Índice general

Capítulo 1: INTRODUCCIÓN Y OBJETIVOS	1
1.1. INTRODUCCIÓN	1
1.2. OBJETIVOS GENERALES Y ESPECÍFICOS	2
Capítulo 2: VAPOR DE AGUA ATMOSFÉRICO	
2.1. LA ATMÓSFERA	5
2.1.1. ESTRUCTURA ATMOSFÉRICA SEGÚN LA TEMPERATURA	6
2.1.2. ESTRUCTURA ATMOSFÉRICA SEGÚN LA CONDUCTIBILIDA ELÉCTRICA	.D 9
2.2. VAPOR DE AGUA	11
2.3. TECNICAS DE OBTENCIÓN DE VAPOR DE AGUA	13
2.3.1. RADIOSONDAS	14
2.3.2. GNSS	22
Capítulo 3: PWV A PARTIR DE OBSERVACIONES GNSS	
3.1. DESCRIPCIÓN DE LOS GNSS	25
3.2. SISTEMAS Y MARCOS DE REFERENCIA	29
3.3. ÓRBITAS	30
3.4. OBSERVABLES Y SUS COMBINACIONES	31
3.4.1. COMBINACIONES LINEALES DE OBSERVABLES	34
3.4.2. DIFERENCIACIÓN DE OBSERVABLES	36
3.5. FUENTES DE ERROR E INFLUENCIAS SOBRE LAS OBSERVACIONES Y POSICIONAMIENTO GNSS	40
3.5.1. ERRORES RELATIVOS AL SATÉLITE	40
3.5.2. EFECTOS DEL MEDIO DE PROPAGACIÓN	41
3.5.3. RELATIVOS AL RECEPTOR Y SU ENTORNO	44
3.5.4. CORRECCIONES POR CARGA OCEÁNICA Y MAREAS TERRE	ESTRES 45
3.6. RETRASO TROPOSFÉRICO	46
3.6.1. RETRASO HIDROSTÁTICO	51

3.6.2. RETRASO HÚMEDO	56
3.6.3. FUNCIONES DE PROYECCIÓN	57
3.6.4. GRADIENTES HORIZONTALES	65
3.6.5. CONSIDERACIONES FINALES	66
3.7. PWV A PARTIR DEL GNSS	69
3.8. PRECISION DEL PWV A PARTIR DE LAS OBSERVACIONES GNSS	72
Capítulo 4: METODOLOGÍA	77
4.1. ZONA DE ESTUDIO	77
4.2. OBTENCIÓN DEL ZTD	80
4.2.1. DESCRIPCIÓN GENERAL DEL PROGRAMA BERNESE GNSS	5.2 80
4.2.2. CARACTERÍSTICAS DE LA ESTIMACIÓN DE PARÁMETROS BERNESE GNSS 5.2	5 EN 84
4.2.3. MODELO DE DOBLES DIFERENCIAS Y TRATAMIENTO DE AMBIGÜEDADES Y LA COMPONENTE TROPOSFÉRICA	LAS 91
4.2.4. RED DE PROCESAMIENTO RELATIVO	102
4.2.5. DATOS DE PARTIDA	104
4.2.6. GENERACIÓN DE ÓRBITAS ESTANDAR	107
4.2.7. PREPROCESAMIENTO DE LAS OBSERVACIONES	108
4.2.8. PROCESAMIENTO FINAL	115
4.3. CALCULO DEL VAPOR DE AGUA PRECIPITABLE	118
4.4. VALIDACIÓN DEL PROCESO	121
4.4.1. VALIDACIÓN DEL ZTD	121
4.4.2. VALIDACIÓN DEL PWV	122
Capítulo 5: RESULTADOS Y DISCUSION	125
5.1. VALIDACIÓN DEL RETRASO CENITAL TOTAL	125
5.2. VALIDACIÓN DEL PWV	128
5.3. CARACTERIZACION DEL PWV EN LA ZONA DE ESTUDIO	136
Capítulo 6: APLICACIONES DEL PWVGNSS	157
6.1. INTRODUCCIÓN	157
6.2. DATOS	159
6.3. RELACIÓN DEL PWVGNSS CON OTRAS VARIABLES	161

6.4. ESTUDIO DE LA CORRELACIÓN ENTRE EL PWVgnss Y LA PRECIPITAC EPISODIOS DE LLUVIA FUERTE	CION EN 167
6.4.1. SELECCIÓN DE LOS EPISODIOS DE LLUVIA	167
6.4.2. AMPLIACIÓN DEL CÁLCULO	169
6.4.3. EVOLUCIÓN TEMPORAL DE LLUVIA Y PWVGNSS	172
6.4.4. PREDICTORES	179
6.4.5. CONCLUSIONES	182
Capítulo 7: CONCLUSIONES	185
7.1. CONCLUSIONES	185
7.2. LINEAS FUTURAS DE INVESTIGACIÓN	187
Anexo nº1: TRATAMIENTO DE LA COMPONENTE TROPOSFÉRICA EN OTROS PROGRAMAS	189
A.1 INTRODUCCIÓN	189
A.2. GIPSYX 2.2	191
A.3. MAGNET TOOLS	195
A.4. LEICA INFINITY	197
A.5. TRIMBLE	198
A.6. RTK-LIB	199
BIBLIOGRAFÍA	203

Índice de figuras

Figura 2.1: Estructura atmosférica en función de la temperatura y sus cambios en la atm	ósfera. 7
Figura 2.2: Estructura de la ionosfera. Fuente: (Berné Valero et al., 2019)	10
Figura 2.3: Radiosonda. Fuente: https://radiosondemuseum.org/what-is-a-radiosonde/	15
Figura 2.4: Ejemplo de perfil de radiosonda en Santiago de Compostela de la red de MeteoGalicia. Fuente:	
https://www.meteogalicia.gal/observacion/radiosondaxe/radioIndex.action?request_loc	<u>ale=gl</u> 15
Figura 2.5: Estaciones automáticas de radiosondeo de A Coruña (izquierda) y Santander (derecha). Fuente: https://www.elidealgallego.com/ (para la imagen de A Coruña) y https://www.eldiariomontanes.es/ (para la imagen de Santander)	r 19
Figura 2.6: Fiemplo de datos ICRA para la estación de A Coruña el 1 de julio de 2017 en	ام
lanzamiento de las 0 UTC.	20
Figura 3.1 Posicionamiento por satélite: trilateración. Fuente: (Peyret et al., 2015)	26
Figura 3.2: Esquema de las simples diferencias entre dos receptores k y l a un satélite i.	36
Figura 3.3: Esquema de las dobles diferencias entre dos receptores k y l a dos satélites i	y j. 37
Figura 3.4: Esquema de las triples diferencias entre dos receptores k y l a dos satélites i y dos tiempos consecutivos.	y j, en 39
Figura 3.5: Esquema de la refracción en la atmosfera neutra de la onda.	47
Figura 3.6: Representación de las líneas de observación y el cenit (línea roja) de un conju satélites sobre un receptor k.	ınto de 50
Figura 3.7: Relación entre el retraso oblicuo y el cenital. Elaboración propia a partir de la bibliográfica (Boehm & Schuh, 2004). La figura no está escalada.	a fuente 58
Figura 3.8: Raytracing. El ángulo e corresponde con el ángulo de elevación en el vacío y ángulo inicial. Elaboración propia a partir de la fuente bibliográfica (Boehm & Schuh, 2	e0 es el .004) 61
Figura 3.9: Esquema de gradientes horizontales. Fuente: (Meindl et al., 2004)	65
Figura 4.1: Distribución de las estaciones escogidas en la zona de estudio.	78

Figura 4.2 Diagrama de trabajo con el programa Bernese GNSS versión 5.2. Fuente: (Dach et al., 2015) 84 Figura 4.3: Parametrización en Bernese GNSS 5.2. 90 Figura 4.4: Red de procesamiento relativo. 103 Figura 4.5: Flujo del trabajo con Bernese GNSS 5.2 desde los datos de partida hasta el preprocesamiento de la red y obtención de la primera solución. En rojo se indican las rutinas principales utilizadas en cada proceso, mientras que en azul se indican las carpetas de la campaña donde se almacenan los datos de partida en cada caso. 114 Figura 4.6: Esquema del procesamiento de la solución diaria. 117 Figura 4.7: Esquema del procesamiento back-substitution para la obtención de la solución diaria troposférica multisesión. 118 Figura 4.8 Esquema del proceso de obtención del PWVGNSS. El recuerdo rojo corresponde con cálculos realizados por rutinas propias en Matlab®. 119 Figura 5.1: Ejemplo de fichero TRP obtenido para la estación ACOR, correspondiente al 27 de junio de 2017. 126 Figura 5.2: Ejemplo de parte del fichero TRO obtenido para la estación ACOR, correspondiente al 27 de junio de 2017. 126 Figura 5.3: Ejemplo del fichero extraído de la base IGRA para la estación de radiosonda de A Coruña. La columna 5 corresponde con el PWV (mm) mientras que las columnas 6 ª y 7ª son la hora de lanzamiento y los minutos de este respectivamente 129 Figura 5.4 Diagrama de dispersión del PWVGNSS y PWVRS recuperado en las estaciones de (a) ACOR y (b) CANT. 131 Figura 5.5 Diagramas de dispersión del PWVGNSS y PWVRS teniendo en cuenta el momento de lanzamiento de la radiosonda. (a) ACOR a las 0UTC, (b) CANT a las 0UTC, (c) ACOR a las 12 UTC y (d) CANT a las 12UTC. 134 Figura 5.6: Distribución de la media multianual en virtud de la latitud. 138 Figura 5.7: Evolución mensual de la media multianual del PWVGNSS. 140 Figura 5.8: Evolución de la media diaria del PWVGNss en el periodo de estudio. La estación a la que refiere cada gráfica viene indicada en las figuras. 146 Figura 5.9: Anomalías diaria de PWVGNSS en cada estación. La estación a la que refiere cada gráfica viene indicada en las figuras. En la leyenda COMPLETO corresponde con toda la serie 152 multianual. Figura 6.1: Estaciones meteorológicas más cercanas a la estación de GNSS de ACOR. Las estaciones meteorológicas están indicadas con un triángulo azul y la estación GNSS con un triángulo rojo. Fuente: https://www.meteogalicia.gal/ 160 Figura 6.2: Estación meteorológica de Coruña-Dique. Fuente: https://www.meteogalicia.gal/

161

Figura 6.3: Evolución temporal de la temperatura y el PWVGNSS en la estación de ACOR.	
	162
Figura 6.4: Diagrama de dispersión de la temperatura y el PWV _{GNSS} .	163
Figura 6.5: Evolución temporal de la lluvia diaria acumulada y el PWV _{GNSS} en la estación ACOR.	n de 164
Figura 6.6: Valores diarios totales de precipitación en la estación de Coruña-Dique entre julio de 2013 y el 31 de agosto de 2023	e el 1 de 168
Figura 6.7: Diagramas de dispersión para los retrasos cenitales oficiales ZTD _{EUREF} y del procesamiento de la red atlántica ZTD _{ATL} (imagen superior) y PWV _{RS} y PWV _{GNSS} (image inferior). En ambas figuras la línea azul corresponde con la recta de regresión lineal sob datos y la recta roja con la diagonal.	en re los 171
Figura 6.8: Evolución temporal de lluvia y PWVGNSS para el mes de enero de 2016	172
Figura 6.9 Evolución temporal de lluvia y PWV _{GNSS} para el episodio de lluvia del 29 y 30 marzo de 2016) de 174
Figura 6.10 Evolución temporal de lluvia y PWV _{GNSS} para el episodio de lluvia del 13 de septiembre de 2016.	175
Figura 6.11 Evolución temporal de lluvia y PWV _{GNSS} para el episodio de lluvia del 24 de noviembre de 2018.	176
Figura 6.12 Evolución temporal de lluvia y PWVGNSS para el episodio de lluvia del 12 de de 2020	agosto 177
Figura 6.13 Evolución temporal de lluvia y PWV _{GNSS} para el episodio de lluvia del 17 de 2021	junio de 178
Figura A.1: Ejemplo de fichero de opciones en el programa GipsyX 2.2	193
Figura A.2: Opciones de procesamiento GNSS de Magnet Tools para la troposfera.	195
Figura A.3: Opciones de procesamiento GNSS de Leica Infinity para la troposfera.	197
Figura A.4: Opciones de procesamiento GNSS de RTK-LIB para la troposfera.	199

Índice de tablas

Tabla 2.1: Composición de la atmósfera terrestre cerca de la superficie. Fuente: (Ahrens,	, 2009) 6
Tabla 2.2: Valores de los coeficientes e incertidumbres asociadas para el cálculo de la pr parcial saturada de vapor de agua. Fuente: Tabla 3 de (Flatau et al., 1992)	esión 16
Tabla 3.1 Resumen del segmento espacial de las constelaciones GNSS	27
Tabla 3.2 Relación de productos orbitales del IGS. Fuente: https://igs.org/products/#orbits_clocks (actualizado el 1 de noviembre de 2023)	31
Tabla 4.1: Relación de estaciones en la zona de estudio. La latitud y longitud están expre graduación sexagesimal decimal. La altura está referida al elipsoide WGS-84. En la colu se incluyen cada una de las redes a las que las estaciones contribuyen.	esadas en ımna Red 79
Tabla 4.2: Relación de estaciones complementarias para el procesamiento relativo. La longitud están expresadas en graduación sexagesimal decimal. La altura elipsoidal esta al elipsoide WGS-84. En la columna Red se incluye la pertenencia o no a las redes IGS y/	latitud y á referida o EUREF. 104
Tabla 4.3: Servidores de descarga de las observaciones. (Todas las direcciones fueron re el 1 de noviembre de 2023)	visadas 106
Tabla 4.4 : Relación de estaciones climáticas y meses considerados para el estudio	120
Tabla 4.5 Relación de estaciones GNSS y de radiosonda pareadas y sus diferencias de p altura.	osición y 123
Tabla 5.1: Estadísticas de comparación entre los valores de ZTD del procesamiento y los oficiales de EUREF REPRO-2. N indica el número de valores comparados.	s valores 127
Tabla 5.2 Estadísticas de comparación entre el PWV recuperado del GNSS y la radioson	ıda. 130
Tabla 5.3 Estadísticas de comparación entre el PWV recuperado de las observaciones G radiosonda, considerando la hora de lanzamiento.	NSS y la 132
Tabla 5.4: Parámetros de la serie de 4 años del PWVGNSS en la zona de estudio. N es el no observaciones utilizadas en el cálculo de los parámetros y Max. y Min. indican máximo mínimo respectivamente.	úmero de y 137
Tabla 5.5: Factor de correlación del valor medio multianual de PWVGNSS usando todos la (COMPLETO) y también según la estación climática.	os datos 139

Tabla 5.6: Valores medios, y términos anuales y semianuales estimados de las series de PWVGNSS		
	141	
abla 6.1: Valores de correlación entre temperatura y PWVGNSS según la estación climática		
considerada.	164	
Tabla 6.2: Valores del índice PE con el total de los datos (fila COMLETO) y según la estación		
climática considerada.	166	
Tabla 6.3 Conjunto de episodios de lluvia seleccionados	169	
Tabla 6.4 Resumen de los parámetros estadísticos de validación de la ampliación del cálculo.		
	170	
Tabla 6.5 Valores de los predictores en la ventana temporal de 6 horas antes de los episodios de		
lluvia.	181	
Tabla 6.6 Valores de los predictores en la ventana temporal de 12 horas antes de los epis	odios de	
lluvia.	181	