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Abstract

This research contributes to the advancement of surrogate modelling as a powerful

technique in the field of computational simulation that offers numerous advantages

for solving complex problems efficiently. In particular, this study emphasizes the

pivotal role of surrogate modeling in groundwater management. By integrating

key factors like climate change and leveraging machine learning, particularly neu-

ral networks, the research facilitates more informed decision-making, significantly

reducing the computational cost of complex numerical models.

The impact of climate change is a central focus and the first study aims to

construct surrogate data-driven models for evaluating climate change effects on

groundwater resources, also in the future. The study involves a comparison between

statistical methods and different types of artificial neural networks (ANNs). The ef-

fectiveness of surrogate models was demonstrated in Northern Tuscany (Italy) but

can easily extend to any area of interest. The adopted statistical method involves

analyzing historical precipitation and temperature data along with groundwater

levels recorded in monitoring wells. Initially, the study explores potential correla-

tions between meteorological and groundwater indices; if a correlation is identified,

a linear regression analysis is employed to establish relationships between them.

These established relationships are then used to estimate future groundwater le-

vels based on projected precipitation and temperature obtained from an ensemble

of Regional Climate Models, under two Representative Concentration Pathways,
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namely RCP4.5 and RCP8.5.

Then, three distinct Artificial Intelligence (AI) models, Nonlinear AutoRegres-

sive with eXogenous inputs (NARX), Long-Short Term Memory (LSTM) and Con-

volutional Neural Network (CNN) were implemented to evaluate the impact of cli-

mate change on groundwater resources for the same case study. Specifically, these

models were trained using directly historical precipitation and temperature data

as input to provide groundwater levels as output. Following the training phase, the

developed AI models were utilized to forecast future groundwater levels using the

same precipitation and temperature projections and climate scenarios described

above. The results highlighted different outputs among the models used in this

work. However, most of them predict a decrease in groundwater levels as a result

of future variations in precipitation and temperature. The study also presents the

strengths and weaknesses of each model. Notably, the LSTM model emerges as

the most promising approach to predict future groundwater levels.

Within the same field, an ANN was developed with the capability to simulate

groundwater conditions in the Konya closed basin, Turkey, one of the pilot sites

investigated as part of the InTheMED project. This model serves as a tool for

examining the potential impacts of climate change and agricultural policies on

groundwater resources within the region. The final goal of this application, is to

provide a user-friendly tool, based on the trained neural network. The inherent

simplicity of the surrogate model, with a straightforward interface and results

that are simple to understand, plays a crucial role in decision-making processes.

Shifting to pollutant transport, an ANN was implemented to solve different

direct and inverse problems. The direct problem deals with the evaluation of con-

centrations in monitoring wells, while the inverse problem involves the identifica-

tion of contaminant sources and their release history. It demonstrated efficiency

in addressing both direct and inverse transport problems, offering reliable results

with reduced computational burden.
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The study also addresses the interpretability challenge of ANNs and the so ca-

lled “generalization problem” through Physics-Informed Neural Networks (PINNs).

By incorporating physics-based constraints, PINNs bridge the gap between data-

driven modeling and physics-based interpretations, offering a promising approach

for groundwater numerical simulations. In this study, a PINN is developed to si-

mulate flow in an unconfined aquifer.

Finally, two extra content are presented. First, an ANN is used to solve an

inverse problem in the field of sewer systems. Then, an easily interpretable exam-

ple of numerical groundwater flow modeling using spreadsheets, from a didactic

perspective, is described.

In conclusion, this research underscores the importance of surrogate modeling,

machine learning, climate change analysis, and physics-informed approaches in ad-

vancing groundwater management strategies and beyond, providing valuable tools

for decision-makers to address complex groundwater flow problems in changing

environmental conditions.
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Sommario

Questa ricerca propone nuovi avanzamenti nella modellazione surrogata che, nella

simulazione di problemi complessi, offre vantaggi rilevanti a supporto della mo-

dellazione numerica usuale. In particolare, questo studio sottolinea il ruolo cru-

ciale della modellazione surrogata nella gestione delle risorse idriche sotterranee.

Integrando fattori chiave come il cambiamento climatico e sfruttando l’appren-

dimento automatico, in particolare le reti neurali, lo studio concorre a rendere

più facile il processo decisionale informato, riducendo significativamente il costo

computazionale dei complessi modelli numerici.

L’impatto del cambiamento climatico è al centro dell’attenzione e il primo

studio mira a costruire modelli surrogati del tipo "data-driven" per valutare gli

effetti del cambiamento climatico sulle risorse idriche sotterranee nel futuro. Esso

confronta un metodo statistico e diversi tipi di reti neurali artificiali (ANN) per

migliorare la comprensione e facilitare le decisioni nella gestione delle acque sotter-

ranee. L’efficacia dei modelli surrogati è stata dimostrata in una applicazione nella

Toscana settentrionale, ma può facilmente estendersi a qualsiasi area di interesse.

Il metodo statistico adottato coinvolge l’analisi di dati storici sulle precipitazioni e

sulla temperatura insieme ai livelli freatici registrati nei pozzi di monitoraggio. Ini-

zialmente, lo studio esplora correlazioni potenziali tra indici meteorologici e indici

delle acque sotterranee. Se viene individuata una valida correlazione tra questi, si

costruisce una regressione lineare che stabilisce una relazione tra di essi. Queste
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relazioni vengono poi utilizzate per stimare futuri livelli di falda sulla base delle

proiezioni di precipitazione e temperatura ottenute da un insieme di Modelli Cli-

matici Regionali, considerando due Scenari di Emissione Rappresentativi, ovvero

RCP4.5 e RCP8.5.

Successivamente, sono stati implementati tre distinti modelli di Intelligenza Ar-

tificiale (AI), Rete neurale Autoregressiva con Ingressi Eterogenei (NARX), Rete

Neurale con Memoria a Lungo e Breve Termine (LSTM) e Rete Neurale Convo-

luzionale (CNN), per valutare l’impatto del cambiamento climatico sui livelli di

falda per lo stesso caso di studio. In particolare, questi modelli sono stati adde-

strati utilizzando direttamente dati storici di precipitazioni e di temperatura come

input e per fornire i livelli freatici come output. Dopo la fase di addestramento,

i modelli di AI sviluppati sono stati utilizzati per prevedere i livelli delle acque

sotterranee utilizzando le stesse proiezioni di precipitazioni e temperatura e gli

scenari climatici descritti in precedenza. I risultati hanno evidenziato diversi out-

put tra i modelli utilizzati in questo studio. Tuttavia, la maggior parte di essi

prevede una diminuzione dei livelli di falda a seguito di future variazioni di pre-

cipitazione e temperatura. Lo studio presenta anche i punti di forza e debolezza

di ciascun modello. In particolare, il modello LSTM emerge come l’approccio più

promettente per prevedere i futuri livelli di falda.

Nello stesso campo, è stata sviluppata una rete neurale artificiale con la capa-

cità di simulare lo stato dell’acquifero nel bacino di Konya, Turchia, uno dei siti

pilota indagati nell’ambito del progetto InTheMED. Questo modello si compor-

ta da strumento per esaminare gli impatti potenziali del cambiamento climatico

e delle politiche agricole sulle risorse idriche sotterranee. L’obiettivo finale di

questa applicazione è fornire uno strumento "user-friendly" basato sulla rete neu-

rale addestrata. La semplicità intrinseca del modello surrogato, sviluppato con

un’interfaccia chiara e risultati di facile comprensione, svolge un ruolo cruciale nei

processi decisionali.
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Passando al trasporto di inquinanti, è stata implementata una rete neurale

artificiale per risolvere diversi problemi diretti e inversi. Il problema diretto ri-

guarda la valutazione delle concentrazioni nei pozzi di monitoraggio, mentre il

problema inverso comporta l’identificazione delle fonti di contaminazione e la loro

storia di rilascio. La tecnica ha dimostrato efficienza nell’affrontare sia problemi

diretti che inversi di trasporto, offrendo risultati affidabili con un ridotto onere

computazionale.

Lo studio affronta anche la sfida dell’interpretabilità fisica delle reti neurali

artificiali e del cosiddetto "problema della generalizzazione" attraverso le Reti

Neurali Fisicamente Basate (PINN). Integrando vincoli basati sulla fisica, le PINN

colmano il divario tra la modellazione basata sui dati e i modelli numerici costruiti

sulle equazioni differenziali dedotte dalla fisica, offrendo un approccio promettente

per le simulazioni numeriche delle acque sotterranee. In questo studio, una PINN

è stata sviluppata per simulare il flusso in un acquifero non confinato.

Infine, vengono presentati due contenuti aggiuntivi. Nel primo, una rete neurale

artificiale è utilizzata per risolvere un problema inverso nel campo dei sistemi

fognari. In secondo, un esempio di modellazione numerica del flusso delle acque

sotterranee mediante fogli di calcolo con una ottima prospettiva didattica.

In conclusione, questa ricerca sottolinea l’importanza della modellazione sur-

rogata, dell’apprendimento automatico, dell’analisi del cambiamento climatico e

degli approcci basati sulla fisica per progredire nelle strategie di gestione delle ac-

que sotterranee e affrontare sfide complesse, offrendo strumenti preziosi ai decisori.
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Resumen

Esta investigación contribuye al avance de la modelación sustitutiva como una

técnica poderosa en el campo de la simulación computacional que ofrece numero-

sas ventajas para resolver eficientemente problemas complejos. En particular, este

estudio destaca el papel crucial de la modelación sustitutiva en la gestión de aguas

subterráneas. Integrando factores clave como el cambio climático y aprovechando

el aprendizaje automático, especialmente las redes neuronales, la investigación fa-

cilita la toma de decisiones más informada, reduciendo significativamente el costo

computacional de modelos numéricos complejos.

El impacto del cambio climático es un enfoque central, y el primer estudio tiene

como objetivo construir modelos de datos sustitutivos para evaluar los efectos del

cambio climático en los recursos de aguas subterráneas, también en el futuro. El

estudio implica la comparación entre métodos estadísticos y diferentes tipos de

Redes Neuronales Artificiales (ANN). La eficacia de los modelos sustitutivos se

demostró en el norte de la Toscana (Italia), pero puede extenderse fácilmente a

cualquier área de interés. El método estadístico adoptado implica analizar datos

históricos de precipitación y temperatura junto con niveles de agua registrados en

pozos de monitoreo. Inicialmente, el estudio explora posibles correlaciones entre

índices meteorológicos e índices de agua subterránea; si se identifica una correla-

ción, se emplea un análisis de regresión lineal para establecer relaciones entre ellos.

Estas relaciones establecidas se utilizan luego para estimar los futuros niveles de
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agua subterránea en función de las proyecciones de precipitación y temperatura

obtenidas de un conjunto de Modelos Climáticos Regionales, bajo dos Trayectorias

de Concentración Representativa, conocidas como RCP4.5 y RCP8.5.

Posteriormente, se implementaron tres modelos distintos de Inteligencia Artifi-

cial (AI), AutoRegressive No Lineal con Entradas Exógenas (NARX), Memoria a

Largo y Corto Plazo (LSTM) y Red Neuronal Convolucional (CNN) para evaluar

el impacto del cambio climático en los recursos de aguas subterráneas para el mis-

mo caso de estudio. Específicamente, estos modelos fueron entrenados utilizando

directamente datos históricos de precipitación y temperatura como entrada para

proporcionar niveles de agua subterránea como salida. Después de la fase de en-

trenamiento, los modelos de IA desarrollados se utilizaron para prever los futuros

niveles de agua subterránea utilizando las mismas proyecciones de precipitación y

temperatura y escenarios climáticos descritos anteriormente. Los resultados resal-

taron diferentes salidas entre los modelos utilizados en este trabajo. Sin embargo,

la mayoría de ellos predice una disminución en los niveles de agua subterránea

como resultado de futuras variaciones en la precipitación y temperatura. El estu-

dio también presenta las fortalezas y debilidades de cada modelo. Notablemente,

el modelo LSTM emerge como el enfoque más prometedor para predecir futuros

niveles de agua subterránea.

Dentro del mismo campo, se desarrolló una ANN con la capacidad de simular

las condiciones de agua subterránea en la cuenca cerrada de Konya, Turquía, uno

de los sitios piloto investigados como parte del proyecto InTheMED. Este modelo

sirve como herramienta para examinar los impactos potenciales del cambio cli-

mático y las políticas agrícolas en los recursos de agua subterránea dentro de la

región. El objetivo final de esta aplicación es proporcionar una herramienta fácil

de usar, basada en la red neuronal entrenada. La simplicidad inherente del mode-

lo sustitutivo, con una interfaz directa y resultados fáciles de entender, juega un

papel crucial en los procesos de toma de decisiones.
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En cuanto al transporte de contaminantes, se implementó una ANN para re-

solver diferentes problemas directos e inversos. El problema directo trata sobre

la evaluación de concentraciones en pozos de monitoreo, mientras que el proble-

ma inverso implica la identificación de fuentes de contaminantes y su historial de

liberación. Demostró eficiencia al abordar problemas de transporte tanto direc-

tos como inversos, ofreciendo resultados confiables con una carga computacional

reducida.

El estudio también aborda el desafío de la interpretabilidad de las ANNs y el

llamado “problema de generalización” a través de las Redes Neuronales Informadas

por la Física (PINNs). Al incorporar restricciones basadas en la física, las PINNs

llenan la brecha entre la modelación basada en datos y las interpretaciones basadas

en la física, ofreciendo un enfoque prometedor para las simulaciones numéricas de

aguas subterráneas. En este estudio, se desarrolló una PINN para simular el flujo

en un acuífero no confinado.

Finalmente, se presentan dos contenidos adicionales. Primero, se utiliza una

ANN para resolver un problema inverso en el campo de los sistemas de alcantarilla-

do. Luego, se describe un ejemplo fácilmente interpretable de modelado numérico

del flujo de aguas subterráneas utilizando hojas de cálculo, desde una perspectiva

didáctica.

En conclusión, esta investigación subraya la importancia de la modelación sus-

titutiva, el aprendizaje automático, el análisis del cambio climático y los enfoques

informados por la física en el avance de las estrategias de gestión de aguas subte-

rráneas y más allá, proporcionando herramientas valiosas para que los tomadores

de decisiones aborden problemas complejos de flujo de aguas subterráneas en con-

diciones ambientales cambiantes.
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Resum

Aquesta investigació contribueix al progrés de la modelació substitutiva com una

tècnica poderosa en el camp de la simulació computacional que ofereix nombro-

sos avantatges per resoldre eficientment problemes complexos. En particular,

aquest estudi destaca el paper crucial de la modelació substitutiva en la gestió

d’aigües subterrànies. Integrant factors clau com el canvi climàtic i aprofitant

l’aprenentatge automàtic, especialment les xarxes neuronals, la investigació facili-

ta la presa de decisions més informada, reduint significativament el cost computa-

cional de models numèrics complexes.

L’impacte del canvi climàtic és un enfocament central, i el primer estudi té

com a objectiu construir models de dades substitutius per avaluar els efectes del

canvi climàtic en els recursos d’aigües subterrànies, també en el futur. L’estudi

implica la comparació entre mètodes estadístics i diferents tipus de Xarxes Neuro-

nals Artificials (ANN). L’eficàcia dels models substitutius es va demostrar al nord

de la Toscana (Itàlia), però pot estendre’s fàcilment a qualsevol àrea d’interès.

El mètode estadístic adoptat implica analitzar dades històriques de precipitació i

temperatura juntament amb nivells d’aigua registrats en pous de monitoratge. Ini-

cialment, l’estudi explora possibles correlacions entre índexs meteorològics i índexs

d’aigua subterrània; si s’identifica una correlació, s’emplea una anàlisi de regressió

lineal per establir relacions entre ells. Aquestes relacions establertes s’utilitzen

després per estimar els futurs nivells d’aigua subterrània en funció de les projec-
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cions de precipitació i temperatura obtingudes d’un conjunt de Models Climàtics

Regionals, sota dues Trajectòries de Concentració Representativa, conegudes com

RCP4.5 i RCP8.5.

Posteriorment, es van implementar tres models diferents d’Intel·ligència Artifi-

cial (IA), AutoRegressive No Lineal amb Entrades Exògenes (NARX), Memòria a

Llarg i Curt Terminis (LSTM) i Xarxa Neuronal Convolucional (CNN) per avaluar

l’impacte del canvi climàtic en els recursos d’aigües subterrànies pel mateix cas

d’estudi. Específicament, aquests models van ser entrenats utilitzant directament

dades històriques de precipitació i temperatura com a entrada per proporcionar

nivells d’aigua subterrània com a sortida. Després de la fase d’entrenament, els

models d’IA desenvolupats es van utilitzar per preveure els futurs nivells d’aigua

subterrània utilitzant les mateixes projeccions de precipitació i temperatura i es-

cenaris climàtics descrits anteriorment. Els resultats van destacar diferents sor-

tides entre els models utilitzats en aquest treball. No obstant això, la majoria

d’ells prediu una disminució en els nivells d’aigua subterrània com a resultat de

futures variacions en la precipitació i temperatura. L’estudi també presenta les

forces i les debilitats de cada model. Notablement, el model LSTM emergeix com

l’enfocament més prometedor per predir futurs nivells d’aigua subterrània.

Dins del mateix camp, es va desenvolupar una ANN amb la capacitat de si-

mular les condicions d’aigua subterrània a la conca tancada de Konya, Turquia,

un dels llocs pilot investigats com a part del projecte InTheMED. Aquest model

serveix com a eina per examinar els impactes potencials del canvi climàtic i les

polítiques agrícoles en els recursos d’aigua subterrània dins de la regió. L’objectiu

final d’aquesta aplicació és proporcionar una eina fàcil d’utilitzar, basada en la

xarxa neuronal entrenada. La simplicitat inherent del model substitutiu, amb una

interfície directa i resultats fàcils d’entendre, juga un paper crucial en els processos

de presa de decisions.

Pel que fa al transport de contaminants, es va implementar una ANN per re-

xvi



soldre diferents problemes directes i inversos. El problema directe tracta sobre

l’avaluació de concentracions en pous de monitoratge, mentre que el problema

invers implica la identificació de fonts de contaminants i el seu historial de llibera-

ció. Va demostrar eficiència en abordar problemes de transport tant directes com

inversos, oferint resultats fiables amb una càrrega computacional reduïda.

L’estudi també aborda el repte de la interpretabilitat de les ANNs i la anome-

nada "problema de generalització" a través de les Xarxes Neuronals Informades

per la Física (PINNs). Al incorporar restriccions basades en la física, les PINNs

omplen la bretxa entre la modelació basada en dades i les interpretacions basades

en la física, oferint un enfocament prometedor per a les simulacions numèriques

d’aigües subterrànies. En aquest estudi, es va desenvolupar una PINN per simular

el flux en un aqüífer no confinat.

Finalment, es presenten dos continguts addicionals. Primer, s’utilitza una ANN

per resoldre un problema invers en el camp dels sistemes d’aigües residuals. Des-

prés, es descriu un exemple fàcilment interpretable de modelat numèric del flux

d’aigües subterrànies utilitzant fulls de càlcul, des d’una perspectiva didàctica.

En conclusió, aquesta investigació subratlla la importància de la modelació

substitutiva, l’aprenentatge automàtic, l’anàlisi del canvi climàtic i els enfocaments

informats per la física en el progrés de les estratègies de gestió d’aigües subterrànies

i més enllà, proporcionant eines valioses perquè els prescriptors abordin problemes

complexos de flux d’aigües subterrànies en condicions ambientals canviant.

xvii



xviii



Contents

Introduction 1

1. Surrogate modeling 5

1.1. Introduction and state of the art . . . . . . . . . . . . . . . . . . . 5

1.2. Statistical approach based on linear regression . . . . . . . . . . . . 9

1.3. Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1. Artificial neural network design and training process . . . . 14

1.3.2. Multilayer perceptron networks . . . . . . . . . . . . . . . . 20

1.3.3. Nonlinear autoregressive networks with exogenous inputs . 21

1.3.4. Long-short term memory networks . . . . . . . . . . . . . . 24

1.3.5. Convolutional neural networks . . . . . . . . . . . . . . . . 28

1.3.6. Physics-informed neural networks . . . . . . . . . . . . . . . 31

2. Climate change 37

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2. Historical data processing . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1. Gap filling and interpolation procedures . . . . . . . . . . . 40

2.2.2. Meteorological and groundwater drought indices . . . . . . 41

2.3. Future climate projections . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1. Downscaling and bias correction . . . . . . . . . . . . . . . 47

xix



CONTENTS

2.3.2. Future meteorological drought indices . . . . . . . . . . . . 49

3. Applications 51

3.1. Impact of climate change on groundwater resources . . . . . . . . . 52

3.1.1. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.2. Study area and available data . . . . . . . . . . . . . . . . . 57

3.1.3. Future climate projections . . . . . . . . . . . . . . . . . . . 63

3.1.4. Statistical approach . . . . . . . . . . . . . . . . . . . . . . 64

3.1.5. Comparison of three different artificial neural network tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1.6. Discussion and conclusions . . . . . . . . . . . . . . . . . . 98

3.2. An artificial neural network as a quick tool to assess the effects of

climate change and agricultural policies on groundwater . . . . . . 101

3.2.1. Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2.2. Surrogate model: ANN . . . . . . . . . . . . . . . . . . . . 103

3.2.3. Conclusion and discussion . . . . . . . . . . . . . . . . . . . 109

3.3. Artificial neural networks for solving forward and inverse transport

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3.1. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3.2. Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.3.3. Groundwater flow and transport . . . . . . . . . . . . . . . 115

3.3.4. Set up of the ANN . . . . . . . . . . . . . . . . . . . . . . . 117

3.3.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.3.6. Discussion and conclusions . . . . . . . . . . . . . . . . . . 135

3.4. Physics-informed neural networks for solving transient unconfined

groundwater flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.4.1. Transient unconfined flow . . . . . . . . . . . . . . . . . . . 137

3.4.2. Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xx



CONTENTS

3.4.3. PINN set up . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.4.4. Evaluation of the performance . . . . . . . . . . . . . . . . 149

3.4.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.4.6. Discussion and conclusions . . . . . . . . . . . . . . . . . . 161

4. Extra contents 165

4.1. Identification of the inflow source in a foul sewer system using an

artificial neural network as inverse model . . . . . . . . . . . . . . 166

4.1.1. Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.1.2. Set up of the ANN . . . . . . . . . . . . . . . . . . . . . . . 168

4.1.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.1.4. Discussion and conclusions . . . . . . . . . . . . . . . . . . 171

4.2. Enhancing user-friendliness: a comprehensive and accessible exam-

ple of numerical groundwater flow modeling using spreadsheets . . 173

4.2.1. Unconfined two-dimensional groundwater flow in a horizon-

tal plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.2.2. Unconfined two-dimensional groundwater flow in a vertical

cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.2.3. Conclusions and discussion . . . . . . . . . . . . . . . . . . 206

Conclusions 209

Limitations and future directions . . . . . . . . . . . . . . . . . . . . . . 211

xxi



CONTENTS

xxii



List of Figures

1.1. Left: experimental cumulative distribution function of the variable

of interest and fitted cumulative distribution function that best ap-

proximates experimental data. Right: transformation into a stan-

dard normal distribution. . . . . . . . . . . . . . . . . . . . . . . . 11

1.2. Artificial Neural Network sketch. . . . . . . . . . . . . . . . . . . . 14

1.3. MLP sketch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4. NARX closed-loop scheme. . . . . . . . . . . . . . . . . . . . . . . 24

1.5. LSTM cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6. CNN sketch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7. PINN sketch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1. Distribution Mapping method (Gupta et al., 2019). . . . . . . . . . 49

3.1. Location of the study area with indication of the climate stations,

monitoring wells and river basins. . . . . . . . . . . . . . . . . . . . 59

3.2. Total annual precipitation (a) and annual average of the mean daily

temperature (b) in terms of 10-year moving average observed and

forecasted by the RCMs under the RCP4.5 and RCP8.5 scenarios.

Average values over the entire study area. . . . . . . . . . . . . . . 64

xxiii



LIST OF FIGURES

3.3. SPIs (a) and SPEIs (b) for the four analyzed basins and time win-

dows of 6, 9 and 12 months. . . . . . . . . . . . . . . . . . . . . . . 69

3.4. SGI values for the 15 monitoring wells used in this study. The white

color indicates missing data, the grey color indicates positive values,

while the color scale classifies the negative SGIs. . . . . . . . . . . 70

3.5. SGI-SPI Pearson correlation coefficients. . . . . . . . . . . . . . . . 71

3.6. Heat maps of the SGI-SPI correlation coefficients (R) for different

time windows and lags. The black box represents the highest cor-

relation coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7. SGIs versus SPI6; the points represent the data, the red line in-

dicates the regression line and the black line denotes the identity

line. For each well, the correlation coefficient (R) and the regression

equation is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8. SGI-SPEI Pearson correlation coefficients. . . . . . . . . . . . . . . 74

3.9. SGIs versus SPEI9; the points represent the data, the red line in-

dicates the regression line and the black line denotes the identity

line. For each well, the correlation coefficient (R) and the regression

equation is reported. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10. Cumulative probability distributions according to the whole RCM

ensemble obtained for the Paganico monitoring well through the

SGI-SPI6 (a) and the SGI-SPEI9 (b) regression equations for the

historical period and at short- (ST), medium- (MT) and long-term

(LT) under the RCP8.5 scenario. Envelope curves obtained by the

13 RCM models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xxiv



LIST OF FIGURES

3.11. Box-plots of the SGIs obtained for the Paganico monitoring well.

The SGIs were calculated according to the whole RCM, through

the SGI-SPI6 and SGI-SPEI9 regression equations for the historical

period and at short-term (ST), medium-term (MT), and long-term

(LT) under the two RCP scenarios. The boxplot marks points as

outliers if they are greater than the mean ± 2.7σ, where σ is the

standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.12. Schematic view of the CNN (top) and sample of the standardized

input data (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.13. Observed and predicted groundwater levels for the testing phase

(period 2019-2020) for the well Paganico. . . . . . . . . . . . . . . 89

3.14. Predicted groundwater levels with the NARX in April for the Pa-

ganico well in terms of 10-year moving average under the RCP4.5

and RCP8.5 scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.15. Cumulative distribution probability functions according to the whole

RCM ensemble obtained with the NARX for the Paganico well for

the historical period and at short- (ST), medium- (MT), and long-

term (LT) under the RCP4.5 (left) and RCP8.5 (right) scenarios,

along with the envelope curves provided by the 13 RCMs. . . . . . 91

3.16. Predicted groundwater levels with the LSTM in April for the Pa-

ganico well in terms of 10-year moving average under the RCP4.5

and RCP8.5 scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.17. Cumulative distribution probability functions according to the whole

RCM ensemble obtained with the LSTM for the Paganico well for

the historical period and at short- (ST), medium- (MT), and long-

term (LT) under the RCP4.5 (left) and RCP8.5 (right) scenarios,

along with the envelope curves provided by the 13 RCMs. . . . . . 93

xxv



LIST OF FIGURES

3.18. Predicted groundwater levels with the CNN in April for the Pagan-

ico well in terms of 10-year moving average under the RCP4.5 and

RCP8.5 scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.19. Cumulative distribution probability functions according to the whole

RCM ensemble obtained with the CNN for the Paganico well for the

historical period and at short- (ST), medium- (MT), and long-term

(LT) under the RCP4.5 (left) and RCP8.5 (right) scenarios, along

with the envelope curves provided by the 13 RCMs. . . . . . . . . 94

3.20. Konya closed basin (Turkey) and the 30 control points. . . . . . . . 103

3.21. Training, validation and test performances of the neural network. . 106

3.22. ANN tool interface developed using MATLAB. . . . . . . . . . . . 107

3.23. ANN tool result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.24. Discretization grid of the two-dimensional aquifers. . . . . . . . . . 116

3.25. Observed and estimated concentration at 7 monitoring wells for 5

years of simulation recorded one time per year, forward simulation

with two release sources (FWD 1). . . . . . . . . . . . . . . . . . . 127

3.26. Observed and estimated release obtained as average of the results

of 10 neural networks at known source, inverse simulation with one

release source and different error level, error-free data (α = 0) and

corrupted data (α = 0.1) (INV 1). . . . . . . . . . . . . . . . . . . 128

3.27. Observed and estimated release fluxes obtained as average of the

results of 10 neural networks at estimated unknown source, inverse

simulation with one release and different error level, error-free data

(α = 0) and corrupted data (α = 0.1) (INV 2). . . . . . . . . . . . 130

xxvi



LIST OF FIGURES

3.28. Observed and estimated release fluxes described by four stress pe-

riod and obtained as average of the results of 10 neural networks

results, inverse simulation with two release sources and different er-

ror level, error-free data (α = 0) and corrupted data (α = 0.1) (INV

3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.29. Estimated release fluxes in reference works for corrupted data (α =

0.1) and, for any time step, the error bars related to one time the

standard deviation (INV 3). . . . . . . . . . . . . . . . . . . . . . . 132

3.30. Observed and estimated release fluxes described by four stress pe-

riods at two known sources obtained as the average of the results

of 10 neural networks at a known source. Inverse simulation with

two release sources under different estimated error levels: error-free

data (α̂ → 0) and perturbed data (α̂ ≈ 0.10) (INV 4). . . . . . . . 134

3.31. Synthetic domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.32. Sketch of the implemented neural networks. . . . . . . . . . . . . . 144

3.33. Sketch of ANN1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.34. Sketch of ANN2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.35. Scenario SC1. Training loss for ANN1 alone (left), ANN2 alone

with ANN1 frozen (center) and ANN1 jointly with ANN2 (right).

The iteration axis in the right plot starts at the number of iterations

already performed in the previous training. . . . . . . . . . . . . . 151

3.36. Scenario SC2. Training loss for ANN1 alone (left), ANN2 alone

with ANN1 frozen (center) and ANN1 jointly with ANN2 (right).

The iteration axis in the right plot starts at the number of iterations

already performed in the previous training. . . . . . . . . . . . . . 152

3.37. SC1: Error plot of the estimated piezometric field (PINN minus

MODFLOW), using the active cells in the numerical model. . . . . 153

xxvii



LIST OF FIGURES

3.38. SC1: Estimated piezometric field by the numerical model (left) and

PINN (right) for the selected time t = 0.01. . . . . . . . . . . . . . 154

3.39. SC1: Estimated piezometric field by the numerical model (top) and

PINN (bottom) for the selected time t = 0.25, t = 0.5, t = 1. . . . 155

3.40. Heterogeneous aquifer: Error plot of the estimated piezometric field

(PINN minus MODFLOW), using the active cells in the numerical

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.41. Heterogeneous aquifer: Estimated piezometric field by the numeri-

cal model (left) and PINN (right) for the selected time t = 0.01. . . 157

3.42. Heterogeneous aquifer: Estimated piezometric field by the numeri-

cal model (top) and PINN (bottom) for the selected time t = 0.25,

t = 0.5, t = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.43. Heterogeneous aquifer. Left: numerical solution of the piezometric

field with respect to the active cells at time t = 0, t = 0.25, t = 0.5

and t = 1. Right: conventional ANN prediction of the piezometric

field with respect to the active cells at time t = 0, t = 0.25, t = 0.5

and t = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.1. The sewer network plan for Polesine Parmense. The 122 junctions

are denoted by black points, while the red squares mark the 20

junctions where the basins are connected, representing potential

inflow locations. The green star indicates the downstream end of

the network, where the flow hydrograph is observed. . . . . . . . . 168

4.2. Flow hydrographs, observed at the network outlet (bottom), in re-

lation to a precipitation event (top) and the unauthorized inflow

from various nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xxviii



LIST OF FIGURES

4.3. Confusion matrix for the test phase results of the ANN. The dis-

tance of each node from the network outlet is provided at the top

of the confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4. Confined and unconfined aquifer sketch . . . . . . . . . . . . . . . 175

4.5. Horizontal plane aquifer sketch . . . . . . . . . . . . . . . . . . . . 176

4.6. Active cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.7. Prescribed heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.8. Bottom elevations. Promontory located at the center of the lower

half, which is expected to remain dry . . . . . . . . . . . . . . . . . 183

4.9. W-E directional hydraulic conductivities . . . . . . . . . . . . . . . 184

4.10. S-N directional hydraulic conductivities . . . . . . . . . . . . . . . 184

4.11. Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.12. Piezometric heads solution . . . . . . . . . . . . . . . . . . . . . . . 195

4.13. Piezometric heads solution of different iterations . . . . . . . . . . 196

4.14. Aquifer saturated thickness after the completion of iterations. . . . 197

4.15. River inflow to the aquifer. . . . . . . . . . . . . . . . . . . . . . . 197

4.16. Vertical cross-section sketch of the aquifer. . . . . . . . . . . . . . . 198

4.17. Active cells in the vertical cross-section of the aquifer . . . . . . . . 200

4.18. Saturated thickness in the vertical cross-section of the aquifer . . . 203

4.19. Piezometric heads solution in the vertical cross-section of the aquifer204

4.20. Earth dam sketch of a section with core and embankment . . . . . 205

4.21. Piezometric heads solution of the earth dam section with core and

embankment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xxix



LIST OF FIGURES

xxx



List of Tables

2.1. Combination of GCMs and RCMs from the EURO-CORDEX project

used in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1. Annual mean temperature and annual precipitation over the basins:

average, maximum and minimum values in the period 1934-2020. . 58

3.2. Type of data and elevation of the precipitation and temperature

gauges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3. ID, name, reference groundwater body, percentage of available data

and ground elevation of the monitoring wells. . . . . . . . . . . . . 62

3.4. Differences of the median, 25th and 75th percentiles of the future

SGIs with those evaluated in the historical period. The SGIs are

defined through the SGI-SPI6 regression relationships for the his-

torical period and at short- (ST), medium- (MT) and long-term

(LT), under the RCP4.5 and RCP8.5. . . . . . . . . . . . . . . . . 78

3.5. Differences of the median, 25th and 75th percentiles of the future

SGIs with those evaluated in the historical period. The SGIs are

defined through the SGI-SPEI9 regression relationships for the his-

torical period and at short- (ST), medium- (MT) and long-term

(LT), under the RCP 4.5 and RCP 8.5 . . . . . . . . . . . . . . . . 79

xxxi



LIST OF TABLES

3.6. ID, name, reference groundwater body, percentage of available data

and ground elevation of the monitoring wells considered. . . . . . . 81

3.7. MSE (m²) between the output of the neural networks (NARX,

LSTM, CNN) and the observed groundwater levels. . . . . . . . . . 87

3.8. RMSE (m) between the output of the neural networks (NARX,

LSTM, CNN) and the observed groundwater levels in the learning

and testing period 2005-2018. . . . . . . . . . . . . . . . . . . . . . 88

3.9. Differences between the 25th, 50th and 75th percentiles of the future

standardized GWLs at short- (ST), medium- (MT), and long-term

(LT) and the historical ones under the RCP4.5 scenario. Results ob-

tained with the AI models proposed in this study and the regression

model presented in Section 3.1.2. . . . . . . . . . . . . . . . . . . . 96

3.10. Differences between the 25th, 50th and 75th percentiles of the future

standardized GWLs at short- (ST), medium- (MT) and long-term

(LT) and the historical ones under the RCP8.5 scenario. Results ob-

tained with the AI models proposed in this study and the regression

model presented in Section 3.1.2. . . . . . . . . . . . . . . . . . . . 97

3.11. MSE between the output of the neural network and the simulated

groundwater levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.12. Hydraulic and geometry characteristics of the study domain. . . . 114

3.13. Summary of the input-target data for the investigated scenarios. . 115

3.14. Summary of the input-target data for the investigated scenarios. . 120

3.15. ME, MAE, RMSE, and NRMSE computed on concentrations (mg/l)

and related to the 35 average concentration values of the 7 moni-

toring wells (FWD 1). . . . . . . . . . . . . . . . . . . . . . . . . . 126

xxxii



LIST OF TABLES

3.16. Observed and estimated source release fluxes (g/s) obtained as the

average of the results of 10 neural networks with related metrics

PAEE, SD for different error levels, error-free data (α = 0) and

corrupted data (α = 0.1) (INV 1). . . . . . . . . . . . . . . . . . . 128

3.17. ME, MAE, RMSE, NRMSE and NE computed on source fluxes

(g/s) described by four stress period and obtained as average of the

results of 10 neural networks for different error level (INV 1). . . . 129

3.18. Actual and estimated source location (ζ, η) obtained as the average

of the results of 10 neural networks with different data error levels,

error-free data (α = 0) and corrupted data (α = 0.1) (INV2). . . . 129

3.19. Observed and estimated source release fluxes (g/s) obtained as the

average of the results of 10 neural networks with related metrics

PAEE, SD for different error levels, error-free data (α = 0), and

corrupted data (α = 0.1) (INV2). . . . . . . . . . . . . . . . . . . . 130

3.20. ME, MAE, RMSE, NRMSE and NE computed on source fluxes

(g/s) described by four stress period and obtained as average of the

results of 10 neural networks for different error level (INV 2). . . . 131

3.21. Comparison of the estimated and actual source release fluxes de-

scribed by four stress periods at two known sources obtained as

the average of the results of 10 neural networks with Ayvaz (2010),

Jamshidi et al. (2020), and the present work, with level error α = 0.1

and related statistical metrics (INV 3). . . . . . . . . . . . . . . . . 131

3.22. Comparison of statistical metrics with Ayvaz (2010) and Jamshidi

et al. (2020) for different error levels, error-free data (α = 0), and

corrupted data (α = 0.1) (INV 3). . . . . . . . . . . . . . . . . . . 133

3.23. Actual and estimated order of magnitude obtained as average of the

results of 10 neural networks of the error on concentrations (INV 4). 133

xxxiii



LIST OF TABLES

3.24. Observed and estimated source release fluxes (g/s) described by

four stress periods at two known sources obtained as the average

of the results of 10 neural networks with related metrics PAEE,

SD for different estimated error levels, error-free data (α̂ → 0) and

perturbed data (α̂ ≈ 0.10) (INV 4)). . . . . . . . . . . . . . . . . . 134

3.25. ME, MAE, RMSE, NRMSE and NE computed on source fluxes

(g/s) described by four stress period at two known sources obtained

as average of the results of 10 neural networks for different estimated

error level (INV 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.26. Hydraulic and geometric characteristics of the study domain . . . . 141

3.27. SC1: RMSE, MAE and NSE of the estimated solution by the PINN

compared to the one obtained by the numerical model . . . . . . . 154

3.28. SC2: RMSE, MAE and NSE of the estimated solution by the PINN

compared to the one obtained by the numerical model . . . . . . . 157

xxxiv



Introduction

Surrogate modeling is a powerful technique in the field of computational simu-

lation that offers numerous advantages for solving complex problems efficiently.

At its core, surrogate modeling involves creating a simplified approximation of a

more complex system: the surrogate model emulates the behavior of the original

system but it is computationally less demanding, making it a valuable tool in var-

ious domains, from engineering and physics to finance and environmental science.

By providing an effective bridge between computational efficiency and accuracy,

surrogate modeling empowers researchers and practitioners to explore and solve

complex problems with confidence, making it an indispensable asset in the tool-

box of scientific and engineering disciplines. Furthermore, surrogate models enable

sensitivity analysis and optimization, facilitating better decision-making and de-

sign improvements. They can also be integrated into real-time systems, enhancing

their predictive capabilities.

This PhD thesis aims to explore the application of surrogate modeling in

groundwater. Investigating alternative modeling techniques for groundwater arises

from the need that groundwater serves as a critical lifeline for approximately 2

billion people worldwide, acting as their primary source of drinking water. How-

ever, the global scenario reveals alarming statistics. Annually, humans withdraw

a staggering 1000 cubic kilometers of groundwater (U.S. Geological Survey, 2018),

equivalent to the volume of North America’s Lake Erie. This massive consumption
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INTRODUCTION

is primarily driven by agriculture, which accounts for 70% (United Nations, 2022)

of total withdrawals, emphasizing its indispensable role in sustaining food produc-

tion. Unsustainable practices have taken a toll on groundwater resources. The

overexploitation of aquifers has led to depletion in 21 out of the world’s 37 largest

aquifers (Earth Security Group, 2016). Furthermore, the distribution of ground-

water resources is highly uneven globally, with countries like India, China, the

United States, Pakistan, and Iran being major consumers due to population den-

sity, agricultural demands, and water scarcity challenges (United Nations, 2022).

Climate change exacerbates these issues (Intergovernmental Panel on Climate

Change, 2021), altering global temperatures and precipitation patterns, signif-

icantly impacting groundwater resources. Changing precipitation patterns limit

water infiltration and recharge, reducing groundwater availability. Increasing tem-

peratures lead to increasing water demand and excessive pumping further deplete

stressed aquifers. Rising sea levels lead to increasing saltwater intrusion, render-

ing coastal groundwater unusable. Within this context, there is an urgent need to

consider the climate change as a key factor that influences groundwater resources.

Aquifer contamination poses another grave concern. Industrial activities, agri-

cultural practices, and improper waste disposal contribute to the pollution of

groundwater, posing risks to both human health and the environment. Moreover,

the recharge time of groundwater is of extended duration, ranging from decades

to centuries, impeding its natural replenishment in some regions. Using surro-

gate modeling, researchers and practitioners have the capability to simulate and

forecast the movement and distribution of contaminants, evaluate potential haz-

ards, and formulate efficient strategies for pollution mitigation and safeguarding

groundwater resources within practical timeframes. Understanding these impacts

is crucial to ensure a sustainable future, by implementing effective groundwater

management practices.

Surrogate modeling, as applied to groundwater, is a valuable approach to ad-
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dress the challenges and complexities associated with modeling subsurface water

flow and transport (Asher et al., 2015). In fact, groundwater systems are inher-

ently intricate, often characterized by a multitude of variables and parameters,

and simulating their behavior with high-fidelity numerical models can be compu-

tationally expensive or, in some instances, impossible. These surrogate models

can capture the essential relationships between inputs (such as geological proper-

ties, boundary conditions, and pumping rates) and outputs (such as water table

elevations, contaminant concentrations, or groundwater flow rates), allowing for

rapid simulations and decision support.

This work incorporates the goals provided by the European project InTheMED

(https://inthemedprima.com/) of achieving integrated water resources manage-

ment tools, by implementing innovative surrogate modeling approaches. In par-

ticular, this study focuses on developing surrogate models based on statistical

approaches, conventional neural networks, deep learning techniques and physics-

informed neural networks.

The thesis also addresses the challenges and limitations associated with sur-

rogate modeling, including the selection of appropriate surrogate methods, the

incorporation of uncertainty, and the lack of physical interpretability. In particu-

lar, the limitation in providing a physical interpretation has sparked debate within

the scientific community. In this work, physics informed neural networks are pro-

posed as a promising solution to handle groundwater problems by integrating the

core concept of conventional neural networks with the fundamental laws of physics,

allowing for a more comprehensive and interpretable modeling approach.

The structure of the thesis is as follows: In Chapter 1, the focus is on surrogate

modeling by an overview of different types of surrogate models and an in-depth

description of the models employed across various applications within the thesis.

Chapter 2 focuses on climate change, offering an outline of the required methodolo-

gies for obtaining future climate projections at a local scale. In Chapter 3, different
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applications of surrogate modeling are presented. In particular it involves statisti-

cal approaches using standardized indices and regional climate models, and three

different artificial neural network techniques to asses the impact of climate change

on groundwater resources; neural networks for solving forward and inverse trans-

port problems; neural networks for building user-friendly tools to assess different

scenarios of climate change and agricultural polices; physics-informed neural net-

work for solving transient unconfined groundwater flow. Chapter 4 presents some

extra contents that have sparkled during the research work performed: a neural

network is used to identify the inflow source in a foul sewer system and a teach-

ing application is presented to explain how to model numerical groundwater flow

with spreadsheets. Finally, the last chapter summarizes the thesis conclusions and

offers suggestions for future research directions.
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1
Surrogate modeling

1.1. Introduction and state of the art

Surrogate modeling, also known as metamodeling or smart modeling, is a technique

used to create simplified and computationally efficient models that mimic the

behavior of complex, computationally expensive models or systems. The primary

goal of surrogate modeling is to reduce the computational burden associated with

running complex simulations or models while still providing reasonably accurate

results.

Surrogate modeling finds applications in optimization, sensitivity analysis, un-

certainty quantification, and decision-making processes, offering researchers and

engineers an efficient way to explore scenarios and make informed decisions with-

out sacrificing result accuracy.

Surrogate models can be categorize into three broad groups (Asher et al., 2015):

5



CHAPTER 1. Surrogate modeling

data-driven approaches, projection-based methods and hierarchical or multifidelity

methods.

Data-driven models

Data-driven surrogate modeling techniques have gained prominence in recent years

due to their flexibility and adaptability. These methods rely on empirical models,

often incorporating machine learning algorithms, to approximate the behavior of

complex systems. The key feature of data-driven approaches is their reliance on

input-output datasets, which consist of pairs of input parameters and correspond-

ing system outputs. These datasets can either be generated by the complex model

itself through simulations or experiments, or they can be available from observed

data.

One of the strengths of data-driven approaches is their ability to capture com-

plex and nonlinear relationships between inputs and outputs, making them suitable

for a wide range of applications. They excel in cases where the underlying physics

of the system is not fully understood or when the complexity of the model makes

traditional analytical methods impractical. However, challenges such as overfitting

and the need for high-quality training data remain areas of active research in this

field.

Data-driven techniques have evolved over time, starting with Response Surface

Methodology (RSM) in the early 1950s. Pioneered by Box and Wilson (1951),

RSM aimed to approximate the relationship between input factors and the re-

sponse of interest using low-degree polynomials. This early work laid the founda-

tion for surrogate modeling and experimental design.

In the 1970s, kriging emerged as a powerful surrogate modeling approach. It

was initially developed by Krige (1951) and later formalized by Matheron et al.

(1962). Kriging incorporated spatial correlation and provided accurate predictions

even with limited data. Its applications expanded into fields such as geology,
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hydrology, and environmental modeling.

Gaussian Processes (GPs) gained prominence in the late 1990s and early 2000s

as a flexible and non-parametric surrogate modeling technique (Rasmussen, 2004).

By allowing the modeling of complex relationships without assuming a specific

functional form, GPs became effective in handling noisy or sparse data. They

found applications in machine learning, optimization, and computer experiments.

Furthermore, the growth in computational ability of computers has played a

significant role in the popularity of machine learning methods as surrogate mod-

els. Introduced in the 1990s, Support Vector Machines (SVMs) became powerful

machine learning algorithms for surrogate modeling (Cortes and Vapnik, 1995).

SVMs constructed hyperplanes in high-dimensional feature spaces to separate and

classify data points, finding success in pattern recognition, regression, and anomaly

detection.

Artificial Neural Networks (ANNs) recently have been employed as surrogate

models. They excelled in approximating complex nonlinear relationships between

inputs and outputs (McCulloch and Pitts, 1943).

Projection-based methods

Projection-based surrogate modeling techniques focus on reducing the dimension-

ality of parameter spaces. These methods project the governing equations of the

system onto a basis of orthonormal vectors. By virtue of this practice, they trans-

form the problem from a high-dimensional space to a lower-dimensional space,

which can significantly simplify the modeling process.

Projection-based methods are particularly useful when dealing with systems

that exhibit a high degree of parameter dependence or when seeking to identify

dominant modes of behavior.

Principal Component Analysis (PCA) and Proper Orthogonal Decomposition

(POD) are examples of projection techniques commonly used in surrogate model-
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ing. While effective in reducing computational complexity, these methods assume

linearity and may not capture highly nonlinear interactions present in some sys-

tems.

PCA, originally conceived in 1901 by Karl Pearson (Pearson, 1901) as an analog

of the principal axis theorem in mechanics, later received independent development

and nomenclature from Harold Hotelling in the 1930s (Hotelling, 1936). Depend-

ing on its specific application domain, PCA assumes various names, such as: the

discrete Karhunen–Loève transform (KLT) within the realm of signal processing;

the Hotelling transform within multivariate quality control; Proper Orthogonal

Decomposition (POD) in the field of mechanical engineering; Singular Value De-

composition (SVD) of X (originating in the latter part of the 19th century); Eigen-

value Decomposition (EVD) of XTX within the field of linear algebra or factor

analysis (for a comprehensive discussion on the distinctions between PCA and

factor analysis, refer to Chapter 7 of Jolliffe and Cadima (2016).

Multifidelty methods

Hierarchical or multifidelity surrogate modeling approaches take a different route

by simplifying the representation of the physical system itself. This simplifica-

tion can involve ignoring certain processes and/or reducing numerical resolution.

These methods are particularly valuable in cases where computational resources

are limited or when rapid approximations are required.

One of the key advantages of hierarchical or multifidelity methods is their

ability to balance accuracy and computational cost. By employing surrogates with

varying levels of detail, practitioners can choose the appropriate level of fidelity

depending on the specific task or stage of the analysis. However, determining the

optimal hierarchy and ensuring smooth transitions between surrogate models are

ongoing challenges in this field.

The Multiscale Finite Volume Method (MsFVM, Jenny et al., 2004) and the
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Multiscale Finite Element Method (MsFEM, Hou and Wu, 1997) are the two

mostly used techinques to upscale properties from the scale of measurements or a

fine grid to a coarse grid for rapid computation.

This work mainly focus on data-driven surrogate modeling techniques. Specifically,

the exploration includes statistical approaches involving simple linear regressions,

traditional neural networks, deep learning neural networks, and physics-informed

neural networks. The following subsections present the methodological aspects

of surrogate modeling techniques employed to carry out the various applications

developed in this thesis.

1.2. Statistical approach based on linear regression

Linear regression, a fundamental statistical approach, offers valuable insights into

relationships between variables. It excels in modeling the linear associations be-

tween a dependent variable and one or more independent variables, providing

interpretability through coefficient analysis. This technique, employed extensively

in diverse fields, has both simple and multiple regression variations. Researchers

often leverage it to perform data analysis, assess trends, build simple models and

make predictions, aided by metrics such as the coefficient of determination (R-

squared) and the Root Mean Square Error (RMSE). Linear regression is not only

easy to implement but also straightforward to interpret, making it a widely favored

choice in statistical modeling and data analysis. Its simplicity and transparency

empower analysts and researchers to quickly gain insights from their data. Addi-

tionally, linear regression is computationally efficient, which means it can handle

relatively large datasets and complex models without significant computational

burden. However, it is essential to acknowledge its limitations, such as the as-
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sumption of linearity, sensitivity to outliers, and its inability to capture complex,

non-linear relationships. Understanding its strengths, limitations, and contempo-

rary extensions is essential for leveraging linear regression effectively in modern

data-driven research.

Standardized indices

The computation of standardized indices involves the utilization of extensive his-

torical time series of observed data of the variable in question. This process typi-

cally begins with the fitting of the observed variable values to a suitable probabil-

ity distribution. Then, these fitted values are transformed into a standard normal

distribution. Once the probability distribution is fitted along a representative his-

torical period, it can be used to compute standardized indices for other periods.

Standardized values close to zero suggest that the variable closely resembles the

mean of the historical period, whereas positive or negative values indicate devia-

tions from the mean of the reference period. The conceptual procedure to obtain

standardized values of a variable of interest is reported in Figure 1.1.

Correlation analysis

The objective is to identify potential relationships among different standardized

indices. In this study, the Pearson correlation coefficient is used to assess the

correlation between different investigated indices. In fact, the Pearson correlation

coefficient, denoted as r, is a statistical measure of the strength and direction of a

linear relationship between two variables. The formula for the Pearson correlation

coefficient is given by:

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
. (1.1)

In this formula, Xi and Yi represent individual data points from the two datasets,
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Figure 1.1. Left: experimental cumulative distribution function of the variable of inter-
est and fitted cumulative distribution function that best approximates experimental data.
Right: transformation into a standard normal distribution.

X̄ and Ȳ denote the means of the respective datasets. The Pearson correlation

coefficient r ranges between -1 and 1, where r = 1 indicates a perfect positive lin-

ear correlation; r = −1 indicates a perfect negative linear correlation, and r = 0

suggests no linear correlation between the datasets. This coefficient provides valu-

able insights into the linear relationship between variables and is a fundamental

tool in statistics and data analysis.

In this work, when the correlation coefficient between the investigated variables

exceeds the predefined threshold of 0.6 (Evans, 1996), a linear regression model is

employed to capture this relationship.

Linear regression model

A linear regression model is a statistical approach used to model the linear rela-

tionship between a dependent variable (y, target) and one or more independent

variables (x, predictors or features). The general form of a simple linear regression

model with one independent variable can be expressed as:
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y = β0 + β1x+ ϵ , (1.2)

where y is the dependent variable; x is the independent variable; β0 is the intercept;

β1 is the slope, and ϵ represents a random error term. The values of β0 and β1,

that best fit the data points, are estimated by minimizing the sum of the squared

differences between the observed and the target values. Linear regression can

be extended to multiple linear regression when there are multiple independent

variables:

y = β0 + β1x1 + β2x2 + . . .+ βpxp + ϵ , (1.3)

where x1, x2, . . . , xp are the independent variables; β0, β1, . . . , βp are the corre-

sponding coefficients; ϵ represents the random error term.

1.3. Artificial neural networks

Machine learning models, such as neural networks, extend the applicability of

simple linear regression to capture intricate, nonlinear relationships. Artificial

Neural Networks (ANNs) are computational models inspired by the structure and

functioning of the human brain. They are a subset of Artificial Intelligence (AI)

learning algorithms that aim to mimic the way neurons interact and learn from

data. ANNs have gained significant attention and achieved remarkable advance-

ments across a wide range of domains, revolutionizing fields such as computer

vision, natural language processing, robotics, and more.

The story of ANNs spans several decades and encompasses various milestones.

It begins with the inspiration drawn from biological neurons, as Warren McCulloch

and Walter Pitts introduced the perceptron in 1943 (McCulloch and Pitts, 1943)
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laying the foundation for ANNs. In the late 1950s, Frank Rosenblatt expanded

upon the perceptron (Rosenblatt, 1958), developing an early form of ANNs capable

of learning and decision-making. However, the limitations of early ANNs and the

high computational costs led to a decline in interest during the 1970s, known as the

"AI Winter" (Minsky and Papert, 1969). The field experienced reduced funding

and a slowdown in AI and ANN research.

The resurgence came in the 1980s with the discovery of the backpropagation

algorithm (Werbos, 1990), enabling the efficient training of multilayer perceptrons.

This breakthrough allowed ANNs to learn complex patterns and gave rise to deep

neural networks. Additionally, Yann LeCun’s introduction of convolutional neural

networks (CNNs) in the late 1980s (LeCun et al., 1990) revolutionized computer

vision, demonstrating impressive results in image recognition tasks with LeNet-5.

In the 1990s, researchers developed recurrent neural networks (RNNs) tailored

for sequential data processing (Rumelhart et al., 1986). RNNs, with their recurrent

connections, excelled in tasks like speech recognition, language modeling, and

machine translation.

The true resurgence of ANNs came around 2012, driven by advancements in

computational power, availability of large-scale labeled datasets, and improved

network architectures.

In recent years, ANNs have consistently achieved state-of-the-art performance

across various domains. They have excelled in natural language processing, speech

recognition, machine translation, and highlighting their versatility and potential

for real-world applications. Additionally, ANNs provide valuable solutions for engi-

neers, enabling advancements in fields such as image and signal processing, image

recognition, object detection, denoising, image segmentation, audio processing,

and time series analysis.

The field of ANNs continues to evolve rapidly, with ongoing research exploring

novel architectures, optimization algorithms, regularization techniques, and in-
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terpretability methods. Transfer learning, reinforcement learning, and generative

models like GANs further extend the capabilities of ANNs, ensuring they remain

at the forefront of artificial intelligence and machine learning research.

1.3.1. Artificial neural network design and training process

At their core, ANNs consist of interconnected nodes, called artificial neurons or

units, organized into layers. The most common type of ANN design is the feedfor-

ward neural network, which follows a unidirectional flow of information from the

input layer through one or more hidden layers to the output layer (Figure 1.2).

In a feedforward neural network, the input layer receives the initial data or

features. Each artificial neuron in the input layer is associated with a specific

input value or feature. The information from the input layer is then passed to the

neurons in the subsequent layers.

Figure 1.2. Artificial Neural Network sketch.

The hidden layers in an ANN provide intermediate processing stages between

the input and output layers. Each hidden layer consists of multiple artificial neu-

rons, which receive inputs from the previous layer and apply an activation function

to produce an output.
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The output layer is the final layer of the network and produces the desired

output or prediction. The number of neurons in the output layer depends on the

nature of the problem being addressed. For example, in a binary classification

problem, there might be a single neuron in the output layer, while a multi-class

classification problem may require multiple neurons corresponding to each class.

Activation functions play a crucial role in ANN design. They introduce non-

linearity into the network, enabling the network to learn complex patterns and

relationships. Commonly used activation functions include sigmoid, tanh (hyper-

bolic tangent), ReLU (Rectified Linear Unit) and softmax (for multi-class classi-

fication).

The design of an ANN involves choices regarding the number of hidden layers,

the number of neurons in each layer, and the specific activation functions to be

used. These choices depend on factors such as the complexity of the problem, the

available data, and the computational resources.

The connections between neurons in different layers are defined by specific

parameters of the network called weights and biases. Each connection has an

associated weight and bias that determines the strength or importance of the

connection. During the training process, these weights are adjusted iteratively

to minimize the difference between the predicted output and the target, using

techniques like backpropagation. The main steps for the traning procedure are

described in the following,

Epochs and batch training

Training an ANN typically involves multiple passes over the entire training dataset,

referred to as epochs. In each epoch, the training dataset are presented to the net-

work, and the weights and biases are updated based on the calculated gradients. In

large datasets, it is common to divide the data into smaller subsets called batches.

The weights and biases are updated after each batch has been processed, rather
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than after each individual training dataset. This approach, known as mini-batch

training, helps in achieving a balance between computational efficiency and con-

vergence accuracy.

Normalization procedures

For arbitrary-sized and parameterized cases, appropriate normalization procedures

can be applied to transform them into the unit domain [0, 1]× [0, 1]. Even when

dealing with intricate geometries, the scaling of coordinates and parameters to

this specific range is feasible. When employing ANNs, it is common practice to

normalize input variables to a standardized range, typically between 0 and 1.

This normalization plays a pivotal role in stabilizing neural network training, mit-

igating issues such as vanishing gradients, and accelerating model convergence.

Additionally, by employing this normalized range, the model gains the capacity to

recognize patterns and relationships that transcend the specific magnitudes and

units of input variables. This adaptability is essential when applying the model to

scenarios of varying sizes and parameters. Crucially, the success of this approach

hinges on the reversibility of the normalization process. By meticulously recording

the scaling factors and means used for normalization, it becomes straightforward

to apply an inverse transformation to the model’s predictions, effectively rein-

troducing them into the original variable space. This ensures that the results

remain interpretable and relevant within the context of the original problem do-

main. The utilization of normalization and transformation procedures not only

enhances model stability and generalization but also equips the model to address

a wide spectrum of scenarios, thereby increasing its versatility and adaptability.

Forward propagation

During forward propagation, the input data is fed into the network, and the in-

formation flows through the layers from the input layer to the output layer. The
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inputs are multiplied by the corresponding weights and biases and passed through

the activation function of each neuron to produce an output. The outputs of one

layer serve as inputs to the next layer until the final output is generated.

Calculating the loss

Once the output is generated, the prediction of the ANN is compared to the

actual target. The discrepancy between the predicted output and the target is

quantified using a loss function. The choice of the loss function depends on the

specific problem being addressed. Common loss functions include mean squared

error (MSE) for regression problems and categorical cross-entropy for classification

problems. In this work, regression problems are presented and, in this regard, the

Loss equation L(Θ) is reported:

L(Θ) =
1

N · d3

N∑
i=1

d3∑
j=1

(hΘ(x(i)))j − y
(i)
j )2 . (1.4)

Here, N represents the number of training input-target pairs. The term d3

denotes the number of existing outputs, hΘ(x(i))j is the network’s output for the

i-th input data x(i), dependent on all network parameters Θ, and y
(i)
j represents

the target vector.

Backward propagation

Backward propagation is the key step in the training process. It involves calcu-

lating the gradients of the loss function with respect to the weights and biases

in the network. This step determines how much each weight and bias contribute

to the overall error of the network. Starting from the output layer, the gradients

are computed using the chain rule of calculus (Griewank, 1988). The gradients

are then propagated backward through the layers, updating the weights and bi-

ases based on the calculated gradients. This process is repeated iteratively for the
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whole dataset, adjusting weights and biases of the network to minimize the loss

function.

To update the weights and biases, an optimization algorithm is used, most

commonly gradient descent. Gradient descent adjusts the parameters in the direc-

tion of steepest descent of the loss function, gradually moving the network towards

a configuration that minimizes the error. The learning rate is a crucial param-

eter in gradient descent, as it determines the step size taken in each iteration.

A high learning rate may cause the network to overshoot the optimal solution,

while a low learning rate can result in slow convergence. Different variations of

gradient descent, such as stochastic gradient descent (SGD), mini-batch gradient

descent, the Levenberg-Marquardt (LM) and the Adam optimization algorithms,

are commonly used to balance computational efficiency and convergence speed.

The Levenberg-Marquardt algorithm is particularly effective for nonlinear least

squares problems and neural network training tasks with well-behaved loss func-

tion. However, it may encounter challenges when dealing with highly nonlinear or

ill-conditioned problems. On the other hand, the Adam optimization algorithm is

widely used in deep learning tasks due to its robustness and efficiency. It adapts

the learning rates for individual parameters, allowing it to handle different scales

of gradients effectively. The adaptive nature of this algorithm makes it well-suited

for scenarios with sparse gradients, noisy gradients, or non-stationary objectives.

Regularization and overfitting

During the training process, overfitting can occur, where the network becomes too

specialized to the training data and performs poorly on unseen data. Regulariza-

tion techniques can be employed to mitigate overfitting. Common regularization

methods include L1 and L2 regularization, dropout, and early stopping. L1 and

L2 regularization add penalty terms to the loss function, discouraging large weight

values and promoting simpler models. Dropout randomly deactivates a fraction of
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neurons during training, preventing the network from relying too heavily on spe-

cific neurons. Early stopping involves monitoring the validation error and stopping

the training process when the validation error starts to increase.

Convergence and evaluation

The training process continues until a stopping criterion is met, such as a prede-

fined number of epochs or reaching a desired level of accuracy. After training, the

performance of the trained network is evaluated using separate validation and test

datasets to assess its generalization ability. The validation dataset is used to fine-

tune the hyperparameters and make decisions during the training process, while

the test dataset provides an unbiased evaluation of the network’s performance

on unseen data. Evaluation metrics such as accuracy and precision are used to

measure the performance of classification models. For regression tasks, metrics

like Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared are

commonly used to assess the prediction accuracy.

In recent years, advancements in ANN design have led to the development of

specialized architectures. For example, Convolutional Neural Networks (CNNs)

have proven highly effective in image and signal processing tasks, leveraging con-

volutional layers to capture spatial features. Recurrent Neural Networks (RNNs)

are designed for sequential data, incorporating recurrent connections that enable

memory of past information. Moreover, researchers have explored innovative ar-

chitectures, such as Long Short-Term Memory (LSTM) networks. LSTMs are de-

signed to tackle the vanishing gradient problem encountered in traditional RNNs,

and they exhibit exceptional performance in tasks related to natural language

processing.

In the following, the implemented methodology for the applications are pre-

sented.
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1.3.2. Multilayer perceptron networks

The MultiLayer Perceptron (MLP, Figure 1.3) is a type of artificial neural network

that was invented in the 1960s as an extension of the Perceptron model (Rosen-

blatt, 1958). While the Perceptron model was a single-layer network capable of

linearly separating data, the MLP introduced multiple layers of artificial neurons,

enabling it to learn and model non-linear relationships.

The basic mathematical formula of an artificial neuron in an MLP involves

three main components: the weighted sum of inputs, a bias term, and an activa-

tion function. Let’s consider a neuron in a hidden layer or the output layer.

Weighted sum

The neuron receives inputs (x1, x2, . . . , xn) from the previous layer, and each input

is multiplied by a corresponding weight (w1, w2, . . . , wn). The weighted inputs are

summed together, along with a bias term (b), to produce the weighted sum (z):

z = w1 · x1 + w2 · x2 + . . .+ wn · xn + b. (1.5)

Activation function

The weighted sum is then passed through an activation function (g) to introduce

non-linearity and produce the output (a) of the neuron:

a = g(z). (1.6)

Commonly used activation functions include the sigmoid function, which squashes

the output between 0 and 1; the hyperbolic tangent function, which maps the out-

put between -1 and 1; and the rectified linear unit (ReLU) function, which returns
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the input value if positive, or zero otherwise.

To better understand the mathematical concept from a rigorous point of view,

let’s consider a simple MLP composed by three layers: input, hidden and output.

Each layer is a Euclidean vector space. Considering d1, d2, d3 the dimensions of

such vector spaces, it means that input data are real vectors with d1 components,

output data are real vectors with d3 components and, in the hidden layer, d2 neu-

rons are considered. The network, interpreted as a differentiable system, is simply

a composition of multivariable vector-valued functions: affine transformations and

linear or nonlinear activation functions (g), from Rd1 in Rd3 . The signal moves

from one layer to the next following (1.5) applied to all neurons in the layer:

ad = g(W · au + b), (1.7)

where subscripts d and u refer to downstream and upstream, respectively, au is

the input vector from a given layer, ad is the output vector of a given layer, W

∈ Rdd×du , contains all the weights applying to the current layer and b ∈ Rdd×1,

contains all the bias terms.

1.3.3. Nonlinear autoregressive networks with exogenous in-
puts

The Nonlinear AutoRegressive network with eXogenous input (NARX) is a type

of artificial neural network that is commonly used for modeling and predicting

time series data. It is particularly effective in capturing non-linear dependencies

and incorporating exogenous inputs, which are external factors that can influence

the variable of interest.

The NARX model extends the basic AutoRegressive (AR) model (Pandit and

Wu, 1983) by incorporating additional terms that capture the influence of past

observations and exogenous inputs on the current output. This allows the NARX
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Figure 1.3. MLP sketch.

model to capture more complex and non-linear relationships compared to tradi-

tional AR models.

The specific architecture of the NARX network can vary. There are two types

of architectures in the NARX network: open-loop (Series-Parallel Architecture)

and closed-loop (Parallel Architecture). During the training phase, the open-loop

network is utilized, incorporating available observations (y) and exogenous inputs

(x) as input information. In contrast, the closed-loop scheme is employed during

the prediction phase when observations are no longer accessible, resulting in the

network’s output also being used as an input.

Mathematically, the NARX model for the open- and closed-loop can be repre-

sented as follows, respectively:

h(t) = f(p(t− 1), p(t− 2), . . . , p(t−m), x(t), x(t− 1), . . . , x(t− n)). (1.8)

In the equations above, h(t) represents the network output of the variable of
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interest at time t, and p is a generic term that should be replaced with the observed

values y in the open-loop scheme or with the previously predicted output h of the

network in the closed-loop scheme. Consequently, h(t) is influenced by its past

values of the observed values of the variable of interest y(t − 1), y(t − 2), . . . ,

y(t − m), for the open-loop scheme, or is influenced by the previously predicted

output of the network h(t− 1), h(t− 2), . . . , h(t−m), for the closed-loop scheme

as well as the exogenous inputs x(t), x(t − 1), . . . , x(t − n). The values of m

and n determine the number of lagged terms of the output and exogenous inputs,

respectively, that are considered in the model.

The function f represents the non-linear mapping between the inputs and the

output. It is typically modeled using artificial neurons and activation functions

within the NARX network. The NARX design generally consists of multiple layers

of neurons (MLP neural network), including input, hidden, and output layers. The

input layer receives the lagged values of the output and exogenous inputs, and the

hidden layers perform computations to capture complex patterns. The output

layer produces the predicted value of the target variable. Let’s consider a NARX

with three classic layers. The output a(2) produced by the input and hidden

layers, following the open-loop scheme, is:

a(2) = g1(IW
(1)a(1) + b(1) +LW (1)p(1)), (1.9)

where the superscript indicates the reference layer of the network, g1 represents the

non-linear activation function, IW (1) ∈ Rd2×(d1·n) represents the weight matrix

related to exogenous inputs, a(1) ∈ Rd1·n is the exogenous input vector, b(1) ∈ Rd2

is the bias term vector, LW (1) ∈ Rd2×(d3·m) is the matrix of the input weights

relative to the observations, and p(1) ∈ Rd3·m is the given input. For the open-loop

the scheme lagged observed values are used as p(1), for the closed-loop scheme the

term h(1), that represents the lagged output predicted by the network used as
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new input is used for p(1). The output is then transferred from the hidden layer

to the output layer. This process is described by:

h(x, y)(3) = g2(OW (2)a(2) + b(2)), (1.10)

where g2 represents the linear transfer function, OW (2) ∈ Rd3×d2 is the matrix of

the weights of the outputs of the hidden layer a(2) ∈ Rd2 , b(2) ∈ Rd3 is the bias

term vector. The predicted value of the network is h(x, y)(3) for the open-loop

scheme; for the closed-loop is h(x, h)(3). For the sake of brevity, is shown only

the closed-loop in Figure 1.4.

Figure 1.4. NARX closed-loop scheme.

1.3.4. Long-short term memory networks

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN)

architecture that was first introduced by Sepp Hochreiter and Jürgen Schmidhu-

ber in 1997 (Hochreiter and Schmidhuber, 1997). LSTM was designed to address
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the vanishing gradient problem that commonly occurs in traditional RNNs, which

hinders their ability to capture and retain long-term dependencies in sequential

data (Hochreiter, 1991). The key innovation of LSTM is the introduction of mem-

ory cells (see Fig. 1.5), which are responsible for storing and updating information

over time. Each memory cell has three main components: a forget gate, an input

gate, and an output gate. These gates regulate the flow of information into, out

of, and within the memory cell, allowing LSTM to selectively retain or discard

information as needed. The functioning of an LSTM can be explained as follows.

Input processing

The LSTM layer processes each time step of the given time series sequentially by

receiving an input vector and the previous hidden state as inputs. It is worth

noting that the C state (the upper line in Fig. 1.5) represents the long-term mem-

ory, while the hidden state (the lower line in Fig. 1.5) represents the short-term

memory. These inputs are utilized to calculate the forget gate, input gate, and

output gate, in addition to determining the candidate value that will be stored in

the memory cell.

Forget gate

The forget gate decides which information from the long-term memory line should

be discarded from the memory cell. It takes the input x and the previous hidden

state h as inputs, and calculates a sigmoid activation value

ft = σ(W (fgate)[xt, h(t−1)] + b(fgate)). (1.11)

This value (between 0 and 1) multiplies the previous memory cell value and there-

fore retains only a fraction of its value. This allows the LSTM to selectively forget

information that is no longer relevant.
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Input gate

The next step is to select the new information to be provided to the chain. This

procedure is divided into two parts: first, the input gate layer (it) is activated

via a sigmoid function to define which inputs will be considered for updating the

Cell state. Then, another layer, defined as the "new candidate gate layer" (nct),

produces a new set of possible candidates through a hyperbolic tangent function.

it = σ(W (igate)[xt, h(t−1)] + b(igate)). (1.12)

and the new set of possible candidates is given by:

nct = tanh(W (ncgate)[xt, h(t−1)] + b(ncgate)), (1.13)

Memory cell update

The input gate and forget gate outputs are combined to update the memory cell

state, C. The previous memory cell state is multiplied by the forget gate output to

discard unnecessary information. The result is added to the product of the input

gate by the candidate value:

Ct = ft ·Ct−1 + it · nct. (1.14)

Output gate

The output gate controls the flow of information from the memory cell to the out-

put. First, it computes a potential hidden state value by applying the hyperbolic
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tangent to the updated memory cell value, and only a fraction of this value is

retained; fraction that is computed from the input data and the hidden state as:

ot = σ(W (ogate)[xt, h(t−1)] + b(ogate)). (1.15)

The output h for the next step is given by:

ht = ot · tanh (Ct). (1.16)

Then, the procedure continues by utilizing the hidden state obtained at the final

time step. To mitigate overfitting, the vector undergoes processing through the

Dropout Layer, which stochastically sets certain input elements to zero with a

specified probability (0.5 in the context of this application). The output gener-

ated by the Dropout Layer is then directed to the Fully Connected Layer, which

establishes the synaptic connections required to link the dropout-affected hidden

state with the Regression Output Layer, as a conventional neural network. The

resulting weight matrix assumes dimensions of Rd3×d2 , where d3 represents the

number of output neurons and d2 is the number of hidden neurons. When the

described weight matrix is multiplied by the hidden state vector, yields the final

output vector of dimensions Rd3 . Finally, the Regression Output Layer computes

the half-mean-squared-error loss between the generated output and the target out-

put.

The ability of LSTMs to selectively retain and forget information over long

sequences makes them particularly effective in tasks that require modeling complex

temporal dependencies.
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Figure 1.5. LSTM cell.

1.3.5. Convolutional neural networks

Convolutional Neural Networks (CNNs) are a type of deep learning model specif-

ically designed for processing grid-like data, such as images. CNNs were first

introduced by Yann LeCun in the late 1980s (LeCun et al., 1990). The function-

ing of a CNN can be summarized as follows (Figure 1.6).

Convolutional layers

The core building blocks of a CNN are the convolutional layers. Each layer consists

of multiple learnable filters (also called kernels) that slide across the input image in

a convolution operation. The filters extract spatial features by computing the dot

product between their weights and the "pixel values" of the input. This operation

captures different patterns such as edges, textures, and shapes at different scales.

Let’s consider an input image with dimensions h × w × c, where h represents

the height, w represents the width, and c represents the number of channels.

This input image undergoes processing in a convolutional layer that consists of
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nf filters with dimensions n × m × nf , where n represents the height and m

represents the width of each filter. The number of filters determines the number

of channels in the output. Moreover, two additional parameters, namely stride

(s) and padding (p), need to be specified. The stride determines the step size at

which the convolutional filter moves vertically and horizontally across the input

image, while the padding defines the number of extra border pixels added around

the input image. In most cases, the stride is set to 1, meaning the filter moves

one pixel at a time. The padding is adjusted so that the output produced by the

convolutional layer maintains the same size as the initial input. The size of the

output feature maps (FM) produced by the convolutional layer can be calculated

using the following formula:

FMrow,column,channel =

[(
h− n+ 2p

s
+ 1

)
;

(
w −m+ 2p

s
+ 1

)
; nf
]
. (1.17)

Nonlinear activation

After the convolutional operation, a nonlinear activation function, typically ReLU

(Rectified Linear Unit), is applied element-wise to introduce nonlinearity into the

network. This activation function helps CNNs learn complex relationships be-

tween features.

Pooling layers

Pooling layers are used to downsample the spatial dimensions of the feature maps

obtained from the convolutional layers. Common pooling operations include max

pooling, which selects the maximum value within each local region, and average

pooling, which calculates the average value. Pooling reduces the spatial resolution

while retaining the essential features, allowing the network to be more robust to

variations in the input, making the model translation-invariant and reducing the
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number of parameters.

Dropout layer

It is a regularization technique used to reduce overfitting and improve the gen-

eralization ability of the model. It works by randomly deactivating a fraction of

neurons or units within the layer during each training iteration. This means that

during training, some of the neurons do not contribute to the forward or backward

pass, effectively making the network more robust and less reliant on any specific

neuron.

Fully-connected layers

After several convolutional and pooling layers, the resulting feature maps are flat-

tened and fed into fully connected layers. These layers connect every neuron in one

layer to every neuron in the next layer (as in a feedforward neural network), al-

lowing the network to learn high-level representations and make predictions based

on the extracted features.

Softmax or regression layers

In classification tasks, a softmax layer is typically used at the output to produce

a probability distribution over different classes. The softmax function normalizes

the outputs and ensures that their sum adds up to 1, providing class probabilities

for the input. In contrast, in regression tasks, the output layer is typically struc-

tured differently. Instead of using a softmax layer, a regression layer is employed.

The regression layer directly outputs a continuous value, without the need for

normalization or probability distribution interpretation. This setup is common in

tasks such as predicting a numeric value based on a set of input features.

The strength of CNNs lies in their ability to automatically learn hierarchical rep-
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resentations from raw data, capturing local patterns in lower layers and gradually

building more abstract features in higher layers. This hierarchical feature extrac-

tion enables CNNs to excel in tasks such as image classification, object detection,

image segmentation, and even tasks beyond computer vision, such as natural lan-

guage processing and speech recognition when combined with appropriate archi-

tectures.

Figure 1.6. CNN sketch.

1.3.6. Physics-informed neural networks

Neural networks have proven to be highly effective in various machine learning

applications. However, they face limitations when it comes to providing a clear

understanding of their decision-making processes and adhering to the physical con-

straints essential for many scientific and engineering problems. These limitations
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can lead to inaccuracies and unreliability in their predictions, particularly when

dealing with complex physical systems.

To address these challenges, there is a class of machine learning models known

as Physics-Informed Neural Networks (PINNs). These models combine the com-

putational power of neural networks with the governing physical laws that describe

natural phenomena. Raissi et al. (2019) recently introduced PINNs to augment

the physical interpretability of conventional ANNs and enhance their predictive

capabilities. PINNs offer several advantages over traditional physics-based mod-

els. Through the incorporation of physics-based constraints into the ANN ar-

chitecture, PINNs empower the model to more accurately capture the underlying

physical principles governing the system under consideration. This integration can

result in more precise and dependable predictions, especially in scenarios where

traditional models may struggle due to high complexity or data scarcity. PINNs

offer flexibility and generalization, as they can be trained on limited or noisy data,

and they can accommodate intricate geometries and boundary conditions without

requiring a specific mesh. This versatility positions PINNs as powerful tools for

addressing a wide array of physical problems. Computational efficiency is a defin-

ing attribute of PINNs; once trained, they can be used swiftly, rendering them

efficient for real-time decision-making or optimization tasks.

This physics-informed methodology has found application in various domains,

spanning fluid dynamics, materials science, geophysics, and others (Waheed et al.,

2021; Bajracharya and Jain, 2022; Cai et al., 2021; Mao et al., 2020; Lv et al.,

2021; Zheng and Wu, 2023). For a comprehensive overview of the current state of

PINNs, interested readers are directed to the recent publication by Lawal et al.

(2022).

The core of the definition of a PINN typically involves incorporating physical

principles or governing equations into the loss function. These constraints are

essential for preserving critical principles, such as mass conservation, and have
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proven highly effective in solving complex PDEs within meshless domains, of-

ten surpassing the performance of traditional numerical methods (Raissi et al.,

2019; Yang et al., 2021; He and Tartakovsky, 2021; Rezaei et al., 2022; Zhang

et al., 2022). The primary idea behind a PINN is to train a neural network

to approximate a solution to a partial differential equation (PDE) or a set of

physical equations while simultaneously fitting the data (Figure 1.7). This hy-

brid approach allows PINNs to capture complex relationships between variables

while upholding physical constraints, making them suitable for challenging prob-

lems, including those with limited data availability (He et al., 2020). Moreover,

PINNs have demonstrated remarkable extrapolation capabilities, both spatially

and temporally, a task that often challenges conventional ANNs, owing to the in-

corporation of physics principles into their training (Rezaei et al., 2022; Almajid

and Abu-Al-Saud, 2022).

Here is how the loss function for a PINN is commonly structured:

Data-fitting term

This term measures the error between the prediction of the network and the target

data. It encourages the model to fit the available data accurately. It represents

the same term already presented in Section 1.3.1 for conventional ANNs.

Physics-informed term

The Physics-Informed Term works by quantifying the agreement between the pre-

dictions of the neural network and the expected values based on the governing

physics. This agreement, when optimized, results in a network that respects and

adheres to the fundamental physical constraints, allowing for accurate predictions

while preserving the integrity of the system’s underlying physics.

Conceptually, collocation points randomly generated within the domain of in-

terest are used as given input for the neural network, aiming to generate corre-
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sponding outputs that represent the physical quantity. The PDE governing the in-

vestigated phenomenon is computed utilizing automatic differentiation (Griewank,

1988) at the collocation points. Then, by rearranging all the terms in this PDE to

achieve equilibrium (i.e., making them equal zero), the loss associated with errors

in replicating the PDE can be determined through the use of residuals. In essence,

this involves calculating the average of the squared sums of the PDE values, which

are derived from the network’s output at the collocation points, and this average

represents the corresponding error.

LPhysics-Informed =
∑
Ω

(
f(x, t, o,

∂o

∂x
,
∂o

∂t
)

)2

. (1.18)

In this expression: Ω represents the spatial and temporal domain over which

the PDE is solved; o is the predicted solution by the neural network, that corre-

sponds to the physical quantity, and f(x, t, o, ∂o
∂x ,

∂o
∂t ) is the PDE residual, which

depends on the predicted solution o and its derivatives with respect to x, and t.

Loss function

The overall loss function is a combination of the Data-Fitting and the Physics-

Informed terms, typically weighted by hyperparameters that control the trade-off

between fitting the data and adhering to the physics:

Total Loss = LData-Fitting + λ · LPhysics-Informed. (1.19)

λ is a hyperparameter that controls the importance of the physics-informed term

relative to the data-fitting term. It determines the balance between fitting data

and respecting physics.

The core challenge in defining the loss function for a PINN is to ensure that the

neural network learns both the underlying physics and the data while maintaining
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a balance between these aspects. By optimizing this combined loss function, the

PINN can provide solutions that are consistent with the physics governing the

system while also fitting available data accurately.

Figure 1.7. PINN sketch.
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2
Climate change

2.1. Introduction

One of the primary objectives of this thesis is to evaluate the potential effects

of climate change on groundwater resources, contributing to informed decision-

making for sustainable water resource management and adaptation strategies.

Climate change exerts a profound and widespread impact on our planet. It

affects ecosystems, weather patterns, sea levels, and poses significant risks to bio-

diversity, agriculture, and human health. This phenomenon leads to more frequent

and severe extreme weather events, including hurricanes, droughts, heatwaves, and

floods, with substantial economic and societal consequences.

Scientists widely agree that human activities, especially the release of green-

house gases like carbon dioxide (CO2) from burning fossil fuels, are the primary

drivers of climate change (Intergovernmental Panel on Climate Change, 2021).
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Efforts to address climate change involve two main approaches: mitigation, which

focuses on reducing emissions, and adaptation, which involves adapting to the

changes that are already happening. These efforts span various domains, includ-

ing policy, technology, and individual behavior changes. Transitioning to renew-

able energy sources, such as solar and wind power, plays a crucial role in reducing

greenhouse gas emissions. International agreements like the Paris Agreement (UN-

FCCC, 2015) aim to unite countries in their fight against climate change by setting

targets for emissions reduction and temperature limits.

Assessing the effectiveness of climate policies and fostering interdisciplinary

collaborations across various fields are crucial steps in addressing the multifaceted

challenges of climate change. With this aim, the Intergovernmental Panel on Cli-

mate Change (IPCC) is a globally recognized institution established by the United

Nations to assess and communicate the scientific knowledge surrounding climate

change. Comprising thousands of scientists and experts from diverse backgrounds,

the IPCC conducts rigorous assessments of the latest climate research. Its compre-

hensive reports, published periodically, are considered authoritative references for

climate science and its impacts (Stocker et al., 2013). Policymakers, governments,

and organizations worldwide rely on these findings to make informed decisions and

formulate strategies to combat climate change.

In the last Assessment Report (AR6, Intergovernmental Panel on Climate

Change, 2021), the IPCC states that future climate conditions are closely tied

to different future projections of human societies and their interactions with the

environment. In this regard, Shared Socioeconomic Pathways (SSPs) are con-

structed on the basis of assumptions concerning socio-economic progress, demo-

graphic shifts, technological advancements, energy usage, land utilization, and

other determinants influencing GreenHouse Gas (GHG) emissions, which are the

primary drivers of global warming. In this context, the Coupled Model Intercom-

parison Project, Phase 6 (CMIP6) encompasses historical climate reanalysis and
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future projections providing Global Climate Models (GCMs) that are employed

to simulate long-term climate forecasts spanning from 2015 to 2100 across the

various SSP scenarios. The resolution of GCMs, typically ranging from 100 to

500 kilometers, may not be sufficient for reliable regional scale projections. To

address this limitation, dynamic downscaling techniques have been employed to

generate Regional Climate Models (RCMs) with higher resolutions, ranging from

10 to 50 kilometers, crucial for evaluating vulnerabilities, assessing impacts, and

formulating adaptation strategies at the regional and local levels. In the context of

CMIP6, RCM experiments are still under development and are not yet available.

For this reason, this reaseach work uses the RCMs developed within the Coupled

Model Intercomparison Project, Phase 5 (CMIP5), as part of the fifth Assessment

Report of the Intergovernmental Panel on Climate Change (AR5, Pachauri et al.,

2014). Differently from AR6, the climate projections provided by the AR5 re-

lies on four Representative Concentration Pathways (RCPs) or scenarios, namely

RCP2.6, RCP4.5, RCP6, and RCP8.5, to provide insights into GHG emissions

(Stocker et al., 2013; Moss et al., 2010) and the climate projections span from

2006 to 2100 across the RCPs.

Nevertheless, raw outputs from RCMs require a bias correction process when

used in medium-small scale basins for climate change impact studies (Teutschbein

and Seibert, 2012). Additionally, to account for uncertainty in the results, it is rec-

ommended to use an ensemble of climate models, involving different combinations

of GCMs and RCMs (D’Oria et al., 2018b; Todaro et al., 2022a). This ensemble

approach helps capture the range of possible outcomes and provides a more com-

prehensive assessment of the uncertainties associated with climate change impacts.

In this chapter, an overview of the methodologies to be applied to obtain climate

projections of precipitation and temperature at station scale and meteorological

drought indices are presented. These features will be used in the Applications

Chapter to build some of the presented surrogate modeling applications.
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2.2. Historical data processing

2.2.1. Gap filling and interpolation procedures

In accordance with the guidelines established by the World Meteorological Organi-

zation (1987) to perform bias correction, a minimum of 30 years of observed data

is required. Typically, in the AR5 framework, a common period for implementing

bias corrections spans from 1976 to 2005, aligning with the projection period of

climate models, commencing in 2006. The continuity of time series data is imper-

ative for effective bias correction. Consequently, the need arises to address data

gaps within the historical time series.

One frequently adopted method is the FAO procedure (Allen et al., 1998).

According to this method, the gaps are filled using a linear relationship between

the data at the target location and a twin location where the missing data are

available. The data available in the two locations must exhibit a satisfactory cor-

relation. This method was applied to fill gaps in groundwater level, precipitation,

and temperature datasets. As recommended by Allen et al. (1998), a threshold

correlation coefficient was adopted (0.7) to select twin stations. When the FAO

method cannot be applied, another procedure is adopted. The gap is filled with a

random value from a normal distribution (or a lognormal distribution for precipi-

tation) which has been calculated on the available data for the considered month.

In addition, to compute meteorological indices that requires both precipitation

and temperature (standardized precipitation-evaporation index, i.e. SPEI), it is

crucial to have contemporaneous records of temperature and precipitation at the

same location. In this work, some of the climate gauging stations considered lacked

of temperature data. Consequently, once the gaps in the available time series

were filled, the temperature data were interpolated to the precipitation station

locations. In accordance with Moisello (1998), a reduction in temperature with

increasing ground elevation was considered. Thus, during the recorded period and
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on a monthly scale, the coefficients "q" and "m" were determined in the following

linear equation using the Ordinary Least Squares (OLS) method applied to the N

locations with known temperature, T o
j , and elevation, Ej :

T o
j = q −m · Ej (j = 1, . . . , N), (2.1)

once the coefficients "q" and "m" were estimated, if Eq. 2.1 is applied to the sites

where the temperature records exist, deviations (residuals) can be observed due to

local peculiarities not accounted for by the linear regression. Subsequently, when

estimating the final temperature, Ti, at any elevation, Ei, the residuals, weighted

using an inverse square distance method, were incorporated to the result of Eq.

2.1, yielding the following relationship:

Ti = q −m · Ei +

N∑
j=1

λi,j · ϵj , (2.2)

where λi,j is the weight of the ϵj residual of the temperature values in the j location

with known temperature.

2.2.2. Meteorological and groundwater drought indices

Meteorological drought indices serve as pivotal components in the evaluation and

quantification of the occurance, severity and extent of drought events. These in-

dices rely on meteorological data, including precipitation, temperature, and evap-

otranspiration. Among the widely used indices, in this work, the Standardized

Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration

Index (SPEI) are used. The SPI quantifies precipitation anomalies across various

time scales, aiding in the identification of drought conditions based solely on pre-

cipitation data. On the other hand, the SPEI is a drought index that integrates

both precipitation and temperature, in terms of potential evapotranspiration, to
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assess and quantify meteorological drought conditions. Similarly, the Standardized

Groundwater Index (SGI) serves as a statistical indicator to assess the severity of

groundwater drought, and it shares a conceptual similarity with SPI and SPEI.

2.2.2.1. Standardized precipitation index

The SPI was developed by Mckee et al. (1993) as a statistical tool to assess the

severity of meteorological droughts. The calculation of SPI, as for the bias correc-

tion, requires a long-term series of monthly precipitation data (typically 30 years

or more, as recommended by the World Meteorological Organization (1987)) ac-

cumulated over different time periods of interest (e.g., 1, 3, 6, 9, 12, 24 months).

The precipitation values for a specific month and time period are first fitted to

an appropriate probability distribution, which is then transformed into a stan-

dard normal distribution. The methodology related to this procedure has been

already explained in Section 1.2. SPI values close to zero indicate precipitation

close to the long-term average, positive or negative values indicate above-normal

or below-normal rainfall, and negative values less than -1 indicate the occurrence

of meteorological drought.

The gamma distribution is commonly used to fit the cumulative precipitation

data in the probability distribution function (PDF) for SPI calculation (Mckee

et al., 1993; Soľáková et al., 2014; Stagge et al., 2015b), and it was also employed

in this work.

p(x; k, θ) =
1

θkΓ(k)
xk−1e−

x
θ , (2.3)

where:

p(x; k, θ) represents the probability density function of the gamma distribu-

tion;
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x is the random variable for which you want to calculate the probability

density;

k is the shape parameter of the gamma distribution;

θ is the scale parameter of the gamma distribution;

Γ(k) represents the gamma function.

In addition, it is important to consider the "zero precipitation problem" when

dealing with seasons of low precipitation, where the accumulated precipitation over

short time periods (typically 1 or 3 months) can be zero. However, the gamma

distribution can only handle positive values. Therefore, following the approach

suggested by Stagge et al. (2015b), the cumulative gamma distribution function

was transformed into a piecewise probability distribution:

p(x) =

p0 + (1− p0)G(xp>0,γ) for x > 0

p0 =
np=0+1
2(n+1) for x = 0

, (2.4)

where p is the probability distribution, p0 is the zero precipitation probability,

n(p=0) is the number of zeros occurring in the total data set of n values, G(xp>0,γ)

denotes the Gamma distribution with parameters γ, and x is one element in the

series.

2.2.2.2. Standardized precipitation-evapotranspiration index

Temperature plays a significant role in hydrological processes, which is why, in ad-

dition to the SPI, the SPEI was considered in this study. The computation of the

SPEI (Vicente-Serrano et al., 2010) follows a similar procedure to that of the SPI.

However, in this case, the reference meteorological variable is the useful precipi-

tation, i.e., the difference between precipitation and potential evapotranspiration
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(PET). Due to the availability of only mean temperature data for the study area,

PET was evaluated using the Thornthwaite method (Thornthwaite, 1948).

The potential evapotranspiration according to the Thornthwaite formulation

(Thornthwaite, 1948) PETThorn [mm/day] is calculated as follows:

PETThorn =

0, if T < 0

16 · N
360 ·

(
10 · T

I

)a if T > 0

, (2.5)

where N is the duration of sunlight in hours, varying with season and latitude,

T is the average daily air temperature [°C], and I is a heat index calculated as

follows:

I =

Dec∑
Jan

max[0, Tm]5 · 1.514, (2.6)

where Tm is the monthly mean temperature [°C]. The exponent a is calculated as

follows:

a = (6.75× 10−7 · I3)− (7.71× 10−5 · I2) + (0.01792 · I) + 0.49239. (2.7)

The gamma distribution used for the SPI no longer accommodates the inclusion of

useful precipitation data when negative values arise due to the influence of poten-

tial evapotranspiration. To address this, the log-logistic distribution, as suggested

by Stagge et al. (2015b), was employed.

p(x;α, β, γ) =
∑log

(
β

α

(
x− γ

α

)β−1
)

− log

(
1 +

(
x− γ

α

)β
)2
 . (2.8)

In this formula:
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x is the random variable for which you want to calculate the probability

density;

α is the shape parameter of the log-logistic distribution;

β is the scale parameter of the log-logistic distribution;

γ is the location parameter of the log-logistic distribution.

2.2.2.3. Standardized groundwater index

The SGI presents conceptual similarity with SPI and SPEI. However, there are

notable distinctions. Unlike SPI and SPEI, SGI does not involve the accumulation

of values over a specific period. Additionally, the distribution of monthly ground-

water levels observed does not conform to the probability distribution functions

(PDFs) previously analyzed. To address this, different distributions have been em-

ployed by various when analyzing groundwater data. These include the plotting

position method (Osti et al., 2008) and the kernel non-parametric distribution

(Vidal et al., 2010; Bloomfield and Marchant, 2013; Soleimani Motlagh et al.,

2017).

The plotting position method is sensitive to the sample size, particularly when

dealing with limited data. Hence, the preferred approach in this study is the kernel

non-parametric method. The PDF of the model adopted in this study follows the

formulation presented by Horová et al. Horová et al. (2012):

p(x) =
1

Nh

N∑
k=1

K

(
x− xk

h

)
. (2.9)

The formula suggests that the probability density at a given point x is computed

as the sum of K kernel functions centered at each data point xk. The kernel

function is 1
h times a base function, typically a Gaussian or Epanechnikov kernel,
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which determines the shape of the kernel. The bandwidth h controls the spread

of these kernels.

In simpler terms, the PDF is calculated by summing up contributions from

individual data points, with each contribution being a scaled and shifted kernel

function centered around that data point. The 1
Nh term normalizes the probability

density function, where N is the sample size.

K(x) =
1√
2π

e−
1
2x

2

. (2.10)

This equation represents the Gaussian kernel function, where the value of K(x)

is computed using the square root of 2π as the normalization factor and the ex-

ponential function with a coefficient of − 1
2 multiplied by the square of x.

Once the distribution is established, the normalization procedure for obtaining

the SGIs follows the same process as described for the meteorological indices.

2.3. Future climate projections

In this work, the future climate estimates for daily precipitation and daily mean

temperature were obtained from a collection of 13 RCMs as part of the EURO-

CORDEX initiative (Jacob et al., 2014). The combinations of GCMs and RCMs

used in this study are listed in Table 2.1. The RCM data encompass a histori-

cal control period (1950/1970-2005) and a projection period from 2006 to 2100,

considering various Representative Concentration Pathways (RCPs). Specifically,

this study focuses on RCP4.5 and RCP8.5 scenarios.
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Table 2.1. Combination of GCMs and RCMs from the EURO-CORDEX project used in
this study.

GCM

CNRM-CM5 EC-EARTH HadGEM2-ES MPI-ESM-LR IPSL-CM5A-MR

RCM CCLM4-8-17 x x x x

HIRHAM5 x

WRF331F x

RACMO22E x x

RCA4 x x x x x

2.3.1. Downscaling and bias correction

To obtain climate information at local scale, the climate model data were down-

scaled from a regional scale, to the climate station locations. It consist of an

interpolation of climate data from the nearest 9 nodes on the model grid to the

designated station. This procedure was accomplished using the Inverse Weighted

Distance method:

Ẑ(P0) =

∑9
i=1

Z(Pi)
d(Pi,P0)p∑9

i=1
1

d(Pi,P0)p

, (2.11)

where:

Ẑ(P0) represents the interpolated value at the target location P0.

Z(Pi) is the RCM value at the grid node at location Pi.

d(Pi, P0) represents the distance between the target location P0 and the data

point Pi.

p is the power parameter that can be adjusted to control the influence of

distance on the interpolation.

The value of p to control the weighting of data points based on their distance from

the target location can be adjusted. Typically, a value of 2 is used for p, as in this

study, depending on the desired weighting scheme.
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After this interpolation, RCMs data underwent bias correction (Teutschbein

and Seibert, 2012; D’Oria et al., 2017), since they are affected by systematic er-

rors (biases) in their output, due to the need to simplify intricate climate processes,

parameterize small-scale phenomena, and make assumptions about initial condi-

tions and external forcing factors. The bias correction is based on the reference

historical period (1976-2005). In this study, the Distribution Mapping method

(Teutschbein and Seibert, 2012) was employed to adjust the Cumulative Distribu-

tion Functions (CDFs) of the climate model data (daily precipitation and temper-

ature) at a monthly scale, i.e., processing each month separately, to align with the

observed data distribution during the selected historical period. The same correc-

tion derived from the historical period was then applied to the future projections.

The Gamma distribution to represent wet-day rainfall was employed (Piani et al.,

2010) and the Gaussian distribution for the temperature time series (Teutschbein

and Seibert, 2012) was adopted. For instance, following Teutschbein and Seibert

(2012) and with reference to the day d of the month m of the control period, the

corrected climate variable V ∗
contr is derived from the RCM climate data Vcontr using

the following equation:

V ∗
contr(d) = F−1

(
F
(
Vcontr(d)

∣∣βcontr,m, βobs,m
))

, (2.12)

here, F represents the cumulative distribution function that approximates the

data (e.g. Gamma and Gaussian distributions for precipitation and temperature,

respectively), and F−1 is its inverse. βcontr,m and βobs,m are the parameter vectors

of the fitted distribution for the daily climate variable simulated by the RCM and

observed for the month m in the control period, respectively.

The corrected daily variable for the scenario period Vscen is then evaluated from

the RCM Vscen as:
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V ∗
scen(d) = F−1

(
F
(
Vscen(d)

∣∣βcontr,m, βobs,m
))

. (2.13)

Furthermore, before implementing the Distribution Mapping correction, the wet-

day frequencies was adjusted. This procedure, applied only for precipitation, in-

volved the identification of an RCM-specific threshold, as outlined by Teutschbein

and Seibert (2012). This threshold was determined to ensure that the count of

rainy days of the climate model aligned with observations. Consequently, any days

with precipitation falling below this threshold were categorized as dry. By way of

explanation, Figure 2.1 shows the concept of the bias correction.

Figure 2.1. Distribution Mapping method (Gupta et al., 2019).

2.3.2. Future meteorological drought indices

Using climate model outputs, SPIs and SPEIs can be computed for selected future

periods. These indices were calculated based on the probability distributions fitted
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to the historical observations. It should be noted that the computation of SPEIs

outside the historical reference period may involve extrapolation, due to increasing

temperature, which can lead to unreasonable values. In such cases, the SPEIs were

constrained to fall within the range of extreme values allowed by the historical

distribution.

Another critical question arises regarding the accuracy of climate models in

representing standardized indices, such as SPIs and SPEIs. To this aim, as pro-

posed by Stagge et al. (2015b) and Osuch et al. (2016), it is necessary to verify the

alignment between the observed and estimated meteorological indices in a com-

mon historical period. If the results align well, it provides confidence that climate

models can reliably predict meteorological indices in the future. To investigate

this matter, a congruence check was conducted by comparing the probability dis-

tributions of observed SPIs and SPEIs with those derived from climate models

for the historical period. The two-sample Kolmogorov-Smirnov test, determining

whether two samples are drawn from the same distribution, was employed. This

test was applied individually to the SPIs and SPEIs calculated using observed data

and RCM data for each station and specific time windows. Each climate model

underwent this analysis.
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The simulation and prediction of aquifer conditions require the use of a conceptual

model, which presents several challenges. Developing comprehensive conceptual

models often requires a vast amount of data, including information about the

geological structure, hydraulic properties of aquifers, boundary conditions, and

pumping rates. Obtaining this level of detail can be difficult and expensive. In

some cases, crucial data may be entirely unavailable. Even when sufficient data

is available, constructing and analyzing complex conceptual models can be com-

putationally demanding. This is because these models often involve numerous

interconnected parameters, and simulating their behavior over different scenarios

can require extensive computer processing time. This prevents the application of

models in real-time decision support scenarios.

Surrogate models provide an efficient and expedient means to approximate

complex, computationally intensive models. By capturing the essential features of

the underlying system, surrogate models enable feasible simulations with increased
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processing speed.

In Chapter 3, the spotlight is on the application of different surrogate modeling

techniques in different fields of groundwater. The impact of climate change on

groundwater resources is analyzed using a statistical approach and three different

artificial intelligence techniques. The aim is modeling and predicting groundwater

behavior using historical and future climate information. In addition, surrogates

can function as educational tools, offering valuable insights into the process of

simplifying real-world physical models and demonstrating how they streamline

complex realities. For this purpose, an ANN is used to build a user-friendly tool

for aquifer management. Then, a neural network is implemented to solve direct and

inverse problems in the field of groundwater transport and contamination. Finally,

physics-informed neural networks are used for solving unconfined groundwater

flow.

3.1. Impact of climate change on groundwater re-
sources

The impacts of climate change extend to all corners of the globe, emphasizing the

urgent need to evaluate its effects on various environmental, societal, and economic

aspects (Jiménez Cisneros et al., 2015). One critical concern revolves around the

future availability of high-quality freshwater resources.

This section of the thesis explores the potential implications of climate change

on one of our most vital natural resources: groundwater. With surface water

sources already experiencing challenges in terms of both quantity and quality, the

reliance on groundwater as a primary water supply becomes increasingly common.

Unfortunately, this reliance, coupled with the direct influence of climate change on

aquifer recharge, raises serious concerns about the sustainability of groundwater
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in terms of availability and quality. By understanding these impacts, valuable

insights into the challenges ahead can be obtained, and effective strategies for

mitigating the effects of climate change on groundwater resources can be explored.

Two different methodologies have been applied to data collected in northern

Tuscany (Italy) in an area served by a water company, but the procedure can be

easily applied to different areas of interest. This research provides a comprehensive

overview of the study area and the available data. The main results are then

presented and thoroughly discussed, leading to the formulation of appropriate

conclusions.

3.1.1. State of the art

Numerous studies have been conducted to quantify the effects of climate change on

groundwater resources. However, this task presents significant challenges, partic-

ularly when employing traditional approaches that rely on complex hydrological

models driven by future climate projections. In fact, as already highlighted in

Chapter 2, climate change analyses typically involve considering an ensemble of

climate models and various emission scenarios. This approach, however, often im-

poses substantial computational demands, potentially restricting the analysis to

short time periods and a constrained number of scenarios.

However, although coupling complex hydrological models with climate change

scenarios can pose a computationally demanding task, literature provides sev-

eral studies addressing this challenge. Malcolm and Soulsby (2000) conducted an

assessment of climate change impacts on a shallow coastal aquifer in northern

Scotland utilizing a numerical MODFLOW model. They examined various cli-

mate change scenarios to investigate future changes in climate variables, such as

precipitation and temperature, and their influence on groundwater levels (GWLs).

Croley and Luukkonen (2003) applied a similar methodology in the Lansing area

of Michigan. Brouyère et al. (2004) employed an integrated hydrological model
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(MOHISE) driven by future climate projections from three General Circulation

Models (GCMs) to evaluate the effects of climate change on groundwater avail-

ability in the Geer basin, Belgium. Citrini et al. (2020) assessed the impacts of

climate change on karst spring discharge using the GR4J model and data from

three climate models under different scenarios (RCP2.6, RCP4.5, and RCP8.5).

Azizi et al. (2021) developed a MODFLOW model for the Varamin plain in Iran to

evaluate changes in GWLs until 2050, utilizing climate data from ten Atmosphere-

Ocean GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios.

In the groundwater environment, surrogate models have proven useful in var-

ious groundwater management problems (Razavi et al., 2012; Asher et al., 2015;

Rajaee et al., 2019). For instance, surrogate models can be employed to forecast

groundwater levels using a set of drivers or proxy variables such as precipita-

tion, temperature, and withdrawals. These models undergo a preliminary training

process using historical data of the drivers (e.g., precipitation and temperature)

and corresponding groundwater level responses. In this field, surrogate models

typically fall into two categories: statistical approaches and machine learning al-

gorithms, which have gained popularity due to advancements in computing capa-

bilities.

Numerous studies (Khan et al., 2008; Bloomfield and Marchant, 2013; Kumar

et al., 2016; Leelaruban et al., 2017; Soleimani Motlagh et al., 2017; Van Loon

et al., 2017; Uddameri et al., 2019; Guo et al., 2021) have employed statistical

approaches to explore the relationships between groundwater levels and various

proxy variables.

Standardized indices are frequently employed to represent key variables of in-

terest. These indices, including the Standardized Precipitation Index (SPI), the

Standardized Precipitation-Evapotranspiration Index (SPEI), and the Standard-

ized Groundwater Index (SGI), offer a standardized framework for quantifying and

comparing these variables.

54



CHAPTER 3. Applications

Notable findings from these studies include the research of Khan et al. (2008) in

the Murra-Darling Basin, Australia, where they observed a strong SPI correlation

with groundwater fluctuations, though diminished in areas with intensive irrigation

and complex recharge patterns.

Bloomfield and Marchant (2013) extended this understanding to the United

Kingdom, highlighting the SPI-SGI relationship. Specifically, the analysis revealed

that the computation of the SGI introduces novel complexities in defining an

appropriate statistical distribution for monthly groundwater levels, influenced by

distinct local characteristics. Despite these challenges, a robust and conspicuous

association between SPIs and SGIs was discerned. It is worth noting, however,

that the authors emphasized the spatial variability of hydrological processes, which

hinge on a multitude of driving factors beyond mere meteorological conditions.

Kumar et al. (2016) conducted research in Germany and the Netherlands, em-

phasizing the need for variable precipitation accumulation periods (3-24 months)

to fit SPI and SGI, indicative of groundwater’s delayed response to precipitation.

Leelaruban et al. (2017) found SPI with accumulation period of 24 months

to be optimal for groundwater level assessment in Central US, underlining the

region-specific nature of drought relationships.

Soleimani Motlagh et al. (2017) adopted clustering techniques to investigate

groundwater drought in Iran, discovering varying precipitation accumulation pe-

riods and correlation coefficients among different clusters.

Van Loon et al. (2017) emphasized the importance of spatially variable accumu-

lation periods when reconstructing groundwater droughts over extensive regions.

Uddameri et al. (2019) explored the use of SPI as a surrogate for groundwater

drought in the Edwards Aquifer, Texas. While SPI and SGI showed statistical

correlation, they cautioned that SPI might only provide qualitative predictions of

groundwater drought

Guo et al. (2021) explored groundwater drought variations across US regions,
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attributing differences to agricultural and human activities and analyzing the tem-

poral lag between meteorological and groundwater droughts.

Furthermore, climate models give the opportunity to project SPI and SPEI

trends in future scenarios, with Stagge et al. (2015b) noting increased drought

severity in the Mediterranean region and reduced occurrences in northern Europe

due to climate change, aligning with historical data. These studies collectively shed

light on the intricate relationships between meteorological indices and groundwater

levels, underlining regional changes and the importance of customized approaches

in assessing groundwater droughts, while also highlighting the potential implica-

tions of climate change on future drought patterns.

Shifting from statistical approaches to machine learning techniques, these al-

gorithms have been employed to establish the relationships between groundwater

levels and meteorological data, as discussed in the extensive reviews by Rajaee

et al. (2019) and Tao et al. (2022). Several studies have utilized different machine

learning techniques to assess piezometric levels over a historical period using a sub-

set of available observations. These techniques include artificial neural networks

(Coppola et al., 2003; Lallahem et al., 2005; Mohanty et al., 2010; Trichakis et al.,

2011; Karthikeyan et al., 2013; Taormina et al., 2012; Sahoo and Jha, 2013; Shiri

et al., 2013; Emamgholizadeh et al., 2014), and support vector machines (Yoon

et al., 2011; Shiri et al., 2013; Suryanarayana et al., 2014). Some studies con-

sider precipitation as the sole input feature, while others incorporate additional

variables such as temperature, humidity, runoff, and evapotranspiration. Coastal

aquifers have used tidal levels as input data, while other studies have included

antecedent groundwater levels, pumping rates, and water demand.

Recent research has also investigated the impact of climate change on ground-

water levels by combining machine learning techniques with future climate projec-

tions (Chen et al., 2010; Chang et al., 2015; Jeihouni et al., 2019; Idrizovic et al.,

2020; Javadinejad et al., 2020; Ghazi et al., 2021; Gonzalez and Arsanjani, 2021).
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Afrifa et al. (2022) provide a comprehensive review of mathematical and machine

learning models used to examine the effects of climate change on groundwater level

fluctuations.

Chen et al. (2010) investigated the effects of climate change and human activi-

ties on shallow groundwater levels in Wuqiao, North China Plain, using projections

from 20 GCMs. They trained a Back-Propagation Artificial Neural Network (BP-

ANN) with observed meteorological and pumping rate data to replicate ground-

water levels. The ensemble mean of the climate models was used to project future

climate variables and simulate deviations in groundwater levels using the trained

network.

Chang et al. (2015) developed two ANNs to simulate and predict supraper-

mafrost groundwater levels, considering different scenarios of precipitation and

temperature increases.

Idrizovic et al. (2020) studied the potential influence of climate change on the

Toplica River catchment, where a calibrated hydrological model (HBV-light) was

used to simulate runoff based on historical precipitation, temperature, and poten-

tial evapotranspiration data. An ANN was then trained using runoff values to

reproduce groundwater levels, and future projections of precipitation and temper-

ature from an ensemble of seven RCMs were used to estimate future groundwater

levels under different climate scenarios (RCP4.5 and RCP8.5).

The following sections of this thesis present the implementation of two innova-

tive methodologies for the application of surrogate models. These methodologies

will encompass statistical approaches and machine learning techniques, providing

a comprehensive and detailed exploration of their integration and utilization.

3.1.2. Study area and available data

The geographical focus of this study, as depicted in Figure 3.1, encompasses the

northern part of Tuscany in Italy, covering an approximate area of 3000 km2. The
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study area is of particular interest to an Italian water company, which seeks to

assess the impact of climate change on water resources within this region. Over the

years, there have been significant transformations in the anthropic occupation of

this area. While agriculture had been the predominant activity in the past century,

it has experienced a decline, with tourism emerging as the primary source of income

(Pranzini et al., 2019). Currently, agricultural land accounts for approximately

14-16% of the total area, resulting in a relatively modest water demand. Natural

forests, on the other hand, cover a significant portion, ranging from 55% to 70%

of the total area (PTA, 2005).

Previous studies have already conducted investigations within this area (D’Oria

et al., 2017, 2019), and accordingly, it has been divided into four watersheds based

on water divides (Fig. 3.1): Magra, Serchio, Coastal Basins, and a portion of the

Arno River basin known as Arno Portion. This division was necessary due to the

distinct characteristics exhibited by each basin. Table 3.1 provides a summary

of the annual precipitation and mean temperature recorded in these four basins

during the period of 1934-2020.

Table 3.1. Annual mean temperature and annual precipitation over the basins: average,
maximum and minimum values in the period 1934-2020.

Annual mean temperature (°C) MAGRA COASTAL BASINS SERCHIO ARNO PORTION

Average 13.2 13.2 12.9 14.8

Max 14.8 14.8 14.3 16

Min 11.3 11.8 11.4 13.3

Annual precipitation (mm) MAGRA COASTAL BASINS SERCHIO ARNO PORTION

Average 1539 1578 1536 1205

Max 2608 2579 2650 2039

Min 810 803 825 444

The basin of the Magra River covers three distinct areas: coastal, hilly, and

mountain portions, with a total area of 938 km2. The coastal part of the basin

is not included in the study. The hilly area exhibits high spatial variability in

temperature due to the influence of the coastal climate. The inner mountain

58



CHAPTER 3. Applications

Figure 3.1. Location of the study area with indication of the climate stations, monitoring
wells and river basins.

area experiences average winter temperatures close to zero and moderate snow

accumulation, with high precipitation occurring in the internal regions.

The Coastal basins, spanning an area of 383 km2, are situated between the

Apuan Alps and the Tirreno Sea. These basins receive high levels of precipitation

due to the proximity of the Apuan Alps, with the most intense rainfall occurring

in late spring, late summer, and autumn. The winter season is characterized by

sporadic and short-duration snowfall.

The Serchio River basin, covering 1545 km2, originates in the Apennine area

north of the Province of Lucca and flows into the Tirreno Sea. The longitudinal
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orientation of the basin in relation to the sea makes it one of the wettest areas in

Italy, with annual total precipitation exceeding 2500 mm per year on the Apuan

hills.

The Arno portion, with an area of 186 km2, was historically occupied by

swamps and a lake with irregular drainage to the Serchio River or Arno River

based on seasonal variations. The area was later reclaimed through an artificial

channel, redirecting the water to the Arno River. Precipitation in this area is

distributed throughout the year, with two distinct periods: abundant and regular

rainfall from January to May, and significant but irregularly distributed precipi-

tation from October to December.

For this study, data from 18 gauging stations (Table 3.2) and 16 wells (Table

3.3) were considered. The precipitation and temperature data extend to neigh-

boring regions (Liguria and Emilia Romagna regions) and were obtained from the

Environmental Agency of each region. The historical daily precipitation and tem-

perature database used in previous studies was updated until 2020. The selected

stations represent the historical climate due to their long records. The wells pro-

vide groundwater level measurements from 2005 to 2020, except for the S. Pietro

a Vico well, which had limited data and was excluded from the analysis.

All the wells included in the study have been classified according to the Eu-

ropean Directive 2008/105/CE and subsequent national laws as belonging to un-

derground water bodies. In the Magra basin, only one monitoring well (Bandita

7) is available, located in the city of Aulla in the bed aquifer of the Magra River.

The Magra groundwater body (21MA010) extends to a depth of a few tens of

meters, resting on the impermeable sediments of the Rusciniano-Villafranchiano

substratum.

The Coastal basin comprises seven monitoring wells, which are part of the

Versilia and Apuan Riviera groundwater body (33TN010). It is a multilayer system

with silt or clayed-silt lenses, and direct contact between the aquifer horizons is
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Table 3.2. Type of data and elevation of the precipitation and temperature gauges.

ID Name Rain gauge Temp. gauge Elevation [m a.s.l.]

G1 Arlia x x 460

G2 Bagnone x x 195

G3 Bedonia x x 500

G4 Borgo a Mozzano x 100

G5 Calice al Cornoviglio x x 402

G6 Carrara x x 55

G7 Casania x 845

G8 Cembrano x x 410

G9 Lucca x x 16

G10 Massa x x 150

G11 Palagnana x 861

G12 Pescia x x 78

G13 Pontremoli x x 340

G14 S. Marcello Pistoiese x x 618

G15 Sarzana x x 26

G16 Viareggio x x 0

G17 Villacollemandina x 502

G18 Villafranca Lunigiana x x 156

prevalent. The main groundwater flow is supplied by the upstream basins and

alluvial fans of the streams.

The Serchio basin includes six monitoring wells. The Decimo well is situated in

the upper-medium valley of the Serchio River groundwater body (12SE020), with

a depth of 20-30 meters resting on the impermeable sediments of the Pliocene

substratum. This phreatic aquifer exhibits lateral continuity along the course of

the Serchio River and its tributaries. The other wells are located in the Lucca

plain groundwater body, characterized as a phreatic aquifer within the Serchio

zone (12SE011).

Two wells are located in the Arno portion basin, belonging to the Lucca plain -
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Bientina area groundwater body (11AR028). The aquifer in this area is primarily

phreatic, with a shallow confining layer recognized only in the southern region.

Table 3.3. ID, name, reference groundwater body, percentage of available data and ground
elevation of the monitoring wells.

ID Name Groundwater body % data Elevation m a.s.l.

W1 Bandita 7 21MA010 73.4 68.00

W2 Corte Spagni 11AR028 83.8 9.07

W3 Cugnia 33TN010 91.7 4.00

W4 Diecimo 12SE020 60.9 65.00

W5 Flor Export 12SE011 64.6 1.67

W6 Nozzano 12SE011 78.6 16.43

W7 Paganico 11AR028 72.4 13.00

W8 Percorso vita 33TN010 78.1 1.56

W9 Ronco 12SE020 79.7 11.67

W10 Salicchi 12SE011 83.3 27.12

W11 S.Alessio 12SE011 71.9 18.87

W12 S.Pietro a Vico 12SE011 12.0 30.69

W13 Sat 1 33TN010 75.5 1.50

W14 Unim 33TN010 91.7 19.91

W15 Via Barsanti 33TN010 91.7 20.00

W16 Via Romboni 33TN010 88.0 37.92

During data collection, gaps were present within the time series. To fill these

blanks and ensure a continuous set of observations, the FAO method (Allen et al.,

1998) was adopted, as presented in Section 2.2. This method was applied to fill

gaps in groundwater level, precipitation, and temperature datasets. Notably, the

Bandita7 well, even after the FAO filling process, still contains missing data due

to its inadequate correlation with the other wells.

In addition, out of the 18 climate gauging stations, four lack temperature data.

Since this study requires both precipitation and potential evapotranspiration data,

62



CHAPTER 3. Applications

it is crucial to have contemporaneous records of temperature and precipitation at

the same location. Consequently, once the gaps in the time series were filled, the

temperature data were interpolated to the precipitation station locations following

the procedure described in Section 2.2.

3.1.3. Future climate projections

The future climate estimates for daily precipitation and daily mean temperature

were obtained from a collection of 13 RCMs (Table 2.1) as part of the EURO-

CORDEX initiative (Jacob et al., 2014). Then, as highlighted in Section 2.3, the

climate model data were downscaled to 18 climate stations and underwent bias

correction based on the reference historical period of 1976-2005. The Distribu-

tion Mapping method (Teutschbein and Seibert, 2012) was employed to adjust

the Cumulative Distribution Functions (CDFs) of the climate model data (daily

precipitation and temperature) at a monthly scale to align with the observed data

distribution during the selected historical period (see Section 2.3.1). The future

analysis was conducted for short-term (2006-2035), medium-term (2036-2065), and

long-term (2066-2095) periods. For the sake of conciseness and to provide an over-

arching view of predicted climate changes, Figure 3.2 presents annual precipitation

and annual mean temperature values averaged across the entire study area for both

historical and future periods. The data are displayed in the form of a 10-year mov-

ing average to reduce the influence of natural climate variability and emphasize

climate change components.

Analysis based on both the RCP4.5 and RCP8.5 scenarios, as well as median

values, reveals that annual precipitation is not expected to undergo substantial

modifications in the future under both scenarios (Fig. 3.2a). However, it is impor-

tant to note that there is considerable variability among different climate models,

indicating a significant level of uncertainty in future precipitation estimations. Re-

garding temperature trends (Fig. 3.2b), a clear and consistent upward trajectory
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is observed for the future across both RCP scenarios. Both historical climate data

and climate models indicate that temperature has been increasing since the 1990s,

and this upward trend is projected to continue until around 2040 for both RCP

scenarios. After this period, RCP8.5 suggests a more pronounced warming of the

study area.

Figure 3.2. Total annual precipitation (a) and annual average of the mean daily temper-
ature (b) in terms of 10-year moving average observed and forecasted by the RCMs under
the RCP4.5 and RCP8.5 scenarios. Average values over the entire study area.

3.1.4. Statistical approach

In this part of the thesis a useful methodology to evaluate the impacts of cli-

mate change on groundwater levels is presented. Linear regression models were

used to establish predictive relationships between groundwater index (SGI) and

meteorological indices (SPI and SPEI). The relationships evaluated according to

the historical data have been applied to future SPI and SPEI values, estimated

by means of an ensemble of regional climate models (RCMs), to infer future SGI

indices under different climate scenarios (RCP 4.5 and RCP 8.5).
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3.1.4.1. Set up of the surrogate model

This section offers a brief description of the steps involved in setting up the surro-

gate model. It outlines the key procedures such as indices calculation, correlation

analysis, and regression, as well as considerations for future levels.

Standardized Precipitation Index (SPI)

The SPI was evaluated at the station scale using long-term precipitation records

from the reference period of 1934-1993. The gamma distribution was used to fit

the cumulative precipitation data in the probability distribution function (PDF)

for SPI calculation (see Section 2.2.2.1). The distribution function fitted over the

reference period was utilized to calculate the SPIs for more recent years (2005-

2020) when groundwater level data were available. The decision to not extend the

reference period until 2020 was based on the detection of climate change effects in

the study area since the ’90s (D’Oria et al., 2017).

After computing the SPIs at each gauging station, they were processed to de-

rive an average value using the Thiessen polygon method. Specifically, the average

SPIs for each basin as well as for the entire study area were obtained.

Standardized Precipitation-Evapotranspiration Index (SPEI)

The SPEI was evaluated at the station scale using long-term temperature records

from the reference period of 1934-1993. The log-logistic distribution was employed

to fit the cumulative useful precipitation data, i.e., the difference between precip-

itation and potential evapotranspiration, in the probability distribution function

(PDF) for SPEI computation (see Section 2.2.2.2). Similar to the SPI, the distri-

bution function fitted over the reference period was utilized to calculate the SPEIs

for more recent years (2005-2020) when groundwater level data were available;

Thiessen polygons were employed to compute areal averages of the SPEIs at the
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station level for each basin as well as for the entire study area.

Standardized Groundwater Index (SGI)

The SGI was evaluated for each well using groundwater level records from the

period of 2005-2020. The kernel distribution was used to fit the data in the proba-

bility distribution function (PDF) for SGI calculation (see Section 2.2.2.3). After

adjusting the distribution to fit the data, the method outlined in Section 1.2 was

employed to derive the standardized index.

Correlation between meteorological and groundwater indices

To investigate potential relationships between meteorological and groundwater in-

dices, the Pearson correlation coefficient between meteorological and groundwater

indices was computed for each monitoring well. This involved weighing meteoro-

logical indices based on the corresponding basin and correlating them with the SGI

in the period 2005-2020. The analysis spanned eight time windows (1, 3, 6, 9, 12,

18, 24, and 36 months). Additionally, as suggested by Bloomfield and Marchant

(2013), investigations were conducted to explore whether introducing potential

delays between meteorological and groundwater indices (e.g., shifting the SPI or

SPEI backward) could enhance their correlation. A threshold correlation coeffi-

cient of 0.6 was adopted, following (Evans, 1996), to identify a satisfactory linkage

between the two indices. For correlations meeting this criterion, the relationship

between these two indices was further examined through linear regression analysis

(see Section 1.2).

Future SPIs and SPEIs

Using the climate model outputs, the SPIs and SPEIs were computed for both

the historical period and selected future periods (see Section 2.3.2). These in-

dices were calculated based on the probability distributions fitted to the historical
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observations from 1934 to 1993.

The question arises as to whether the downscaled and bias-corrected results

obtained from the climate models accurately represent the observed standardized

indices, such as SPIs and SPEIs, during a common historical period, as emphasized

by Stagge et al. (2015a) and Osuch et al. (2016). If the results align well, it provides

confidence that the climate models can reliably predict the meteorological indices

in the future.

To investigate this matter, a congruence check was conducted by comparing

the probability distributions of the observed SPIs and SPEIs with those derived

from the climate models for the historical period of 1976-2005. The two-sample

Kolmogorov-Smirnov test, which determines whether two samples are drawn from

the same distribution, was employed. In fact, the application of the distribution

mapping procedure as a bias correction method (Teutschbein and Seibert, 2012)

guarantees congruence at the single-month scale, although it may not be assured

for longer time windows. This test was applied individually to the SPIs and SPEIs

calculated using both the observed data and the RCM data for each station and

specific time windows. Each climate model was subjected to this analysis.

Future SGIs

Assuming that the regression equations determined for the historical period (2005-

2020) remain valid in the future, they were utilized to estimate the SGIs based on

the projected meteorological indices (SPIs or SPEIs). As already mentioned for

the future climate projections, the future analysis was conducted for short-term

(2006-2035), medium-term (2036-2065), and long-term (2066-2095) periods.

3.1.4.2. Results

This section provides a summary of the main findings. Firstly, the SPIs, SPEIs,

and SGIs calculated during the historical period (2005-2020) are presented. Then,
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the correlations between meteorological and groundwater indices are examined,

identifying their relationships. Finally, the future projections of SGIs are pre-

sented.

Historical SPIs, SPEIs and SGIs

Although SPIs and SPEIs were originally calculated at the station scale, for the

sake of brevity, Fig. 3.3 illustrates their averages over the basins of interest and

during the period when groundwater level data were available (2005-2020). The

selection of time windows of 6, 9, and 12 months is based on the highest ob-

served correlations between meteorological and groundwater indices within these

accumulation periods.

Regarding the variability of SPIs among the basins, it appears to be statisti-

cally non-significant. Focusing on the 12-month time window (Fig. 3.3a, SPI-12),

all basins exhibit a drought period that initiates in 2005 and concludes in 2009.

Another significant drought event is identified from 2012 to 2013, with the Magra

basin experiencing relatively milder conditions. Furthermore, within the context

of the 12-month time window, the Arno portion basin records the lowest SPI values

in 2008, while the Serchio basin exhibits the highest values during 2012-2013.

SPEI values (Fig. 3.3b) reveal drought periods that closely align with those

identified by SPIs. On average, focusing on the 12-month time window, SPEIs tend

to exhibit lower negative values and moderately higher positive values. Specifically,

the lowest SPEI value is observed in the Arno portion basin in 2012, while the

highest value is noted in the Serchio basin in 2014.

In addition, as previously indicated, the two-sample Kolmogorov-Smirnov test

was conducted to compare meteorological indices obtained using historical and

RCM information. For SPIs, at a significance level of 5%, nearly all samples

passed the test, with only a few exceptions (1%) resulting in a p-value slightly

below the threshold. For SPEIs, the percentage of no-passing samples increases

68



CHAPTER 3. Applications

to 20% but remains relatively low. The results of the Kolmogorov-Smirnov test

confirm the reliability of SPIs and SPEIs evaluated using climate model data.

Figure 3.3. SPIs (a) and SPEIs (b) for the four analyzed basins and time windows of 6,
9 and 12 months.

The SGIs, as depicted in Fig. 3.4, detect drought periods that bear similarities

to those identified by SPIs and SPEIs for nearly all wells. For selected wells, such

as Bandita7 in the Magra basin, Unim in the Coastal basin, and Corte Spagni

in the Arno basin, certain periods exhibit positive or slightly negative SGI val-

ues, potentially attributed to external factors influencing groundwater dynamics.

For instance, the proximity of the Magra River to the Bandita7 well may impact

groundwater levels, while Unim and Corte Spagni may be influenced by with-

drawals from nearby well fields.
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Figure 3.4. SGI values for the 15 monitoring wells used in this study. The white color
indicates missing data, the grey color indicates positive values, while the color scale clas-
sifies the negative SGIs.

Meteorological and groundwater index relationships

A notable aspect to highlight is that the correlations obtained using basin-weighted

SPIs and SPEIs tend to be higher compared to those calculated using indices

weighted over the entire study area. This enhanced correlation aligns with findings

in existing literature, which have highlighted the influence of both climate and

basin characteristics on the propagation of precipitation signals to groundwater

(Kumar et al., 2016).

The results in terms of SPI-SGI relationships are presented in Figure 3.5. The

correlation coefficients exceeding the chosen threshold of 0.6 exhibit consistently

stronger correlations with time windows of six, nine, and twelve months. This ob-

servation aligns with the expectations, given that the wells are located in shallow
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aquifers with moderate distances from the ground surface (Kumar et al., 2016).

However, certain wells display low correlation values across all considered time

windows, particularly evident for Bandita7, Unim, and Corte Spagni wells, con-

sistent with the results reported in the previous section.

Figure 3.5. SGI-SPI Pearson correlation coefficients.

Then, for the following analysis, only the wells with correlation coefficients ex-

ceeding the selected threshold of 0.6 within the 6-, 9-, and 12-month time windows

were consider. Ten wells meet this criterion, distributed across the Arno portion

(1 well), Coastal (5 wells), and Serchio (4 wells) basins.

The heat maps in Figure 3.6 summarize the analysis carried out to investigate

the presence of delay (lag) between meteorological and groundwater indices. The

results reveal that the highest correlation coefficient is observed with zero-lag.
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This indicates that, for the study area, meteorological droughts closely align with

groundwater droughts.

Figure 3.6. Heat maps of the SGI-SPI correlation coefficients (R) for different time
windows and lags. The black box represents the highest correlation coefficient.

In the study area and for the 10 selected wells, the precipitation accumulation

periods yielding the highest correlations do not exhibit significant spatial variabil-

ity. For all these wells, except one, the maximum correlations are consistently

observed within the six- and nine-month time windows, with correlation coeffi-

cients showing little variation within these accumulation periods. Consequently,

for clarity and uniformity, the SPI with a six-month time window (hereafter re-

ferred to as SPI6) was selected for all 10 wells in the subsequent analyses.

Having established the correlation between SPIs and SGIs, the relationship be-

tween these two indices using linear regression analysis was analyzed (Fig. 3.7).
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Across all wells, the slope of the regression line consistently falls below one, in-

dicating that, in the study area, a damping mechanism is at play during the

propagation process from meteorological to groundwater droughts, smoothing out

negative anomalies (Van Loon et al., 2017). The dispersion around the regression

line (Fig. 3.7) suggests that, as expected, factors beyond precipitation, such as

lateral inflow/outflow and human activities, contribute to the drought propagation

process (Wang et al., 2016). Nevertheless, the high correlation between SPIs and

SGIs justifies considering this straightforward relationship for subsequent analyses.

Figure 3.7. SGIs versus SPI6; the points represent the data, the red line indicates the
regression line and the black line denotes the identity line. For each well, the correlation
coefficient (R) and the regression equation is reported.

The same approach as described above was applied to investigate the correla-

tions and relationships between SPEIs and SGIs. Also in this case, correlations

tend to be higher for accumulation periods of 6, 9, and 12 months (Fig. 3.8). The

same set of 10 wells that meet the threshold criterion for the SPI-SGI correlation

analysis also fulfills the threshold condition for the SPEI-SGI relation. Gener-

ally, the correlations between SPEIs and SGIs are somewhat lower than those
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observed for SPIs and SGIs. In most cases, the 9-month time window yields the

best results, with correlation coefficients similar to those of adjacent accumulation

periods. Therefore, for clarity and consistency, further analyses were conducted

using the SPEI with a 9-month time window (hereafter referred to as SPEI9),

weighted according to the four basins.

Figure 3.8. SGI-SPEI Pearson correlation coefficients.

An examination of the influence of time delays between SPEIs and SGIs showed

that, once again, the maximum correlations are achieved with zero-lag for all 10

wells (figure not shown for brevity). Across all wells, the slopes of the regression

lines are lower than those evaluated using SPIs, indicating a greater attenuation

in drought propagation processes in the study area when considering evapotran-

spiration processes. Similarly, the spread around the regression line (Fig. 3.9)
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underscores that factors beyond precipitation also influence groundwater levels.

Nevertheless, the strong correlation between SPEIs and SGIs justifies the use of

this straightforward relationship for subsequent analyses.

Figure 3.9. SGIs versus SPEI9; the points represent the data, the red line indicates the
regression line and the black line denotes the identity line. For each well, the correlation
coefficient (R) and the regression equation is reported.

Future groundwater indices

The SPI6 and SPEI9 values, derived from climate models at each station location,

were subjected to averaging within each basin, under the two different RCP sce-

narios. These values were then employed to estimate SGIs for both historical and

future periods, using the relationships depicted in Figures 3.7 and 3.9. To perform

this estimation, the time series generated by the 13 RCMs were assembled to cre-

ate a single dataset, assuming equal reliability among these 13 model realizations

as they represent statistical outcomes of the same stochastic process. Hereafter,

this dataset is referred as the "whole RCM ensemble."

As an illustrative instance, Figure 3.10 presents empirical cumulative distribu-
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tion functions of SGIs for the Paganico well (located within the Arno portion basin)

under the RCP8.5 scenario. The envelope curves encompassing various CDFs, cor-

responding to each climate model separately, demonstrate substantial uncertainty

attributable to differences among individual models, with this uncertainty being

more pronounced in the long-term.

Figure 3.10. Cumulative probability distributions according to the whole RCM ensemble
obtained for the Paganico monitoring well through the SGI-SPI6 (a) and the SGI-SPEI9
(b) regression equations for the historical period and at short- (ST), medium- (MT) and
long-term (LT) under the RCP8.5 scenario. Envelope curves obtained by the 13 RCM
models.

The results for the Paganico well are summarized in Figure 3.11 using box-

whisker plots. When applying the SGI-SPI6 regression relationships, no significant

alterations are apparent between the historical and future periods, with the median

value remaining close to zero throughout all periods. Notably, there are positive

outliers due to the outcomes of a specific model that predicts abundant future

precipitation, in contrast to the other RCMs. Conversely, employing the SGI-

SPEI9 regression relationships reveals a systematic reduction in SGIs, particularly

at medium- and long-term projections. Accounting for temperature, the effects

of the model projecting abundant precipitation are mitigated, and there is an
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increase in negative outliers.

To quantify these outcomes across all observation wells, characteristic SGI

values derived from the SGI-SPI6 and SGI-SPEI9 regression relationships are pre-

sented in Tables 3.4 and 3.5. Under the SGI-SPI6 relationships, a minor decrease

in SGIs is evident in the medium-term for RCP4.5 and in the long-term for RCP8.5

when examining the 25th percentile and median values. Conversely, when utilizing

the SGI-SPEI9 relationships, substantial reductions in future SGIs are observed

across most wells. For RCP4.5, the medium-term period experiences the most

significant declines, while for RCP8.5, the most critical groundwater level con-

ditions are anticipated in the long-term. These detected changes exhibit similar

characteristics across all wells, particularly within the same basin.

Figure 3.11. Box-plots of the SGIs obtained for the Paganico monitoring well. The
SGIs were calculated according to the whole RCM, through the SGI-SPI6 and SGI-SPEI9
regression equations for the historical period and at short-term (ST), medium-term (MT),
and long-term (LT) under the two RCP scenarios. The boxplot marks points as outliers
if they are greater than the mean ± 2.7σ, where σ is the standard deviation.
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Table 3.4. Differences of the median, 25th and 75th percentiles of the future SGIs with
those evaluated in the historical period. The SGIs are defined through the SGI-SPI6
regression relationships for the historical period and at short- (ST), medium- (MT) and
long-term (LT), under the RCP4.5 and RCP8.5.

SGI-SPI6

Historical
Differences with the historical period

RCP4.5 RCP8.5
ST MT LT ST MT LT

Paganico
25th -0.36 0.04 -0.12 0.03 0.01 -0.01 -0.07
50th 0.08 0.03 -0.05 0.03 0.03 0.05 -0.01
75th 0.47 0.06 0.02 0.12 0.07 0.09 0.09

Cugnia
25th -0.33 -0.08 -0.21 -0.12 -0.09 -0.12 -0.17
50th 0.01 0.03 -0.04 0.04 0.01 0.02 -0.01
75th 0.33 0.15 0.13 0.20 0.15 0.15 0.17

SAT 1
25th -0.41 0.01 -0.12 -0.03 -0.01 -0.04 -0.08
50th 0.01 0.04 -0.03 0.05 0.02 0.02 -0.01
75th 0.41 0.07 0.06 0.13 0.08 0.08 0.10

Via Barsanti
25th -0.46 0.01 -0.13 -0.04 -0.01 -0.04 -0.09
50th 0.00 0.04 -0.03 0.05 0.02 0.02 -0.01
75th 0.44 0.08 0.06 0.14 0.09 0.09 0.11

Via Romboni
25th -0.49 -0.15 -0.05 -0.01 -0.06 -0.11 -0.06
50th 0.03 -0.08 0.01 0.02 -0.02 -0.05 -0.04
75th 0.53 -0.02 0.07 0.04 0.01 0.03 0.01

Percorso Vita
25th -0.43 0.01 -0.12 -0.03 -0.01 -0.04 -0.08
50th -0.01 0.04 -0.03 0.05 0.02 0.02 -0.01
75th 0.39 0.07 0.06 0.13 0.08 0.08 0.10

Nozzano
25th -0.40 0.01 -0.14 -0.04 -0.01 -0.04 -0.12
50th -0.01 0.02 -0.05 0.01 0.01 -0.01 -0.05
75th 0.35 0.04 0.02 0.07 0.06 0.04 0.03

S. Alessio
25th -0.38 0.01 -0.14 -0.04 -0.02 -0.04 -0.12
50th 0.03 -0.01 -0.08 -0.02 -0.03 -0.04 -0.08
75th 0.40 -0.02 -0.03 0.02 0.00 -0.01 -0.02

Salicchi
25th -0.39 0.01 -0.14 -0.04 -0.01 -0.04 -0.12
50th 0.00 0.02 -0.05 0.01 0.00 -0.01 -0.05
75th 0.36 0.04 0.02 0.07 0.06 0.04 0.03

Diecimo
25th -0.47 0.01 -0.16 -0.04 -0.02 -0.05 -0.14
50th -0.01 0.03 -0.06 0.01 0.01 -0.01 -0.06
75th 0.42 0.04 0.03 0.09 0.07 0.05 0.04
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Table 3.5. Differences of the median, 25th and 75th percentiles of the future SGIs with
those evaluated in the historical period. The SGIs are defined through the SGI-SPEI9
regression relationships for the historical period and at short- (ST), medium- (MT) and
long-term (LT), under the RCP 4.5 and RCP 8.5

SGI-SPEI9

Historical
Differences with the historical period

RCP4.5 RCP8.5
ST MT LT ST MT LT

Paganico
25th -0.28 -0.13 -0.51 -0.44 -0.15 -0.39 -0.49
50th 0.19 -0.12 -0.43 -0.34 -0.10 -0.34 -0.40
75th 0.62 -0.05 -0.31 -0.20 -0.03 -0.23 -0.22

Cugnia
25th -0.32 -0.08 -0.29 -0.25 -0.08 -0.21 -0.27
50th 0.02 -0.04 -0.21 -0.16 -0.03 -0.17 -0.19
75th 0.38 0.01 -0.14 -0.07 0.01 -0.13 -0.10

SAT 1
25th -0.30 -0.08 -0.28 -0.24 -0.08 -0.21 -0.27
50th 0.02 -0.04 -0.21 -0.16 -0.03 -0.17 -0.19
75th 0.37 0.00 -0.14 -0.07 0.00 -0.13 -0.10

Via Barsanti
25th -0.10 -0.08 -0.29 -0.25 -0.08 -0.22 -0.28
50th 0.25 -0.04 -0.22 -0.17 -0.03 -0.17 -0.20
75th 0.62 0.00 -0.14 -0.07 0.00 -0.13 -0.11

Via Romboni
25th -0.13 -0.10 -0.35 -0.29 -0.10 -0.25 -0.33
50th 0.28 -0.05 -0.26 -0.20 -0.04 -0.21 -0.23
75th 0.71 0.01 -0.17 -0.09 0.01 -0.16 -0.13

Percorso Vita
25th -0.17 -0.07 -0.27 -0.23 -0.07 -0.20 -0.25
50th 0.14 -0.04 -0.20 -0.15 -0.03 -0.16 -0.18
75th 0.47 0.00 -0.13 -0.07 0.00 -0.12 -0.10

Nozzano
25th -0.18 -0.09 -0.37 -0.30 -0.11 -0.27 -0.36
50th 0.18 -0.06 -0.26 -0.20 -0.05 -0.22 -0.26
75th 0.53 -0.03 -0.17 -0.10 0.00 -0.15 -0.15

S. Alessio
25th -0.17 -0.08 -0.33 -0.27 -0.10 -0.24 -0.32
50th 0.15 -0.06 -0.23 -0.18 -0.04 -0.19 -0.23
75th 0.47 -0.02 -0.15 -0.09 0.00 -0.13 -0.13

Salicchi
25th -0.06 -0.21 -0.47 -0.41 -0.23 -0.39 -0.47
50th 0.28 -0.17 -0.36 -0.31 -0.15 -0.32 -0.36
75th 0.36 0.60 -0.12 -0.26 -0.20 -0.10 -0.24

Diecimo
25th -0.21 -0.11 -0.42 -0.35 -0.13 -0.32 -0.42
50th 0.20 -0.07 -0.30 -0.23 -0.05 -0.25 -0.30
75th 0.61 -0.03 -0.19 -0.12 0.00 -0.17 -0.17
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3.1.5. Comparison of three different artificial neural network
techniques

In this part of the thesis, the primary objective is to bridge an existing gap in

research by investigating the application of deep learning models to evaluate the

effects of climate change on future groundwater levels. The study compares three

distinct Artificial Intelligence (AI) techniques 1.3: a machine learning approach

referred to as Non-Linear Autoregressive Neural Network (NARX), alongside two

deep learning methods, the Long Short-Term Memory neural network (LSTM) and

Convolutional Neural Network (CNN). MATLAB is the environment for building

and training these models.

The ultimate outputs of all these models are predictions of groundwater lev-

els. The training and validation processes involve historical meteorological and

groundwater level time series data. Once trained, these models utilize climate

model projections to estimate future groundwater levels.

One of the primary contributions of this study lies in the comparative analysis

of various AI techniques for assessing the influence of climate change on groundwa-

ter resources. Particular emphasis is placed on the implementation of the LSTM

neural network, a sequential deep learning method, within this specific context.

The study focuses into the use of neural networks for long-term forecasting, en-

abling the models to make predictions beyond the range of data encountered during

the training phase. Another noteworthy aspect is the extensive ensemble of re-

gional climate projections under different scenarios, which offers a comprehensive

understanding of the associated uncertainty in the outcomes of the study.

3.1.5.1. Set up of the surrogate model

To establish a benchmark, the 10 wells (Table 3.6) that exhibited strong corre-

lations with the meteorological indices, as detailed in the previous work, were
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chosen.

Table 3.6. ID, name, reference groundwater body, percentage of available data and ground
elevation of the monitoring wells considered.

ID Name Groundwater body % data Elevation m a.s.l.

W3 Cugnia 33TN010 91.7 4.00

W4 Diecimo 12SE020 60.9 65.00

W6 Nozzano 12SE011 78.6 16.43

W7 Paganico 11AR028 72.4 13.00

W8 Percorso vita 33TN010 78.1 1.56

W10 Salicchi 12SE011 83.3 27.12

W11 S.Alessio 12SE011 71.9 18.87

W13 Sat 1 33TN010 75.5 1.50

W15 Via Barsanti 33TN010 91.7 20.00

W16 Via Romboni 33TN010 88.0 37.92

For all neural networks utilized in this study, the exogenous input data comprise

monthly precipitation and mean monthly temperature measurements from the 18

climate stations, as listed in Table 3.2. This totals to 36 features considered in

the input data. The output dataset corresponds to monthly groundwater levels at

the 10 wells detailed in Table 3.6, resulting in 10 responses. The target data used

for constructing the models encompass the period from March 2005 to December

2020, spanning 190 months during which observed monthly groundwater levels

are available. The precipitation and temperature data, used as meteorological

variables, extend from July 2004 to December 2020, covering a total of 198 months.

This extended time frame accounts for potential delayed responses of groundwater

level data to meteorological variables.

To facilitate the parameter update process (involving weights and biases), both

the input and target datasets underwent standardization using the following for-

mula:
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Zi =
zi − z̄

σz
. (3.1)

Here, zi represents an individual data point within the input or target vector,

z̄ is the arithmetic mean, and σz is the standard deviation.

AI models: training, validation, test and evaluation metrics

The training and validation phases of the neural networks were based on a dataset

that encompasses the years from 2005 to 2018, partitioned into a training set

(90%) and a validation set (10%). The subsequent test phase covered the years

2019 and 2020.

During the training process, the network aimed to minimize the Loss function

(Eq. 1.4). Then, the trained AI models were employed to predict groundwater lev-

els for the period spanning from 1976 to 2095, using precipitation and temperature

data supplied by the 13 climate models as input.

The Mean Squared Error (MSE) was employed to assess the performance of

the developed machine learning models during the training, validation, and test

phases:

MSE =

∑Nd

i=1(Wi − Ŵi)
2

Nd
(3.2)

Where Wi represents the actual value, Ŵi denotes the corresponding value

estimated by the neural networks, and Nd stands for the number of observations

within the training, validation, testing, or the entire dataset.

Furthermore, for each well, the Root Mean-Square Error (RMSE) between

predicted and observed groundwater levels in the test period was calculated.

For each neural network, hyperparameters and activation functions were man-

ually adjusted to identify the architecture with the minimum Loss function value

while managing computational costs during training.
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NARX

The operational framework of the NARX model was previously introduced in Sec-

tion 1.3.3. In this study, the neural network training parameters were configured

as follows: 50 training epochs, a mini-batch size of 18, and a learning rate of 0.001.

The training phase employed historical precipitation and temperature data along-

side observed groundwater levels in an open-loop mode. Then, the NARX model

utilized precipitation and temperature projections from the ensemble of climate

models as input for estimating future groundwater levels. During the prediction

phase, the network adopted a closed-loop scheme.

The input delay parameter, denoted as n was set to 9, consistent with the

research findings of Section 3.1.2, where the maximum correlation between SGI

and SPEI occurred for an accumulation period of 9 months. Consequently, to

predict groundwater levels at time t + 1, the model considered precipitation and

temperature data spanning from time t− 8 to time t as exogenous inputs.

Feedback delays, represented by m were configured as 2, aligning with the

rapid response time of the aquifer. This setting assumed that the predicted levels

at time t+ 1 were related to the groundwater levels at times t and t− 1.

At each time step, the input matrix had dimensions of 36×9, where 9 accounted

for the monthly values due to the input delay, and 36 represented the features

corresponding to the monthly values of precipitation and temperature obtained

from the 18 climate stations.

The objective function is minimized using the Levenberg–Marquardt algorithm

(Hagan and Menhaj, 1994). The neural network incorporated a single hidden layer

comprising 10 neurons, while the output vector size was set to 10 to match the

number of wells. The total number of time steps considered amounted to 190,

aligning with the length of the groundwater level time series.
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LSTM

The deep learning structure of the Long Short-Term Memory networks (LSTMs)

starts with the initial layer, known as the Sequence Input Layer. It serves as the

entry point for sequential data into the neural network. Then, the LSTM layer,

positioned as a central component within the deep learning architecture, assumes

a pivotal role in the sequence processing chain, embodied by the LSTM cell unit

(Fig. 1.5). For a comprehensive understanding of the LSTM cell intricacies, the

readers are encouraged to refer to Section 1.3.4 for more exhaustive information

and insights.

In this study, several hyperparameters were configured: the number of train-

ing epochs was set to 100, the mini-batch size was established as 18, the initial

learning rate was fixed at 0.005, the learning rate was reduced every 40 epochs

with a reduction factor of 0.1. The dimension of the sequence matrix was de-

fined as 190×1 of data type cell. Each row in the matrix corresponds to an input

block comprised of a 36×9 matrix, where rows denote the features (such as pre-

cipitation and temperature from 18 climate stations), and columns represent the

length of the input sequence. The number of hidden units was set at 100. At

each time step, an output vector of dimension 10, corresponding to the number of

wells, is generated. The objective function is minimized using a widely recognized

backpropagation algorithm known as "Adam," as extensively documented in the

literature (Kingma and Ba, 2015).

CNN

The operational framework of the CNN model was previously introduced in Section

1.3.5. A schematic representation of the CNN for a single image is depicted in

Figure 1.6.

The initial layer is designated as the Image Input Layer, serving as the en-

try point for input image data into the neural network. Then, this data flows
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into a structural unit composed of multiple layers, including the Convolutional

Layer, Batch Normalization Layer, ReLu Layer, and Average Pooling 2D Layer.

Notably, three of these distinct structural units are sequentially arranged in the

implemented model.

Each input image is characterized by dimensions of 36×9×1, where 36 repre-

sents the key features derived from monthly precipitation and temperature data

gathered from 18 climate stations. The value 9 corresponds to the temporal win-

dow selected to curate the input data, while 1 signifies the number of channels in

the image. For example, the initial image, utilized to predict groundwater levels

for March 2005, encompasses precipitation and temperature data spanning from

June 2004 to February 2005. Subsequently, the second image, associated with

groundwater levels in April 2005, includes climate variables recorded from July

2004 to March 2005.

The Convolutional Layers maintain a consistent filter height and width of 5

across all three layers. The number of filters is distributed as 8, 16, and 32 for

the first, second, and third blocks, respectively. The Batch Normalization Layer

operates by independently normalizing a mini-batch of extracted features for each

channel, an approach designed to expedite the training process of the CNN and

reduce its sensitivity to initial parameter values.

The ReLu Layer employs the Rectified Linear Unit Function to activate the

signal within the network. Following this, the normalized and activated feature

maps in the Average Pooling 2D Layer are partitioned into non-overlapping zones.

These zones have a height and width of 2, and a stride of 2 is employed to extract

the average value from each zone.

At each temporal step, the network generates an output vector with dimensions

of 10, corresponding to the number of wells under consideration.

For the sake of explanation, Figure 3.12 includes a depiction of the raw map,

which comprises standardized input data and serves as the foundation for generat-
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ing all input images. Precipitation is represented by values on the Y-axis ranging

from position 1 to 18, while temperature is depicted by values from position 19

to 36. This map notably illustrates the significant variability in precipitation val-

ues, reflecting natural fluctuations in weather patterns. In contrast, temperature

values, exhibit a prominent seasonal pattern. The red rectangle demarcates the

dimensions of the image, and a sequential one-step scrolling process is executed to

create a total of 190 images.

Once fully trained, the neural network is deployed to estimate groundwater lev-

els based on the input of precipitation and temperature data provided by the 13

distinct climate models. The Adam algorithm is used to minimize the loss function.

Figure 3.12. Schematic view of the CNN (top) and sample of the standardized input data
(bottom).
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3.1.5.2. Results

Evaluation of the performance

Table 3.7 presents the MSEs computed on the entire dataset, as well as for the

training, validation, and testing subsets for all proposed AI methods. For the

NARX, the overall performance of the network is good, with an MSE of 0.17 m²

on the entire dataset. The training phase shows an MSE of 0.04 m², and the

validation phase has an MSE of 0.54 m², while the test phase has an MSE of 0.82

m². These results suggest a potential issue with overfitting, where the network

performs well on the training data but struggles to generalize to data beyond the

training range.

Regarding the LSTM, the overall MSE performance is 0.14 m². The training

MSE is 0.12 m², the validation phase yields an MSE of 0.23 m², and the test phase

reports an MSE of 0.30 m², indicating good performance across all phases. Unlike

the NARX, the Dropout Layer in the LSTM allows for slightly less learning during

training, promoting better generalization.

The CNN achieves an overall performance of 0.10 m², with a training MSE of

0.05 m². The validation phase results in an MSE of 0.20 m², and the test phase

has an MSE of 0.31 m², comparable to the LSTM’s performance.

Table 3.7. MSE (m²) between the output of the neural networks (NARX, LSTM, CNN)
and the observed groundwater levels.

NARX LSTM CNN

Training 0.04 0.12 0.05

Validation 0.54 0.23 0.20

Test 0.82 0.30 0.31

Whole dataset 0.17 0.14 0.10

The Table 3.8 provides a comparison between observed and predicted ground-

water levels, in terms of RMSE values, for the 10 wells studied, during both the
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learning, which includes training and validation, and testing phases, using the

three implemented AI models. Overall, the models demonstrate satisfactory per-

formance metrics (RMSE less than 0.4 m) for both learning and testing phases,

except for the Via Romboni well, which exhibits higher errors (greater than 0.8 m)

across all three networks during testing. In the testing phase, the well Nozzano

performs well only with the LSTM network, while the wells S. Alessio and Diecimo

show unsatisfactory metrics for the NARX. In general, the LSTM appears to be

more suitable for predicting groundwater levels. As an illustrative example, Figure

3.13 compares predicted and observed groundwater levels in the test period 2019-

2020 for the Paganico well, highlighting the superior performance of the LSTM.

Table 3.8. RMSE (m) between the output of the neural networks (NARX, LSTM, CNN)
and the observed groundwater levels in the learning and testing period 2005-2018.

Well
NARX LSTM CNN

Learning Testing Learning Testing Learning Testing

Paganico 0.10 0.37 0.11 0.17 0.15 0.30

Cugnia 0.07 0.35 0.08 0.10 0.16 0.25

Sat 1 0.11 0.36 0.09 0.11 0.14 0.26

Via Barsanti 0.10 0.27 0.11 0.14 0.10 0.29

Via Romboni 0.30 1.46 0.42 0.83 0.48 0.98

Percorso Vita 0.05 0.17 0.07 0.12 0.06 0.23

Nozzano 0.18 0.93 0.23 0.36 0.23 0.66

S. Alessio 0.06 0.59 0.11 0.18 0.17 0.27

Salicchi 0.07 0.43 0.10 0.17 0.11 0.38

Diecimo 0.13 0.57 0.21 0.28 0.16 0.39
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Figure 3.13. Observed and predicted groundwater levels for the testing phase (period
2019-2020) for the well Paganico.

Future projections

The trained neural networks were applied in conjunction with climate model pro-

jections to forecast groundwater levels under the two distinct scenarios, RCP4.5

and RCP8.5, spanning from 1976 to the end of the current century.

To emphasize the evolving trends in piezometric levels over time, the outcomes

for the Paganico well in April are presented. April was chosen due to its usual

minimal anthropogenic influences, occurring before the commencement of the ir-

rigation withdrawal period. Predicted groundwater levels for the entire simulated

period (1976-2095) are illustrated using a 10-year moving average, which helps

elucidate the impacts of climate change on natural variability. The outcomes are

reported in terms of the median value and minimum and maximum range derived

from the ensemble of climate models.

Figure 3.14 showcases the results obtained with the NARX model. For both
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Figure 3.14. Predicted groundwater levels with the NARX in April for the Paganico well
in terms of 10-year moving average under the RCP4.5 and RCP8.5 scenarios.

RCP scenarios, a discernible reduction in groundwater levels over time is evident

based on the median values. This decline is projected to be more pronounced un-

der RCP 8.5 in the long term. This phenomenon can be attributed to the higher

greenhouse gas concentrations associated with RCP 8.5, leading to more substan-

tial temperature increases and subsequent elevated evapotranspiration rates, which

in turn impact recharge processes. Conversely, RCP4.5 anticipates the implemen-

tation of mitigation measures to curb greenhouse gas emissions. The max/min

range, which considers different regional climate models, underscores the uncer-

tainties inherent in future predictions.

To elucidate temporal changes, we analyzed results across four distinct cli-

mate model periods: historical (1976-2005), short-term (2006-2035), medium-term

(2036-2065), and long-term (2066-2095).

Figure 3.15 presents empirical CDFs of standardized groundwater levels pre-
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Figure 3.15. Cumulative distribution probability functions according to the whole RCM
ensemble obtained with the NARX for the Paganico well for the historical period and at
short- (ST), medium- (MT), and long-term (LT) under the RCP4.5 (left) and RCP8.5
(right) scenarios, along with the envelope curves provided by the 13 RCMs.

dicted over these four projection periods for the Paganico well, under both RCP4.5

and RCP8.5 scenarios. The envelope curves represent individual climate models,

emphasizing prediction uncertainties. Additionally, data from 13 climate models

were aggregated into a single dataset referred to as the "whole RCM ensemble".

The leftward shift of the CDFs from the historical one highlights increased like-

lihood or frequency of lower values. While RCP4.5 shows similar results in the

medium and long term, RCP8.5 indicates a more substantial decrease in negative

standardized groundwater levels over the long term. Concerning this, for both sce-

narios, a clear decline in standardized groundwater levels in the future compared

to the historical period is discernible, especially in the medium and long term.

Figures 3.16 and 3.17 illustrate results obtained with the LSTM model. Looking

at the 10-year moving average of predicted groundwater levels in April (Figure

3.16), both RCP scenarios exhibit median values indicating a moderate decline in

piezometric levels over time, with a slight pronounced trend for RCP8.5 toward
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Figure 3.16. Predicted groundwater levels with the LSTM in April for the Paganico well
in terms of 10-year moving average under the RCP4.5 and RCP8.5 scenarios.

the end of the simulation period. The variability, represented by the maximum

and minimum range between climate models, is similar to that observed with the

NARX.

CDFs of predicted standardized GWLs (Figure 3.17) indicate similar trends in

the medium and long term under RCP4.5, with slight deviations when compared to

the historical period. These deviations are minimal in the short term. Conversely,

RCP8.5 shows a progressive reduction in standardized GWLs over time, particu-

larly in the long term. Furthermore, envelope curves reveal lower uncertainty in

future GWL estimates using LSTM compared to NARX. Overall, LSTM predicts

a smaller reduction in standardized groundwater levels compared to NARX.

Figures 3.18 and 3.19 present results obtained with the CNN model. Figure

3.18 reveals no systematic trends in April groundwater levels under both RCP

scenarios, with lower variability between RCMs compared to NARX and LSTM.
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Figure 3.17. Cumulative distribution probability functions according to the whole RCM
ensemble obtained with the LSTM for the Paganico well for the historical period and at
short- (ST), medium- (MT), and long-term (LT) under the RCP4.5 (left) and RCP8.5
(right) scenarios, along with the envelope curves provided by the 13 RCMs.

Figure 3.18. Predicted groundwater levels with the CNN in April for the Paganico well
in terms of 10-year moving average under the RCP4.5 and RCP8.5 scenarios.
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Figure 3.19. Cumulative distribution probability functions according to the whole RCM
ensemble obtained with the CNN for the Paganico well for the historical period and at
short- (ST), medium- (MT), and long-term (LT) under the RCP4.5 (left) and RCP8.5
(right) scenarios, along with the envelope curves provided by the 13 RCMs.

According to Figure 3.19, CDFs of future GWLs for the Paganico well do

not exhibit significant changes compared to the historical period for both RCP

scenarios. Only a slight decrease in standardized GWLs is detectable in the long

term under RCP8.5. This indicates a distinct behavior of the CNN compared to

the other two AI models.

To quantify results for all wells and make comparisons with the outcomes of

Section 3.1.4, Tables 3.9 and 3.10 depict differences in standardized GWLs, eval-

uated by means of the statistical approach and the three ANNs, between future

periods (short-term, medium-term and long-term) under RCP4.5 and RCP8.5 and

the historical period. The 25th, 50th, and 75th percentiles of the whole RCM en-

semble were used for these calculations. Color intensity highlights the magnitude

of differences in standardized GWLs between future and historical periods. Over-

all, CNN exhibits smaller differences compared to the other two AI models. For

instance, for the Paganico well under RCP8.5, the difference in standardized GWL
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median values between the long term and the historical period is -0.93 for NARX,

-0.34 for LSTM, and only -0.07 for CNN (Table 3.10). The regression model pre-

viously presented in Section 3.1.2 generally predicts slightly greater reductions in

groundwater levels compared to CNN. Conversely, LSTM shows more pronounced

declines in future levels, with few exceptions. NARX predicts the most severe de-

clines in future groundwater levels but has the highest MSEs poorest performance

in the test phase (Table 3.8).
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Table 3.9. Differences between the 25th, 50th and 75th percentiles of the future standard-
ized GWLs at short- (ST), medium- (MT), and long-term (LT) and the historical ones
under the RCP4.5 scenario. Results obtained with the AI models proposed in this study
and the regression model presented in Section 3.1.2.

REGRESSION NARX LSTM CNN
ST MT LT ST MT LT ST MT LT ST MT LT

Paganico
25th -0.04 -0.28 -0.23 -0.19 -0.46 -0.43 -0.08 -0.35 -0.30 0.05 -0.01 0.05
50th -0.08 -0.38 -0.32 -0.22 -0.58 -0.59 -0.03 -0.24 -0.16 0.03 -0.08 -0.02
75th -0.08 -0.36 -0.29 -0.22 -0.43 -0.55 0.02 -0.16 -0.10 0.01 -0.06 -0.04

Cugnia
25th 0.01 -0.13 -0.11 0.14 0.01 0.03 -0.08 -0.32 -0.21 0.01 -0.10 -0.04
50th -0.03 -0.20 -0.17 0.15 0.05 0.06 -0.04 -0.19 -0.12 0.00 -0.11 -0.07
75th -0.07 -0.22 -0.19 0.25 0.19 0.22 0.02 -0.14 -0.05 -0.03 -0.11 -0.08

SAT 1
25th 0.01 -0.13 -0.11 -0.27 -0.50 -0.46 -0.23 -0.57 -0.61 0.04 -0.08 -0.02
50th -0.03 -0.20 -0.17 -0.18 -0.40 -0.46 -0.11 -0.34 -0.33 0.02 -0.08 -0.04
75th -0.07 -0.22 -0.19 -0.12 -0.29 -0.37 -0.05 -0.24 -0.21 -0.04 -0.10 -0.08

Via Barsanti
25th 0.03 -0.16 -0.11 -0.18 -0.45 -0.41 -0.12 -0.38 -0.33 0.00 -0.10 -0.05
50th -0.02 -0.21 -0.16 -0.09 -0.27 -0.27 -0.05 -0.27 -0.19 0.02 -0.10 -0.06
75th -0.05 -0.19 -0.16 -0.02 -0.12 -0.12 0.01 -0.18 -0.12 0.00 -0.09 -0.05

Via Romboni
25th 0.02 -0.20 -0.16 -0.17 -0.57 -0.61 -0.11 -0.38 -0.30 -0.04 -0.20 -0.17
50th -0.04 -0.25 -0.20 -0.09 -0.51 -0.51 -0.04 -0.21 -0.17 -0.02 -0.18 -0.14
75th -0.06 -0.20 -0.17 0.04 -0.25 -0.25 -0.02 -0.12 -0.10 -0.04 -0.10 -0.07

Percorso Vita
25th 0.01 -0.13 -0.11 -0.19 -0.51 -0.45 -0.10 -0.39 -0.35 0.03 -0.04 0.02
50th -0.02 -0.17 -0.14 -0.13 -0.36 -0.35 -0.06 -0.26 -0.19 0.02 -0.09 -0.03
75th -0.07 -0.20 -0.19 -0.14 -0.25 -0.32 0.02 -0.19 -0.12 -0.04 -0.11 -0.07

Nozzano
25th 0.01 -0.18 -0.14 -0.45 -0.90 -0.94 -0.01 -0.12 -0.02 -0.06 -0.12 -0.13
50th -0.04 -0.25 -0.20 -0.41 -0.82 -0.91 0.01 -0.16 -0.01 -0.05 -0.18 -0.16
75th -0.07 -0.24 -0.20 -0.30 -0.66 -0.75 0.10 -0.02 0.06 -0.05 -0.12 -0.12

S. Alessio
25th -0.01 -0.16 -0.13 -0.39 -0.74 -0.67 -0.01 -0.15 -0.05 0.01 0.00 0.05
50th -0.04 -0.21 -0.18 -0.43 -0.74 -0.73 0.03 -0.14 0.01 0.02 -0.06 -0.01
75th -0.08 -0.23 -0.20 -0.49 -0.81 -0.78 0.06 0.01 0.07 0.03 0.02 0.05

Salicchi
25th 0.02 -0.16 -0.12 -0.85 -1.39 -1.45 0.01 -0.14 -0.04 -0.05 -0.11 -0.10
50th -0.04 -0.22 -0.18 -0.84 -1.50 -1.65 0.00 -0.18 -0.05 -0.03 -0.17 -0.14
75th -0.06 -0.20 -0.16 -0.82 -1.38 -1.59 0.08 -0.02 0.05 -0.03 -0.11 -0.10

Diecimo
25th 0.12 -0.10 -0.05 -0.29 -0.69 -0.77 -0.10 -0.33 -0.22 -0.05 -0.16 -0.13
50th 0.07 -0.18 -0.12 -0.22 -0.64 -0.71 -0.02 -0.20 -0.12 -0.01 -0.14 -0.09
75th 0.05 -0.13 -0.09 -0.02 -0.30 -0.36 0.00 -0.11 -0.07 0.00 -0.02 0.01
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Table 3.10. Differences between the 25th, 50th and 75th percentiles of the future stan-
dardized GWLs at short- (ST), medium- (MT) and long-term (LT) and the historical
ones under the RCP8.5 scenario. Results obtained with the AI models proposed in this
study and the regression model presented in Section 3.1.2.

REGRESSION NARX LSTM CNN
ST MT LT ST MT LT ST MT LT ST MT LT

Paganico
25th -0.04 -0.22 -0.29 -0.20 -0.40 -0.60 -0.16 -0.28 -0.64 0.05 0.03 0.06
50th -0.11 -0.32 -0.35 -0.23 -0.57 -0.93 -0.12 -0.18 -0.34 0.03 -0.02 -0.07
75th -0.06 -0.27 -0.29 -0.11 -0.52 -1.04 -0.08 -0.11 -0.30 0.02 -0.05 -0.14

Cugnia
25th -0.01 -0.11 -0.13 0.15 0.04 -0.35 -0.13 -0.21 -0.40 0.01 -0.05 -0.16
50th -0.06 -0.17 -0.18 0.20 0.08 -0.38 -0.07 -0.11 -0.24 0.00 -0.06 -0.14
75th -0.08 -0.20 -0.21 0.36 0.20 -0.30 -0.06 -0.07 -0.19 -0.02 -0.08 -0.14

SAT 1
25th -0.01 -0.11 -0.13 -0.23 -0.46 -0.52 -0.31 -0.61 -1.11 0.04 -0.01 -0.11
50th -0.06 -0.16 -0.17 -0.15 -0.43 -0.64 -0.17 -0.33 -0.63 0.03 -0.03 -0.13
75th -0.08 -0.20 -0.21 -0.06 -0.33 -0.61 -0.13 -0.24 -0.47 -0.01 -0.09 -0.19

Via Barsanti
25th 0.00 -0.12 -0.15 -0.17 -0.37 -0.51 -0.17 -0.36 -0.68 0.00 -0.07 -0.17
50th -0.06 -0.14 -0.17 -0.07 -0.25 -0.35 -0.13 -0.23 -0.43 0.00 -0.05 -0.16
75th -0.05 -0.15 -0.17 0.02 -0.13 -0.23 -0.07 -0.14 -0.34 0.00 -0.06 -0.18

Via Romboni
25th -0.01 -0.16 -0.21 -0.26 -0.54 -0.93 -0.15 -0.31 -0.51 -0.05 -0.20 -0.34
50th -0.07 -0.19 -0.22 -0.15 -0.50 -0.97 -0.08 -0.19 -0.37 -0.06 -0.14 -0.27
75th -0.06 -0.15 -0.18 -0.04 -0.32 -0.77 -0.08 -0.14 -0.22 -0.01 -0.10 -0.19

Percorso Vita
25th 0.00 -0.10 -0.14 -0.20 -0.44 -0.68 -0.16 -0.34 -0.70 0.05 0.01 -0.03
50th -0.05 -0.12 -0.16 -0.09 -0.31 -0.53 -0.14 -0.22 -0.39 0.00 -0.03 -0.08
75th -0.08 -0.19 -0.21 -0.03 -0.32 -0.61 -0.07 -0.13 -0.32 -0.02 -0.06 -0.16

Nozzano
25th -0.01 -0.14 -0.20 -0.45 -0.92 -1.28 -0.04 -0.02 -0.10 -0.03 -0.16 -0.21
50th -0.07 -0.19 -0.24 -0.38 -0.90 -1.32 -0.02 -0.07 -0.17 -0.07 -0.17 -0.27
75th -0.06 -0.21 -0.24 -0.20 -0.75 -1.16 0.05 0.03 -0.06 -0.02 -0.12 -0.22

S. Alessio
25th -0.02 -0.13 -0.18 -0.49 -0.61 -0.74 -0.04 -0.04 -0.12 0.06 0.02 0.05
50th -0.06 -0.16 -0.21 -0.50 -0.70 -0.70 0.00 -0.06 -0.14 0.02 -0.01 -0.05
75th -0.08 -0.20 -0.25 -0.52 -0.81 -0.81 0.04 0.02 -0.01 0.05 0.04 0.04

Salicchi
25th -0.01 -0.12 -0.19 -0.87 -1.43 -1.70 -0.02 -0.03 -0.13 -0.03 -0.14 -0.14
50th -0.06 -0.17 -0.22 -0.87 -1.64 -2.15 -0.04 -0.10 -0.22 -0.05 -0.16 -0.23
75th -0.06 -0.17 -0.21 -0.73 -1.53 -2.34 0.04 0.02 -0.09 -0.02 -0.11 -0.19

Diecimo
25th 0.10 -0.06 -0.11 -0.33 -0.73 -1.16 -0.12 -0.25 -0.39 -0.05 -0.13 -0.24
50th 0.04 -0.12 -0.16 -0.25 -0.69 -1.14 -0.06 -0.15 -0.31 -0.02 -0.08 -0.17
75th 0.07 -0.10 -0.13 -0.11 -0.40 -0.74 -0.07 -0.10 -0.19 0.01 -0.04 -0.04

97



CHAPTER 3. Applications

3.1.6. Discussion and conclusions

An element of novelty in this work lies in the application of expeditious methods

to assess potential climate change impacts on groundwater quantity. The methods

are applied in northern Tuscany, Italy, but they are adaptable to various regions,

requiring only basic observed data on groundwater levels, precipitation, and tem-

perature. These approaches serve as valuable tools for promptly assessing aquifer

conditions under climate change scenarios, essential for developing integrated mit-

igation and adaptation strategies. In general, the findings suggest a potential

reduction in future groundwater availability for the studied region, particularly

under the RCP8.5 scenario in the long term.

The statistical approach, employing linear relationships, provides a straightfor-

ward methodology for easily assessing the impacts of climate change on groundwa-

ter quantity. Certainly, this can be an advantage if the objective is to implement

a user-friendly tool that is easy to interpret. However, the AI models outperform

in capturing non-linear relationships, which are prevalent in water infiltration and

aquifer recharge, rendering them more suitable than linear functions. Addition-

ally, varying methods for calculating potential evapotranspiration may influence

SPEI evaluations, leading to uncertainty in the evaluation of the SGI-SPEI rela-

tionship when using the statistical approach. In contrast, the AI models, directly

incorporating climate variables like temperature and precipitation without relying

on meteorological indices, remain unaffected by this source of uncertainty.

Another point worthy of discussion is to consider the validity of the relation-

ships between meteorological and groundwater indices/variables, evaluated in the

historical period, for future predictions. The reliability of these relationships for

future projections has sparked some debates, as many factors may change. For

instance, the dynamics of evapotranspiration may undergo changes as atmospheric

CO2 concentrations rise. As posited by Vicente-Serrano et al. (2020), increased
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atmospheric evaporative demand, driven by elevated radiation and temperature,

may not necessarily intensify droughts. The outcome may differ based on whether

the region has a humid or arid climate, affecting meteorological, hydrological,

and agricultural droughts differently. Nonetheless, the authors concur that while

higher CO2 levels may lead to reduced plant water consumption due to optimized

functions, increased temperatures could escalate evaporation from water surfaces

and soil. Bloomfield et al. (2019) provide evidence from long-term observations in

certain UK locations, suggesting that groundwater droughts are becoming more

frequent due to anthropogenic warming, even in the absence of decreased precipita-

tion and increased withdrawals. Elevated temperatures can also alter root systems,

with plants in Mediterranean regions adapting to warming climates by extending

and deepening their roots. Other studies (Teuling et al., 2013; Vicente-Serrano

et al., 2014; Diffenbaugh et al., 2015; Dierauer and Zhu, 2020) stress the signifi-

cance of considering temperature in drought indices, as it substantially heightens

drought severity. Consequently, assessing the effects of climate change solely based

on precipitation variations is intrinsically unreliable. It is imperative to incorpo-

rate thermal effects when discerning future climate and hydrological trends. In

several regions, future precipitation alterations are negligible, while temperature

increases are conspicuous, as illustrated in Figure 3.2, which is particularly rele-

vant to this case study. In this context, for the statistical approach, while SPIs

and SPEIs yield similar results for the historical period in this application, this

may not necessarily hold true for the future. In alignment with the perspective of

other researchers (Kumar et al., 2016), the relationships between SGIs and SPEIs

may be more suitable for drought studies in the context of global warming than

SGI-SPI relationships. In general, and also in the context of the AI approach, the

consideration of temperature together with precipitation is significantly important

when assessing the impact of climate change on groundwater resources. Even un-

der the assumption that other factors influencing hydrological processes remain
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constant in the future, the models can capture the effect of changes in pumping

rates, which correlate with precipitation and temperature changes. Higher tem-

peratures often lead to increased irrigation demand, driving greater groundwater

extraction, while reduced precipitation and prolonged droughts decrease recharge

and increase extraction due to limited surface water supplies. Thus, despite not

explicitly including these factors, the models indirectly account for them since they

depend on climate variables.

Another interesting aspect, is the importance to acknowledge the substantial

variability introduced by different climate models. Consequently, it is prudent to

encompass an ensemble of models in the analysis (Jackson et al., 2015; Mascaro

et al., 2018; D’Oria et al., 2018a), which helps visualize result uncertainties. In

this study, a downscaling/bias correction technique was employed aimed at align-

ing raw climate model outputs with the statistical distribution of observed precip-

itation and temperature data at a monthly scale. While this approach adequately

replicates the historical period, disparities between models persist in future pro-

jections, contributing significantly to result uncertainty. As evidenced in Figure

3.10, the CDF envelope of SGIs derived from climate models in future periods

exhibits wide dispersion. A specific model plays a substantial role in introducing

uncertainty, offering projections of abundant precipitation and consequently ele-

vated groundwater levels compared to other models. However, estimates derived

from the entire RCM ensemble align well with median and mean CDFs, validating

this approach to consider model projections collectively as realizations of the same

stochastic process.

Consideration must also be given to the selection of accumulation periods, as

it varies depending on the aquifer’s characteristics. For the statistical approach

this regard the computation of meteorological indices, while for the AI approach

this influence the sequence length to be considered. The type of natural recharge

(precipitation or inflow from contiguous aquifers, lakes, or streams) and its condi-
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tions (e.g., distance between the ground level and the water table) contribute to

this variability.

To conclude, comparisons between AI models and the statistical approach re-

veal nuances in outputs, highlighting the importance of considering model char-

acteristics and design. LSTMs, known for their ability to capture temporal de-

pendencies, outperform other models, suggesting their suitability for time series

prediction. Both applications and their respective methodologies and results have

been published in international journals (Secci et al., 2021, 2023).

3.2. An artificial neural network as a quick tool to
assess the effects of climate change and agri-
cultural policies on groundwater

Complex models, particularly those concerning aquifer dynamics, can often pose

significant challenges for a wide array of stakeholders, including farmers, gov-

ernmental authorities, and other involved parties. The intricate nature of these

models, with their complex equations and extensive datasets, can be a deterrent

to effective understanding and application. This complexity may hinder timely

decision-making processes and the efficient management of aquifer resources, which

are crucial for ensuring sustainable water usage and environmental preservation.

In light of these challenges, the development and implementation of user-friendly

tools, facilitated by surrogate models, emerge as a paramount solution. Innova-

tive methodologies, as neural networks, with user-friendly interfaces and easily

interpretable results, can bridge the gap between intricate scientific models and

practical, real-world decision-making processes, ultimately benefiting the aquifer

ecosystem and the communities that depend on it.

The objective of this part of the thesis is to develop a surrogate model, based
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on an artificial neural network, with the capability to simulate groundwater flow

in the Konya closed basin, Turkey, one of the pilot sites investigated as part of the

InTheMED project. This model serves as a tool for examining the potential im-

pacts of climate change and agricultural policies on groundwater resources within

the region.

3.2.1. Case study

The Konya closed Basin (Figure 3.20) is an important agricultural area, with

over 50% of its flat terrain dedicated to farming. However, owing to the ab-

sence of rivers and streams in the region, farmers heavily depend on groundwater

resources, especially during arid periods, to sustain their agricultural activities.

Consequently, the groundwater reserves within the basin are under substantial

stress. The last decade highlighted a transition from traditional wheat cultiva-

tion to more profitable crops, which demand increased water usage (Yılmaz et al.,

2021). Furthermore, the anticipated impacts of climate change are expected to

exacerbate the situation, potentially jeopardizing the sustainability of the basin

due to excessive aquifer exploitation.

In pursuit of promoting a sustainable use of these groundwater resources, the

Boğaziçi University of Istanbul, a partner of the InTheMED project, has devel-

oped a numerical hydrogeological model for the Konya closed basin. The full model

simulates vertical water flow in the vadose zone as well as horizontal flow in the

underlying aquifer system. The model was based on the MODFLOW model cou-

pled with the UZF1 module (Harbaugh, 2005) that simulates vertical flow through

the vadose zone.It was calibrated using field data collected during 2000-2019.

The surrogate model should be capable of replacing the full model, simulating

groundwater conditions in the Konya closed basin with minimal computational

burden.
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Figure 3.20. Konya closed basin (Turkey) and the 30 control points.

3.2.2. Surrogate model: ANN

A conventional neural network of the MLP type (Section 1.3.2) was trained to

predict monthly groundwater levels, for the Konya basin, at 30 monitoring points

(Figure 3.20) over the period from 2020 to 2039, considering a range of climate

and agricultural scenarios. The climate scenarios are considered in terms of pre-

cipitation, while the agricultural scenarios are considered in terms of crop demand.

Given the large number of unmetered wells in the Konya Plain, it was not possible
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to directly estimate groundwater extraction rates. For this reason, irrigation water

extraction was estimated indirectly from water crop demand that, together with

the precipitation, represent the field data used for model calibration.

3.2.2.1. Training dataset and set up of the ANN

The input features of the ANN are three and encompass two multiplicative coef-

ficients, one applied to historical precipitation (prec coefficient) and the other to

historical crop water demand (crop coefficient), and the time. The piezometric

heads at the 30 monitoring points constitute the desired outputs.

A dataset comprising 100 combinations of precipitation and crop coefficients

was generated using the Latin Hypercube Sampling method (McKay et al., 1979).

The precipitation coefficient varies from 0.6 to 1.4, which means that precipitation

ranges from -40% to +40% of that of the historical period. The crop coefficient

varies from 0.75 to 1.25, which corresponds to a water demand varying from -25%

to +25% of the historical one. For each combination, the full numerical model

was executed starting from January 2020 until December 2039, to obtain monthly

piezometric head data at the 30 monitoring points. The starting heads condition

for this simulation is based on the December 2019 piezometric head data obtained

from the calibrated model using historical information. The input data (100 com-

bination of precipitation and crop along with the time) and the corresponding

output (monthly piezometric head at the 30 control points) represent the dataset

used to train the network. A single combination simulated by the full model pro-

duces 240 vectors of monthly piezometric head at the 30 control points(one for

each month of simulation). Hence, the total size of the training dataset is 24,000

(100 combinations by 240 outputs each). The training dataset was divided into

train (70%), validate (15%), and test (15%) sets.

The operational framework of the ANN model (MLP type) was previously

introduced in Section 1.3.2. In this application, the neural network training pa-
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rameters were configured as follows: 50 training epochs, a mini-batch size of 18,

and a learning rate of 0.001. The objective function is minimized using the Lev-

enberg–Marquardt algorithm (Hagan and Menhaj, 1994). The neural network

incorporated an input layer composed of three neurons (prec coefficient, crop co-

efficient and time), a single hidden layer comprising 10 neurons, while the output

vector size was set to 30 to match the number of control points. The total num-

ber of time steps considered amounted to 190, aligning with the length of the

groundwater level time series.

3.2.2.2. Evaluation of the performance

Table 3.11 displays the Mean Squared Errors (MSEs) calculated across the com-

plete dataset, including evaluations for the training, validation, and testing sub-

sets. At iteration one, the overall performance of the network is about 20.74 in

terms of MSE. At the final step of the training, the overall performance for the

entire dataset is good, with an MSE of 0.0061 on the entire dataset. This signifies

a decrease of at least three orders of magnitude compared to the initial loss cal-

culated with randomly initialized weights and biases. The training phase shows

an MSE of 0.0060, and the validation phase has an MSE of 0.0061, while the test

phase has an MSE of 0.0062. These findings might imply a concern related to

overfitting, due to the good performance of the training phase; however, the con-

sistent loss value associated with the validation dataset confirms effective training.

This is further supported by the strong ability of the neural network to generalize

when confronted with unseen data during the testing phase.

Table 3.11. MSE between the output of the neural network and the simulated groundwater
levels.

Training Validation Test All

0.0060 0.0061 0.0062 0.0061
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To better gauge the quality of the implemented model, another crucial met-

ric in assessing the quality of a regression model is explored: the Coefficient of

Determination (R2). It quantifies the proportion of the variance in the depen-

dent variable that is predictable from the independent variable(s). As observed

in Figure 3.21, alongside the presented MSE metrics, the R2 values reaffirm the

exceptional performance of the neural network across all phases. Notably, the

R2 values approach unity, indicating a remarkably high level of predictability in

capturing the variance within the data.

Figure 3.21. Training, validation and test performances of the neural network.
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3.2.2.3. ANN tool

In this section the ANN tool is presented. The general idea is to use the fully

trained ANN, to create a user-friendly application that users can use effortlessly,

featuring intuitive interfaces and results that are easily understood. MATLAB

(MathWorks, 2022) was selected as programming language and environment for

codes implementation.

The tool interface exhibits an aspect as illustrated in Figure 3.22. Looking the

panel on the left, the user only needs to select the values of the two coefficients

and specify the desired investigation time for which the results are required.

Figure 3.22. ANN tool interface developed using MATLAB.

By clicking the "Run" button, the fully trained ANN is invoked, utilizing the

input features provided by the user to generate the desired result (Figure 3.23). It

is worth noting that the results are not only presented as 30 monthly groundwater

levels at the 30 control points but are also displayed in the form of a piezometric

map. This is due to the implementation of an interpolation procedure that trans-

forms the output of the network into maps. Specifically, interpolation utilizing the

Delaunay triangulation of the scattered sample points was employed, as described

in (Amidror, 2002). This interpolation method is readily available in MATLAB,
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ensuring ease and efficiency in its application. The interpolation method creates

an interpolant that fits a surface of the form v = F (x, y). Vectors x and y specify

the (x, y) coordinates of the sample points. v is a vector that contains the sample

values associated with the points (x, y).

Additionally, a map of differences is also generated, illustrating the disparities

between the obtained piezometric map for the user selected time and the baseline

map from the year 2019.

Figure 3.23. ANN tool result.
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The user can save the generated graphs as images (in PNG format) by clicking

the "Export images" button and export the data associated with the 30 control

points and the interpolated values in a .txt file using the "Export data" button.

Finally, the resulting maps can be visualized, in the form of contour lines, in one of

the most well-known free geographic information systems available, such as Google

Earth Pro (Google LLC, 2023), as shown in Figure 3.23.

3.2.3. Conclusion and discussion

The importance of enabling people to understand complex systems practically

cannot be overstated. When individuals, especially decision-makers, are equipped

with user-friendly tools and easily interpretable results, they gain a practical grasp

of intricate models. By bridging the gap between complexity and practicality,

such tools facilitate communication, foster collaboration, and ultimately lead to

more efficient problem-solving and decision-making processes. As in this case, the

surrogate models allow the users to effortlessly access and visualize the results,

which are presented as piezometric maps.

Future work in this field could explore the development of web applications

or smartphone applications that incorporate these user-friendly systems, making

them widely accessible and readily available to a broader audience. By creating

intuitive platforms that can be accessed via the web or mobile devices, the reach

of these tools can be extended, allowing a wider range of users, including the gen-

eral public, to benefit from easy-to-use systems for understanding and managing

complex models.
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3.3. Artificial neural networks for solving forward
and inverse transport problems

The demands of modern society have driven the development of economies reliant

on intensive agriculture and industrial production. This poses a challenge in en-

suring water sustainable utilization without compromising environmental integrity

and jeopardizing groundwater quality.

A sustainable approach to address this challenge involves safeguarding ground-

water quality, thereby obviating the need for costly treatment systems (Katsanou

and Karapanagioti, 2019). Furthermore, the identification of the location of the

contaminant source with its release history has attracted great attention within the

scientific community called upon to provide theoretical methods to identify and

limit the spread of the contaminant. Indeed, source identification of contaminants

has emerged as a focal point of research over the last four decades, as underscored

in recent reviews by Gómez-Hernández and Xu (2022) and Barati Moghaddam

et al. (2021).

To identify remediation strategies immediately is essential to have accurate re-

sults in real time. With this aim, surrogate models can become the conceptual

models of primary choice being able to study forward and inverse transport prob-

lem reducing in this way the computational cost compared with more complex

models.

In the present study, ANNs were harnessed to solve direct groundwater contam-

ination problems and to estimate the source location and its temporal release dy-

namics, starting from a sparse concentration dataset observed at monitoring wells.

To assess and compare the proposed methodology, a complex literature-based case

study was adopted (Ayvaz, 2010). The benchmark case entails a heterogeneous

aquifer housing multiple contaminant sources and featuring seven monitoring wells.

Additionally, for the first time, ANNs were deployed to simultaneously estimate
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the release history and quantify observation errors.

The investigated test case is examined across diverse scenarios and objectives:

1. Estimation of pollutant concentrations in monitoring wells in the presence of

a known release source (direct problem). 2. Estimation of the release history

at a single contaminant source with a known location. 3. Estimation of the

release history at two contaminant sources with known locations. 4. Simultaneous

estimation of the release history and location of a contaminant source with an

unknown location. 5. Simultaneous estimation of the release history of two sources

with known locations and the quantification of observation errors.

3.3.1. State of the art

The identification of contaminant sources from sparse concentration data is il-

lustrative of an inverse problem within hydrology. The literature provides di-

verse methodologies to address such problems, categorizing inverse techniques for

contaminant source identification into three principal domains (Barati Moghad-

dam et al., 2021): mathematics-based, stochastic-based, and optimization-based.

Mathematics-based methods directly engage inverse source problems employing

numerical or analytical methodologies. Mitigating stability concerns is typically

managed through regularization and stabilization techniques (Skaggs and Kabala,

1994; Liu and Ball, 1999). Stochastic approaches (Woodbury and Ulrych, 1996;

Butera et al., 2013; Cupola et al., 2015; Gzyl et al., 2014; Zanini and Woodbury,

2016; Xu and Gómez-Hernández, 2016; Todaro et al., 2021; Wang et al., 2021, 2022)

contextualize the problem within a stochastic framework, treating the parameters

for estimation as random variables. Optimization-based methodologies involve in-

tegrating simulation and optimization models. The simulation model resolves the

flow and transport equations under specified initial and boundary conditions, sub-

sequently minimizing the disparities between simulated and observed data through

an optimization algorithm (Ayvaz, 2010; Jamshidi et al., 2020). Interested readers
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are referred to Gómez-Hernández and Xu (2022) and Barati Moghaddam et al.

(2021) for exhaustive reviews on source reconstruction in groundwater hydrology

and groundwater-surface hydrology, respectively.

Over the last decade, the rapid advancement of ANNs has been propelled by

enhanced computational capabilities and technological innovations. The pioneer-

ing application of ANNs to contaminant source reconstruction was undertaken by

Singh and Datta (2004) and Singh et al. (2004). They employed concentrations

observed at monitoring points as network inputs and the release history at the con-

taminant source as the output. Singh and Datta (2004) devised an ANN-based

approach to concurrently tackle groundwater pollution source identification and

aquifer hydro-dispersive parameter estimation. Singh et al. (2004) explored the

efficacy of ANNs in scenarios involving multiple sources and noise in observations.

Chaubey and Srivastava (2022) introduced an ANN-based method for estimating

source location and release concentrations within a simple 1D case study. Ayaz

(2021) proposed an ANN for estimating the release history of groundwater pol-

lution sources without prior knowledge of the release start time. Most recently,

Pan et al. (2022) introduced a deep residual neural network as a forward sur-

rogate model, combined with an ensemble smoother particle filter, to estimate

groundwater contamination sources and aquifer hydraulic conductivity.

The black box nature of ANNs enables consideration of diverse scenarios by ap-

proximating various functions, including highly nonlinear ones, without a physical

perspective on the underlying phenomena, while concurrently reducing computa-

tional costs and the requisite number of observations for model implementation.

3.3.2. Case study

To assess the reliability of the proposed methodology, a case study from the ex-

isting literature, initially presented by Ayvaz (2010) and subsequently adopted by

other studies (Xing et al., 2019; Jamshidi et al., 2020; Todaro et al., 2022b), has
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been employed as a benchmark. In the first step, the model was established using

the approach outlined in Ayvaz (2010).

The modeling domain was represented using a grid with block-centered cells

(Figure 3.24). Table 3.12 provides a summary of the hydraulic and geometric

characteristics of the domain. Regarding boundary conditions, specified head

boundary conditions were applied at the upper-left (A-B) and lower-right (C-

D) boundaries, while considering no-flow boundary conditions for the remaining

parts of the domain. The aquifer was divided into five zones (as depicted in Fig-

ure 3.24), each characterized by distinct hydraulic conductivity values: HK1 =

0.0004m/s, HK2 = 0.0002m/s, HK3 = 0.0001m/s, HK4 = 0.0003m/s, and

HK5 = 0.0007m/s. Hydraulic conductivity remained consistent within each zone,

resulting in a scenario of steady-state and non-uniform flow conditions. Within

the aquifer, we introduced two active sources and positioned seven monitoring

locations strategically. The simulation covered a total period of five years, split

into ten stress periods, each spanning six months. The sources remained active for

the initial two years of the simulation, releasing a conservative contaminant, com-

monly referred to as the "golden-test", following the approach proposed by Ayvaz

(2010). Consequently, the contaminant transport process exhibited a transient

behavior.

The longitudinal and transverse dispersivity coefficients, denoted as αL and αT ,

respectively, were linked to the longitudinal and transversal dispersion components

DL and DT of the dispersion tensor D through the relationships DL = αLu and

DT = αTu, with "u" representing the effective velocity of the flow field.

The data-driven model underwent training and validation to address two dis-

tinct study scenarios: forward and inverse transport problems (Table 3.13). In the

forward approach, a single scenario was considered, focusing on the estimation of

contaminant concentration values resulting from the influence of two sources at

known positions (referred to as FWD 1). In contrast, the inverse approach en-
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compassed a range of scenarios, including the estimation of the release history of

a single source with a known position (INV 1), the estimation of both the release

history and the location of a single source with an unknown position (INV 2), the

estimation of the release histories of two sources with known positions (INV 3),

and the estimation of the release histories of two sources with known positions,

along with the determination of the order of magnitude of observation errors (INV

4).

Table 3.12. Hydraulic and geometry characteristics of the study domain.

Parameters Values

Effective porosity, ϕ 0.3

Longitudinal dispersivity, αL (m) 40

Transverse dispersivity, αT (m) 4

Saturated thickness, b (m) 30

Grid spacing in the ζ direction, ∆ζ (m) 100

Grid spacing in the η direction, ∆η (m) 100

Length of the stress periods, ∆t (months) 6

Initial concentration (ppm) 0
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Table 3.13. Summary of the input-target data for the investigated scenarios.

Scenario Input data Output data

FWD1 Mass release at 2 sources
for 2 years every 6

months

Concentrations at 7
monitoring points

observed for 5 years, one
time per year

INV1 Concentrations at 7
monitoring points

observed at time 5 years
after the release

Mass release at one
source for 2 years every 6

months

INV2 Concentrations at 7
monitoring points

observed at time 5 years
after the release

Mass release at one
source for 2 years every 6

months. Planar
coordinates of the source

INV3 Concentrations at 7
monitoring points

observed for 5 years, one
time per year

Mass release at 2 sources
for 2 years every 6

months

INV4 Concentrations at 7
monitoring points

observed for 5 years, one
time per year

Mass release at 2 sources
for 2 years every 6

months and error on
observations

3.3.3. Groundwater flow and transport

To comprehensively investigate issues concerning the transport of contaminants

within an aquifer, a thorough understanding of the flow characteristics is imper-

ative. The analysis focuses on a confined aquifer with well-known hydraulic pa-

rameters, characterized by a two-dimensional flow equation (Eq. 3.3). Including

the Darcy law, Eq. 3.3 expresses (in Cartesian coordinates ξ = (ζ, η)) the mass

balance within a heterogeneous and anisotropic confined aquifer (under the ssump-

tion to align with the principal directions of the symmetric tensor representative

of transmissivity):
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Figure 3.24. Discretization grid of the two-dimensional aquifers.
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(3.3)

Here, Tζζ and Tηη [L2T−1] represent the principal transmissivity values along

the ζ and η directions, t [T ] is time, h is the piezometric head [L], Q [LT−1] is the

flow rate per unit area entering or leaving the aquifer (positive when entering),

and S [-] is the storativity of the porous medium.
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Firstly, the flow problem was solved; then, the transport problem was ad-

dressed, utilizing the known flow field, while specifying particular boundary and

initial conditions. Eq. 3.4 defines the transport process for an injection of a

non-reactive and non-sorbing solute at a point source:

∂(ϕC(ξ, t))

∂t
= ∇· [ϕD(ξ)∇C(ξ, t)]−∇· [ϕu(ξ, t)C(ξ, t)]+ s(ξ0, t)δ(ξ− ξ0). (3.4)

In this equation, ξ represents the position vector of a specific point within the

two-dimensional aquifer, ξ0 is the source location, C(ξ, t) [ML−3] is the concen-

tration at the location ξ and time t [T ], ϕ [-] is the effective porosity, u(ξ, t) [LT−1]

is the effective velocity vector field at the location ξ and time t [T ], D(ξ) [L2T−1]

is the dispersion tensor, ∇ represents the spatial differential operator Nabla in the

spatial coordinates ξ, s(ξ0, t) [MT−1] signifies the rate of mass release of the con-

taminant per unit time injected into the aquifer through the source, and δ [L−3]

denotes the Dirac delta function.

To solve these equations a numerical model was developed using MODFLOW

(Harbaugh, 2005) and MT3D (Zheng, 1999).

3.3.4. Set up of the ANN

The implemented artificial neural network (ANN) takes the form of a Multilayer

Perceptron Network (Section 1.3.2). As previously introduced, the MLP model

operates with three layers: the input, hidden, and output layers. The dimensions

of the input and output layers are variable, depending on the specific scenario

under consideration, while the hidden layer consistently comprises 10 neurons.

The hidden layer is activated by the hyperbolic tangent function, while for the

output layer the activation function employed is the identity function. The neural

network Loss Function, denoted as L(Θ), where Θ = (θ1, . . . , θn) represents all
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the network parameters (weights and biases), is defined as reported in Eq. 1.4.

To train the network, the Levenberg-Marquardt numerical optimization technique

was selected. Building a data-driven model with an ANN requires both a training

and validation dataset, comprising input and output values of a process. In this

work, two distinct approaches have been considered: the forward ANN, which

takes released mass fluxes at the sources as input and concentrations observed at

monitoring points as output, and the inverse ANN, which considers concentrations

observed at monitoring points as input and released mass fluxes at the sources as

output. These approaches serve different purposes: the forward approach predicts

concentrations at monitoring points based on a known mass flux release at the

source, while the inverse approach estimates the released mass flux at the source

based on known concentrations observed at the monitoring points.

Typically, training and validation datasets for data-driven models can be gen-

erated from field data or by utilizing results from a numerical model. In this case,

a synthetic example from Ayvaz (2010) was adopted, and the dataset was gener-

ated using the numerical model. The dataset generation procedure involved the

following steps:

1. Creation of groundwater flow and transport numerical models to replicate

the studied aquifer. 2. Specification of the mass released at the source. 3. Iterative

execution of forward flow and transport models to compute concentrations at

monitoring points.

The concentrations monitored at various locations ξ are then associated with

varying levels of error

Cerror(ξ, t) = Creal(ξ, t) + αεCreal(ξ, t), (3.5)

here, ε represents a random value drawn from a standard Gaussian distribution,

and α signifies the magnitude of the error. In particular, this study explores free of
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errors and normal random errors equivalent to 0.1%, 1%, and 10% of the standard

deviation.

The key consideration in this process is defining the size of the dataset and

the extreme values of the mass released. The size (corresponding to the number

of forward simulations in the numerical model) is determined based on the com-

plexity of the scenario. Moreover, it is designed to minimize computational costs

while ensuring effective training and validation. To reduce the input dataset size,

Latin Hypercube Sampling (LHS) was employed. LHS generates variables that are

uniformly distributed and uncorrelated, thereby optimizing the dataset efficiency.

For forward ANNs, the range of mass release should encompass available mass

release data. For inverse ANNs, given the concentrations observed at monitoring

wells (Ctrue), the dataset’s boundaries can be established through a preliminary

run of the numerical flow and transport models. This preliminary run involves

injecting a constant mass rate (M0) at the source, observing the maximum concen-

trations at monitoring wells (Cmax), and computing the ratio (R = Ctrue/Cmax) be-

tween Ctrue and the maximum concentrations obtained from the numerical model

by injecting M0. Using a linear relationship between mass release and concen-

trations at monitoring wells, it is possible to define the upper limit of the input

dataset as a value greater than M0 ·R, with the lower limit set to 0.

Before training the network, a preprocessing phase was performed on the

dataset using the ‘mapminmax‘ function (MathWorks, 2022). This phase involved

transforming the input dataset {x(i)}i=1,...,N and the target dataset {y(i)}i=1,...,N

into {x̃(i)}i=1,...,N and {ỹ(i)}i=1,...,N , scaling the values to the range [-1, 1]. This

transformation was applied independently to each component, where j ∈ {1, . . . , d1}

and h ∈ {1, . . . , d3}, using the following formulas:

x̃
(i)
j = 2

(
x
(i)
j −mink=1,...,N{x(k)

j }

maxk=1,...,N{x(k)
j } −mink=1,...,N{x(k)

j }

)
− 1 (3.6)

119



CHAPTER 3. Applications

ỹ
(i)
h = 2

(
y
(i)
h −mink=1,...,N{y(k)h }

maxk=1,...,N{y(k)h } −mink=1,...,N{y(k)h }

)
− 1 (3.7)

Then, during the training and validation phases of the network, certain "con-

trol" criteria were established to evaluate the performance. Firstly, the maximum

number of training epochs was set to 1000. Secondly, to prevent overfitting, a

limit of 6 validation checks was imposed. For each scenario, 70% of the dataset

was allocated for network training, the remaining 30% was reserved for validation,

while the golden-test was used to compare the ANN solution with Ayvaz (2010)

and Jamshidi et al. (2020).

3.3.4.1. Set up of each scenario

Table 3.14 outlines the dimensions of the input and target datasets employed

across all investigated scenarios.

Table 3.14. Summary of the input-target data for the investigated scenarios.

Scenario Size of the dataset Input layer dimension Output layer dimension

FWD1 500 8 data 35 data

INV1 256 7 data 4 data

INV2 2304 7 data 6 data

INV3 500 26 data 8 data

INV4 500 26 data 9 data

Two sources with known positions (FWD 1)

In this particular scenario, the objective was to obtain concentration values at

the observation points, totaling 35 values (concentrations at 7 monitoring points

observed for 5 years, one time per year). To accomplish this, a dataset consisting

of 500 input data vectors (mass release at 2 sources for 2 years every 6 months: 8

data) and 500 output data vectors (concentration values for each year) was utilized
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for both training and validation, as presented in Table 3.14.

During the testing phase, reference was made to concentration values derived

from the original Ayvaz (2010) case study. In this network architecture, the input

layer represented an eight-dimensional real linear space, featuring eight neurons

that corresponded to the six-month release history values of the two sources. The

output layer was a thirty-five-dimensional real linear space, consisting of 35 neu-

rons representing concentration values observed at monitoring locations for each

simulation year.

One source with known position (INV 1)

The dataset included 256 input data vectors (concentrations at 7 monitoring points

observed at the last time step after the release: 7 data) and 256 output data vectors

(mass release at one source for 2 years every 6 months: 4 data), as outlined in

Table 3.14. The golden-test was used to assess the performance of the training

and validation phases.

The network architecture consisted of an input layer representing a seven-

dimensional real linear space with seven neurons corresponding to concentra-

tion values at monitoring locations at t=5 years. The output layer was a four-

dimensional real linear space with four neurons representing the four six-month

release history values.

One source with unknown position (INV 2)

In this scenario, the objective is to determine both the release history of Source

2 and its corresponding location, represented by the coordinates ζ and η. To

achieve this, nine potential cells within the study domain have been identified,

each characterized by its unique ζ and η coordinates. These coordinates, along

with the mass release rate values for the six-month release history, will be provided

as output by the network.
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The dataset employed for training and validation purposes consists of 2304

input data vectors (concentrations at 7 monitoring points observed at the last time

step after the release: 7 data) and 2304 output data vectors, encompassing both

the six-month release history and the source coordinates (6 data). The dataset

size of 2304 results from combining nine separate datasets, each containing 256

data points, corresponding to hypothetical source locations within the domain.

The network’s type and structure remain consistent with that described for

INV1, with the only distinction being in the output layer (3.14). In this case, the

output layer is a real linear space with a dimension of six, comprising six neurons

that represent the four six-month release history values in addition to the ζ and η

coordinates.

Two sources with known positions (INV 3)

In this particular application, a dataset comprising 500 input data vectors (con-

centrations at 7 monitoring points observed for 5 years, one time per year: 35

data, reduced to 26) and 500 output data vectors (mass release at 2 sources for

2 years every 6 months: 8 data) has been employed to facilitate the training and

validation of the network, as indicated in Table 3.14. During the testing phase,

the six-month release history values, originally examined in the Ayvaz (2010) case

study, have been adopted for evaluation.

It is noteworthy that the input data no longer correspond to the concentration

values exclusively at the monitoring locations at time t = 5 years. Instead, they

encompass the concentration values recorded annually at the observation points

over a span of 5 years, resulting in a total of 35 values (representing data from 7

monitoring points for the entire simulation period).

As a practical consideration, among these 35 concentration values recorded

annually at the observation points, 9 consistently exhibit values close to zero, ir-

respective of the released mass. Consequently, the input data has been effectively
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reduced to 26 values for the purpose of conducting 500 synthetic simulations. Con-

sequently, the input layer now comprises a real linear space with a dimension of

26, constituted by 26 neurons. Since there are two sources under consideration,

the output layer has evolved to a real linear space of dimension eight, consisting

of eight neurons. These neurons serve the dual role of representing the four six-

month release history values for the two sources within the domain.

Two sources with unknown observation error (INV 4)

The final application is focused on the concurrent estimation of the release history

for the two sources with known positions, while also aiming to ascertain the order

of magnitude associated with observation errors (α value). For this particular sce-

nario, the training dataset remains consistent with that utilized in INV3. However,

a notable modification has been introduced in the output dataset, which now in-

corporates an additional component representing the magnitude of the observation

error (9 data, as detailed in Table 3.14).

As a result of this augmentation in the output dataset’s complexity, the output

layer has undergone a transformation, expanding to a real linear space charac-

terized by a dimension of nine. Within this nine-dimensional output space, eight

neurons serve the purpose of representing the four six-month release history values

associated with the two sources within the domain. Simultaneously, one neuron is

allocated to convey the crucial information pertaining to the order of magnitude

concerning observation errors.

3.3.4.2. Evaluation of the performance

To facilitate a comparison between the outcomes produced by the data-driven

model and those yielded by the physical model, a set of metrics has been estab-

lished following the methodologies employed in Ayvaz (2010) and Jamshidi et al.

(2020). These metrics encompass the following:
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Normalized Error (NE):

NE(%) =

∑M
i=1 |Z∧

i − Zi|∑M
i=1 Zi

· 100 (3.8)

Percent Average Estimation Error (PAEE):

PAEEi(%) =
|Z∧

i − Zi|
Zi

· 100 (3.9)

Standard Deviation (SDt):

SDt =

√∑NR

r=1(Z
∧
t,r − Zt)2

NR − 1
(3.10)

Mean Error (ME):

ME =

∑M
i=1(Z

∧
i − Zi)

M
(3.11)

Mean Absolute Error (MAE):

MAE =

∑M
i=1 |Z∧

i − Zi|
M

(3.12)

Root Mean Squared Error (RMSE):

RMSE =

√∑M
i=1(Z

∧
i − Zi)2

M
(3.13)

Normalized Root Mean Squared Error (NRMSE):

NRMSE(%) =
RMSE

Zmax − Zmin
· 100 (3.14)

in these expressions, M signifies the count of unknowns, Zi stands for the actual

observed value (for the forward problem, this represents the concentration observed

124



CHAPTER 3. Applications

at monitoring points, and for the inverse problem, it signifies the mass flux released

at the source), Z∧
i denotes the estimated value, Z∧

t,r represents the estimated

value at time t and realization r, Zt corresponds to the estimated value at time t,

averaged over NR realizations, Zmax and Zmin respectively denote the maximum

and minimum actual observed values. These metrics provide a comprehensive

assessment of model performance.

To ensure robust and reliable results, the metrics previously outlined were

applied by averaging the outputs generated by 10 distinct neural networks, all

trained using the same dataset.

It is important to note that the training and validation process involves a

degree of randomness. This randomness encompasses the division of the dataset

into training and validation sets, as well as the initialization of weights within

the neural networks. Consequently, the 10 neural networks yield slightly varying

results. The decision to employ this ensemble of 10 networks is motivated by the

objective of assessing not only the desired output but also the inherent uncertainty

associated with the results.

In this regard, Eq. 3.10 plays a pivotal role as it defines the confidence interval

within which the processed output, derived as the average of these 10 realizations,

falls. Furthermore, this approach proves especially effective in scenarios where the

number of network parameters, typically contingent on the chosen architecture, is

on par with the total data points in the training set or when dealing with noisy

data, as in this study. In such cases, employing multiple neural networks and

subsequently averaging their outputs serves as a valuable strategy to mitigate the

risk of overfitting.

3.3.5. Results

This section provides an overview of the outcomes achieved through the data-

driven models in both the forward and inverse approaches.
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3.3.5.1. FWD 1

The results generated by the data-driven model for the FWD 1 scenario closely

align with those obtained through the numerical model. Notably, the FWD 1 sce-

nario represents a unique case where the data-driven model replaces the numerical

model as a surrogate. The estimated concentrations exhibit a high level of agree-

ment with the actual values, as visually demonstrated in Figure 3.25. Table 3.15

provides additional insights, showcasing that the disparities between the estimated

and actual values are minimal, thereby underscoring the effectiveness of the neural

network.

Furthermore, it is worth noting that the artificial neural network (ANN) ex-

hibits exceptional computational efficiency, with response times as low as 0.2 sec-

onds. In contrast, the MODFLOW + MT3DMS numerical model necessitates

approximately 6 seconds to complete its computations. This significant disparity

in computational speed underscores another advantage of employing the ANN in

this context.

Table 3.15. ME, MAE, RMSE, and NRMSE computed on concentrations (mg/l) and
related to the 35 average concentration values of the 7 monitoring wells (FWD 1).

ME (g/L) 0.0028

MAE (g/L) 0.0096

RMSE (g/L) 0.0153

NRMSE 0.52%

3.3.5.2. INV 1

INV 1 deals with an inverse simulation featuring a single release source with a

known position. For the sake of brevity, in Figure 3.26 and Tables 3.16 and

3.17, only the results obtained for the error-free data and data corrupted with the

highest magnitude of the error α = 0.1 are presented. Remarkably, the results
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Figure 3.25. Observed and estimated concentration at 7 monitoring wells for 5 years of
simulation recorded one time per year, forward simulation with two release sources (FWD
1).

for both error scenarios closely resemble each other and align well with the true

release history (golden-test). The ANN exhibits a strong capability to accurately

predict the desired output for this inverse application. Furthermore, Table 3.16

provides a comprehensive overview of the observed and estimated source release

histories, along with computed metrics for the varying error levels. For a more

detailed analysis of the error levels, Table 3.17 presents the corresponding metrics.

3.3.5.3. INV 2

In the case of the inverse application INV 2, the problem complexity increases com-

pared to the previous scenario, but the data-driven model yields quite satisfactory

results. In INV 2, we utilize the same observations as in INV 1. However, the

unknowns have expanded from 4 (representing 4 releases in INV 1) to 6 (encom-

passing 4 releases and the source coordinates in INV 2). As a result, the output

generated by the artificial neural network (ANN) in the INV 2 scenario may not
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Figure 3.26. Observed and estimated release obtained as average of the results of 10 neural
networks at known source, inverse simulation with one release source and different error
level, error-free data (α = 0) and corrupted data (α = 0.1) (INV 1).

Table 3.16. Observed and estimated source release fluxes (g/s) obtained as the average
of the results of 10 neural networks with related metrics PAEE, SD for different error
levels, error-free data (α = 0) and corrupted data (α = 0.1) (INV 1).

Source Stress period Actual
source fluxes

(g/s)

Average
estimated

source fluxes
(g/s)

Average
estimated

source fluxes
(g/s)

α = 0 PAEE SDt α = 0.10 PAEE SDt
(%) (g/s) (%) (g/s)

S2 1 24 23.61 1.65 0.39 23.48 2.18 0.32
2 56 56.88 1.58 0.75 57.07 1.92 0.92
3 43 42.52 1.12 0.65 42.33 1.56 0.78
4 35 35.16 0.47 0.37 35.30 0.86 0.37

be as accurate as in INV 1. Nevertheless, with an increased number of observa-

tions and consequently, more information being fed into the neural network, the

network has the potential to perform better in the INV 2 scenario.

Despite these complexities, the ANN manages to estimate not only the release

history but also the source location effectively, even for varying error levels. Table

3.18 provides the actual and estimated coordinates of the source, demonstrating

the network’s capability to make accurate predictions across different error sce-
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Table 3.17. ME, MAE, RMSE, NRMSE and NE computed on source fluxes (g/s) de-
scribed by four stress period and obtained as average of the results of 10 neural networks
for different error level (INV 1).

α = 0 α = 0.1

ME (g/s) -0.04 -0.04

MAE (g/s) 0.48 0.64

RMSE (g/s) 0.55 0.70

NRMSE 1.71% 2.19%

NE 1.22% 1.63%

narios. This visual agreement can be observed in Figure 3.27, where the estimated

release mass rates are compared to the real values, showcasing a strong agreement

between them. Additionally, Tables 3.19 and 3.20 present the computed metrics

for various error levels.

Table 3.18. Actual and estimated source location (ζ, η) obtained as the average of the
results of 10 neural networks with different data error levels, error-free data (α = 0) and
corrupted data (α = 0.1) (INV2).

α = 0 α = 0.1

Source Actual location Average estimated
location

SDt (-) Average estimated
location

SDt (-)

S2 ζ = 4 ζ = 4.02 0.199 ζ = 4.16 0.212

η = 4 η = 3.83 0.178 η = 3.85 0.271

3.3.5.4. INV 3

Scenario INV3 involves the estimation of the release history of two sources with

known positions using concentration data from monitoring points within the do-

main. Different levels of error are considered in this analysis. The results obtained

from the data-driven model are compared to two literature study cases: Example 2

from Ayvaz (2010) and the first case from Jamshidi et al. (2020). This comparison

aims to assess the reliability of the neural network model.
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Figure 3.27. Observed and estimated release fluxes obtained as average of the results of
10 neural networks at estimated unknown source, inverse simulation with one release and
different error level, error-free data (α = 0) and corrupted data (α = 0.1) (INV 2).

Table 3.19. Observed and estimated source release fluxes (g/s) obtained as the average
of the results of 10 neural networks with related metrics PAEE, SD for different error
levels, error-free data (α = 0), and corrupted data (α = 0.1) (INV2).

Source Stress period Actual
source fluxes

(g/s)

Average
estimated

source fluxes
(g/s)

Average
estimated

source fluxes
(g/s)

α = 0 PAEE SDt α = 0.10 PAEE SDt
(%) (g/s) (%) (g/s)

S2 1 24 18.21 24.13 3.98 19.59 18.41 6.40
2 56 58.09 3.74 8.31 61.73 10.24 10.67
3 43 42.80 0.47 7.08 39.33 8.54 9.99
4 35 35.67 1.91 8.53 36.85 5.27 7.43

While the results from the two literature studies are valid, the neural network

demonstrates superior precision in estimating release histories (Table 3.21). Fur-

thermore, when considering the NE (%) value for a corrupted error level of α = 0.1

(as shown in Table 3.22), this work achieves an NE (%) of only 1.23%, significantly

lower than the values obtained in Ayvaz (8.06%) and Jamshidi et al. (18.06%) for

the same error level.

In Figure 3.28, we present the results of estimated release histories for both
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Table 3.20. ME, MAE, RMSE, NRMSE and NE computed on source fluxes (g/s) de-
scribed by four stress period and obtained as average of the results of 10 neural networks
for different error level (INV 2).

α = 0 α = 0.1

ME (g/s) 0.81 0.13

MAE (g/s) 2.19 3.92

RMSE (g/s) 3.10 4.16

NRMSE 9.69% 13.01%

NE 5.54% 9.92%

error-free conditions (α = 0) and the corrupted error level (α = 0.1). These

figures highlight the excellent agreement between the ANN predictions and the

actual values. Additionally, Figure 3.29 provides a visual comparison, clearly

indicating that the release histories generated by the neural network align more

closely with the real data. Error bars, representing one standard deviation, are

included to emphasize result reliability.

Table 3.22 offers a comparative analysis of statistical metrics between the lit-

erature cases and our work, considering various error levels.

Table 3.21. Comparison of the estimated and actual source release fluxes described by
four stress periods at two known sources obtained as the average of the results of 10
neural networks with Ayvaz (2010), Jamshidi et al. (2020), and the present work, with
level error α = 0.1 and related statistical metrics (INV 3).

Source S1 S2

Stress period 1 2 3 4 1 2 3 4
Actual source fluxes (g/s) 35 90 65 47 24 56 43 35

Ayvaz (2010)
Average estimated source fluxes (g/s) 35.4 87.5 62.9 53.4 31.5 48.5 46.49 33.6

PAEE (%) 1.23 2.8 3.27 13.7 31.1 13.4 9.14 4.13
SDt (g/s) 3.1 6.56 15.5 9.6 7.97 10.9 13.5 6.07

Jamshidi et al. (2020)
Average estimated source fluxes (g/s) 41.6 63.3 77.7 43.6 22.2 48.5 47.7 27

PAEE (%) 18.9 29.6 19.5 7.15 7.6 13.4 11 22.8
SDt (g/s) 8 29.9 42.1 23.5 11.8 35.2 42 16.9

Present work
Average estimated source fluxes (g/s) 35 89.2 64.9 47.3 23.6 58.3 42.1 35

PAEE (%) 0.05 0.9 0.15 0.69 1.76 4.09 2.06 0.01
SDt (g/s) 0.17 0.43 0.34 0.34 0.29 0.81 0.79 0.27
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Figure 3.28. Observed and estimated release fluxes described by four stress period and
obtained as average of the results of 10 neural networks results, inverse simulation with
two release sources and different error level, error-free data (α = 0) and corrupted data
(α = 0.1) (INV 3).

Figure 3.29. Estimated release fluxes in reference works for corrupted data (α = 0.1)
and, for any time step, the error bars related to one time the standard deviation (INV
3).
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Table 3.22. Comparison of statistical metrics with Ayvaz (2010) and Jamshidi et al.
(2020) for different error levels, error-free data (α = 0), and corrupted data (α = 0.1)
(INV 3).

α = 0 α = 0.1

Ayvaz (2010) Jamshidi et al. (2020) Present Work Ayvaz (2010) Jamshidi et al. (2020) Present Work

ME (g/s) 0.00 -2.92 -0.02 0.58 -2.91 -0.05

MAE (g/s) 0.85 5.65 0.63 3.98 8.92 0.61

RMSE (g/s) 1.06 7.34 0.90 4.77 11.58 0.93

NRMSE 1.6% 11.1% 1.4% 7.2% 17.5% 1.4%

NE 1.72% 8.06% 1.17% 8.06% 18.06% 1.23%

3.3.5.5. INV 4

Scenario INV 4 introduces a novel aspect in the literature, as it involves estimating

not only the release histories but also the order of magnitude of the error in the

observations. The neural network demonstrates its ability to accurately recognize

the observation errors, as evidenced in Table 3.23, which presents the actual and

estimated values of the observation errors.

Additionally, as depicted in Figure 3.30 and summarized in Table 3.24, there

is a strong agreement between the actual and estimated source fluxes for both

α = 0 and α = 0.1. For further insights, Table 3.25 provides the statistical metrics

calculated for the source fluxes at different estimated error levels.

Table 3.23. Actual and estimated order of magnitude obtained as average of the results
of 10 neural networks of the error on concentrations (INV 4).

Actual Value Average estimated value SDt(-)

α = 0 α̂ → 0 → 0

α = 0.001 α̂ = 0.0008 0.0001

α = 0.01 α̂ = 0.0099 0.0008

α = 0.1 α̂ = 0.1006 0.0053
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Figure 3.30. Observed and estimated release fluxes described by four stress periods at two
known sources obtained as the average of the results of 10 neural networks at a known
source. Inverse simulation with two release sources under different estimated error levels:
error-free data (α̂ → 0) and perturbed data (α̂ ≈ 0.10) (INV 4).

Table 3.24. Observed and estimated source release fluxes (g/s) described by four stress
periods at two known sources obtained as the average of the results of 10 neural networks
with related metrics PAEE, SD for different estimated error levels, error-free data (α̂ →
0) and perturbed data (α̂ ≈ 0.10) (INV 4)).

Source Stress period Actual
source fluxes

(g/s)

Average
estimated

source fluxes
(g/s)

Average
estimated

source fluxes
(g/s)

α = 0 PAEE SDt α = 0.10 PAEE SDt
(%) (g/s) (%) (g/s)

S1 1 35 34.59 1.17 0.69 34.58 1.19 0.57
2 90 88.40 1.78 0.83 88.33 1.86 0.76
3 65 64.17 1.28 1.42 63.63 2.11 1.16
4 47 49.29 4.86 0.67 49.69 5.72 0.54

S2 1 24 24.1 0.38 1.15 24.71 2.95 1.32
2 56 58.14 3.84 1.93 57.88 3.37 2.02
3 43 41.71 2.99 1.19 41.50 3.48 1.26
4 35 34.80 0.58 0.67 34.79 0.59 0.81
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Table 3.25. ME, MAE, RMSE, NRMSE and NE computed on source fluxes (g/s) de-
scribed by four stress period at two known sources obtained as average of the results of
10 neural networks for different estimated error level (INV 4).

α̂ → 0 α̂ ≈ 0.001 α̂ ≈ 0.01 α̂ ≈ 0.10

ME (g/s) -0.02 -0.03 0.00 -0.01

MAE (g/s) 1.11 1.11 1.27 1.31

RMSE (g/s) 1.37 1.36 1.57 1.52

NRMSE 2.10% 2.10% 2.40% 2.30%

NE 5.54% 3.10% 2.71% 2.65%

3.3.6. Discussion and conclusions

In this study, neural networks have been employed as data-driven models to tackle

various challenges associated with both forward and inverse transport problems.

These challenges involve the utilization of concentration data from different mon-

itoring points and release history information during the training phase. The out-

comes of this investigations indicate that this data-driven approach is highly effec-

tive in providing solutions with minimal computational overhead, offering valuable

insights for aquifer management and expediting the development of remediation

strategies.

One key advantage of our work lies in the use of LHS, which significantly

reduces the number of forward simulations required for network training, thus al-

leviating the computational burden. Notably, Ayvaz (2010) employed an approach

based on minimizing an objective function derived from the forward model, neces-

sitating a substantial number of simulations to achieve convergence (32,859 simula-

tions). Conversely, Jamshidi et al. (2020) adopted a transfer function theory-based

approach, allowing them to run the simulation model only once. The transfer

matrices were optimized using an algorithm requiring fewer iterations, which is

comparable to the number of simulations performed in our study. However, the
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results obtained in our work surpass those of the other approaches.

Furthermore, both Ayvaz (2010) and Jamshidi et al. (2020) utilized a dataset

comprising 140 concentration values during the optimization process. This led

to a situation where the number of unknown parameters was much smaller than

the number of measurements. In contrast, our proposed method proved highly

efficient, substantially diminishing the volume of a priori information (only 26

observations) required to tackle the inverse problem.

Upon evaluating the performance using computed metrics (Tables 3.22 and

3.25), the implemented ANN consistently demonstrated excellent results, outper-

forming the other two existing literature cases. For example, the SDt values calcu-

lated for the INV 3 application showcased a narrower confidence interval, signifying

lower uncertainty compared to the SDt values from the other studies (Figure 3.29).

Additionally, the SDt values calculated for the INV 4 application underscored the

ANN’s capability to handle observation error estimation, addressing a previously

unexplored aspect in ANN-based research.

One of the most significant advantages of employing a data-driven model like

ANN is its ability to provide computationally efficient solutions once trained. This

eliminates the need for complex numerical models for each evaluation. Neural

networks rely on the numerical model only during the training phase to generate

a training dataset within specified ranges. After successful training, the network

can swiftly provide the desired output.

In practice, applying these procedures has been met with challenges, primarily

due to the assumption of known aquifer parameters when they are often poorly

characterized and highly heterogeneous (Chen et al., 2021). Building on the

promising results of this study, future research endeavors will focus on simultane-

ously estimating network parameters while identifying release histories, adapting

the methodology also for unconfined and three-dimensional aquifers. Furthermore,

addressing the issue of generalization is of paramount importance. Neural networks
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can generalize within their training range but struggle to do so outside of it. To

mitigate this challenge, future work may explore the application of "Physically

Informed Neural Networks" (Raissi et al., 2019).

In conclusion, the methodology and the results obtained were submitted to an

international journal and were published (Secci et al., 2022).

3.4. Physics-informed neural networks for solving
transient unconfined groundwater flow

In Chapter 3.4, the spotlight is on the intricacies of training PINNs and investigates

the use of PINNs for solving transient unconfined groundwater flow.

The capability of PINNs to assimilate physical constraints into neural net-

works, as discussed in Section 1.3.6, navigate intricate geometries and boundary

conditions, and operate effectively with limited data renders them suitable for

simulating unconfined groundwater flow. Nonetheless, their utilization for this

specific purpose has been relatively unexplored (Shadab et al., 2021; Zhang et al.,

2022).

The application of PINNs is demonstrated in two scenarios: an isotropic and

homogeneous aquifer, and an anisotropic and heterogeneous aquifer. The results

are compared with the finite difference numerical solution obtained through a

numerical model implemented with MODFLOW 2005 (Harbaugh, 2005). In addi-

tion, the result of the PINN are compared to the results obtained by a conventional

neural network MLP (Section 1.3.2).

3.4.1. Transient unconfined flow

Understanding unconfined groundwater flow is pivotal in the context of water re-

source management, water quality preservation, and the mitigation of environmen-
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tal ramifications like land subsidence and saltwater intrusion in coastal aquifers.

However, tackling the complexities of unconfined groundwater flow is far from

straightforward, given the necessity to account for spatially and temporally fluc-

tuating boundary conditions. In an effort to simplify this intricate problem, initial

assumptions were introduced by Dupuit and Forchheimer (Bear, 2012, Eq. 4-64),

and later generalized by Boussinesq (Bear, 2012, Eq. 5-76). Although the Boussi-

nesq equation provides a useful yet simplified framework, it fails to encompass

certain intricate physical phenomena inherent in unconfined groundwater flow,

such as vertical flows and steep hydraulic gradients. Consequently, its accuracy

may be compromised in specific scenarios, such as those in proximity to pump-

ing wells, discharge zones in coastal aquifers, or areas characterized by rugged

topography. Over time, researchers have actively sought optimal solutions for

the equation of simplified unconfined groundwater flow (Meenal and Eldho, 2011;

Pulido-Velazquez et al., 2007; Taigbenu and Nyirenda, 2010).

Addressing the spatiotemporal-variant nature of the phreatic surface as a bound-

ary condition presents challenges due to its intricate characteristics and substan-

tial computational demands (Guo, 1997). ANNs have gained increasing traction

in environmental and water resource studies due to their adeptness at swiftly

and accurately processing extensive datasets (Sit et al., 2020; Tahmasebi and

Sahimi, 2021; Mariethoz and Gómez-Hernández, 2021). While ANNs are data-

driven models that offer cost-efficiency compared to process-based models, they

demand substantial data volumes to yield precise outcomes and lack the intrinsic

physical interpretability characteristic of process-based models. While some liter-

ature exists on the utilization of ANNs as surrogate models for groundwater flow

equations (Asher et al., 2015), their application in the context of unconfined flow,

particularly for predictive purposes, remains relatively limited.

In this study, PINNs are used to compute the phreatic surface and piezometric

heads within a synthetic unconfined aquifer. Unlike prior investigations (Shadab
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et al., 2021; Zhang et al., 2022), the phreatic surface is considered as a boundary

condition with a spatiotemporal-varying nature and an unknown geometry, subject

to the requirement that the piezometric head equals the elevation at the phreatic

surface. The groundwater flow partial differential equation (PDE) for a transient

unconfined aquifer is employed as the foundational model, without simplifications.

The PDE governing unconfined groundwater flow in a two-dimensional hetero-

geneous aquifer in the vertical plane (XZ) under transient conditions is expressed

as follows:

∂

∂x

(
Kxx(x, z)

∂h

∂x
(x, z, t)

)
+

∂

∂z

(
Kzz(x, z)

∂h

∂z
(x, z, t)

))
= S(x, z)

∂h

∂t
(x, z, t) +W (x, z, t)

(3.15)

In this equation, Kxx(x, z) and Kzz(x, z) [LT−1] are the principal values of the

hydraulic conductivity tensor, assuming that the principal directions are parallel to

axes x and z, t [T ] is time, h(x, z, t) [L] is piezometric head, W [T−1] is an external

flow extraction rate per unit volume, and S [L−1] is specific storage. Additionally,

Sy is the specific yield, a dimensionless quantity. The initial condition is specified

as h(x, z, 0) = h0(x, z), where h0 is a known function. The problem is further

constrained by boundary conditions, which can be of standard types, such as

prescribed head, prescribed flow, or prescribed linear combinations of head and

flow. However, in the case of unconfined aquifers, a distinctive boundary condition

applies to the phreatic surface, where the piezometric head h must equal the

elevation z along the phreatic surface for all points (x, z). Notably, the position of

the phreatic surface is unknown in advance and varies over time, adding complexity

to the solution process.

h(x, z) = z ∀(x, z) along the phreatic surface. (3.16)
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3.4.2. Case study

In this study, a two-dimensional unconfined aquifer defined in the domain (x, z) ∈

[0, 1]× [0, 1] is considered. Being a synthetic application and aligned with the

normalization procedures discussed in Section 1.3.1, to ensure the generality of

the results, all parameters and simulation outcomes are presented without units,

with validity retained as long as consistent units are employed.

The transient groundwater flow is simulated over a time period (t) ranging from

0 to 1, with four specific time instances analyzed at t = 0.01, t = 0.25, t = 0.5,

and t = 1. The bottom boundary is impermeable throughout the simulation. The

model captures the transient behavior that ensues from a specific set of boundary

conditions. At time 0, the left and right boundaries correspond to reservoirs

prescribing heads equal to 1, with the initial heads conforming to the steady-state

solution for these conditions, specifically h(x, z) = 1, with the phreatic surface

coinciding with the top boundary. Suddenly, at time 0, the left reservoir’s level

drops to 0.4, and the right reservoir’s level drops to 0.6. These new boundary

conditions translate to h(0, z) = 0.4 for z ∈ [0, 0.4] and undefined for z > 0.4 on

the left boundary, and h(1, z) = 0.6 for z ∈ [0, 0.6] and undefined for z > 0.6 on

the right boundary. This abrupt change induces transient behavior, which we aim

to model using PINNs.

Two synthetic aquifers are investigated in this study: a homogeneous and

isotropic unconfined aquifer (SC1) and a heterogeneous and anisotropic unconfined

aquifer (SC2). Table 3.26 outlines the geometric and hydraulic characteristics of

these cases. To facilitate benchmarking, the MODFLOW solution is computed.

While the PINN solution operates in a meshless manner (as detailed below), MOD-

FLOW necessitates domain discretization. For this purpose, a discretization of 20

by 20 cells in space and 1440 steps in time is chosen. Figure 3.31 illustrates the

utilized discretization, the spatial distribution of conductivity for the heteroge-
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Table 3.26. Hydraulic and geometric characteristics of the study domain

Parameters SC1 SC2

Specific yield 10−3 10−3

Horizontal hydraulic conductivity, Kxx 10−3 K1 = 4 · 10−3,K2 = 10−3,K3 = 2 · 10−3,K4 = 3 · 10−3

Vertical hydraulic conductivity, Kzz 10−3 K1 = 4 · 10−4,K2 = 10−4,K3 = 2 · 10−4,K4 = 3 · 10−4

Grid spacing in the x direction, ∆x 0.05 0.05

Grid spacing in the z direction, ∆z 0.05 0.05

Simulation time, ∆t 1 1

Total time steps 1440 1440

neous case, and the boundary conditions implemented in MODFLOW after time

0.

For training the artificial network, a specific number of observations within the

saturated aquifer zone is considered. Particularly, 10% of active cells from the in

the (XZ) plane are sampled from the MODFLOW solution randomly for each of

the four time steps, excluding locations above the phreatic surface. This choice

of observations may seem arbitrary but aims to establish control points inside the

domain for improved network training. To ensure that the network satisfies the

PDE (3.15) with its initial and boundary conditions, specific points where PDE

verification is required were identified. Accordingly, 1000 points was selected along

the left boundary, randomly chosen within the segment [0, 0]× [0, 0.4], and sim-

ilarly, 1000 points along the right boundary within the segment [1, 0]× [1, 0.6].

These points enforce adherence to the prescribed head boundary conditions. Ad-

ditionally, 1000 points are randomly selected along the bottom boundary within

the segment [0, 0]× [1, 0], ensuring compliance with the bottom impermeable con-

dition. For initial conditions, 500 point locations are randomly chosen from the

simulation domain at time 0, serving to enforce the specified initial conditions.

Lastly, 25,000 points for SC1 and 35,000 points for SC2 are randomly selected

within the simulation domain [0, 0]× [1, 1] and used as collocation points to en-

sure the accurate reproduction of the PDE.
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Figure 3.31. Synthetic domain.

3.4.3. PINN set up

The primary objective of the implemented PINN is to integrate the supervised

loss function derived from the data while simultaneously adhering to the govern-

ing PDE, boundary conditions and initial conditions. This is accomplished by

formulating a comprehensive loss function that incorporates four essential compo-

nents: the prediction residual with the observed values, PDE residual, boundary

residual, and initial conditions residual:

Loss = Loss OBS + Loss PDE + Loss BC + Loss IC (3.17)

In this study, two structurally identical neural networks (Figure 3.32), of the

MLP type (Section 1.3.2), are employed, differing only in their input and output
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layers. The first network, denoted as ANN1, is designed to calculate the piezomet-

ric head value (output) using the spatial coordinates (x, z) and time (t) as inputs.

The second network, known as ANN2, takes the x coordinate and time as input

values and predicts the zs coordinate value (output), indicating the position of

the free surface at a specific time. While both networks could be trained simulta-

neously with a single loss function, our approach involves a preliminary iteration

where ANN1 is trained first, followed by the training of ANN2 (with ANN1 pa-

rameters fixed). The weights and biases obtained in this preliminary iteration

serve as starting values for the joint training of the two networks.

Each artificial network comprises an input layer, seven hidden layers (each

containing 20 neurons), and an output layer. Functionally, the ANN can be viewed

as a differentiable system consisting of a sequence of multivariable vector-valued

functions, encompassing affine transformations and linear or nonlinear functions

(activation functions), mapping from Rd1 to Rd3 as illustrated in Eq. (3.18):

Rd1 ⇒ Rd2 ⇒ Rd2 ⇒ Rd2 ⇒ Rd2 ⇒ Rd2 ⇒ Rd2 ⇒ Rd2 ⇒ Rd3 . (3.18)

Here, d1 and d3 represent the dimensions of the input and output layers, re-

spectively. In this study, d1 is three for ANN1 and two for ANN2, d2 is the number

of neurons in the hidden layer (20 for both ANN1 and ANN2), and d3 is one for

both networks.

The selection of the number of hidden layers, evaluation points for network

performance assessment, activation function choice, and other hyperparameters

necessary for network definition were determined through initial manual testing.

These tests aimed to identify configurations that optimize the ANN’s performance,

minimizing errors while ensuring efficient processing times. Specifically, the ac-

tivation function used is the hyperbolic tangent (tanh), the number of training
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Figure 3.32. Sketch of the implemented neural networks.

epochs is set to 200, the mini-batch size is 128, the initial learning rate is 0.01,

and the decay rate is 0.005.

3.4.3.1. First neural network (ANN1)

ANN1 (Figure 3.33) is responsible for predicting the piezometric head based on

three input parameters: spatial coordinates (x, z) and temporal variable (t). These

spatiotemporal coordinates do not require a mesh and, once trained, provide a

meshless solution detached from any space-time discretization.

The training of ANN1 revolves around minimizing a loss function with the

following components:

1. Loss associated with the error in reproducing the observed values, which

equals the average of the squared differences between observations and pre-

dictions at the chosen locations and times.

LOBS =
∑
Γ

(hpredicted − hobserved)
2 (3.19)

where:

- the summation symbol
∑

Γ represents the summation over spatial and

temporal regions corresponding to the observed values.
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- hpredicted is the predicted hydraulic head.

- hobserved is the observed hydraulic head as a function of space and time.

2. Loss associated with the error in reproducing the initial conditions, which

equals the sum of the squared differences between the network prediction at

time zero and the known initial values at the sampled locations

LIC =
∑
Γ

(hpredicted − hinitial)
2 (3.20)

where:

- the summation symbol
∑

Γ represents the summation over over space cor-

responding to the initial conditions.

- hpredicted is the predicted hydraulic head.

- hinitial is the initial hydraulic head as a function of space and time.

3. Loss associated with the error in reproducing the known heads at the pre-

scribed head boundaries, which equals the average of the squared differences

between the network prediction and the known prescribed heads at the four

chosen time steps

LBC =
∑
Γ

(hpredicted − hspecified)
2 (3.21)

where:

- the summation symbol
∑

Γ represents the summation over spatial and

temporal regions corresponding to the boundary conditions.

- hpredicted is the predicted hydraulic head.

- hspecified is the specified hydraulic head as a function of space and time.
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4. Loss associated with the error in reproducing the no flow boundary. Using

automatic differentiation (Griewank, 1998), it is possible to evaluate any

partial differential of the artificial network output (h) with respect to the

input variables (x, z, t); therefore, ∂h
∂z can be evaluated at the selected points

along the bottom boundary, and the average squared difference with respect

to its known value of zero computed for each of the chosen time steps.

Lnoflow =
∑
Ω

(
f(x, z, t, h,

∂h

∂x
,
∂h

∂z
)

)2

(3.22)

In this expression:

- Ω represents the spatial and temporal domain over which the no flow bound-

ary conditions is solved.

- h is the predicted solution by the neural network.

- f(x, z, t, h, ∂h
∂x ,

∂h
∂z ) is the no flow residual, which depends on the predicted

solution h and its derivatives with respect to x and z.

5. Loss associated with the error in reproducing the PDE. Again, thanks to

automatic differentiation, and as displayed in Figure 3.33, the partial deriva-

tives involved in (3.15) can be computed at the collocation points selected.

After rearranging all terms in (3.15) so that they equal zero, the average

squared sum of the PDE values computed with the heads provided as out-

put from the neural network at the collocation points and the four selected

times will represent the associated error.

LPDE =
∑
Ω

(
f(x, z, t, h,

∂h

∂x
,
∂h

∂z
,
∂h

∂t
)

)2

(3.23)

In this expression:

- Ω represents the spatial and temporal domain over which the PDE is solved.
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- h is the predicted solution by the neural network.

- f(x, z, t, h, ∂h
∂x ,

∂h
∂z ,

∂h
∂t ) is the PDE residual, which depends on the predicted

solution h and its derivatives with respect to x, z, and t.

Figure 3.33. Sketch of ANN1.

3.4.3.2. Second neural network (ANN2)

The objective of ANN2 (Fiure 3.34) is to predict the spatial coordinate (zs) corre-

sponding to the phreatic surface, using (x, t) as input variables. The loss function

is redefined as the summation of squared discrepancies between the predicted ele-

vation zs and the piezometric head forecasted at that specific location by ANN1,

which is expected to match the actual elevation. This summation is calculated

over 2500 points (SC1) and 3500 points (SC2), randomly distributed within the

range [0, 1] and across the four selected time intervals. The loss function for ANN2

comprises two components:

1. Loss associated with the error in reproducing the phreatic surface, which

equals the sum of the squared difference between the ANN2 predictions and

the piezometric head predicted by ANN1.
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LBC =
∑
Γ

(
zspredicted − hpredicted

)2 (3.24)

where:

- the summation symbol
∑

Γ represents the summation over spatial and

temporal regions corresponding to the prheatic surface prediction.

- zspredicted is the predicted elevation of the phreatic surface by ANN2.

- hpredicted is the predicted hydraulic head by ANN1.

2. Loss associated with the error in reproducing the initial conditions, which

equals the sum of the squared differences between the network predictions

and the known initial values for the phreatic surface.

LIC =
∑
Γ

(
zspredicted − zsinitial

)2 (3.25)

where:

- the summation symbol
∑

Γ represents the summation over space corre-

sponding to the initial position of the phreatic surface.

- zspredicted is the predicted phreatic surface elevation at time t = 0.

- zsinitial is the initial phreatic surface elevation as a function of space.

As previously mentioned, the training process begins with ANN1, followed by

training ANN2 using the output from ANN1. Then, both networks are concur-

rently trained, utilizing a loss function that combines the components described for

each network. We have found this sequential training approach to be more efficient

than attempting to train both networks simultaneously from the outset. Given the

inherent relationship between the elevation of the free surface, denoted as the out-

put of ANN2, and the hydraulic head, represented as the output of ANN1, within
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Figure 3.34. Sketch of ANN2.

an unconfined aquifer, it proves more effective to predict the phreatic surface ele-

vation using ANN2 following the training of ANN1. This methodology optimizes

computational processes by harnessing the knowledge acquired from the initial

neural network, thereby enhancing predictive accuracy and efficiency, leading to

smaller values of the final loss function.

3.4.4. Evaluation of the performance

The solution provided by MODFLOW will serve as the benchmark for evaluating

the performance of the implemented PINN. To quantify the agreement between

the fully trained PINN and the numerical model, several evaluation metrics are

employed.

First, the Root Mean Squared Error (RMSE) is utilized to assess the overall

fit:

RMSE =

√√√√ N∑
i=1

(ĥi − hi)2

N
, (3.26)

where N denotes the total number of verification points across both spatial and

temporal dimensions. In this context, hi represents the predicted values obtained

from MODFLOW, while ĥi corresponds to the predicted values produced by the
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PINN.

Additionally, the Mean Absolute Error (MAE) is chosen as a reference metric

due to its resilience to outliers:

MAE =
1

N

N∑
i=1

|ĥi − hi|. (3.27)

Furthermore, the Nash-Sutcliffe Efficiency (NSE) is employed as a goodness-

of-fit measure:

NSE = 1−
∑n

i=1(hi − ĥi)2∑
i = 1n(hi − h̄)2

, (3.28)

where h̄ represents the mean of the MODFLOW-predicted values.

It is essential to bear in mind that the numerical solution provided by MOD-

FLOW is itself an approximation of the underlying PDE and may not be exact.

This is particularly evident in the representation of the phreatic surface, where

MODFLOW employs a discretized approach, resulting in a less smooth represen-

tation compared to the meshless approximation offered by the PINN. Therefore,

while these metrics serve as valuable tools for comparison, they should be inter-

preted with the understanding that both approaches are approximations, each

with its unique characteristics and limitations.

3.4.5. Results

3.4.5.1. Training phase

As previously mentioned, the most efficient training strategy for both neural net-

works involves a sequential approach. Initially, ANN1 is trained independently

for 200 epochs, followed by training ANN2 for 200 epochs while keeping ANN1’s

weights fixed. Subsequently, a joint training phase is carried out for an additional

200 epochs. The progression of the loss functions for both case studies is depicted
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in Figures 3.35 and 3.36, showcasing the loss function values and corresponding

elapsed times on an Intel(R) Core(TM) i9-10920X CPU 3.50GHz with 32GB of

RAM. In both scenarios, the final loss converges to approximately 10−5, signify-

ing a reduction of at least three orders of magnitude compared to the initial loss

computed with random weight and bias initialization.

It is crucial to underscore that the available dataset predominantly comprises

physics-based information, offering only a limited amount of prior knowledge for

model training. Consequently, the risk of encountering overfitting issues, where

the PINN memorizes the training data rather than generalizing effectively, is sub-

stantially mitigated. Furthermore, by assigning a significant portion of the loss

function’s emphasis to enforcing physical constraints and reserving a smaller frac-

tion for data-driven training, we prioritize the model’s capacity to capture the

underlying physics while maintaining robust and dependable performance on un-

seen data, thus avoiding underfitting. This approach aligns seamlessly with the

inherent characteristics of PINNs, showcasing their effectiveness in addressing in-

tricate, physics-driven problems. Consequently, we have chosen to integrate all

available prior information into the training data, forgoing the creation of a sepa-

rate validation dataset.

Figure 3.35. Scenario SC1. Training loss for ANN1 alone (left), ANN2 alone with ANN1
frozen (center) and ANN1 jointly with ANN2 (right). The iteration axis in the right plot
starts at the number of iterations already performed in the previous training.
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Figure 3.36. Scenario SC2. Training loss for ANN1 alone (left), ANN2 alone with ANN1
frozen (center) and ANN1 jointly with ANN2 (right). The iteration axis in the right plot
starts at the number of iterations already performed in the previous training.

3.4.5.2. Testing phase

After the completion of network training, the validation process entails a thor-

ough comparison between the network predictions and the outcomes derived from

MODFLOW. Specifically, the Root Mean Squared Error (RMSE), the Mean Ab-

solute Error (MAE) and the Nash-Sutcliffe Efficiency (NSE) are calculated for the

piezometric heads at the central points of the discretization grid, as well as for

the elevation of the phreatic surface at four distinct time instances: 0.01, 0.25,

0.5, and 1. To obtain predictions from the neural networks, coordinates (x, z, t)

into ANN1 and (x, t) into ANN2 are considered. Additionally, a visual assessment

is performed by comparing the piezometric head maps and representations of the

phreatic surface.

Unconfined homogeneous isotropic aquifer (SC1)

Figure 3.37 visually illustrates the disparities between the predictions generated

by the neural networks and those produced by MODFLOW at the four designated

time points. Meanwhile, Table 3.27 provides quantitative insights by presenting

the RMSE and MAE values calculated at the central locations of the active dis-

cretization cells.
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Figure 3.37. SC1: Error plot of the estimated piezometric field (PINN minus MOD-
FLOW), using the active cells in the numerical model.

In general, the errors observed are minimal, with the most significant discrep-

ancies arising at t = 0.01 when both models are simulating the abrupt reduction

in prescribed head values along the boundaries. Subsequently, as the simulation

progresses towards a steady-state condition, the errors diminish, as evidenced by

the declining RMSE and MAE values. Table 3.27 further illustrates this strong

agreement by presenting the Nash-Sutcliffe Efficiency (NSE) values, affirming the

excellent alignment between the PINN predictions and the numerical solution.

Figure 3.38 illustrates the piezometric head maps at the specified time t = 0.01

as obtained from both the MODFLOW simulation and the PINN prediction. No-
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Table 3.27. SC1: RMSE, MAE and NSE of the estimated solution by the PINN compared
to the one obtained by the numerical model

Time RMSE MAE NSE

0.01 0.0423 0.0239 0.90

0.25 0.0098 0.0070 0.99

0.50 0.0093 0.0064 0.99

1.00 0.0099 0.0053 0.98

tably, the MODFLOW maps are pixel-based representations aligned with the dis-

cretization scheme used for solving the equation, while the PINN maps exhibit a

finer resolution, capitalizing on the meshless nature of the neural network. This

distinction becomes particularly pronounced in Figure 3.39, where the delineation

of the phreatic surface at the other three examined time points appears jagged in

the MODFLOW solution but exhibits a smoother profile in the PINN results.

Figure 3.38. SC1: Estimated piezometric field by the numerical model (left) and PINN
(right) for the selected time t = 0.01.
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Figure 3.39. SC1: Estimated piezometric field by the numerical model (top) and PINN
(bottom) for the selected time t = 0.25, t = 0.5, t = 1.

Unconfined heterogeneous anisotropic aquifer (SC2)

Figure 3.40 visually represents the disparities between the network predictions and

the MODFLOW predictions at the four designated time points. For a quantitative

evaluation of these differences, Table 3.28 present the computed RMSE and MAE

values specifically calculated at the central positions of the active discretization

cells.
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Figure 3.40. Heterogeneous aquifer: Error plot of the estimated piezometric field (PINN
minus MODFLOW), using the active cells in the numerical model.

Generally, these errors are small, with the most significant deviations occurring

at the initial starting time. This is expected since both models are simulating the

abrupt changes along the boundaries at time zero. However, as the simulation

progresses towards the steady-state condition, the errors gradually diminish. Ad-

ditionally, Table 3.28 provides NSE values, emphasizing the strong correspondence

between the PINN predictions and the numerical solution.
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Table 3.28. SC2: RMSE, MAE and NSE of the estimated solution by the PINN compared
to the one obtained by the numerical model

Time RMSE MAE NSE

0.01 0.0437 0.0231 0.87

0.25 0.0136 0.0109 0.95

0.50 0.0122 0.0103 0.96

1.00 0.0047 0.0039 0.99

In Figure 3.41 and Figure 3.42, the piezometric head maps are presented at

the selected times t = 0.01, t = 0.25, t = 0.5, and t = 1, generated from both the

MODFLOW simulation and the PINN prediction. Just like in the homogeneous

case, the piezometric heads obtained from the PINN and the numerical model

exhibit comparable overall behavior and patterns.

Figure 3.41. Heterogeneous aquifer: Estimated piezometric field by the numerical model
(left) and PINN (right) for the selected time t = 0.01.
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Figure 3.42. Heterogeneous aquifer: Estimated piezometric field by the numerical model
(top) and PINN (bottom) for the selected time t = 0.25, t = 0.5, t = 1.

Heterogeneous aquifer (SC2): PINN vs conventional ANN

Drawing a more extensive comparison between the performance of PINNs and tra-

ditional neural networks is of particular interest. For this reason, in this section,

the results obtained for SC2 using a MLP neural network (Section 1.3.2) are pre-

sented (Figure 3.43). Traditional neural networks exclusively depend on a priori

information, specifically, the availability of known data. In the context of this spe-

cific case study, training a conventional neural network effectively would require a

substantial volume of groundwater level data collected over time to serve as target

data during network training. However, in this particular case, the known data

is limited to prescribed boundary head conditions, initial conditions, and only a

sparse dataset within the domain (comprising merely 10% of active cells from the

MODFLOW simulation and only for four specific time steps). Even the imperme-

able boundary condition is incorporated into the loss function as physics constrain

158



CHAPTER 3. Applications

through automatic differentiation.

It is vital to emphasize that, despite being synthetic, the case study is physically

complex. The abrupt alteration of boundary conditions initiates a transient flow

behavior that is far from trivial. With the limited known data used for the training,

by excluding the underlying physics the network lacks the necessary information

for effective training and achieving high-performance results, as observed for the

PINN in the metrics reported in Tables 3.28. Furthermore, training the network

with sparse data within the domain is insufficient for establishing an appropriate

training range that accurately represents the spatial extent of the domain.

Numerous studies in the field have shown that conventional neural networks

are fundamentally incapable of extrapolating beyond their training range. Conse-

quently, the utilization of PINNs, which leverage the underlying physics, is essen-

tial. This approach enables the creation of a network that can extrapolate based on

physical principles, facilitating the development of a meshless model that delivers

reliable and functional results in contrast to a conventional neural network.

The stark contrast is evident in Figure 3.43, where the output of the conven-

tional neural network, trained solely with available a priori information, clearly

fails to accurately reproduce the flow field.
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Figure 3.43. Heterogeneous aquifer. Left: numerical solution of the piezometric field with
respect to the active cells at time t = 0, t = 0.25, t = 0.5 and t = 1. Right: conventional
ANN prediction of the piezometric field with respect to the active cells at time t = 0,
t = 0.25, t = 0.5 and t = 1.
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3.4.6. Discussion and conclusions

This study presents a successful application of Physics-Informed Neural Networks

(PINNs) to address forward groundwater flow problems in unconfined aquifers.

It is important to note that the governing partial differential equation (PDE) for

unconfined aquifer flow includes a space-time-varying boundary condition related

to the phreatic surface’s position, making it a particularly challenging problem.

The following discussion highlights the main conclusions and implications of this

research:

Firstly, our results affirm the capability of PINNs to accurately predict piezo-

metric head values in unconfined aquifer systems. This accuracy is evident from

the small errors observed between the PINN predictions and the numerical model

results, especially as the simulation progresses towards a stationary condition (re-

fer to Tables 3.27 and 3.28). These findings align with previous research that has

showcased the effectiveness of PINNs in tackling complex problems in fields like

fluid mechanics and geosciences (Waheed et al., 2021; Bajracharya and Jain, 2022;

Cai et al., 2021; Mao et al., 2020; Lv et al., 2021; Zheng and Wu, 2023).

Secondly, it was highlighted that incorporating physical constraints into the

training process can significantly reduce the need for extensive observations when

using a conventional Artificial Neural Network (ANN). This underscores the poten-

tial of PINNs to operate effectively in scenarios with limited data availability. In

contrast, traditional ANNs struggle to perform well under data-limited conditions,

while PINNs can efficiently harness existing data and physics-based constraints to

overcome data scarcity. This quality makes PINNs particularly valuable for ap-

plications in remote or data-scarce regions, as well as in situations where data

collection is resource-intensive.

Furthermore, our findings suggest that PINNs have the potential to comple-

ment or even replace traditional numerical models in simulating unconfined aquifer
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flow problems. With their faster computation times and capacity to handle com-

plex datasets, PINNs offer a promising alternative for modeling and simulating

hydrogeological systems.

However, it is essential to acknowledge certain limitations. The accuracy of

PINN results can be influenced by factors such as the neural network architecture

and the quality of training data. Hyperparameters like the number of layers, neu-

rons, and learning rates can exert a significant impact on results. While this study

manually calibrated hyperparameters to evaluate PINN effectiveness in solving

forward flow problems in unconfined aquifers, future research could explore sensi-

tivity analysis or automated tools for optimizing these parameters. Additionally,

PINNs require a substantial number of collocation points for evaluating physical

constraints, which can extend the training phase, particularly when observational

data is scarce.

Another crucial consideration is the potential impact of data errors on AI model

outcomes. In the context of neural networks, this issue has been extensively stud-

ied, demonstrating that neural networks can be trained to accommodate measure-

ment inaccuracies (Coppola et al., 2003; Secci et al., 2022). This approach involves

introducing a range of measurement errors and perturbing individual data points

accordingly. While this process demands more computational resources, it en-

hances the model’s ability to handle and adapt to measurement errors, a feature

that can be explored in future research to enhance model reliability.

Furthermore, future investigations could explore three-dimensional (3D) uncon-

fined aquifer problems to assess whether the introduction of an additional input

dimension (the y-coordinate) imposes limitations on performance or necessitates

a significant increase in data and collocation points for effective training.

In conclusion, this study demonstrates the effectiveness of using PINNs to

address unconfined aquifer flow problems, providing accurate estimates of time-

varying phreatic surface and piezometric head values. PINNs offer an efficient and
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alternative approach to solving complex groundwater flow problems, with potential

applications spanning environmental management, civil engineering, and hydro-

geology. Future research can further explore the potential of PINNs in address-

ing other groundwater challenges, including contaminant transport, heterogeneity

characterization, and anisotropy.

The methodology and the results obtained were submitted to an international

journal and have been published (Secci et al., 2024).
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4
Extra contents

This section of the thesis introduces additional contents. It begins with the appli-

cation of a conventional neural network to solve an inverse problem in the field of

sewer systems. Then, an easily interpretable example of numerical groundwater

flow modeling using spreadsheets from a didactic perspective is presented.

The inclusion of additional materials in this work aim to extend the exploration

of ANNs beyond the confines of the initial research domain and was motivated by

the interest to uncover novel insights and potential applications that can enhance

the overall depth and applicability of the study. Furthermore, the incorporation

of diverse perspectives aimed to present alternative approaches to addressing the

flow equation, ultimately contributing to a more holistic comprehension of the

complexities inherent in solving the flow equation.
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4.1. Identification of the inflow source in a foul sewer
system using an artificial neural network as in-
verse model

Sewer infiltration, often stemming from pipe cracks or defective joints, alongside

unauthorized inflow into sanitary sewer systems, can lead to a spectrum of issues.

These include reduced treatment plant efficiency, more frequent overflows due

to surcharged pipelines, and the necessity to expand pipeline capacities (Staufer

et al., 2012; Beheshti and Sægrov, 2018). Integrated water service operators are

increasingly tasked with addressing these challenges by mitigating infiltrations and

pinpointing the origins of illegal inflows (of Massachusetts, 1993; , EPA). However,

the conventional techniques employed in these scenarios tend to be costly, time-

consuming, and often yield only partial results (Wittenberg and Aksoy, 2010;

Rezaee and Tabesh, 2022). Typical approaches involve methods such as CCTV

inspections, smoke tests, and the installation of extensive sensor networks for

continuous data collection, encompassing parameters such as flow rates, water

levels, temperatures (DTS), and pollutant concentrations (Beheshti and Sægrov,

2018; Vosse et al., 2013; Lepot et al., 2017; Beheshti and Sægrov, 2019; Panasiuk

et al., 2019).

The primary objective of this study is to employ an inverse mathematical tech-

nique, by means of an artificial neural network, to identify the source location

of illegal inflows into wastewater systems. This identification is based on infor-

mation collected at the outlet of the drained basin, coupled with a well-calibrated

numerical model of the sewer network. In this research, the numerical model is de-

veloped through the utilization of the Storm Water Management Model (SWMM)

software, which is distributed by the Environmental Protection Agency in the

United States (Rossman and Huber, 2016). A realistic foul sewer system, charac-

terized by known dimensions and hydrological features, is considered as the basis
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for this investigation.

To test the inverse methodology, a synthetic case study is established. As-

suming a hypothetical rainfall event and an unauthorized inflow introduced at a

specified location within the sewer system, the numerical model is run to obtain

the flow hydrograph at the network outlet. This simulated hydrograph data serves

as observed measurements for the subsequent inverse modeling process.

4.1.1. Case study

In this study, the problem was addressed by creating synthetic scenarios applied

to a real sewer network. The sewer system depicted in Figure 4.1 is the infrastruc-

ture serving the municipality of Polesine Parmense in northern Italy. Originally

designed as a combined sewer, it was later modified to transport only sewage,

necessitating the separation of rainwater from wastewater. This network is situ-

ated in a flat area within the Parma plain and comprises 122 junctions and 20

catchments connected to the network when operating in a mixed mode. The ge-

ometric information about the network were obtained through surveys and video

inspections. Information regarding the basins potentially linked to the network

was collected from inspections and aerial photo analysis.

For generating synthetic observations, such as flow hydrographs at the down-

stream end of the system in Figure 4.1, one-hour storms were considered and

discretized into 15-minute intervals, with a maximum depth of 20 mm. In addi-

tion, potential inflows from the 20 basins previously connected to the network were

factored, excluding simultaneous unauthorized entries from multiple basins (one

basin at a time). The known hydrological characteristics of these basins was uti-

lized. The daily wastewater discharges were determined through previous on-site

campaigns. The hourly foul water pattern was assumed to align with the standard

hourly aqueduct demand for the municipality in question.

As an example, Figure 4.2 depicts the flow hydrographs observed during the
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Figure 4.1. The sewer network plan for Polesine Parmense. The 122 junctions are de-
noted by black points, while the red squares mark the 20 junctions where the basins are
connected, representing potential inflow locations. The green star indicates the down-
stream end of the network, where the flow hydrograph is observed.

first five hours at the network outlet during a storm event, considering unautho-

rized inflow from three possible basins. Notably, node 17 is the farthest from the

outlet, resulting in a minimal peak discharge at the downstream end due to damp-

ing effects. Conversely, the unauthorized inflow from the closest node (3) leads to

the highest peak discharge.

The calculations were carried out in a MATLAB environment (MathWorks,

2022), coupled with SWMM for simulating the sewer network. For the inverse

method, the identification of inflow considering all 20 nodes shown in Figure 4.1

was examined, connected to their respective sub-basins, but without simultaneous

entries.

4.1.2. Set up of the ANN

The implemented neural network takes the form of an MLP (Section 1.3.2). This

MLP model comprises four layers: input, two hidden, and output layers. The

input layer contains 2,881 neurons, representing the 24-hour downstream flow

168



CHAPTER 4. Extra contents

Figure 4.2. Flow hydrographs, observed at the network outlet (bottom), in relation to a
precipitation event (top) and the unauthorized inflow from various nodes.

hydrograph discretized at 30-second intervals. The two hidden layers have 50 and

70 neurons, and the output layer is composed of 20 neurons. These 20 neurons

correspond to the number of junctions within the sewer system that are under

consideration for potential illegal inflow locations. An hyperbolic tangent was

selected as activation function for the input and hidden layers, while, since it is

a classification problem, the softmax activation function was used between the

hidden and output layers. The softmax activation function is commonly used in

neural networks for multi-class classification problems. It is used to transform the

raw output scores of a neural network into a probability distribution over multiple

classes. The softmax function takes a vector of real numbers as input and converts

these numbers into values between 0 and 1, where the sum of all the values is equal

to 1. Mathematically, the softmax function is defined as follows for an input vector

Z:
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softmax(Z)i =
eZi∑K
j=1 e

Zj

(4.1)

where Zi represents the raw score for class i and K is the total number of classes.

The loss function for the neural network, denoted as L(Θ), where Θ = (θ1, . . . , θn)

encompasses all network parameters, including weights and biases. It is defined

as presented in Eq. 1.4.

The neural network underwent training, validation, and testing using a syn-

thetic dataset created from 4,000 forward simulations of SWMM. The flow hy-

drographs, which served as inputs for the neural network, were derived from 200

storms, each lasting one hour and divided into four intervals of 15 minutes, with

rainfall depths ranging from 0 to 20 mm. These hyetographs were generated

through a stochastic technique known as Latin Hypercube Sampling which gen-

erates random variables from a multidimensional distribution while minimizing

correlations between them.

The runoff resulting from these 200 synthetic storms was introduced individ-

ually into the 20 potential inflow locations, resulting in a dataset of 4,000 flow

hydrographs. Each flow hydrograph was associated with an output vector of 20

values. The actual inflow location was marked with a value of 1, while the remain-

ing 19 nodes were assigned a value of 0.

The flow hydrographs produced by SWMM were intentionally corrupted by

adding random errors to simulate real-world conditions. These errors were sampled

from a normal distribution with a mean of zero and a variance of 1×10−3
(
m3/s

)2,
which was chosen to mimic plausible instrument errors. A dataset of 120,000

elements was created by artificially corrupting each of the 4,000 flow hydrographs.

Although computationally intensive, this method enables the network to learn how

errors affect individual flow hydrographs and helps to accurately classify the inflow

location. The final dataset was partitioned into training (70%), validation (15%),
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and test (15%) subsets.

4.1.3. Results

Figure 4.3 illustrates the confusion matrix obtained during the testing phase of

the network after completing the training and validation processes. In Figure

4.3, the values outside the diagonal in the rows represent false positives (e.g., for

junction 1, the network correctly recognized the inflow location 655 times, but

193 times junction 1 was mistakenly identified instead of node 2, and occasionally

substituted nodes 12 and 19 once or twice, respectively). The values outside the

diagonal in the columns represent false negatives (e.g., 215 times junction 2 was

mistakenly identified instead of node 1).

The network correctly classified the inflow location in 86% of the test simula-

tions. The classification error during training is as low as 0.06%, and the error

percentages for the validation and test phases are both 0.14%. Examining Figure

4.3, it is evident that when the network does misclassify the desired output, it

often selects a node that is in close proximity to the correct one. However, in a

few cases, the prediction deviates significantly from the actual location.

4.1.4. Discussion and conclusions

In this study, a machine learning procedure based on an artificial neural network

is applied to solve the inverse problem of identifying the source location illegal

inflow of rainwater into a foul sewer system using flow observations recorded at

the downstream of the sewer network. Overall, the artificial intelligence model has

demonstrated good results even in the presence of errors in the observations.

The main advantage of ANN is its adaptability to address diverse problem

configurations. Once adequately trained, it serves as a data-driven model that

no longer requires the complete model. However, the training, validation, and
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Figure 4.3. Confusion matrix for the test phase results of the ANN. The distance of each
node from the network outlet is provided at the top of the confusion matrix.

testing phases are computationally intensive. In this case, achieving the correct

calibration of the neural network required 4,000 simulations of the SWMM model.

The method may encounter the problem of multiple solutions, a common chal-

lenge in inverse problems, where several solutions can provide a good fit to the

observations used to address the inverse problem.

It is important to note that this study specifically focuses on point inflows

among the various undesirable water sources in sewer systems. Future research

will explore the application of these approaches to real-world scenarios, extending

the scope beyond the identification of entry points to consider the extent of the
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basin area responsible for unauthorized inflow, which is often unknown.

The implemented methodology and results was published in Journal of Physics:

Conference Series (Tanda et al., 2023)

4.2. Enhancing user-friendliness: a comprehensive
and accessible example of numerical ground-
water flow modeling using spreadsheets

The use of spreadsheets to solve groundwater flow equations is not new, dating

back to the pioneering work of Olsthoorn (1985). Since then, many research pa-

pers have been published using spreadsheets for both steady-state and transient

groundwater modeling (Akhter et al., 2006; Ankor and Tyler, 2019; Bair and Lahm,

2006; Bhattacharjya, 2011; Elfeki and Bahrawi, 2015; Fox, 1996; Karahan and Ay-

vaz, 2005a,b; Molano, 2014; Niazkar and Afzali, 2015; Olsthoorn, 1999). However,

even if spreadsheet-based numerical groundwater flow modeling is a well-known

approach, its potential in education has not been fully realized. In this part of

the thesis, a new supplementary educational tool complements a previous one

(Gómez-Hernández, 2022). Gómez-Hernández (2022) presented a spreadsheet-

based solution for the partial differential equation describing steady-state flow in

a single-layer confined aquifer. Readers are encouraged to review that paper to

understand the foundational structure of the workbooks, which remains consistent

in this work.

This study extends the applicability from solving numerical problems for single-

layer confined aquifers (Gómez-Hernández, 2022) to encompass unconfined aquifers:

horizontal layers and multi-layered vertical cross-sections. The updated spread-

sheets can also handle hydraulic conductivity anisotropy, irregular aquifer shapes,

all three types of boundary conditions, and pumping and recharge in steady-state
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flow regimes. This seemingly minor conceptual change has a significant impact on

the numerical solution of the flow problem. The work describes how this change is

addressed, and the findings are extended to analyze seepage through an earth dam.

The research concludes with a discussion of possible extensions and limitations.

These advanced features make the spreadsheet model a versatile tool for simu-

lating various steady-state groundwater flow scenarios. This user-friendly platform

allows students to experiment with diverse configurations, explore the underlying

mathematical expressions, and gain a deeper understanding of more sophisticated

numerical codes such as MODFLOW.

The work includes examples of the three common types of boundary conditions,

including the challenging phreatic surface boundary condition in unconfined flow

scenarios. All cases consider steady-state flow. These examples were prepared

using Excel spreadsheets and tested in Google spreadsheets, with Excel being

significantly faster.

4.2.1. Unconfined two-dimensional groundwater flow in a
horizontal plane

A quasi-rectangular unconfined aquifer (Figure 4.4), crossed by a river and con-

nected to a lake, is studied. The aquifer has three distinct hydraulic conductivity

zones, three pumping wells, and uniform infiltration. The aquifer is assumed to

be in steady state.

174



CHAPTER 4. Extra contents

Figure 4.4. Confined and unconfined aquifer sketch
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For the sake of brevity, the equation governing the hydraulic head for a generic

cell and its derivation can be found in Section 2 of Gómez-Hernández (2022) and is

not reported here. In the confined aquifer application (Gómez-Hernández, 2022),

looking at Figure 4.4 the saturated thickness of the confined aquifer is independent

of the piezometric head. Consequently, the transmissivity, which is equal to the

product of conductivity and saturated thickness, can be determined beforehand

and was indeed part of the input data set. However, the saturated thickness of

the unconfined aquifer is unknown and is a function of the piezometric head. The

saturated thickness in the unconfined aquifer is equal to the difference between the

piezometric head and the aquifer bottom elevation. Fig. 4.5 shows the domain

discretization: 19 rows by 33 columns of 100 m by 100 m cells.

Figure 4.5. Horizontal plane aquifer sketch

The dependency of transmissivity on the saturated thickness, which is unknown

a priori and depends on the piezometric head, yields the problem highly nonlinear.
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This aspect complicates the iterative solution process and can lead to convergence

instability. This is particularly challenging because some cells may dry out during

iterations, necessitating a mechanism for rewetting them in subsequent iterations

if their surrounding cells remain wet. In this regard, there are some factors to con-

sider. First, the input data for the unconfined aquifer problem should be hydraulic

conductivity, not transmissivity. At each iteration of the numerical solution, the

saturated thickness of each cell must be computed as a function of the piezometric

head from the previous iteration. The transmissivities must then be recomputed

as the product of hydraulic conductivity and saturated thickness for each cell.

This sensitivity to the initial heads makes the solution particularly challenging to

converge. If the initial head values are far from the actual solution, unrealistic

transmissivities will result, leading to unrealistic head estimates and potentially

preventing convergence. In addition, a mechanism must be implemented to de-

activate cells when their saturated thickness becomes zero, effectively treating

them as dry cells. Conversely, a mechanism must also be implemented to reacti-

vate or rewet inactive cells when the hydraulic head estimates in the surrounding

cells are above the aquifer bottom of the inactive cell. One purely technical yet

crucial consideration for achieving the final solution is related to the fact that

the iterative nature of the numerical solution necessitates the use of the recalcu-

late option of Microsoft Excel to iterate on cells containing circular references.

Practical endeavors led to the realization that simply adding new spreadsheets for

saturated thickness and transmissivity calculations was not sufficient. Instead, the

order of calculations must be enforced, with saturated thickness being calculated

first, followed by transmissivity. However, determining the order of spreadsheet

calculations was not immediately apparent.It was observed that computations are

performed in alphabetical order of spreadsheet names (Williams, 2001). Below are

summarized all the modifications required for the unconfined problem compared

to the confined one (Gómez-Hernández, 2022).
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Spreadsheet names should be altered to ensure their alphabetical order aligns

with the intended calculation sequence;

A spreadsheet containing cell bottom elevations should be incorporated;

Two spreadsheets should be added for conductivity data:

• One spreadsheet containing conductivity tensor values along the x-axis,

used for calculating transmissivities TW and TE;

• Another spreadsheet containing conductivity tensor values along the

y-axis, used for calculating transmissivities TN and TS;

A spreadsheet should be added for computing saturated thickness;

The transmissivity spreadsheets should be converted to calculated spread-

sheets, computed after determining the saturated thickness;

During the iterative process, calculated heads may fall below the cell bot-

tom, rendering the cell dry. However, if surrounding cell heads are above

the cell bottom in the next iteration, it indicates that the cell should be

partially saturated. Therefore, a mechanism is needed to enable the drying

and rewetting of any cell. This requires two new spreadsheets:

• One spreadsheet containing a flag indicating whether a cell should be

wet based on the heads in surrounding cells;

• Another spreadsheet containing the head value that should be assigned

to cells that were dry but should be wet because the surrounding cells

are above the cell bottom;

An intermediary binary spreadsheet containing active cells after the last

iteration is also needed due to the possibility of cells drying out and becoming

inactive during the iteration process;
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Infiltration due to recharge should only be calculated for wet cells;

Following these modifications, the spreadsheet structure walkthrough proceeds as

follows:

Input parameters (9 sheets):

A_i: active cells;

A_Bot: bottom elevation [L];

A_hfix: prescribed heads [L];

A_Kx: conductivities along the x-axis [LT−1];

A_Ky: conductivities along the y-axis [LT−1];

A_W: pumping well extraction [L3T−1] (negative if injection);

A_hR: river stage [L];

A_hB: elevation of riverbed bottom [L];

A_R: riverbed conductance [L2T−1];

Intermediate variables (14 sheets):

C_i: active cells after the last iteration;

C_Sat: saturated thickness [L];

D_wet: Boolean variable indicating whether a cell should be wet or not as

a function of the hydraulic heads in the surrounding cells;

D_Rewet: value of the hydraulic head to be used only for those cells that

became dry but should rewet because D_wet is True;

D_Tx: transmissivity along the W-E direction [L2T−1];
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D_Ty: transmissivity along the S-N direction [L2T−1];

D_Qriv: river recharge flow [L3T−1];

D_Qn: infiltration flow [L3T−1];

E_TN: transmissivity at the interface with the north cell [L2T−1], computed

as the harmonic average of adjacent y transmissivities;

E_TS: transmissivity at the interface with the south cell [L2T−1], computed

as the harmonic average of adjacent y transmissivities;

E_TW: transmissivity at the interface with the west cell [L2T−1], computed

as the harmonic average of adjacent x transmissivities;

E_TE: transmissivity at the interface with the east cell [L2T−1], computed

as the harmonic average of adjacent x transmissivities;

E_TZ: sum of ETN , ETS , ETW , and ETE . (Note that the name has been

changed from TT to TZ to ensure that it is computed after the four sum-

mands have been updated.);

Final results (6 sheets):

B_h: final results with the hydraulic heads in the aquifer [L];

F_QNorth: flows through cell north boundaries [L3T−1];

F_QSouth: flows through cell south boundaries [L3T−1];

F_QWest: flows through cell west boundaries [L3T−1];

F_QEast: flows through cell east boundaries [L3T−1];

G_CellBal: residual flow in the active cells (it should be zero if convergence

has been achieved) [L3T−1];
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The presented example utilizes meters and days as the reference units for all vari-

ables. The step-by-step process is outlined below and is available in the GitHub

repository https://github.com/jaumegomez/GroundwaterFlowByExcel that con-

tains all the spreadsheets discussed:

Step 1: Define the input parameters

The active cells and the prescribed cells are shown in Figures 4.6 and 4.7.

Figure 4.6. Active cells
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Figure 4.7. Prescribed heads

In contrast to the confined aquifer application, this model takes into account

cell bottom elevation (Figure 4.8) and hydraulic conductivities (Figures 4.9 and

4.10), which exhibit anisotropic behavior, with conductivity along the W-E direc-

tion being ten times higher than that along the S-N direction. The cell bottom

elevation features an undulating profile with elevations ranging from 68 m to 80 m,

including a bump reaching 100 m towards the center of the aquifer to demonstrate

the methodology’s new drying capabilities. While the hydraulic conductivities fol-

low the same zonation as in the confined case, their values have been adjusted to

yield calculated transmissivities of similar magnitude.
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Figure 4.8. Bottom elevations. Promontory located at the center of the lower half, which
is expected to remain dry
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Figure 4.9. W-E directional hydraulic conductivities

Figure 4.10. S-N directional hydraulic conductivities
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Wells are located in the same cells as in the previous paper; however, the

pumping rates have been lowered from a total of 35,000 to 23,000 m3d-1 distributed

in three wells pumping at 5,000, 10,000, and 8,000 m3d-1 as shown in Figure 4.11.

The reason for this reduction is that with the previous values, the aquifer would

go dry at the well locations.

Figure 4.11. Wells

The remaining input data for river stage, elevation of riverbed bottom, and

riverbed conductance remain unchanged from the previous work (Gómez-Hernández,

2022).

Step 2: Compute intermediate variables

Based on the heads from the previous iteration, several intermediary variables

must be calculated before proceeding to the next iteration. Firstly, determine

whether any active cell has dried out. This occurs when the calculated head falls
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below the cell bottom elevation. Spreadsheet C_i performs this check and the

expression, referred to the cell I5 in Eq. 4.2, is the same for all the cells of the

domain. From this point forward, only the expression for cell I5 will be presented:

= IF(Restart > 0,A_i!I5,

IF(B_h!I5 = hundef,

0,

1))

(4.2)

To enhance clarity, this expression can be understood as follows:

During initialization or upon restarting calculations due to input data changes,

utilize the provided input information to identify active cells.

Otherwise:

• If the current cell’s head value is "undef" (the default value for initially

inactive cells or cells with zero transmissivity due to zero saturated

thickness), set the cell as inactive.

• Otherwise, set the cell as active.

The resulting spreadsheet contains the active cells after the last iteration, encom-

passing all active cells from the input spreadsheet except those that have dried

out.

Then, the saturated thickness at the end of the iteration must be calculated (C_sat

represents the utilized spreadsheet). For each cell, the saturated thickness is set to

zero if the cell is designated as inactive in the input data or if the calculated head

from the previous iteration is lower than the cell bottom elevation. Otherwise, the

saturated thickness is determined by subtracting the cell bottom elevation from

the piezometric head using the following expression:
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= IF(OR(A_i!I5 = 0,B_h!I5 < A_Bot!I5),

0,

B_h!I5 − A_Bot!I5))

(4.3)

At this point, is essential to define a spreadsheet that "decide" if a cell should

be rewetted in the next iteration. When any of the active neighboring cells possess

a piezometric head exceeding the bottom elevation of the current cell, it should

be rewetted in the subsequent iteration. This rewetting is facilitated by a Boolean

flag that is determined using the following expression:

= IF(A_i!I5 =,

FALSE,

OR(AND(A_i!I6!B_h!I6 > A_Bot!I5),

AND(A_i!I4!B_h!I4 > A_Bot!I5),

AND(A_i!J5!B_h!J5 > A_Bot!I5),

AND(A_i!H5!B_h!H5 > A_Bot!I5))

(4.4)

To aid comprehension, this expression can be understood as follows: if the cell is

classified as inactive in the input data, it should remain dry in the next iteration.

Otherwise, if any of the four adjacent cells are active and their piezometric heads

exceed the current cell’s bottom elevation, the current cell should be wetted in the

next iteration. For the sake of simplicity, although this calculation is performed

for all aquifer cells, it will only be utilized for those cells that were dry in the

preceding iteration, as will be further explained.

At this point, the head value to be used in those cells that should rewet is

computed. Upon transitioning from a dry to a wet state, a cell’s head value is

calculated using a function of the heads of its surrounding cells. This method is
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similar to the one implemented in the MODFLOW program (Harbaugh, 2005). A

WetFactor, defined in spreadsheet D_ReWet, is utilized to compute the rewetting

head. If all surrounding cells are active and their piezometric heads surpass the

cell bottom elevation, the new head is set to the cell bottom plus the average of

the differences between the heads in the surrounding cells and the cell bottom,

multiplied by the WetFactor. Otherwise, the surrounding heads are sequentially

evaluated in the order top, bottom, left, and right. The first active cell encountered

with a head value above the cell bottom elevation is selected, and the rewetting

head is determined as the cell bottom plus the difference between the adjacent

cell head and the cell bottom, multiplied by the WetFactor. This procedure is

expressed by the following equation:

= IF(A_i!I5 = 0,

FALSE,

IF(AND(B_h!I4 ̸= hundef,B_h!I6 ̸= hundef,B_h!H5 ̸= hundef,B_h!J5 ̸= hundef),

A_Bot!I5 +

(
B_h!I4 + B_h!J5 + B_h!I6 + B_h!H5

4
− A_Bot!I5

)
· WetFactor,

IF(B_h!I4 ̸= hundef,

A_Bot!I5 + (B_h!I4 − A_Bot!I5) · WetFactor,

IF(B_h!I6 ̸= hundef,

A_Bot!I5 + (B_h!I6 − A_Bot!I5) · WetFactor,

IF(B_h!H5 ̸= hundef,

A_Bot!I5 + (B_h!H5 − A_Bot!I5) · WetFactor,

IF(B_h!J5 ̸= hundef,

A_Bot!I5 + (B_h!J5 − A_Bot!I5) · WetFactor))))
(4.5)

This calculation aims to establish the rewetted cell’s head value above its bot-

188



CHAPTER 4. Extra contents

tom elevation by a specific fraction of the difference between the bottom and the

surrounding cell heads. This allows cells that had dried out during an iteration

to regain wet status if the surrounding cells possess piezometric heads that justify

such a transition.

Subsequent to calculating the saturated thickness, transmissivities should be

determined as the product of the hydraulic conductivity and the saturated thick-

ness. This process is carried out for both the D_Tx and D_Ty components of

the transmissivity tensor. For example, the transmissivity in the W-E direction is

given by:

= IF(C_i!I5 <> 1,

0,

A_Kx!I5 · C_Sat!I5)

(4.6)

It is important to note that the transmissivity is set to zero for any cell that

was inactive in the input data or became inactive during the previous iteration

due to drying out.

Then, to compute the flow entering the aquifer from the river or exiting to

the river the same equation of the confined application can be used, but limited

to the cells that are active in the current iteration. Also for the infiltration, a

small modification with the confined application is implemented because of the

rewetting issue. To accurately calculate the global balance in subsequent steps,

the infiltration should be assessed solely on the active cells in the last iteration.

For inactive cells, the recharge remains undefined; for cells with a prescribed head,

the recharge is set to zero. Otherwise, the recharge is calculated by multiplying

the infiltration rate N1 and the cell area Delta*Delta:

189



CHAPTER 4. Extra contents

= IF(C_i!I5 <> 1,

””,

IF(A_hfix!I5 <> ””,

0,

N1*Delta*Delta

(4.7)

The interblock transmissivities are calculated similarly to the confined appli-

cation, using the harmonic average of adjacent cell transmissivities. However, for

the horizontal interblock transmissivities in E_TE and E_TW, the transmissiv-

ities along the W-E direction are employed, while the transmissivities along the

S-N direction are used for the interblock transmissivities in E_TN and E_TS.

Corresponding expressions are derived for the remaining three interblock trans-

missivities. Additionally, sheet E_TZ is constructed with the sum of the four

interblock transmissivities to expedite calculations.

Step 3: Compute the iterative solution for the piezometric heads

The head calculations are conducted in sheet B_h, leveraging Excel’s iterative

capabilities to handle circular dependencies. The equation governing the head at

each active cell is reported here for reference:

h =
T ′
NhN + T ′

ShS + T ′
WhW + T ′

EhE −W +N∆2 +QRiv

T ′
N + T ′

S + T ′
W + T ′

E

. (4.8)

where h represents the head at the cell being calculated, T ′
N , T ′

S , T ′
W , T ′

E are

the interblock transmissivities to the North, South, West, and East of the cell, h′
N ,

h′
S , h′

W , h′
E are the heads at the cells to the North, South, West, and East of the

cell, W is the extraction flow at the cell, N is the net infiltration rate, ∆2 is the

cell area (assuming square cells) and QRiv is the flux entering from the river.
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Two variables in spreadsheet B_h govern the initialization and commencement

of calculations. The first, "hini", assigns the initial head value to all active cells

during the initialization phase. The second, "Restart", initializes the heads to the

hini value. When Restart is positive, all active cells are set to hini; when Restart

is zero, computations begin. A third variable, hundef, is assigned to inactive cells

within the rectangular area encompassing the aquifer. In this case, the chosen

value is -99, which is easily identifiable.

In unconfined aquifers, the piezometric head calculation at cell I5 is more com-

plex than in confined aquifers due to the potential for cells to become dry or rewet

during the simulation. To account for this, the expression for computing the head

value at cell I5 involves additional considerations:

= IF(A_i!I5 <> 1,

hundef,

IF(A_hfix!I5 <> ””,

A_hfix!I5,

IF(Restart > 0,

hini,

IF(AND(D_Wet!I5,B_h!I5 = hundef),

D_ReWet!I5,

IFERROR((E_TN!I5 ∗ B_h!I4 + E_TS!I5 ∗ B_h!I6

+ E_TE!I5 ∗ B_h!J5 + E_TW!I5 ∗ B_h!H5

− A_W!I5 + D_Qriv!I5 + D_QN!I5)/(E_TZ!I5), hundef)))))

(4.9)

This expression determines the piezometric head at cell I5. It follows a series of

conditional steps and can be read in this terms:
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Inactive Cell Check: If the current cell (I5) is inactive in the input data set,

the piezometric head is set to a predefined value (hundef);

Prescribed Head Check: If the cell (I5) corresponds to a prescribed head

location, the piezometric head is set to the specified prescribed head value;

Initialization Check: If the Restart flag is greater than zero, indicating a

simulation restart, the cell’s piezometric head is initialized to the initial

head value (hini);

Rewetting Check: If the cell’s head is undefined (due to dryness in the

previous iteration) and the D_Wet flag is True, implying that the cell should

be wet (surrounding cell heads are above the cell bottom), the piezometric

head is set to the rewetting value computed in D_ReWet;

Piezometric Head Calculation: If none of the above conditions apply, the

piezometric head is calculated using Eq. 4.8. The IFERROR function is

employed to handle the case where the denominator in Eq. 4.8 is zero,

which occurs for cells with zero saturated thickness. In such cases, the head

is set to hundef (undefined), otherwise, it is set to the calculated value;

Step 4: Checking both global and local balances

The global balance check is conducted on the same sheet where the heads are

calculated. It involves evaluating six variables: the flux extracted through wells,

the recharge from infiltration, the recharge from the river, and the flow entering the

aquifer from prescribed head cells. The global error is determined by summing

these four variables. Additionally, a relative error is calculated by dividing the

absolute error by the total flux entering from the prescribed head boundary.

The local balance check involves computing the fluxes entering each cell and en-

suring that they sum to zero. This process utilizes sheets F_QNorth, F_QSouth,
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F_QEast, and F_QWest. For example, F_QNorth contains the fluxes entering

each cell through its northern boundary. It is calculated using the expression:

= IF(B_h!I5 = hundef,

””,

IF(AND(C_i!I5 = 1,C_i!I4 = 0,

0,

E_TN!I5 ∗ (B_h!I4 − B_h!I5)))

(4.10)

This expression means that before calculating the flux entering each cell through

its northern boundary (QNorth), a check is done to verify if the head value is

undefined. If it is, leave QNorth as an empty string. Otherwise, it is necessary to

proceed with the following steps:

Active Cell Check: Determine if the current cell is active after the last iter-

ation. If it is inactive, set QNorth to zero;

Adjacent Cell Check: Check if the adjacent cell to the north is active. If it

is inactive, set QNorth to zero;

Darcy’s Law Calculation: If both the current cell and the adjacent cell to the

north are active, proceed to calculate QNorth using Darcy’s law. Darcy’s

law relates the flow rate of a fluid through a porous medium to the pressure

difference between two points and the hydraulic properties of the medium;

By following these steps, the QNorth value for each cell can be accurately deter-

mined, ensuring that the local balance check is performed effectively.

The remaining flow components are calculated using similar expressions to

QNorth. Once all flow components are determined, sheet G_CellBalance is cre-

ated, which summarizes the sum of all incoming flow components for each cell.
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Upon convergence, this sheet should contain zero values for all cells except those

corresponding to prescribed head boundaries. These cells will exhibit values rep-

resenting the flow exchange between the aquifer and the boundary.

Iterations continue until the Error value in sheet B_h is close to zero and all

active cells in sheet G_CellBal show values close to zero. Figure 4.12 illustrates

the resulting piezometric heads obtained after 8000 iterations for the given input

parameters. A heat map is generated, filtering out the hundef values (-99) and

ranging from the minimum computed head to the maximum one.

To create this heat map, follow these steps:

Select the rectangular area covering the aquifer (I5:AO23);

Access the Format menu, choose Conditional Formatting, and establish two

conditions;

For the first condition, apply a custom formatting style to cells containing

the value -99. Set the font color to white;

For the second condition, use a Three-color scale. In the Formula field, en-

ter =MIN(IF($I$5:$AO$23<>-99,$I$5:$AO$23)), which calculates the min-

imum head value while excluding cells with a value of -99;

For the midpoint, set the 50th percentile;

For the maximum, enter the highest value;

Assign the desired colors for the minimum (dark blue), midpoint (yellow),

and maximum (red);
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Figure 4.12. Piezometric heads solution

The iterative process converges to an almost exact solution, as indicated by an

absolute error of 0 m3/d after 8000 iterations. Figure 4.13 illustrates the evolution

of piezometric heads throughout the iterations.

After 1000 iterations, the solution is far from convergence, exhibiting a large

absolute error, limited total recharge, and substantial discharges through wells,

the river, and the boundary. At 2000 iterations, the head pattern closely resem-

bles the final solution, with the anisotropy becoming evident. The two cells with

exceptionally high bottom values have already dried up, but the absolute error

remains high, with the river appearing to draw water from the aquifer. After

3000 iterations, the error is reduced, but convergence is not achieved until 8000

iterations, resulting in the solution shown in Figure 4.12. The final water balance

indicates 23,000 m3/d extracted by wells, 4,900 m3/d recharged by infiltration,

361 m3/d net recharge from the river, and 17,739 m3/d entering the aquifer from
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the lake.

Figure 4.13. Piezometric heads solution of different iterations

Figure 4.14 depicts the aquifer’s saturated thickness, highlighting the dry cells

and the surrounding cells with low saturated thickness. Figure 4.15 illustrates the

flow entering the aquifer from the river, revealing that the river is a losing river

in the northern section, disconnected for most of its upper stretch, and becomes

a gaining river in the lower part.

The elliptical cones of depression formed around the three pumping wells are

visible in Figure 4.12. The elliptical shape is a result of the strong hydraulic

conductivity anisotropy in the W-E direction.
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Figure 4.14. Aquifer saturated thickness after the completion of iterations.

Figure 4.15. River inflow to the aquifer.
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4.2.2. Unconfined two-dimensional groundwater flow in a
vertical cross-section

With the functioning model for an unconfined aquifer in plan view, it is straight-

forward to adapt it to simulate a vertical cross-section of an unconfined aquifer.

This modification aims to determine the phreatic surface, an unknown boundary

condition that makes the solution of the groundwater flow problem highly nonlin-

ear. The model setup represents a vertical cross-section of a formation situated

on an inclined impermeable bottom with a river crossing, a pumping well, and

recharge through infiltration. Figure 4.16 depicts the sketch of the considered

aquifer domain, including three distinct hydraulic conductivity zones, a well that

operates only in the lower part of the aquifer, and key elevation data required for

defining the boundary conditions. The shaded area represents the saturated zone,

where recharge from the surface infiltrates and replenishes the cells that intersect

the free surface.

Figure 4.16. Vertical cross-section sketch of the aquifer.

To achieve the final result, some modifications are necessary compared to the
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horizontal plane application.

Step1: Input parameters

In this application, the active cells represent the aquifer below the ground surface

and up to the impermeable base. Figure 4.17 shows the active cells in the cross-

section. The water table at both vertical boundaries is at an elevation of 72 m, and

the base slopes from 15 m to 0 m as shown in Figure 4.16. It is assumed that the

vertical piezometric head gradient is zero along the vertical boundaries. Therefore,

the boundary conditions are prescribed heads of 72 m at the first and last columns,

an impermeable bottom, and an unknown phreatic boundary condition at the top.

The prescribed head cell that intersects the phreatic surface must have a head

value that coincides with the elevation of the cell. There cannot be any active

cells above the phreatic surface. In this case, since the prescribed head is 72 m,

the prescribed head cells that intersect the phreatic surface are in row 5, which

has a bottom elevation of 70 m and a top elevation of 75 m.

The cross-section is in the XZ plane and is larger along the horizontal direction

than along the vertical direction (Figure 4.16). This means that in a realistic

scenario, it is impractical to use square cells of equal dimensions, such as 5 by 5,

when modeling a section of 90 m by 3,300 m, as in this case. This approach results

in increased computational costs without a proportional improvement in solution

accuracy. There are two main implications of this: the horizontal (∆x) and vertical

(∆z) cell spacings must be specified. The cell aspect ratio (∆x/∆z) plays a role

in the calculation of flows into and out of each cell, and in the expression for

computing the piezometric head as a function of surrounding heads (Eq. 4.8).

The cell aspect ratio is 1 for square cells, which is why it does not appear in Eq.

4.8. The bottom and top of each cell are fully defined by the elevation of the lower

left corner of the rectangle that encloses the aquifer and the value of ∆z. Therefore,

it is only necessary to input the elevation of the lower left corner in spreadsheet
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A_Bot. The bottom and top values for all cells are automatically calculated using

∆z, which is given in spreadsheet B_h. In addition, in order to properly model

recharge by infiltration and river-aquifer flow exchange, there is also the necessity

to specify the width of the aquifer perpendicular to the cross-section (∆y).

Figure 4.17. Active cells in the vertical cross-section of the aquifer

The recharge and river inflow/outflow will vary depending on the width of the

aquifer section. For this reason, spreadsheets B_h and A_R are used to provide

values for the cell spacings and riverbed properties. In spreadsheet A_R, the

riverbed conductance is computed assuming that the river covers the entire cell.

However, river infiltration is not considered when the head is below the cell bottom.

It is possible to develop a mechanism to compute infiltration from a disconnected

river and carry it down to the phreatic surface, but this would make the workbook

too complex. The recharge is computed in spreadsheet D_QN by identifying the

active cells after the last iteration that intersect the phreatic surface. These cells
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are assigned a flow entering by recharge equal to QN = N∆x∆y, where N is the

infiltration rate. The expression below explains the procedure to evaluate the net

infiltration:

= IF(C_i!I5 = 0,

””,

IF(A_hfix!I5 <> ””,

0,

IF(C_i!I4 = 0,N1 · Deltax · Deltay)))

(4.11)

This expression means that if the cell is inactive, set its value to empty cell. Oth-

erwise, if the cell has a prescribed head, set the recharge to zero. Otherwise, if

the cell above is inactive, assign a recharge equal to the infiltration recharge (N1)

times the cell size in the x direction (deltax) times the cell size in the y direction

(deltay). Otherwise, set it to zero.

Step 2: Calculate intermediate variables

The saturated thickness intermediate variable refers to the saturated thickness of

the aquifer on the plane of the cross-section, not the saturated thickness orthogonal

to the plane view. It is equal to the cell thickness (∆z) for all saturated cells, and

equal to the difference between the calculated piezometric head and the cell bottom

elevation for the cells that intersect the phreatic surface.

It is necessary to account for the aspect ratio (∆x/∆z) when calculating the

flows into and out of each cell, and to modify the calculation of the piezometric

head accordingly. Eq. 4.8 can still be used for calculating the piezometric head if

the cell aspect ratio is incorporated into the calculation of the terms T ′
N , T ′

S , T ′
W ,

T ′
E , which transform them from interface transmissivities to conductances.

Conductances are values that, when multiplied by the head difference between
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two adjacent cells, provide the flow crossing their interface. This value is equal

to the interface transmissivity multiplied by the interface area and divided by the

distance between cell centers.

To account for the cell aspect ratio, the spreadsheets D_Tx, D_Tz, E_TN,

E_TS, E_TW, and E_TE are modified as follows: D_Tx and D_Tz contain the

transmissivity, which is defined as the conductivity multiplied by the saturated

thickness measured orthogonal to the cross-section. Since the saturated thickness

orthogonal to the cross-section is ∆y, D_Tx and D_Tz are equal to the values in

A_Kx and A_Kz multiplied by ∆y. To obtain the conductances, the interface

transmissivity is first computed as the harmonic average of adjacent transmissivi-

ties. Then, this value is multiplied by the cell width and divided by the distance

between cell centers. The calculation of conductances is different for the vertical

and horizontal axes. For the vertical axis, the cell width is constant (∆x) and the

distance between cell centers is constant (∆z). For the horizontal axis, the cell

height is variable (equal to the saturated thickness) and the distance between cell

centers is constant (∆x). Figure 4.18 shows the saturated thickness at the end of

the iterations.
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Figure 4.18. Saturated thickness in the vertical cross-section of the aquifer

Step 3: Evaluation of the iterative solution of the piezometric heads

Following the same workflow of the horizontal plane application, the iterative

calculation of the piezometric head has not changed. However, it is important to

note that convergence slows down when the aspect ratio (∆z/∆z) is very large.

Figure 4.19 shows the hydraulic head distribution for an aquifer vertical cross-

section discretized in cells that are 10 meters wide and 5 meters tall, with a

well that pumps 35,000 m3d-1. The resulting distribution shows a clear cone of

depression around the cells where the well is open. Water flows from the prescribed

head boundaries towards the river and towards the well. The total infiltration is

very small because the exposed surface through which recharge would enter the

aquifer is only 31× 10× 10× 0.001 (number of cells crossing the phreatic surface

× ∆x × ∆y × infiltration rate). The river drains 1,990 m3d-1 from the aquifer.
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Figure 4.19. Piezometric heads solution in the vertical cross-section of the aquifer

4.2.2.1. Modeling flow through an earth dam: a practical application

Groundwater flow through an earth dam can be modeled using the same equations

as groundwater flow in an unconfined aquifer. Consider a dam with a core with a

conductivity of 0.01 m/d and an embankment with a conductivity of 0.1 m/d, as

shown in Figure 4.20.
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Figure 4.20. Earth dam sketch of a section with core and embankment

A vertical cross-section of the dam is modeled using a grid of 51 rows and 113

columns, with each cell being 5 meters wide and 2 meters tall. The water level

on the upstream side of the dam is 80 meters and on the downstream side is 16

meters. The bottom of the dam is horizontal and impermeable at a depth of 0

meters. Using these parameters, a spreadsheet model is developed to simulate

groundwater flow through the dam. The final solution is shown in Figure 4.21,

which shows that high hydraulic gradients occur within the nucleus, while there

are virtually no gradients on the upstream side of the embankment and some

gradients on the downstream side. Assuming that the dam is 1000 meters long

perpendicular to the cross-section shown, the total seepage through the dam is

calculated to be 105.4 m3d-1.
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Figure 4.21. Piezometric heads solution of the earth dam section with core and embank-
ment

4.2.3. Conclusions and discussion

This analysis extends the work of Gómez-Hernández (2022) to solve the uncon-

fined groundwater flow equation in both the horizontal plane and in a vertical

cross-section. The unconfined groundwater flow equation is nonlinear because the

transmissivities depend on the piezometric heads, and also because cells may dry

out.

To allow cells to dry out and rewet, a mechanism is introduced that monitors

the piezometric heads in nearby cells. If the head of a cell goes below its bottom

elevation, the cell is marked as dry. If, later during the iterations, the heads in

the nearby cells suggest that the cell should be wet, the cell is marked as wet.

In the case of simulating a cross-section, the phreatic surface is a boundary

condition that is not known in advance, and that depends on the solution of the

equation. This introduces additional challenges that must be addressed during the

implementation.

Despite these challenges, the spreadsheet approach yields very good results,

which have been compared to the solution of the groundwater flow equation with
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MODFLOW (Harbaugh, 2005).

Future work should prioritize modeling changes in groundwater flow over time,

emphasizing transient modeling. Although calculating the evolution of piezomet-

ric time would not pose a significant challenge, effectively managing the results

to generate time-dependent graphs requires careful consideration. Furthermore,

addressing local grid refinements in specific areas could be a focal point for future

research.

Moreover, constructing a three-dimensional model is feasible by incorporating

multiple horizontal layers into each spreadsheet. However, it’s worth noting that

while implementing this approach may not be overly complex, the management of

such a large spreadsheet could diminish its appeal as a tool for teaching or quick

demonstrations.

The implemented methodology and results was published in the journal Math-

ematical Geosciences (Gómez-Hernández and Secci, 2023).
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The objective of this thesis is to implement innovative surrogate modeling ap-

proaches for a sustainable use and protection of groundwater resources, also in

the context of climate change. The study focuses on statistical approaches, con-

ventional neural networks, deep learning techniques, and physics-informed neural

networks. These diverse techniques offer a comprehensive toolkit for addressing

various challenges including complexity, computational expense, and lack of phys-

ical interpretability, making surrogate modeling a valuable tool for groundwater

management and sustainability.

In particular, the thesis recognizes climate change as a key factor influencing

groundwater resources. Changing precipitation patterns and increasing tempera-

tures significantly impact groundwater availability. Surrogate modeling techniques

have been demonstrated as effective tools for facilitating the analysis of multiple

climate change scenarios. As a result of the study, the strengths and weaknesses of

different models, including a linear regression approach and three machine learn-

ing techniques, were analyzed. The linearity of the regression model, the lack of

deep learning capability of the NARX, and the difficulty of extrapolating beyond

the training range of the CNN make the LSTM the most promising approach for

analyzing time-series data to assess the impacts of climate change on groundwa-

ter resources. The insights gained through these adaptive surrogate models are

crucial for ensuring sustainable groundwater management in response to changing
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environmental conditions.

In addition, ANNs emerge as a promising technique for effectively addressing

contamination issues. In fact, the implemented methodology can accurately assess

and predict contamination scenarios (direct and inverse problems). The learning

capabilities of ANNs enhance their ability to pinpoint potential sources of contami-

nation and predict the spread of pollutants over time. Therefore, ANNs contribute

to more sustainable and resilient environmental practices by offering robust solu-

tions for the precise and proactive management of groundwater contamination.

Furthermore, the thesis discussed the lack of physics interpretability of surro-

gate models. A promising solution was introduced in the form of PINNs, a new

approach that combines physics and machine learning. PINNs demonstrated their

reliability in addressing complex groundwater problems. The comparison of re-

sults obtained by the PINN for solving unconfined groundwater flow with those

obtained by a conventional ANN underscored their remarkable ability to yield

accurate outcomes, particularly in scenarios with limited data.

Lastly, the incorporation of supplementary materials in this study expanded

the exploration of ANNs beyond the original research field. The neural networks

perform well in the classification task of identifying the illicit inflow source in a

sewage system, resulting in satisfactory results. Moreover, the integration of a

diverse perspective aimed to introduce alternative approaches to address the flow

equation, provide a more comprehensive understanding of the intricacies involved

in solving this equation. The use of spreadsheets, as illustrated in this thesis,

empowers students to experiment with various configurations, delve into the un-

derlying mathematical expressions, and acquire a profound understanding of more

advanced numerical codes like MODFLOW.

To conclude, this thesis explores diverse surrogate modeling techniques to ad-

dress groundwater challenges, emphasizing the significance of integrating physics,

tackling climate change impacts, and proposing avenues for future research in this
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field.

Limitations and future directions

This section of the thesis provides an overview of limitations, future potential

improvements and new lines of research.

The first challenge and limitation associated with surrogate modeling is the

selection of appropriate methods able to map the investigated phenomena. Fur-

thermore, there are other challenges that need to be addressed. Overfitting and

the need for high-quality training data are two of the most important challenges

in data-driven surrogate modeling. Overfitting occurs when the model learns the

training data too well and fails to generalize to new data. This can lead to inaccu-

rate predictions when the model is used to forecast on unseen data. Researchers

are developing new methods to address these challenges. Early stopping tech-

niques are one way to prevent overfitting. Early stopping works by monitoring the

performance of the model on a held-out validation set and stopping the training

when the performance on the validation set starts to decline.

Moreover, large amounts of high-quality training data are necessary to build

the surrogate model. This can be expensive and time-consuming to collect, espe-

cially for complex problems. Data augmentation is a technique that can be used

to improve the performance of data-driven models in data-limited conditions by

artificially generating new training data from existing data. This can help to make

the model more robust to noise and variability in the data.

In addition, in the realm of machine learning surrogate modeling, two common

limitations are frequently encountered: the challenge of comprehending the inner

workings of models and the reasons behind their predictions, and the incapac-

ity to generate accurate predictions beyond their training range. Concerning the
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first limitation, despite the user-friendly nature of these models, their black-box

characteristics often create issues when used in applications requiring a high level

of confidence. This thesis has already explored future directions by integrating

physics into the modeling process, as exemplified in the study utilizing PINNs

for groundwater numerical simulations. This integration aims to enhance the un-

derstanding and robustness of the trained model, particularly in situations with

limited data. Furthermore, PINNs present a prospective solution for the second

limitation. While the inability to generate accurate predictions beyond the train-

ing range was a significant obstacle until recently, the introduction of PINNs en-

ables the incorporation of physics to construct more reliable models that consider

both data-driven insights and the fundamental principles of physics. However, in-

trinsically, this approach can represent a limitation, as it necessitates a thorough

understanding of the physical phenomena being modeled, including the associated

partial differential equations describing the problem. Additionally, the underlying

partial differential equation inherently serves as an approximation of reality, and

consequently, PINNs might enforce adherence to an imperfect model.

As a final point, it is worth discussing the approach employed in identifying hy-

perparameters in neural networks (such as number of layers and neurons, learning

rate, decay rate, etc.). The current approach involves a manual process for de-

termining hyperparameters, which could be time-consuming and could introduce

potential of subjective judgments or personal biases into the process. Exploring

and implementing automated methods for hyperparameter tuning in neural net-

works can not only streamline the model development process but also contribute

to improved efficiency, ensuring the model to be well-optimized for the specific

tasks at hand.

Future works could extend the application of surrogate models for simulat-

ing and forecasting contaminant movement in aquifers by investigating additional

strategies, such as the application of Generative Adversarial Networks (GAN).
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This recently implemented technique can address both direct and inverse problems

related to contaminant transport. In fact, by leveraging GANs, it becomes pos-

sible to generate diverse and realistic scenarios of contaminant behavior, thereby

enhancing the robustness of surrogate models in capturing the complexity of con-

taminant movement in aquifers. Furthermore, GANs offer a unique capability

for addressing inverse problems by generating plausible contaminant source sce-

narios based on observed data. This can aid in identifying potential sources of

contamination and refining the predictive accuracy of surrogate models.

Finally, to explore how different socioeconomic developments may influence

future greenhouse gas emissions, upcoming research efforts will leverage the new

climate scenarios known as Shared Socioeconomic Pathways (SSPs). However, at

the moment RCM experiments, useful for vulnerability, impact and adaptation

studies at regional and local scales, are still under development. A potential area

for future exploration in this direction would be the use of artificial intelligence

for downscaling and rectifying systematic errors in GCMs.
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