology τ0, where each natural is an isolated point and the
neighborhoods of ∞ are of the form X\C, where C is a finite subset of N. It is well known that τ0
is a compact and metrizable topology. We are going to construct a protected quasi-metric on X
compatible with τ0 and such that its conjugate quasi-metric is not protected.

Let d0 : X × X → R+ be defined as

d0(u, v) =


0 i f u = v,

1/2v i f u = ∞ and v ∈ N,
1/u i f u ∈ N and v = ∞,
1/u + 1/2v i f u, v ∈ N and u ̸= v,

It is easy to check that d0 is a quasi-metric on X. Furthermore, the topology τd0 is compact
because every non-eventually constant sequence τd0 -converges to ∞. Note also that each natural n
is an isolated point because Bd0(n, 1/n) = {n}. Therefore, d0 is compatible with τ0, and thus, it is
a Hausdorff quasi-metric. In fact, we clearly have τd0 = τ(d0)∗ , so d0 is doubly Hausdorff.

Next, we show that d0 is protected. To achieve this, let (un)n∈N be a non-eventually constant
sequence in X such that d0(u, un) → 0 for some u ∈ X. Then, u = ∞ and (un)n∈N has a strictly
increasing subsequence (ujn)n∈N. Thus,

d0(∞, ujn+1) = 1/2ujn+1 < 1/ujn = (d0)
∗(∞, ujn),

for all n ∈ N. Hence, d0 is protected.
However, (d0)

∗ is not protected because (d0)
∗(∞, v) = 1/v > 1/2v = d0(∞, v) for all

v ∈ N.

4. Fixed-Point Theorems and an Application

According to [38], a self-map T of a quasi-metric space (X, d) is a basic contraction of
Suzuki-type (an S-contraction, in short) provided that there is a constant λ ∈ (0, 1) such
that the following contraction condition holds for any u, v ∈ X :

d(u, Tu) ≤ 2d(u, v) ⇒ d(Tu, Tv) ≤ λd(u, v). (1)
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Suzuki obtained in [39] an important generalization of Banach’s contraction principle
that, adapted to our context, we state as follows: Every S-contraction on a complete metric
space has a unique fixed point.

In [38] was given an example of an S-contraction on a Smyth-complete quasi-metric
space, which has no fixed points. Thus, the next quasi-metric generalization of Suzuki’s
theorem reveals a nice usefulness of protected quasi-metrics.

Theorem 1. Let (X, d) be a Smyth-complete quasi-metric space. If d is protected, then each
S-contraction on (X, d) has a unique fixed point.

Proof. Let T be an S-contraction on (X, d). Then, there exists a constant λ ∈ (0, 1) for which
the contraction condition (1) holds.

Fix u0 ∈ X. Since d(u0, Tu0) ≤ 2d(u0, Tu0), it follows that d(Tu0, T2u0) ≤ λd(u0, Tu0),
and continuing this process, we deduce that d(Tnu0, Tn+1u0) ≤ λnd(u0, Tu0) for all
n ∈ N∪{0}. Then, by the triangle inequality (qm2), we obtain

d(Tnu0, Tmu0) ≤
λn

1 − λ
d(u0, Tu0),

for all n, m ∈ N with n ≤ m, which implies that (Tnu0)n∈N is a left Cauchy sequence
in (X, d). Hence, there exists u ∈ X such that ds(u, Tnu0) → 0, so d(u, Tnu0) → 0 and
d∗(u, Tnu0) → 0.

Since d is protected, it follows from Proposition 1 that there exists a subsequence
(T jn u0)n∈N of (Tnu0)n∈N such that

d(T jn u0, T jn+1u0) ≤ 2d(T jn u0, u),

for all n ∈ N. Therefore, by condition (1),

d(T jn+1u0, Tu) ≤ λd(T jn u0, v),

for all n ∈ N. Thus, d(T jn+1u0, Tu) → 0 because d(Tnu0, u) → 0.
Since d(u, T jn+1u0) → 0, the triangle inequality implies that d(u, Tu) = 0. Hence,

d(u, Tu) ≤ 2d(u, Tnu0) for all n ∈ N, so by condition (1), d(Tu, Tn+1u0) ≤ λd(u, Tnu0) for
all n ∈ N. Consequently, d(Tu, Tn+1u0) → 0. Since

d(Tu, u) ≤ d(Tu, Tn+1u0) + d(Tn+1u0, u),

for all n ∈ N, we obtain d(Tu, u) = 0. Therefore, d(u, Tu) = d(Tu, u) = 0, so u = Tu.
Finally, let v ∈ X be such that v = Tv. Then, d(u, Tu) ≤ 2d(u, v), so

d(u, v) = d(Tu, Tv) ≤ λd(u, v),

and thus, d(u, v) = 0. Analogously, d(v, u) = 0. Hence, u = v. We conclude that u is the
unique fixed point of T in X.

Example 11. Let (X, d) be the quasi-metric space of Example 9. Recall that d is protected.
We prove that (X, d) is Smyth-complete.
Let (uk)k∈N be a non-eventually constant left Cauchy sequence in (X, d). For given ε > 0,

there exists k0 ∈ N such that d(uk, uj) < ε whenever k0 ≤ k ≤ j.
Since (uk)k∈N is non-eventually constant, we can assume, without loss of generality, that

uk ̸= uj for all k, j ∈ N with k ̸= j and uk ̸= [∞] for all k ∈ N. Thus, uk = [nk] = {x ∈ XF :
l(x) = nk} for all k ∈ N, and there is a subsequence (uik )k∈N of (uk)k∈N such that nik+1

> nik for
all k ∈ N.
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Let k ≥ k0. Since (nik )k∈N is a strictly increasing sequence, we can find an m ∈ N such that
nim > k and 2−nim < ε. Therefore,

d(uk, [∞]) ≤ d(uk, unim
) + d(unim

, [∞]) < 2ε.

Since ε is arbitrary, we deduce that d(uk, [∞]) → 0. On the other hand, we have d([∞], uk) = 0
for all k ∈ N, so ds([∞], uk) → 0. Consequently, (X, d) is Smyth-complete.

Now, let k ∈ N be fixed, and let T be the self-map of X defined as T[∞] = [∞]; T[n] = [∞] if
n is odd, and T[n] = [n + 2k] if n is even.

We shall proceed to check that T is an S-contraction on the quasi-metric space (X, d). Since
(X, d) is Smyth-complete and d is protected, all conditions of Theorem 1 will be satisfied.

Let u, v ∈ X :

• If u = [∞], we obtain d(Tu, Tv) = d([∞], Tv) = 0 for all v ∈ X.
• If u = [n], with n odd, we obtain d(Tu, Tv) = d([∞], Tv) = 0 for all v ∈ X.
• If u = [n] with n even and v = [∞], we obtain

d(Tu, Tv) = d([n + 2k], [∞]) = 2−(n+2k) = 2−2kd(u, v).

• If u = [n] and v = [m], with n, m even and n ≥ m, we obtain

d(Tu, Tv) = d([n + 2k], [m + 2k]) = 0.

• If u = [n] and v = [m], with n, m, even and n < m, we obtain

d(Tu, Tv) = d([n + 2k], [m + 2k]) = 2−(n+2k) − 2−(m+2k) = 2−2kd(u, v).

• If u = [n] with n even, v = [m] with m odd, and n < m, we obtain

d(Tu, Tv) = d([n + 2k], [∞]) = 2−(n+2k) ≤ 2−(n+2) ≤ d(u, v)/2.

• If u = [n] with n even, v = [m] with m odd, and n > m, we obtain

d(u, Tu) = d([n], [n + 2k]) > 0 = 2d(u, v).

Therefore, T is an S-contraction with contraction constant 1/2, and all conditions of Theorem 1
are fulfilled.

Note that T is not a Banach contraction on (X, d) because, for u = [n] with n even, v = [m]
with m odd, and n > m, we obtain

d(Tu, Tv) = d([n + 2k], [∞]) = 2−(n+2k) > 0 = d(u, v).

The next example shows that Theorem 1 cannot be fully generalized to left-complete,
nor to right-complete quasi-metric spaces, nor even for T1 quasi-metric spaces whose
quasi-metric is doubly protected.

Example 12. Let (N, dco) be the T1 quasi-metric space of Example 7. We have noted that dco is
doubly protected. Furthermore, (N, τco) is compact, because every non-eventually constant sequence
in N is τco-convergent to any n ∈ N. Consequently, (N, dco) is left- and right-complete.

Let T be the self-map of N defined as Tn = 2n for all n ∈ N. Then,

dco(Tn, Tm) = dco(2n, 2m) = 1/2m = dco(n, m)/2,

for all n, m ∈ N with n ̸= m. Thus, T is a Banach contraction and, hence, an S-contraction,
on (N, dco) without fixed points.
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Our next result provides a quasi-metric variant of Suzuki’s theorem that involves the
properties of partial orders. It will be a fundamental piece later on.

Let (X, d) be a quasi-metric space, and let ⪯ be a partial order on X. We say that (X, d)
is ⪯-co-right-complete if every ⪯-non-decreasing left Cauchy sequence is τd∗ -convergent.

As usual, a self-map T of X is ⪯-non-decreasing if Tu ⪯ Tv whenever u ⪯ v.

Theorem 2. Let (X, d) be a quasi-metric space such that d∗ is Hausdorff and protected. Suppose that
there is a partial order ⪯ on X for which (X, d) is ⪯-co-right-complete. If T is a ⪯-non-decreasing
self-map of X satisfying the following two conditions (a) and (b), then T has a fixed point:

(a) There is u0 ∈ X such that u0 ⪯ Tu0.
(b) There is a constant λ ∈ (0, 1) such that the following contraction condition holds for

any u, v ∈ X with u ⪯ v:

d(Tu, u) ≤ 2d(v, u) =⇒ d(Tu, Tv) ≤ λd(u, v).

Proof. Since T is ⪯-non-decreasing, it follows from condition (a) that Tnu0 ⪯ Tn+1u0
for all n ∈ N ∪ {0}. So, condition (b) implies that d(Tnu0, Tn+1u0) ≤ λd(Tn−1u0, Tnu0),
and consequently, d(Tnu0, Tn+1u0) ≤ λnd(u0, Tu0) for all n ∈ N. Therefore, (Tnu0)n∈N
is a ⪯-non-decreasing left Cauchy sequence in (X, d). Hence, there is u ∈ X such that
d∗(u, Tnu0) → 0 and Tnu0 ⪯ u for all n ∈ N.

Since d∗ is protected, it follows from Proposition 1 that there exists a subsequence
(T jn u0)n∈N of (Tnu0)n∈N such that

d∗(T jn u0, T jn+1u0) ≤ 2d∗(T jn u0, u),

for all n ∈ N. By condition (b) and the fact that Tnu0 ⪯ u for all n ∈ N, we deduce that
d(T jn+1u0, Tu) ≤λd(T jn u0, u) for all n ∈ N. So, d(T jn+1u0, Tu) → 0. Hence, u = Tu because
d∗ is Hausdorff.

Example 13. Let (R, dS) be the quasi-metric space of Example 4. Recall that dS is doubly Hausdorff
and doubly protected.

We shall prove that it is ≤-co-right-complete where, by ≤, we denote the usual order on R.
Indeed, let (un)n∈N be a ≤-non-decreasing left Cauchy sequence in (R, dS). Then, un ≤ un+1

for all n ∈ N, and there is n1 ∈ N such that un < 1 + un1 for all n > n1. Thus, the set
{un : n ∈ N} is upper bounded, so there is w ∈ R such that w = supn∈N un. Therefore, un ≤ w
for all n ∈ N, and dS(un, w) → 0.

Define a self-map T of R as Tu = (u + 1)/2 if u ≥ 0, and Tu = u − c if u < 0, with c > 2
a constant.

It is clear that T is non-decreasing. We also observe that 0 < T0.
Now, let u, v ∈ R be such that u ≤ v. Then:

• If u < 0, we obtain dS(Tu, u) = c > 2 = 2dS(v, u).
• If u ≥ 0, we obtain dS(Tu, Tv) = (v − u)/2= dS(u, v)/2.

Consequently, T is an ≤-S-contraction of (X, dS). Thus, all conditions of Theorem 2 are
satisfied. Hence, T has a fixed point, and in this case, w = 1 is its unique fixed point.

The self-map of the preceding example has a unique fixed point. However, it is easy
to yield simple instances that satisfy the conditions of Theorem 2 and where the involved
self-map has more than one fixed point, as we see now.

Example 14. Let X = N∪{0}, and let d be the discrete metric on X. Then, d = d∗, so d∗ is
Hausdorff and protected.

Define a relation ⪯ on X as

u ⪯ v i f and only i f v ≤ u, with u, v ∈ N, or u = v = 0.
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It is obvious that ⪯ is a partial order on X and that (X, d) is ⪯-co-right-complete because the
right Cauchy sequences are only those that are eventually constant.

Now, let T be the self-map of X given by T0 = 0 and Tu = 1 for all u ∈ N.
Note that, for instance, 2 ⪯ T2. Moreover, T is clearly ⪯-non-decreasing.
Finally, given u, v ∈ X with u ⪯ v, we have u = v = 0, or v ≤ u, with u, v ∈ N. In all cases,

we obtain d(Tu, Tv) = 0.
Hence, all conditions of Theorem 2 are fulfilled, and we have that 0 and 1 are the fixed points of T.

The last part of the paper is devoted to present a method for constructing suitable
self-operators on the function space given in Example 8 and deducing the existence and
uniqueness of the solution for the difference equations induced by such operators. This
approach will be applied to directly deduce the existence and uniqueness of the solution for
the recurrence equations associated with several distinguished algorithms. It is appropriate
to point out that the idea of proving the existence and uniqueness of the solution for
recursive algorithms using iteration techniques and fixed-point theorems in the realm of
quasi-metric spaces is not new. However, while such a study has been usually performed
in the context of certain sequence spaces (see, e.g., [10,27,47,48]), our procedure allows
us to derive, in a unified and direct fashion, the study of such recurrence equations as a
consequence of a more-general framework.

With the aim of being able to apply Theorem 2 to Example 8, we first made the
following observation.

Remark 3. The quasi-metric space of Example 8 is ⪯-co-right complete. Indeed, let ( fn)n∈N be
a ⪯-non-decreasing left Cauchy sequence in (Fa,φ, da,φ). Then, fn ⪯ fm for n ≤ m, and there is
n1 ∈ N such that d( fn, fm) < 1 for n1 ≤ n ≤ m. So, supu∈R+(φ(u)( fn(u)− fn1(u))) < 1 for
n ≥ n1, which implies that supn≥n1

fn(u) ≤ (1 + s(φ fn1))/φ(u) < ∞ for all u ∈ R+. Thus,
we may define a function F : R+ → R+ as F(u) = supn≥n1

fn(u) for all u ∈ R+. Observe that,
actually, F ∈ Fa,φ because F(0) = a, and from the fact that for each u ∈ R+, there is nu ≥ n1
such that F(u) < 1 + fnu(u), it follows that supu∈R+(φ(u)F(u)) ≤ M + s(φ fn1) + 1, where
M > 0 is an upper bound of φ.

It remains to check that d∗(F, fn) → 0. To achieve this, choose an arbitrary ε ∈ (0, 1). Then,
there is nε ≥ n1 such that d( fn, fm) < ε for nε ≤ n ≤ m.

Fix n ≥ nε, and let u ∈ R+. By the definition of F, we find nu ≥ n1 such that
F(u) < fnu(u) + ε. If nu ≤ n, we obtain fnu ⪯ fn, and thus, φ(u)F(u) < φ(u) fn(u) + Mε.
If n < nu, we obtain d( fn, fnu) < ε, so φ(u) fnu(u) − φ(u) fn(u) < ε, and thus,
φ(u)F(u) < φ(u) fn(u) + (M + 1)ε. Therefore, for each u ∈ R+ and n ≥ nε, φ(u)(F(u) −
fn(u)) < (M + 1)ε. Hence, d∗(F, fn) ≤ (M + 1)ε for all n ≥ nε. So, (Fa,φ, da,φ) is ⪯-co-right
complete.

Proposition 4. Let a ∈ R+ be a constant, p : R+ → R+ be a bounded function on R+, and
q : R+ → R+ be a function such that φq is bounded on R+, where φ : R+ → R+\{0} is defined
as φ(u) = e−u/M for all u ∈ R+, where M > 0 is an upper bound of p on R+.

For each f ∈ Fa,φ, put

Φ f (u) =

{
a i f 0 ≤ u ≤ 1,

p(u) f (u − 1) + q(u) i f u > 1.

Then, the correspondence Φ defines a self-map of Fa,φ that has a unique fixed point fa,φ
in Fa,φ.

Proof. Let L > 0 be such that φ(u)q(u) ≤ L for all u ∈ R+.
Next, we check that, given f ∈ Fa,φ, we have that Φ f ∈ Fa,φ.
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First, note that Φ f (0) = a. Moreover, for each u ∈ [0, 1], we have φ(u)Φ f (u) =
ae−u/M ≤ a/M, and for each u > 1,

φ(u)Φ f (u) =
e−u

M
(p(u)( f (u − 1) + q(u))

≤ e−u

M
(M f (u − 1) + q(u)) = e−1(e−(u−1) f (u − 1)) + L

≤ e−1 sup
u∈R+

(φ(u) f (u)) + L.

Since supu∈R+(φ(u) f (u)) < ∞, we infer that supu∈R+(φ(u)Φ f (u)) < ∞. Conse-
quently, Φ f ∈ Fa,φ, which implies that Φ is a self-map of Fa,φ.

Furthermore, f0 ⪯ Φ f0, where f0 ∈ Fa,φ is defined as f0(0) = a and f0(u) = 0 if
u > 0.

It is clear that Φ is non-decreasing. Indeed, given f , g ∈ Fa,φ with f ⪯ g, we obtain
Φ f (u) = Φg(u) if 0 ≤ u ≤ 1, and Φ f (u) ≤ Φg(u) if u > 1.

Now, let f , g ∈ Fa,φ be such that f ⪯ g. Then,

da,φ(Φ f , Φg) = sup
u∈R+

(φ(u)(Φg(u)− Φ f (u))))

= sup
u>1

(φ(u)(p(u)(g(u − 1)− f (u − 1))))

≤ M sup
u∈R+

(φ(u + 1)(g(u)− f (u))) = M sup
u∈R+

(
e−(u+1)

M
(g(u)− f (u)))

= e−1 sup
u∈R+

(φ(u)(g(u)− f (u))) = e−1da,φ( f , g).

Taking into account Remark 3, we have that all conditions of Theorem 2 are fulfilled.
So, there is fa,φ ∈ Fa,φ satisfying that fa,φ = Φ fa,φ.

Finally, we show that fa,φ is the unique fixed point of Φ in Fa,φ. To achieve this, let
h ∈ Fa,φ be such that h = Φh. By the construction of Φ, we have h(u) = fa,φ(u) = a for
all u ∈ [0, 1]. Suppose that there is u0 > 1 such that f (u0) > h(u0), i.e., Φ f (u0) > Φh(u0)
Thus, f (u0 − 1) > h(u0 − 1). Repeating this process, we will find an m ∈ N such that
u0 − m ≤ 1 and f (u0 − m) > h(u0 − m), a contradiction. Hence, fa,φ ⪯ h. Similarly, we
deduce that h ⪯ fa,φ. This finishes the proof.

Remark 4. The following particular cases for which Proposition 4 applies will be useful later on:
(A) a > 0, p(u) = 2 for all u ∈ R+, and q(u) = c > 0 for all u ∈ R+.
(B) a > 0, p(u) = 1 for all u ∈ R+; q(u) = 0 if u ∈ [0, 1]; and q(u) = (2u − 1)/u if

u > 1.
(C) a > 0, p(u) = 1 for all u ∈ R+, and q(u) = cu, c > 0, for all u ∈ R+.
(D) a = 0, p(u) = 0 if u ∈ [0, 1]; p(u) = (u + 1)/u if u > 1; q(u) = 0 if u ∈ [0, 1];

q(u) = 2(u − 1)/u if u > 1.
(E) a = 0, p(u) = 0 if u ∈ [0, 2); p(u) = 2/u(u − 1) if u ≥ 2; q(u) = 0 if u ∈ [0, 1];

q(u) = u − 1 if u > 1.

Denote by F the restriction of the function fa,φ on N, where fa,φ is the fixed point for
the self-map Φ of Fa,φ that was obtained in Proposition 4.

Then, we obtain F(1) = ΦF(1) = a, and

F(n) = ΦF(n) = p(n)F(n − 1) + q(n),

for all n > 1. Hence, F is the (unique) solution of the recurrence equation R : N → R+

given by

R(n) =

{
a i f n = 1,

pN(n)R(n − 1) + qN(n) i f n > 1,
(2)



Axioms 2024, 13, 158 14 of 16

where, by pN and qN, we design the restrictions on N of the functions p and q, respectively.
Next, we specify some relevant particular cases of the recurrence Equation (2) (we

remind that, in all these cases, the existence and uniqueness of the solution is guaranteed
by virtue of the preceding discussion):

• The restrictions on N of the functions p and q of Remark 4 (A) are given by pN(n) = 2
and qN(n) = c > 0 for all n > 1. Thus, the recurrence Equation (2), with R(1) > 0),
corresponds to the running time of the computing of the well-known problem of the
Towers of Hanoi (cf. [49]).

• The restrictions on N of the functions p and q of Remark 4 (B) are given by pN(n) = 1 and
qN(n) = (2n − 1)/n for all n > 1. Thus, the recurrence Equation (2), with R(1) > 0),
corresponds to the running time of the computing of the well-known Largetwo algorithm
(cf. [50]).

• The restrictions on N of the functions p and q of Remark 4 (C) are given by pN(n) = 1
and qN(n) = cn > 0, c > 0, for all n > 1. Thus, the recurrence Equation (2),
with R(1) > 0), corresponds to the running time of the computing of the well-known
Quicksort algorithm, being the worst case (cf. [51]).

• The restrictions on N of the functions p and q of Remark 4 (D) are given by
pN(n) = (n + 1)/n and qN(n) = 2(n − 1)/n for all n > 1. Thus, the recurrence
Equation (2), with R(1) = 0), corresponds to the running time of the computing of the
well-known Quicksort algorithm, being the average case (cf. [51,52]).

• The restrictions on N of the functions p and q of Remark 4 (E) are given by
pN(n) = 2/n(n− 1) and qN(n) = n− 1 for all n > 1. Thus, the recurrence Equation (2),
with R(1) = 0), corresponds to the running time of the computing of the well-known
Quicksort algorithm, being the median of the three cases (cf. [51]).

The method developed above can be adapted to other cases. For instance, denote by
RF the recurrence equation defined as

RF(n) =


0 i f n = 0,

1 i f n = 1,

bRF(n − 1) + cRF(n) if n > 1,

(3)

with b, c > 0 constants.
Note that, for b = c = 1, RF is the recurrence equation associated with the celebrated

Fibonacci sequence.
Now, let a = 0 and p ∈ N be such that e−p(b + ce−p) < 1. Define a function φ : R+ →

R+\{0} as φ(u) = e−pu for all u ∈ R+.
For each f ∈ F0,φ, put

Ψ f (u) =


0 i f u = 0,

1 i f 1 ≤ u ≤ 2,
b f (u − 1) + c f (u − 2) i f u > 1.

A slight modification of the proof of Proposition 4 allows us to deduce that Ψ defines
a self-map of F0,φ.

We also have that f0 ≤ Ψ f0, where f0 is the zero function on R+ and Ψ is non-
decreasing on F0,φ.

Now, let f , g ∈ F0,φ be such that f ⪯ g. Then,

d0,φ(Ψ f , Ψg) = supu∈R+(φ(u)(Ψg(u)− Ψ f (u)))

= supu>2(φ(u)(b(g(u − 1)− f (u − 1)) + c(g(u − 2)− f (u − 2))))

= supu∈R+(φ(u + 2)(b(g(u + 1)− f (u + 1)) + c(g(u)− f (u))))

≤ supu∈R+(be−p φ(u + 1)(g(u + 1)− f (u + 1))) + supu∈R+(ce−2p φ(u)(g(u)− f (u)))



Axioms 2024, 13, 158 15 of 16

≤ be−pd0,φ( f , g) + ce−2pd0,φ( f , g) = λd0,φ( f , g).

Since 0 < λ < 1, all conditions of Theorem 2 are satisfied. Hence, the self-map Ψ has a
fixed point f0,φ ∈ F0,φ, which is unique by a similar argument to the one given in the proof
of Proposition 4.

It immediately follows that the restriction to N∪{0} of f0,φ constitutes the unique
solution of the recurrence Equation (3).

5. Conclusions

Motivated by the difficulties of obtaining a full quasi-metric generalization of an
outstanding generalization of Banach’s contraction principle due to Suzuki, we have
introduced and examined the notion of a protected quasi-metric. With the help of this new
structure, we have obtained a fixed-point theorem in the framework of Smyth-complete
quasi-metric spaces that generalizes Suzuki’s theorem. Combining right completeness
with partial ordering properties, we have also obtained a variant of Suzuki’s theorem,
which was applied to discuss a kind of difference equations and recurrence equations.
We emphasize that several classical non-metrizable topological spaces as the Alexandroff
spaces, the Sorgenfrey line, the Michael line, and the Khalimsky line, among others, can be
endowed with the structure of a protected quasi-metric.
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