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In this paper, a deep dynamical analysis is made, by using tools from multi-
dimensional real discrete dynamics, of some derivative-free iterative methods
with memory. All of them have good qualitative properties, but one of them (due
to Traub) shows to have the same behavior as Newton's method on quadratic
polynomials. Then, the same techniques are employed to analyze the perfor-
mance of several multipoint schemes with memory, whose first step is Traub's
method, but their construction was made using different procedures. Therefore,
their stability is analyzed, showing which is the best in terms of wideness of
basins of convergence or the existence of free critical points that would yield
to convergence toward different elements from the desired zeros of the non-
linear function. Therefore, the best stability properties are linked with the best
estimations made in the iterative expressions, rather than in their simplicity.
These results have been checked with numerical and graphical comparison with
many other known methods with and without memory, with different order of
convergence, with excellent performance.
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1 INTRODUCTION

A wide variety of physical processes observed in real life are nonlinear, as are many systems underlying engineering
problems. If, in order to simplify the problem, they are linearized, much of the complexity disappears, but the solution
obtained is a worse approximation to the real solution. Iterative processes are very useful in this context, approximating
the solution of the nonlinear equations, 𝑓 (x) = 0, that model this type of problem.

Although the best-known fixed-point iterative method is Newton's method, it represents only a subclass of numerical
procedures: Memoryless iterative processes, which use only the current iteration to compute the next one, building the
sequence that will eventually converge to the solution. However, there are iterative schemes that use more than one
known iterate to calculate the next: These are known as iterative procedures with memory, and the best known is the
secant method, whose iterative expression is
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2 CORDERO ET AL.

xn+1 = xn − 𝑓 (xn)(xn − xn−1)
𝑓 (xn) − 𝑓 (xn−1)

, n = 1, 2, … ,

where x0 and x1 are the initial estimations. The simplicity of its expression makes it very useful but the quadratic order
of convergence of Newton's scheme is lost, reaching superlinear convergence. To overload this inconvenient, Traub in [1]
designed, among others, the derivative-free scheme (DF, for short) with memory,

xn+1 = xn − 𝑓 (xn)
𝑓 [xn, xn−2] − 𝑓 [xn−1, xn−2] + 𝑓 [xn, xn−1]

, (1)

denoted by TM, where 𝑓 [x, 𝑦] = 𝑓 (x)−𝑓 (𝑦)
x−𝑦

, which increases the order of convergence from 1.618 (of secant scheme) up
to 1.839. Traub [1] has shown that the method is of order 1.839. See also [2, 3]. It is lower than other DF methods as
Steffensen's scheme (without memory), but it has good numerical properties. In fact, this scheme has been used as first
step of several higher order multipoint methods, with good results in terms of robustness and applicability (see the works
by Neta [3–5] and other authors [6–10]).

In recent years, different iterative schemes with memory have been designed (a good overview can be found in [11]),
mostly derivative-free. These have been constructed with increasing order of convergence and, therefore, with increasing
computational complexity. In terms of stability, some researchers compared the amplitude of the set of initial points
converging to the same attractor, using complex discrete dynamics techniques. In [12], the authors observed that iterative
schemes with seventh-order memory convergence showed better stability properties than many eighth-order optimal
procedures without memory. This graphical comparison was subsequently used by different authors; observe, for instance,
the work of Wang et al. in [13] and Cordero et al. [14] in 2016 or the investigations of Bakhtiari et al. [15] in 2016 and
Howk et al. [16] in the following years.

The authors developed in [17, 18] a technique that, using multidimensional real discrete dynamics tools, is able to study
the qualitative performance of iterative with memory schemes, not only in graphical terms but essentially in analytical
terms. Using this technique, the stability of the fixed and critical points of secant, Steffensen's and Kurchatov's meth-
ods (among others) were studied in [17]. It was also used to analyze other procedures, such as those described in [18],
that defined by Choubey et al. in [19], or those by Chicharro et al. in [20–22]. In this kind of analysis, the performance
of the numerical procedure on the simplest nonlinear functions (i.e., quadratic polynomials) is studied. As it has been
corroborated by many researchers in the area, this kind of study allows us to select those elements of a class of iterative
schemes with better qualitative performance. Those schemes are shown to be the best also on nonpolynomial functions
(see, e.g., [12, 19, 22]), among others. Also Behl et al. in [23] presents a similar study on derivative-free eighth-order
iterative schemes without memory, both with polynomial and nonpolynomial functions.

The design of high-order multipoint iterative methods is based on the scheme used as first step: It defines the starting
order of convergence, the use of derivatives or not, the employment of only one previous iterate, or the use of memory. Our
aim is to analyze in depth the qualitative performance of some DF methods with memory so that we can select the one
with the best stability properties. Then, that one is used as first step of different iterative methods, which were designed
by means of diverse techniques. The qualitative behavior of those multipoint schemes is studied in order to deduce how
the qualitative properties are inherited. The positive aspect of this study is that we have objective tools to select which
technique is more suitable in the construction of iterative multipoint methods with memory. On the opposite sense, we
are working with derivative-free iterative methods with memory, but schemes with memory using derivatives are out of
this analysis and it will be a forthcoming issue.

In this context, we made in Section 2 a deep dynamical analysis of several DF iterative schemes with memory, defined by
using three previous iterates. We find the most stable one and, therefore, compare in Section 3 the performance of several
multistep methods based on the previous methods. All this analysis is made by using multidimensional discrete dynamics.
By using these results, we select the most stable scheme, and in Section 4, we check numerically the performance of the
methods on nonpolynomial functions, showing their basins of attraction. Therefore, the applicability of the schemes and
the dynamical results are checked.

2 QUALITATIVE STUDY OF ONE-STEP ITERATIVE WITH MEMORY
SCHEMES

An iterative procedure that uses three previous iterate to calculate the next one is

xn+1 = Ψ(xn−2, xn−1, xn), n ≥ 2,
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CORDERO ET AL. 3

being the starting guesses x0, x1 and x2. The authors described in [17, 18] a procedure that allows us to describe any
iterative with memory scheme as a multidimensional real discrete dynamical system, so that its stability performance can
be studied.

To get the fixed points of an iterative scheme defined by Ψ, we define a multidimensional fixed point function H ∶ R
3 →

R
3, related to Ψ as

H (xn−2, xn−1, xn) = (xn−1, xn,Ψ(xn−2, xn−1, xn)),

for n = 1, 2, … , where x0, x1, and x2 are the initial guesses. Then, any fixed point of H must satisfy xn+1 = xn, xn−2 = xn
and xn−1 = xn.

From function H ∶ R
3 → R

3, the associate discrete dynamical system in R
3 is defined by H (xn−2, xn−1, xn) =

(xn−1, xn, xn+1), where Ψ is the operator of the iterative method with memory. Let us define the sequence of vectors
x̄n = (xn−1, xn, xn+1) by taking three consecutive iterates. The fixed points x̄ of H satisfy x̄ = Ψ(x̄) and all three components
are identical. This notation implies xn−2 = xn−1 = xn. Now, let us introduce some definitions (see [24]).

Let us consider the vectorial rational function H ∶ R
3 → R

3, usually obtained by applying an iterative method on a
scalar polynomial q(x). Then, if a fixed point x̄ of operator H is different from (r, r, r), being r a zero of q(x), it is called
strange fixed point. Moreover, the orbit of a point x∗ ∈ R

3 is defined as the set of successive images from x∗ by the
vector function, that is, orbit(x∗) = {x∗,H(x∗), … ,Hn(x∗), …}. Indeed, if a point x̄∗ ∈ R

3 satisfy Hk (x̄∗) = x̄∗ and
Hp (x̄∗) ≠ x̄∗, p = 1, 2, … , k− 1 is called k-periodic point. Let us remark that a k-periodic point x∗ is a fixed point if k = 1.

The qualitative performance of a point of R3 is classified depending on its asymptotic performance. So, in order to
declare the stability of multidimensional fixed points, the following result from Robinson [25] is used.

Theorem 1. Let H be a function of class 2, defined from R
m to R

m. Let us also assume that x∗ is a k-periodic point. If
we denote by 𝜆1, 𝜆2, … , 𝜆m, the eigenvalues of H′(x∗), then

a) x∗ is attracting if |𝜆𝑗| < 1, for all 𝑗 = 1, 2, … ,m.
b) If ∃𝑗0 ∈ {1, 2, … ,m} such that |𝜆𝑗0 | > 1, then x∗ is unstable (repelling or saddle).
c) x∗ is repelling if |𝜆𝑗| > 1, for all 𝑗 = 1, 2, … ,m.

Moreover, a fixed point x̄ ∈ R
3 is said to be hyperbolic if |𝜆𝑗| ≠ 1 for all 𝑗 = 1, 2, … ,m. Specifically, if ∃i, 𝑗 ∈

{1, 2, … ,m} satisfying |𝜆i| < 1 and |𝜆𝑗| > 1, then the fixed point is a saddle point.
Nevertheless, sometimes the Jacobian is not well defined at the fixed points. In these cases, we impose to the rational

operator H the condition that all components are identical, so that it is reduced to a real-valued function. Therefore, the
stability of the fixed point can be inferred from the absolute value of its first derivative at the fixed point, as it is done in
scalar complex dynamics.

By considering x̄ an attracting fixed point of function H, we define its basin of attraction (x̄) as the set

(x̄) =
{

x̄ ∈ R
3 ∶ Hm(x̄) → x̄, for m → ∞

}
.

A key element in the stability analysis of an iterative method is the set of critical points of its associated rational function
H: If H′(x̄) satisfies det(H′(x̄)) = 0, x̄ is said to be a critical point. This definition usually do not provide a finite set of
points, but one or several curves in the domain of the rational function or even that all points are critical. Therefore, we
calculate them by finding those points satisfying that H′ has zero eigenvalues on them; this is a more restrictive definition,
but often necessary. Moreover, if the critical points are also fixed points, they are called superattracting points; if not, they
are called free critical points (let us remark that components of critical points can be different). Indeed, Julia and Fatou
[24] proved that there is at least one critical point associated with each basin of attraction. Therefore, by studying the orbit
of the free critical points, all the attracting elements can be found.

2.1 Preliminary analysis: How to select the first step
In this section, we analyze the performance on quadratic polynomials of three different schemes with memory due to
Traub [1], (1), denoted by TM, that of Jarratt and Nudds [26],

xn+1 = xn − 𝑓 (xn)
(xn−1 − xn)(xn−2 − xn)(𝑓 (xn−2) − 𝑓 (xn−1))

(xn−1 − xn)(𝑓 (xn−2) − 𝑓 (xn))𝑓 (xn−1) + (xn−2 − xn)(𝑓 (xn) − 𝑓 (xn−1))𝑓 (xn−2)
, (2)
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4 CORDERO ET AL.

denoted by JNM, and the procedure presented by Popovski et al. in [27],

xn+1 = xn − 𝑓 (xn)
(xn − xn−2)(𝑓 (xn−2) − 𝑓 (xn−1))(xn − xn−1)

(𝑓 (xn−2) − 𝑓 (xn))(xn−2 − xn−1)( 𝑓 (xn−1) − 𝑓 (xn))
, (3)

denoted by PM.
All these schemes have similar iterative expressions, the same order of convergence (p = 1.839), and our first aim is

to decide, under qualitative considerations, which is the most stable one in order to add two more steps, increasing its
convergence order and showing the best performance in terms of wideness of the sets of initial estimations converging to
the roots.

With the aim of extending the results to any polynomial of second degree, this study is constructed on q(x) = x2 − c,
so that the value of c yields to a situation with real, complex, or multiple roots depending on c > 0, c < 0, or c = 0,
respectively. This analysis can be summarized in the following results.

Theorem 2. The multidimensional rational operator associated with Traub's scheme TM, when it is mapped on
polynomial q(x) = x2 − c, c ≠ 0, is

T(w, z, x) =
(

z, x, c + x2

2x

)
,

and it is
T(w, z, x) =

(
z, x, x

2

)
,

for c = 0. Moreover, TM satisfies:

a) The only fixed points are the roots of q(x).
b) The only critical points are the roots of q(x).

So, there is no other possible performance of TM scheme than convergence to the roots.

Proof. Let us remark that the third component of operator T(w, z, x) is equal to the rational function obtained when
classical Newton's method is applied on polynomial q(x). This is the reason why, when we force the three consecutive
iterates to be equal (x = z = w) in order to get the fixed points, then the only fixed points are the roots x = ±

√
c.

Regarding the critical points, the Jacobian matrix T′ is

T′(w, z, x) =
⎛⎜⎜⎝

0 1 0
0 0 1
0 0 1

2
− c

2x2

⎞⎟⎟⎠ ,
with eigenvalues

{
0, 0, 1

2
− c

2x2

}
. So, there are no free critical points. □

A very useful tool to visualize the analytical results is the dynamical plane of the system, composed by the set of the
different basins of attraction. They are drawn by means of the programs presented in [28] using Matlab R2021a, after
some changes to adapt them to schemes with memory. The dynamical plane of a method is built by calculating the orbit
of a mesh of 400 × 400 starting points (z, x) (w does not appear in the rational function T) and painting each of them in
different colors (orange and green in this case) depending on the attractor they converge to (marked as a white star), with
a tolerance of 10−3. Also they appear in black color if the orbit has not reached any attracting fixed point in a maximum
of 80 iterations. In Figure 1, we show the dynamical planes of this method for selected values of c, in order to show its
performance. Let us remark that, as by definition all the fixed points have equal components, they will always appear in
the main diagonal of the dynamical plane. It can be observed that, when there are no real root (c < 0; Figure 1A), no
other attracting element appear; when c = 0, the only root is multiple and the convergence is linear, so there are global
convergence to x = 0 as can be seen in Figure 1B. In Figure 1C, the convergence to the roots is also observed to be global,
being their basins of attraction two symmetrical half-planes.

Now, we analyze the performance of Jarratt–Nudds method with memory [26] on quadratic polynomials.

Theorem 3. The multidimensional rational operator associated with method JNM, when it is applied on polynomial
q(x) = x2 − c, c ≠ 0, is

JN(w, z, x) =
(

z, x, c(x + z + w) + xzw
c + x(z + w) + zw

)
,
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CORDERO ET AL. 5

FIGURE 1 Dynamical planes of scheme TM on q(x). [Colour figure can be viewed at wileyonlinelibrary.com]

and it is

JN(w, z, x) =
(

z, x, xzw
x(z + w) + zw

)
,

for c = 0. Moreover, JNM satisfies:

a) There are no attracting strange fixed points. If c ≠ 0, x = 0 is a strange fixed point, that is, a saddle point. If
c = 0, x = 0 is an attracting fixed point, as it is a multiple zero of q(x).

b) There exists an infinite set of free critical points (w, z, x), defined by the lines x = ±
√

c or z = ±
√

c, being c > 0 and
w arbitrary, provided that c + x(z + w) + zw ≠ 0.

Proof. By applying Jarratt–Nudds' method on q(x) and constructing the auxiliary multidimensional operator,
JN(w, z, x) is found. To get the fixed points of JN, we solve JN(x, x, x) = (x, x, x) and find

2x
(

c − x2)
c + 3x2 = 0,

so the fixed points are those whose three components coincide at x = ±
√

c and x = 0, provided that c + 3x2 ≠ 0. To
study their qualitative behavior, we calculate

JN′(w, z, x) =
⎛⎜⎜⎝

0 1 0
0 0 1

(c−x2)(c−z2)
(c+x(z+w)+zw)2

(c−x2)(c−w2)
(c+x(z+w)+zw)2

(c−z2)(c−w2)
(c+x(z+w)+zw)2

⎞⎟⎟⎠
and its eigenvalues at the fixed points are (0, 0, 0) in the case of w = z = x = ±

√
c and (approximately)

{1.83929,−0.419643 + 0.606291i,−0.419643 − 0.606291i} for w = z = x = 0. So, the roots of q(x) are superattracting
fixed points and (0, 0, 0) is saddle, since |𝜆1| = 1.83929 > 1 and |𝜆2| = |𝜆2| ≈ 0.737353 < 1.

Regarding the critical points, it is not possible to gent an analytical expression of the eigenvalues of JN′(w, z, x).
Then, it can be checked that

det( JN′(w, z, x)) =
(

c − x2) (c − z2)
(c + x(z + w) + zw)2 ,

and, therefore, x = ±
√

c or z = ±
√

c are curves of critical points, provided that c+ x(z +w) + zw ≠ 0 and they are free
as the third component w is not fixed. □

In Figure 2, we show the dynamical planes of this method for selected values of c, in order to show its performance. For
all the dynamical planes, different values of w has been used, in order to observe the dependence of the wideness of the
basins of attraction on it. It can be noticed that, for c ≥ 0, global convergence to the roots is found, being slower in case of
multiplicity (see Figure 2B). Moreover, a symmetry is observed for opposite values of w in the wideness of the basins of
attraction of both roots (see Figure 2C,D).
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6 CORDERO ET AL.

FIGURE 2 Dynamical planes of scheme JNM method on q(x), for different values of w and c. [Colour figure can be viewed at
wileyonlinelibrary.com]

Finally, by means of a similar analysis, we found the main result about the stability of Popovski's scheme [27]. The proof
is omitted as it is similar to the previous ones.

Theorem 4. The multidimensional rational operator associated with method PM, when it is applied on polynomial
q(x) = x2 − c, c ≠ 0, is

P(w, z, x) =
(

z, x, c(z + w) + x3 + xzw
(x + z)(x + 𝑦)

)
,

and it is

P(w, z, x) =
(

z, x, x3 + xzw
(x + z)(x + w)

)
,

for c = 0. Moreover, PM satisfies:

a) The only fixed points are the roots of q(x).
b) There exists an infinite set of free critical points (w, z, x), defined by the lines z = x, provided that x ≠ z and x ≠ w.

In Figure 3, we show the performance of this method with memory for several values of c. For all the dynamical planes,
different values of w has been used, in order to observe the dependence of the wideness of the basins of attraction on it.
We observe that, depending of the value of w, the basins of both roots are symmetric (w = 0) or one of them is wider and
this situation is reversed for the opposite value of w (see, e.g., Figure 3C,D).

We notice that similar performance as in case of JNM is observe in terms of symmetry and convergence to the roots.
However, their basins of attraction have more connected components and the Julia set (the boundary among the basins
of attraction) is much more complicated. Also slow convergence to the multiple root in case of c = 0 is observed.

So, it can be concluded that the stability of Traub's scheme with memory is much better than the other methods with
similar shape and order of convergence under analysis. Therefore, we study, in the following section, the qualitative
behavior of two iterative schemes with three steps based on Traub's procedure as first step.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9367 by U

niversitat Politecnica D
e V

alencia, W
iley O

nline L
ibrary on [05/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


CORDERO ET AL. 7

FIGURE 3 Dynamical planes of scheme PM on q(x), for different values of w and c. [Colour figure can be viewed at wileyonlinelibrary.com]

3 QUALITATIVE PERFORMANCE OF MULTIPOINT METHODS WITH THE
SAME FIRST STEP

As it has been previously stated, we analyze the qualitative properties of two iterative with memory schemes based on
Traub's scheme. We denote by method M1 that scheme with iterative expression

𝑦n = xn − 𝑓 (xn)
𝑓 [xn−2, xn] + 𝑓 [xn−1, xn] − 𝑓 [xn−2, xn−1]

,

zn = 𝑦n − 𝑓 (𝑦n)
𝑓 [𝑦n, xn] + 𝑓 [𝑦n, xn, xn−1](𝑦n − xn) + 𝑓 [𝑦n, xn, xn−1, xn−2](𝑦n − xn)(𝑦n − xn−1)

,

xn+1 = zn − 𝑓 (zn)
𝑓 [zn, 𝑦n] + 𝑓 [zn, 𝑦n, xn](zn − 𝑦n) + 𝑓 [zn, 𝑦n, xn, xn−1](zn − 𝑦n)(zn − xn)

,

(4)

presented in [4], with order of convergence 7.356. Also in [3], the scheme with memory that we denote by M2 was
constructed,

𝑦n = xn − 𝑓 (xn)
𝑓 [xn−2, xn] − 𝑓 [xn−2, xn−1] + 𝑓 [xn−1, xn]

,

zn = 𝑦n − 𝑓 (𝑦n)
𝛼1𝑓 (xn) + 𝛼2𝑓 (xn−1) + 𝛼3𝑓 (𝑦n)

,

xn+1 = zn − 𝑓 (zn)
𝛽1𝑓 (xn) + 𝛽2𝑓 (𝑦n) + 𝛽3𝑓 (zn)

,

(5)

showing the order of convergence is 6.219.
Although both schemes are based on the same first step, they reach different order of convergence with also great

divergence between their computational complexity: As M1 uses in the denominator of second and third steps high-order
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8 CORDERO ET AL.

estimations of the derivatives 𝑓 ′(𝑦n) and 𝑓 ′(zn), respectively, its expression is more complicated but it reaches higher order
of convergence than its partner M2, with a simpler iterative expression but lower order of convergence. Moreover, usually
the highest is the order of convergence, the closer to the root the initial estimate need to be in order to ensure convergence;
so, it would be possible to get better stability properties for lower order methods. In any case, our aim is not to classify
them by means of their order of convergence, but of their stability. In what follows, we construct the multidimensional
discrete dynamical system associated to both schemes and analyze the existence of strange attracting fixed points or free
critical points that might yield to undesirable numerical performances.

3.1 Qualitative study of M1
We analyze now the performance of the rational operator related to M1 on quadratic polynomials. As in the previous
section, this analysis is made on q(x) = x2 − c. The results are condensed in the following theorem. It can be observed
that the third component of the vectorial rational function does not depend on the two previous iterations, w and z as it
happened in Traub's method.

Theorem 5. The multidimensional rational operator associated with method M1, when it is applied on q(x) = x2−c, c ≠

0 is
M1(w, z, x) =

(
z, x, c4 + 28c3x2 + 70c2x4 + 28cx6 + x8

8c3x + 56c2x3 + 56cx5 + 8x7

)
,

and it is
M1(w, z, x) =

(
z, x, x

8

)
,

for c = 0. Moreover, M1 satisfies:

a) There are no strange attracting fixed points. If c < 0, there exist six real strange fixed points that are saddle points.
If c = 0, x = 0 is the unique fixed point, that is, only attracting; finally, for c > 0, the only fixed points are the roots
of q(x).

b) There exists no critical points different from the roots of q(x).

So, method M1 has global convergence.

Proof. We calculate the fixed points of operator M1 by solving M1(w, z, x) = (w, z, x), that must satisfy w = x = z.
Specifically,

M1(w, z, x) =
(

z, x, c4 + 28c3x2 + 70c2x4 + 28cx6 + x8

8c3x + 56c2x3 + 56cx5 + 8x7

)
= (w, z, x),

if and only if w = z = x and

−
(

x2 − c
) (

c3 + 21c2x2 + 35cx4 + 7x6)
8x

(
c + x2

) (
c2 + 6cx2 + x4

) = 0.

So, the fixed points of M1(w, z, x) are the roots of q(x) and also the zeros of the sixth-degree polynomial c3 + 21c2x2 +
35cx4 +7x6 (that are real if c < 0), meanwhile c2 +6cx2 + x4 ≠ 0. Let us remark that in case c > 0, there are not strange
fixed points and when c = 0, the rational function is reduced and the only fixed point is x = 0, that is attracting but
not superattracting. The Jacobian matrix M1′(w, z, x) is defined as

M1′(w, z, x) =
⎛⎜⎜⎜⎝

0 1 0
0 0 1
0 0 (x2−c)7

8x2(c+x2)2(c2+6cx2+x4)2

⎞⎟⎟⎟⎠ .
It can be checked that the first two eigenvalues of M1′ evaluated at each one of these strange fixed points are null.
Then, their character would be attracting or saddle depending on the absolute value of the third eigenvalue, depending
on c and x. In all cases, |𝜆3| = 8, so they are saddle.

By calculating the eigenvalues of M1′(w, z, x), we get 𝜆1 = 𝜆2 = 0 and 𝜆3 = − (c−x2)7

8x2(c+x2)2(c2+6cx2+x4)2 . So, we conclude

that the only critical points are the roots of q(x), proving the global convergence for quadratic polynomials. □

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9367 by U

niversitat Politecnica D
e V

alencia, W
iley O

nline L
ibrary on [05/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CORDERO ET AL. 9

FIGURE 4 Dynamical planes of scheme M1 on q(x). [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 4 shows the behavior stated at Theorem 5. Let us notice that only the convergence to the roots is reached (it is
clear from the absence of free critical points), showing the best possible behavior in terms of stability. Fixed points are
represented as white stars. This performance is qualitatively the same that those obtained by Newton's scheme.

3.2 Qualitative study of M2
A similar study is made for M2, the rational function involved depends on the two previous iterations (in this case, w = xn−2
has not any role). The proof is omitted as it can be developed in a similar way as in Theorem 5.

Theorem 6. The multidimensional rational operator associated with method M2, when it is applied on q(x) = x2−c, c ≠

0, is

M2(w, z, x) =

(
z, x,

−c5(3x + z)3 + c4x2q1(z, x) + c3q2(z, x) − 2c2x6q3(z, x) + cx8q4(z, x) + x10q5(z, x)
8x

(
c(x + z) + x2(x − 3z)

) (
−c3(3x + z)2 + c2x2r1(z, x) + cx4r2(z, x) + x6r3(z, x)

) ) ,

where
q1(z, x) = −141x3 − 77x2z + 17xz2 + 9z3,
q2(z, x) = −222x7 + 610x6z + 438x5z2 + 70x4z3,
q3(z, x) = 69x3 − 411x2z + 471xz2 + 319z3,
q4(z, x) = −23x3 + 425x2z − 1373xz2 + 1163z3

q5(z, x) = 39x3 − 217x2z + 333xz2 − 91z3,
r1(z, x) = −17x2 + 18xz + 15z2,
r2(z, x) = −11x2 + 62xz − 35z2,
r3(z, x) = 5x2 − 10xz − 11z2,

and it is

M2(w, z, x) =

(
z, x,

x
(
39x3 − 217x2z + 333xz2 − 91z3)
8(x − 3z)

(
5x2 − 10xz − 11z2

) )
,

for c = 0. Indeed, M2 satisfies:

a) There are no strange attracting fixed points. If c < 0, there are two real strange fixed points
(
−

√
−c√
3
,−

√
−c√
3

)
and(√

−c√
3
,

√
−c√
3

)
that are saddle points. If c = 0, the unique fixed point is x = 0 that is attracting but not superattracting;

finally, for c > 0, the only fixed points are the roots of q(x).
b) If c > 0, there are two infinite sets of free critical points, (w,

9
11

√
5

17

√
c,−

√
c√

85
) and (w,− 9

11

√
5

17

√
c,

√
c√

85
), for any

real value of w.

The existence of free critical points led us to infer the possibility of convergence to attracting elements (points, orbits,
etc.) different from the roots. As a first step to check if other performances are possible, some dynamical planes can be
seen in Figure 5.

In Figure 5, M2 scheme is found to have a very stable performance. That is, in case there exist strange fixed points,
they are repelling or neutral. Global convergence is observed, despite the existence of free critical points that lie inside
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10 CORDERO ET AL.

FIGURE 5 Dynamical planes of M2 method on q(x)for different values of c. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Bifurcation diagrams of M2 for real critical points. [Colour figure can be viewed at wileyonlinelibrary.com]

the basins of attraction of the roots in Figure 5C, where c > 0. The observed performance is similar to that of M1, but the
basins of attraction are divided in infinite connected components. However, this existence of free critical points does not
allow to assure that there exist another values of c with convergence to attracting periodic orbits, or even with chaotical
performance. So, it should be possible that for any value of c > 0, those free critical points where not in the basins of
attraction of the roots, but inside the basin of any other attractor, maybe a periodic orbit or an strange attractor. In order
to detect this performance, we use Feigenbaum's diagram.

3.2.1 Feigenbaum's diagrams
We use bifurcation diagrams of M2, depending on the value of c, by means of the use of each real critical point s1(c) =
(w,

9
11

√
5

17

√
c,−

√
c√

85
) and s2(c) = (w,− 9

11

√
5

17

√
c,

√
c√

85
) as a starting point, w arbitrary, (described in Theorem 6) and

observing the range [0, 10] of the parameter c, where free critical points are real.
Both Feigenbaum's diagrams can be observed in Figure 6A,B, with the same performance. We use blue color for plotting

the last 100 from a total amount of 500 iterations, for each c ∈ [0, 10] (if a wider interval is used, the results are the same).
We notice that the same curve appears in both. It corresponds with the real roots of q(x) in this interval. This behavior is
in accordance with the dynamical planes shown in Figure 5.

So, both schemes have shown good stability properties on quadratic polynomials. The performance of M1, in spite of
the higher complexity of its iterative expression, has shown to be globally convergent due to the absence of free critical
points, although the final performance of M2 has been similar. It seems that the best estimation of the derivatives has a
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CORDERO ET AL. 11

FIGURE 7 Dynamical planes of analyzed methods for the roots of the function 𝑓1(x). [Colour figure can be viewed at
wileyonlinelibrary.com]

key role in the qualitative properties. In what follows, these schemes are numerically checked on some other nonlinear
functions in order to test the applicability of these qualitative results.

4 NUMERICAL EXPERIMENTS

In this section, we compare nine methods of various orders, some of which are derivative free (DF, for short) and other
are optimal eighth-order schemes without memory. The methods and their order of convergence are as follows:

1. TM, Traub's DF method (1) of order 1.839 [1] (Method 7a on page 234)
2. JNM, Jarratt–Nudds' DF method (2) of order 1.839 [26]
3. PM, Popovski's DF method (3) of order 1.839 [27]
4. NM, Newton's second order method
5. SM, Steffensen's DF second order method [29]
6. M1, Neta's DF method of order 7.356 [4]
7. M2, Neta's DF method of order 6.219 [3]
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12 CORDERO ET AL.

TABLE 1 Average number of function
evaluations per point for each example and
each of the methods.

Method Ex1 Ex2 Ex3 Average
TM 16.11 14.31 14.94 15.12
JNM 11.62 9.48 9.76 10.29
PM 14.92 12.81 13.18 13.64
NM 23.25 18.63 19.71 20.53
SM 63.90 39.36 49.17 50.81
M1 13.67 11.84 12.20 12.57
M2 16.72 14.38 14.98 15.36
ZOM 84.23 53.03 72.46 69.91
SAM 14.57 13.41 13.66 13.88

TABLE 2 CPU time (ms) for each example and each
of the methods.

Method Ex1 Ex2 Ex3 Average
TM 1050.964 842.572 774.008 889.181
JNM 568.898 574.472 551.134 564.835
PM 717.363 656.711 665.299 679.791
NM 926.910 530.669 522.581 660.054
SM 1498.093 920.992 975.164 1131.416
M1 582.13 532.055 582.332 565.506
M2 726.71 354.122 685.238 655.357
ZOM 1404.49 1110.924 1148.6 1221.338
SAM 805.488 512.445 492.982 603.638

TABLE 3 Number of black points for each
example and each of the methods and average across
examples.

Method Ex1 Ex2 Ex3 Average
TM 278 11515 9022 6938
JNM 0 174 152 109
PM 2446 10625 11515 8195
NM 20 1742 1806 1189
SM 273404 140192 192616 202071
M1 0 1730 1679 1136
M2 0 1600 1900 1167
ZOM 166138 94779 142562 134439
SAM 0 1894 1827 1240

8. ZOM, Zhanlav-Otgondroj's DF method of optimal order 8 [30]
9. SAM, Sharma-Arora's method of optimal order 8 [31]

We ran these methods on three examples on a 6 × 6 square with center at (0, 0). The functions are as follows:

1. Wilkinson-type polynomial
𝑓1(x) = x(x2 − 1∕4)(x2 − 1)(x2 − 9∕4)(x2 − 4). (6)

2. A function vanishing at ±3,±2,±1, 0, 3∕2 on [−3, 3]

𝑓2(x) = sin(𝜋x)
(

ex−1.5 − 1
)
. (7)

3. A function vanishing at ±2.5,±1.5,−1,±1∕2 on [−3,3]

𝑓3(x) = cos(𝜋x)
(

ex+1 − 1
)
. (8)
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CORDERO ET AL. 13

FIGURE 8 Dynamical planes of analyzed methods for the roots of the function 𝑓2(x). [Colour figure can be viewed at
wileyonlinelibrary.com]

The square is divided in a mesh of initial points of the complex plane in order to apply on them the iterative procedures.
For those methods requiring additional starting values, we have taken x−1 = x0+0.01 and x−2 = x0+0.02. Also the number
of function evaluations to converge within a tolerance of 10−7 is collected and the root the sequence has converged to.
If the iterates have not converged in 40 iterations, we denote it as a divergent point. Each point is colored by the color
corresponding to the root. Note that we have used six different colors; therefore, some roots will have the same color
but they are far apart. Moreover, the color is brighter for lower number of iterations needed to converge to the root. A
divergent point is colored black. We also have annotated the CPU time needed to run the code on all initial guesses of the
mesh using MacBook Pro computer.

In Figure 7, we have depicted the basins of attraction for the nine methods of the first function. It is clear that SM and
ZOM (having SM as first step) have too many divergent points. Also, the basins of M1, M2, and SAM are brighter than
the rest, showing the fastest convergence. Also, in these cases, the basins of attraction of the roots are similar in terms of
width to those of Newton's method.

We have also collected in Tables 1–3 the average number of function-evaluation per point for each scheme, the
CPU run time in seconds and the number of divergent points. The methods SM and ZOM use the highest number of
function-evaluations per point. Clearly, the CPU runtime for these schemes is the highest since they have the most
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14 CORDERO ET AL.

FIGURE 9 Dynamical planes of analyzed methods for the roots of the function 𝑓3(x). [Colour figure can be viewed at
wileyonlinelibrary.com]

divergent points. The methods M1, M2, JNM, and SAM have no divergent point. TM and NM have very few divergent
points.

The basins of attraction for the methods in the second example are given in Figure 8. Again SM and ZOM are inferior.
The methods M2, SAM, and M1 are the fastest. Similar results can be observed in Figure 9.

We averaged the numerical results over the three examples, and we can conclude that JNM is the top scheme in all
three categories followed by M1. In previous comparison of TM, JNM, and PM using four polynomials of degrees 2–5 and
one nonpolynomial function [3], we found that TM was best.

5 CONCLUSIONS

In this manuscript, we have delved deeper in the reasons of the better stability of derivative-free iterative methods with
memory based on DF Traub's scheme relative to other methods of the same kind but based on other schemes as first
step. The absence of critical points different from the roots in case of Traub's method yields to global convergence on
quadratic polynomials, exactly the same performance as Newton's scheme. Other procedures also under analysis show

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9367 by U

niversitat Politecnica D
e V

alencia, W
iley O

nline L
ibrary on [05/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


CORDERO ET AL. 15

stable behavior, but the complexity of the basins of attraction is much higher. Once Traub's method is selected as the most
stable, some schemes constructed with this method as first step are also analyzed with the same dynamical technique,
finding only convergence to the roots but global convergence in case of M1. This scheme was designed by using high-order
estimations of the derivatives in the iterative expression, versus a simpler construction of the denominators in the design
of M2. Therefore, the dynamical analysis has shown that the computational complexity is not a key fact in the stability,
even if it is a sufficient element to assure a good performance, when it comes from fine estimations of the derivatives.
Numerically, these schemes show to hold this good performance, compared with other schemes with memory, of different
orders of convergence. In fact, it shows to be better than optimal iterative procedures without memory, of higher order
of convergence. Even in these cases, the performance of M1 shows lower computational time and better efficiency. For
further work, we will intend to do a similar study for methods with memory using derivatives.
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