
Appl. Numer. Math. 198 (2024) 11–21

Contents lists available at ScienceDirect

Applied Numerical Mathematics

journal homepage: www.elsevier.com/locate/apnum

Research Paper

Modifying Kurchatov’s method to find multiple roots of 
nonlinear equations

Alicia Cordero, Neus Garrido, Juan R. Torregrosa ∗, Paula Triguero-Navarro
Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Iterative methods
Multiple roots
Kurchatov scheme
Dynamical analysis

We present a modification of Kurchatov’s iterative method in order to solve a nonlinear equation 
with multiple roots, that is, for approximating solutions with multiplicity greater than one. One 
of its principal advantages is that you do not have to know a priori the multiplicity of the root, 
since it does not appear in the iterative expression. In order to examine the behaviour of the 
proposed method, we perform a dynamical analysis. Furthermore, we carry out some numerical 
experiments in order to confirm the theoretical results and compare the proposed method with 
other known methods for dealing with multiple roots.

1. Introduction

Many engineering and applied mathematics problems require the solution of nonlinear equations, 𝑓 (𝑥) = 0.
They cannot always be solved exactly, so an approximation of the solution is sometimes obtained.
These approximations are usually obtained using an iterative method. A well-known method is Newton’s method, which is 

expressed as follows:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

, for 𝑘 = 0,1,…

It is required that the derivative of the function evaluated at the solution is non-zero to ensure that this method converges to a 
root of 𝑓 (𝑥) = 0.

For this reason, there appear iterative methods that allow us to obtain solutions with a multiplicity greater than 1. In manuscripts 
[1–7] a variety of memoryless, iterative schemes with and without derivatives are created to approximate the multiple roots of a 
nonlinear equation 𝑓 (𝑥) = 0.

Most of them make the assumption that the multiplicity is known and it appears in the iterative expression of the method.
It is known that Schröder scheme [8]

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)𝑓 ′(𝑥𝑘)

𝑓 ′(𝑥𝑘)2 − 𝑓 (𝑥𝑘)𝑓 ′′(𝑥𝑘)
, for 𝑘 = 0,1,…
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has second-order of convergence for multiple roots of the 𝑓 (𝑥) = 0. This method was designed from Newton’s scheme applied to 
𝑔(𝑥) = 𝑓 (𝑥)

𝑓 ′(𝑥)
. Its main feature is that you do not need to know a priori the multiplicity of the root, which does not appear in the 

iterative expression.
In a similar way, in paper [9], the authors construct an iterative method with memory for approximating the multiple roots, that 

avoids the need to know a priori the multiplicity. In this manuscript, we apply several techniques to Kurchatov’s scheme to obtain 
an iterative method without derivatives and with memory for finding multiple roots. We see that the modification of this method 
maintains the order and has good dynamical behaviour. Other recent texts analyze the stability of schemes with memory, such as 
[10,11].

Kurchatov’s method is an iterative scheme of second-order convergence obtained from Newton’s method by replacing the deriva-
tive by the divide difference of Kurchatov 𝑓 [2𝑥𝑘 − 𝑥𝑘−1, 𝑥𝑘−1]

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

𝑓 [2𝑥𝑘 − 𝑥𝑘−1, 𝑥𝑘−1]
= 𝑥𝑘 −

2(𝑥𝑘 − 𝑥𝑘−1)𝑓 (𝑥𝑘)
𝑓 (2𝑥𝑘 − 𝑥𝑘−1) − 𝑓 (𝑥𝑘−1)

, 𝑘 = 1,2,…

The design and convergence analysis of the suggested iterative method with memory to identify multiple roots without being 
aware of their multiplicity are discussed in Section 2 of this paper. In Section 3, a dynamical analysis of the rational function 
obtained by using the suggested method with low-degree polynomials is described. In Section 4, an analogous method to the one 
proposed in Section 2 is presented but without the use of derivatives. Finally, in Section 5, we carry out a number of numerical 
experiments using the Kurchatov method for multiple roots and compare the results obtained by this method with those of other 
well-known methods for multiple roots.

2. Analysis of convergence

In an open set 𝐷⊂ℝ containing a solution 𝛼 of 𝑓 (𝑥) = 0, let 𝑓 , defined from 𝐷 to ℝ, be a sufficiently differentiable function. To 
prove the order of convergence, we use the expression of the divided difference operator

𝑓 [𝑦, 𝑧](𝑦− 𝑧) = 𝑓 (𝑦) − 𝑓 (𝑧). (1)

We can find in [12] the Ortega-Rheinboldt theorem, which is used to demonstrate the order of convergence of an iterative scheme 
with memory:

Theorem 1. If 𝜙 is an iterative method with memory that generates a sequence {𝑥𝑘} of approximations to the root 𝛼 that converges to 𝛼. If 
there exist some positive numbers 𝑡𝑖, for 𝑖 ∈ {0, … , 𝑚} and a nonzero constant 𝜂, such that the inequality

|𝑒𝑘+1| ≤ 𝜂

𝑚∏
𝑖=0

|𝑒𝑘−𝑖|𝑡𝑖 ,
is satisfied, in this case, 𝜙 has, at least, order of convergence 𝑝, where 𝑝 is the positive root of

𝑝𝑚+1 −
𝑚∑
𝑖=0

𝑡𝑖𝑝
𝑚−𝑖 = 0.

To estimate the roots of 𝑓 (𝑥) = 0, we define the following method, denoted by KM,

𝑥𝑘+1 = 𝑥𝑘 −
𝑔(𝑥𝑘)

𝑔[2𝑥𝑘 − 𝑥𝑘−1, 𝑥𝑘−1]
, 𝑘 = 0,1,2,…

where 𝑔(𝑥) = 𝑓 (𝑥)
𝑓 ′(𝑥)

.

Theorem 2. Assume 𝑓 ∶ 𝐷 ⟶ ℝ is a function sufficiently differentiable in an neighbourhood of 𝛼, denoted by 𝐷 ⊂ ℝ, such that 𝛼 is a 
multiple root of 𝑓 (𝑥) = 0 with unknown multiplicity 𝑚 ∈ ℕ − {1}. Based on an initial estimation 𝑥0 close to 𝛼, method 𝐾𝑀 generates a 
sequence of iterations {𝑥𝑘} that converges to 𝛼 with order 2, and the error equation is:

𝑒𝑘+1 =

(
−1
𝑚

𝐶1𝑒
2
𝑘
+

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2

(
−5𝑒3

𝑘
+ 2𝑒2

𝑘
𝑒𝑘−1 − 𝑒𝑘𝑒

2
𝑘−1

))
+𝑂4(𝑒𝑘, 𝑒𝑘−1),

being 𝐶𝑗 =
𝑚!

(𝑚+ 𝑗)!
𝑓 (𝑚+𝑗)(𝛼)
𝑓 (𝑚)(𝛼)

for 𝑗 ∈ {2, 3, …} and where 𝑂4 denotes all terms for which the sum of the exponents of 𝑒𝑘 and 𝑒𝑘−1 is at 

least 4.

Proof. Applying, around 𝛼, the Taylor expansion of 𝑓 (𝑥𝑘) where 𝑒𝑘 = 𝑥𝑘 − 𝛼:

𝑓 (𝑚)(𝛼) ( )

12

𝑓 (𝑥𝑘) =
𝑚!

𝑒𝑚
𝑘
+𝐶1𝑒

𝑚+1
𝑘

+𝐶2𝑒
𝑚+2
𝑘

+𝐶3𝑒
𝑚+3
𝑘

+𝑂(𝑒𝑚+4
𝑘

).
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Calculating the derivative of the above expression we obtain

𝑓 ′(𝑥𝑘) =
𝑓 (𝑚)(𝛼)
𝑚!

(
𝑚𝑒𝑚−1

𝑘
+ (𝑚+ 1)𝐶1𝑒

𝑚
𝑘
+ (𝑚+ 2)𝐶2𝑒

𝑚+1
𝑘

+ (𝑚+ 3)𝐶3𝑒
𝑚+2
𝑘

)
+𝑂(𝑒𝑚+3

𝑘
).

Then, from the above expressions, we calculate 𝑔(𝑥𝑘)

𝑔(𝑥𝑘) =
𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

= 1
𝑚

(
𝑒𝑘 −

1
𝑚
𝐶1𝑒

2
𝑘
+

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2 𝑒3
𝑘

)
+𝑂(𝑒4

𝑘
).

In an equivalent way we obtain the following expressions for 𝑔(𝑥𝑘−1) and 𝑔(2𝑥𝑘 − 𝑥𝑘−1)

𝑔(𝑥𝑘1 ) =
𝑓 (𝑥𝑘−1)
𝑓 ′(𝑥𝑘−1)

= 1
𝑚

(
𝑒𝑘−1 −

1
𝑚
𝐶1𝑒

2
𝑘−1 +

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2 𝑒3
𝑘−1

)
+𝑂(𝑒4

𝑘−1),

𝑔(2𝑥𝑘 − 𝑥𝑘−1) =
𝑓 (2𝑥𝑘 − 𝑥𝑘−1)
𝑓 ′(2𝑥𝑘 − 𝑥𝑘−1)

= 1
𝑚

(
2𝑒𝑘 − 𝑒𝑘−1 −

1
𝑚
𝐶1(2𝑒𝑘 − 𝑒𝑘−1)2 +

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2 (2𝑒𝑘 − 𝑒𝑘−1)3
)

+𝑂4(𝑒𝑘, 𝑒𝑘−1),

with 𝑒𝑘−1 = 𝑥𝑘−1 − 𝛼.
From the above relations, we obtain

𝑔[2𝑥𝑘 − 𝑥𝑘−1, 𝑥𝑘−1] =
𝑔
(
2𝑥𝑘 − 𝑥𝑘−1

)
− 𝑔

(
𝑥𝑘−1

)
2(𝑥𝑘 − 𝑥𝑘−1)

=

(
2𝑒𝑘 − 2𝑒𝑘−1 −

1
𝑚
𝐶1

((
2𝑒𝑘 − 𝑒𝑘−1

)2 − 𝑒2
𝑘−1

)
+

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2

((
2𝑒𝑘 − 𝑒𝑘−1

)3 − 𝑒3
𝑘−1

))
+𝑂(𝑒4

𝑘
)

2𝑚
(
𝑒𝑘 − 𝑒𝑘−1

)
= 1

𝑚

(
1 − 2

𝑚
𝐶1𝑒𝑘 +

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2

(
4𝑒2

𝑘
− 2𝑒𝑘𝑒𝑘−1 + 𝑒2

𝑘−1
))

+𝑂3(𝑒𝑘, 𝑒𝑘−1).

Thus, applying the above relationship, the error equation is:

𝑥𝑘+1 − 𝛼 = 𝑥𝑘 − 𝛼 −
𝑔(𝑥𝑘)

𝑔[2𝑥𝑘 − 𝑥𝑘−1, 𝑥𝑘−1]

= 𝑒𝑘 −

(
𝑒𝑘 −

1
𝑚
𝐶1𝑒

2
𝑘
+

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2 𝑒3
𝑘

)
+𝑂(𝑒4

𝑘
)(

1 − 2
𝑚
𝐶1𝑒𝑘 +

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2

(
4𝑒2

𝑘
− 2𝑒𝑘𝑒𝑘−1 + 𝑒2

𝑘−1
))

+𝑂3(𝑒𝑘, 𝑒𝑘−1)

= −1
𝑚

𝐶1𝑒
2
𝑘
+

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2

(
−𝑒3

𝑘
− 𝑒𝑘

(
4𝑒2

𝑘
− 2𝑒𝑘𝑒𝑘−1 + 𝑒2

𝑘−1
))

+𝑂4(𝑒𝑘, 𝑒𝑘−1)

= −1
𝑚

𝐶1𝑒
2
𝑘
+

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2

(
−5𝑒3

𝑘
+ 2𝑒2

𝑘
𝑒𝑘−1 − 𝑒𝑘𝑒

2
𝑘−1

)
+𝑂4(𝑒𝑘, 𝑒𝑘−1).

Different possibilities exist for the behaviour of 𝑒𝑘+1 in relation to 𝑒𝑘 and 𝑒𝑘−1.
Based on the previous expression, we are only going to the behaviour like 𝑒2

𝑘
or 𝑒𝑘𝑒2𝑘−1, since 𝑒3

𝑘
and 𝑒2

𝑘
𝑒𝑘−1 converge faster to 0

than 𝑒2
𝑘
.

Then,

𝑒𝑘+1 ∼
−1
𝑚

𝐶1𝑒
2
𝑘
−

(𝑚+ 1)𝐶2
1 − 2𝑚𝐶2

𝑚2 𝑒𝑘𝑒
2
𝑘−1.

• If 𝑒𝑘+1 ∼ 𝑒2
𝑘
, then the order of convergence is 2.

• We assume that 𝑒𝑘+1 ∼ 𝑒𝑘𝑒
2
𝑘−1. Then, we assume that the method has 𝑅-order 𝑝, that means,

𝑒𝑘+1 ∼ 𝑒
𝑝

𝑘
.

In the same way 𝑒𝑘 ∼ 𝑒
𝑝

𝑘−1. From the above relations, we get that

2

13

𝑒𝑘+1 ∼ 𝑒
𝑝

𝑘−1.
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Then, the error equation is

𝑒𝑘+1 ∼ 𝑒𝑘𝑒
2
𝑘−1 ∼ 𝑒

𝑝+2
𝑘−1.

By equating the exponents of 𝑒𝑘−1 of the above relations, we obtain the following polynomial 𝑝2 = 𝑝 + 2, whose positive root is 
𝑝 = 2, then, by Theorem 1, the order is 2. □

3. Dynamical analysis

Since we later perform a dynamical analysis of the proposed method for some family of functions, we review some theoretical 
concepts involved in the dynamical analysis of an iterative method with memory in this section. We assume that the method only 
needs two previous iterations to obtain the next one.

If 𝑥0 and 𝑥1 are the initial estimations, then the standard form of an iterative method with memory has the form:

𝑥𝑘+1 = 𝜙(𝑥𝑘−1, 𝑥𝑘), with 𝑘 ≥ 1.

Since, the function is defined from ℝ2 to ℝ, it is clear that this function cannot have fixed points.
To solve this problem, we define an auxiliary vectorial function 𝑂: 𝑂(𝑥𝑘−1, 𝑥𝑘) = (𝑥𝑘, 𝜙(𝑥𝑘−1, 𝑥𝑘)) = (𝑥𝑘, 𝑥𝑘+1), for 𝑘 = 1, 2, …
If 𝜙 is the operator of the iterative, then the discrete dynamical system 𝑂 ∶ℝ2 →ℝ2 is

𝑂(𝑥̄) =𝑂(𝑧,𝑥) = (𝑥,𝜙(𝑧,𝑥)).

A fixed point (𝑧, 𝑥) of 𝑂 is a points that satisfies 𝑧 = 𝑥 and 𝑥 = 𝜙(𝑧, 𝑥). A strange fixed is a fixed point (𝑧, 𝑥) of operator 𝑂 that 
does not verify that 𝑓 (𝑥) = 0.

To study the stability of a fixed point we use the following result that can be found in [13].

Theorem 3. Let 𝑂 from ℝ2 to ℝ2 be a function sufficiently differentiable. Assuming we have a fixed point that is 𝑥̄. Let denote the eigenvalues 
of the Jacobian matrix of 𝑂 at 𝑥̄ by 𝜆1 and 𝜆2. Therefore,

• The fixed point is an attractor, if all the eigenvalues satisfy |𝜆𝑗 | < 1.

• The fixed points are unestable (repulsor or saddle), if one eigenvalue 𝜆𝑖 satisfy |𝜆𝑖| > 1.

• The fixed point is an repulsor, if all the eigenvalues satisfy |𝜆𝑗 | > 1.

Also, we called a fixed point superattractor if all the eigenvalues are zero.

Another relevant concept is the critical points. Those critical points are the ones whose eigenvalues of the Jacobian matrix are 0.

The set of pre-images of a fixed point is the basin of attraction, that can be defined as

(𝑥∗) = {𝑦 ∈ℝ𝑛 ∶𝑂𝑟(𝑦)→ 𝑥∗, 𝑟→∞}.

Now, we analyse our proposed iterative method. We are going to perform this study for the following family of functions 𝑝𝑚(𝑥) =
(𝑥 + 1)(𝑥 − 1)𝑚, when 𝑚 is a positive integer greater than 1. Now, we calculate the auxiliar vectorial operator where 𝑧 = 𝑥𝑘−1 and 
𝑥 = 𝑥𝑘

𝑂𝑝(𝑧,𝑥) =

(
𝑥,𝑥−

(
𝑥2 − 1

)
(𝑚𝑧+𝑚+ 𝑧− 1)(2𝑚𝑥−𝑚𝑧+𝑚+ 2𝑥− 𝑧− 1)

(𝑚𝑥+𝑚+ 𝑥− 1)(𝑚(𝑧+ 1)(2𝑥− 𝑧+ 1) + (𝑧− 1)(2𝑥− 𝑧− 1))

)
.

Theorem 4. For the operator 𝑂𝑝(𝑧, 𝑥), we obtain that the fixed points are the roots of the polynomial 𝑝𝑚(𝑥), that is, (1, 1) and (−1, −1), and 
a strange fixed point 

(1 −𝑚

1 +𝑚
,
1 −𝑚

1 +𝑚

)
. Also, the fixed points (1, 1) and (−1, −1) have superattractor character and the strange fixed point is 

an unestable point.

Proof. The fixed points (𝑧, 𝑥) are those that satisfies 𝑧 = 𝑥 and 𝑂𝑝(𝑧, 𝑥) = (𝑥, 𝑥). First, we compute 𝑂𝑝(𝑥, 𝑥)

𝑂𝑝(𝑥,𝑥) =
(
𝑥,

𝑚(𝑥+ 1)2 − (𝑥− 1)2

𝑚(𝑥+ 1)2 + (𝑥− 1)2

)
.

By equating 𝑂𝑝(𝑥, 𝑥) = (𝑥, 𝑥), we obtain that the fixed points satisfy:

𝑚(𝑥+ 1)2 − (𝑥− 1)2

𝑚(𝑥+ 1)2 + (𝑥− 1)2
= 𝑥,
14

𝑚(𝑥+ 1)2 − (𝑥− 1)2 = 𝑥𝑚(𝑥+ 1)2 + 𝑥(𝑥− 1)2,
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𝑚(1 − 𝑥)(𝑥+ 1)2 = (𝑥+ 1)(𝑥− 1)2.

If 𝑥 = 1 or 𝑥 = −1, then it is obvious that the above equation is satisfied.
Suppose that 𝑥 ≠ 1 and 𝑥 ≠ −1. Then, the above equation can be rewritten as:

−𝑚(𝑥− 1)(𝑥+ 1)2 = (𝑥+ 1)(𝑥− 1)2,

−𝑚(𝑥+ 1) = 𝑥− 1,

(−𝑚− 1)𝑥 = −1 +𝑚,

𝑥 = −1 +𝑚

−𝑚− 1
= 1 −𝑚

1 +𝑚
.

So, we obtain two fixed points from the roots of the equation, that is, 𝑧 = 𝑥 = 1 and 𝑧 = 𝑥 = −1, and one strange fixed point when 
𝑧 = 𝑥 = 1 −𝑚

1 +𝑚
.

We are going to see below that the fixed points coming from the roots are superattractors. First, we have to calculate the Jacobian 
matrix 𝑂𝑝′(𝑧, 𝑥).

𝑂𝑝′(𝑧,𝑥) =
(

0 1
𝑑𝑂𝑝𝑧(𝑧,𝑥) 𝑑𝑂𝑝𝑥(𝑧,𝑥)

)
,

where

𝑑𝑂𝑝𝑧(𝑧,𝑥) = −
8𝑚(𝑚+ 1)(𝑥− 𝑧)

(
𝑥2 − 1

)
(𝑚𝑥+𝑚+ 𝑥− 1)(𝑚(𝑧+ 1)(2𝑥− 𝑧+ 1) + (𝑧− 1)(2𝑥− 𝑧− 1))2

,

𝑑𝑂𝑝𝑥(𝑧,𝑥) = −
4𝑚3(𝑧+ 1)

(
𝑥2(5𝑧+ 1) + 𝑥

(
−4𝑧2 + 2𝑧− 2

)
+ 𝑧3 − 𝑧2 − 2

)
+ 8𝑚2 (𝑥2 (5𝑧2 − 3

)
− 4𝑥𝑧3 + 𝑧4 − 𝑧2 + 2

)
(𝑚𝑥+𝑚+ 𝑥− 1)2(𝑚(𝑧+ 1)(2𝑥− 𝑧+ 1) + (𝑧− 1)(2𝑥− 𝑧− 1))2

−
4𝑚(𝑧− 1)

(
𝑥2(5𝑧− 1) − 2𝑥

(
2𝑧2 + 𝑧+ 1

)
+ 𝑧3 + 𝑧2 + 2

)
(𝑚𝑥+𝑚+ 𝑥− 1)2(𝑚(𝑧+ 1)(2𝑥− 𝑧+ 1) + (𝑧− 1)(2𝑥− 𝑧− 1))2

.

The eigenvalues of 𝑂𝑝′(𝑥, 𝑥) are 0 and −
8𝑚

(
𝑥2 − 1

)
(
𝑚(𝑥+ 1)2 + (𝑥− 1)2

)2 .

Then, both eigenvalues are 0 when 𝑥2 − 1 = 0, that is, 𝑥 = 1 or 𝑥 = −1, so we find that the fixed points coming from the roots are 
superattractor fixed points.

In the case 𝑥 = 1 −𝑚

1 +𝑚
, we obtain that the second eigenvalue is 2, so is a point with an unstable character (repulsor or saddle). □

Theorem 5. The operator 𝑂𝑝(𝑧, 𝑥) has only two critical points that are the superattractor fixed points, that is, the operator does not have 
free critical points.

Proof. First, we calculate the determinant of 𝑂𝑝′(𝑧, 𝑥), because when the determinant is 0, it means that at least one of the eigen-
values is 0.

det(𝑂𝑝′(𝑧,𝑥)) =
8𝑚(𝑚+ 1)

(
𝑥2 − 1

)
(𝑥− 𝑧)

(𝑚𝑥+𝑚+ 𝑥− 1)(𝑚(𝑧+ 1)(2𝑥− 𝑧+ 1) + (𝑧− 1)(2𝑥− 𝑧− 1))2
.

By equating that expression to 0, we obtain 3 types of possible critical points:

• The points (𝑧, 𝑥) where 𝑥 = −1. The eigenvalues of 𝑂𝑝′(𝑧, −1) are 0 and − 𝑚(1 +𝑚)(1 + 𝑧)2

−3 + 2𝑧+ 𝑧2 +𝑚(1 + 𝑧)2
.

Then, the second eigenvalue is 0 if 𝑧 = −1. Then, there is only one critical point with this structure which is the fixed point 
(−1, −1).

• The points (𝑧, 𝑥) where 𝑥 = 1. The eigenvalues of 𝑂𝑝′(𝑧, 1) are 0 and − (1 +𝑚)(−1 + 𝑧)2

𝑚((𝑧− 1)2 +𝑚(𝑧2 − 2𝑧− 3))
.

Then, the second eigenvalue is 0 if 𝑧 = 1. Then, there is only one critical point with this structure which is the fixed point (1, 1).

• The points (𝑧, 𝑥) where 𝑧 = 𝑥. The eigenvalues of 𝑂𝑝′(𝑧, 𝑧) are 0 and − 8𝑚(−1 + 𝑧2)
((−1 + 𝑧)2 +𝑚(1 + 𝑧)2)2

.

The second eigenvalue is 0 if 𝑧 = ±1. So, the critical points that verify this structure are the non strange fixed points, that is, 
(1, 1) and (−1, −1).

Then, the operator does not have free critical points. □

To illustrate the way the method and the basins of attractions for the function 𝑝𝑚 behave when 𝑚 changed, some dynamical 
15

planes are shown below.
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Fig. 1. Real dynamical planes. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

These planes have been generated by making a mesh of 400 × 400 points, where every point represents the first iterations of the 
iterative method. Iteration 𝑥1 is on the abscissa axis and iteration 𝑥0 is on the ordinate axis.

We say that the initial points converge to one of the roots of the function if the distance between iterations to one of the roots is 
less than 10−3. Additionally, it must happen before 100 iterations.

We represent the initial point in different colours according to its convergence. Orange is used to represent points that converge 
to 1 and green is used to represent points that converge to −1.

We represent in black those points that do not converge, but in this case, that does not happen.
As we can see in Figs. 1a, 1b, 1c, 1d, if we increase the value of 𝑚, the zone of convergence to the root 1 increases, which is the 

root of multiplicity 𝑚.
A family of polynomials with one simple root and one multiple root is shown in this study. We can see in the dynamical planes 

that all the initial points from the mesh converge to one of the roots.

Our next step is to perform a dynamical analysis to find out what happens when we have two multiple roots with different 
multiplicities.

The polynomials are 𝑓𝑚,𝑛(𝑥) = (𝑥 + 1)𝑛(𝑥 − 1)𝑚 where 𝑚 > 1 and 𝑛 > 1.
Now, we calculate the auxiliar vectorial operator

𝑂𝑓 (𝑧,𝑥) =

(
𝑥,

𝑚2(𝑥+ 1)(𝑧+ 1)(2𝑥− 𝑧+ 1) + 2𝑚𝑛
(
2𝑥𝑧− 𝑧2 − 1

)
− 𝑛2(𝑥− 1)(𝑧− 1)(2𝑥− 𝑧− 1)

(𝑚(𝑥+ 1) + 𝑛(𝑥− 1))(𝑚(𝑧+ 1)(2𝑥− 𝑧+ 1) + 𝑛(𝑧− 1)(2𝑥− 𝑧− 1))

)
.

Theorem 6. The operator 𝑂𝑓 (𝑧, 𝑥) has that the fixed points are the roots of the polynomial 𝑓𝑚,𝑛(𝑥), that is, (1, 1) and (−1, −1), both fixed 
points have superattractor character, and an unestable strange fixed point that is 

(
𝑛−𝑚

𝑛+𝑚
,
𝑛−𝑚

𝑛+𝑚

)
.

Proof. The fixed points (𝑧, 𝑥) are those that satisfies 𝑧 = 𝑥 and 𝑂𝑝(𝑧, 𝑥) = (𝑥, 𝑥). First, we compute 𝑂𝑓 (𝑥, 𝑥)

𝑂𝑓 (𝑥,𝑥) =
(
𝑥,

𝑚(𝑥+ 1)2 − 𝑛(𝑥− 1)2

𝑚(𝑥+ 1)2 + 𝑛(𝑥− 1)2

)
.

By equating 𝑂𝑓 (𝑥, 𝑥) = (𝑥, 𝑥), we obtain that the fixed points are those that are satisfied:

𝑚(𝑥+ 1)2 − 𝑛(𝑥− 1)2

𝑚(𝑥+ 1)2 + 𝑛(𝑥− 1)2
= 𝑥,

𝑚(𝑥+ 1)2 − 𝑛(𝑥− 1)2 = 𝑥𝑚(𝑥+ 1)2 + 𝑥𝑛(𝑥− 1)2,
16

𝑚(1 − 𝑥)(𝑥+ 1)2 = 𝑛(𝑥+ 1)(𝑥− 1)2.
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If 𝑥 = 1 or 𝑥 = −1, then it is obvious that the above equation is satisfied. Suppose that 𝑥 ≠ 1 and 𝑥 ≠ −1. Then, the above equation 
can be rewritten as:

−𝑚(𝑥− 1)(𝑥+ 1)2 = 𝑛(𝑥− 1)2,

−𝑚(𝑥+ 1) = 𝑛(𝑥− 1),

(−𝑚− 𝑛)𝑥 = −𝑛+𝑚,

𝑥 = −𝑛+𝑚

−𝑚− 𝑛
= 𝑛−𝑚

𝑛+𝑚
.

So, we obtain two fixed points from the roots of the equation, that is, 𝑧 = 𝑥 = 1 and 𝑧 = 𝑥 = −1, and one strange fixed point when 
𝑧 = 𝑥 = 𝑛−𝑚

𝑛+𝑚
.

We see below that the fixed points coming from the roots are superattractors. First, we calculate the eigenvalues of the Jacobian 

matrix 𝑂𝑓 ′(𝑥, 𝑥), that are 0 and −
8𝑚𝑛

(
𝑧2 − 1

)
(
𝑚(𝑧+ 1)2 + 𝑛(𝑧− 1)2

)2 .

Then, both eigenvalues are 0 when 𝑥2 − 1 = 0, that is, 𝑥 = 1 or 𝑥 = −1, so we find that the fixed points coming from the roots are 
superattractor fixed points.

In the case that 𝑥 = 𝑛−𝑚

𝑛+𝑚
, we obtain that the second eigenvalue is 2, so is a point with an unstable character (repulsor or 

saddle). □

Theorem 7. The operator 𝑂𝑓 (𝑧, 𝑥) has only two critical points that are the superattractor fixed points.

Proof. First, we analyze the determinant of 𝑂𝑓 ′(𝑧, 𝑥), because when the determinant is 0, it means that at least one of the eigenvalues 
is 0,

det
(
𝑂𝑓 ′(𝑧,𝑥)

) 8𝑚𝑛
(
𝑥2 − 1

)
(𝑚+ 𝑛)(𝑥− 𝑧)

(𝑚(𝑥+ 1) + 𝑛(𝑥− 1))(𝑚(𝑧+ 1)(2𝑥− 𝑧+ 1) + 𝑛(𝑧− 1)(2𝑥− 𝑧− 1))2
.

By equating that expression to 0, we obtain 3 types of possible critical points:

• The points (𝑧, 𝑥) where 𝑥 = −1. The eigenvalues of 𝑂𝑓 ′(𝑧, −1) are 0 and − 𝑚(𝑧+ 1)2(𝑚+ 𝑛)
𝑛
(
𝑚(𝑧+ 1)2 + 𝑛

(
𝑧2 + 2𝑧− 3

)) .

Then, the second eigenvalue is 0 if 𝑧 = −1. Then, there is only one critical point with this structure which is the fixed point 
(−1, −1).

• The points (𝑧, 𝑥) where 𝑥 = 1. The eigenvalues of 𝑂𝑓 ′(𝑧, 1) are 0 and − 𝑛(𝑧− 1)2(𝑚+ 𝑛)
𝑚
(
𝑚
(
𝑧2 − 2𝑧− 3

)
+ 𝑛(𝑧− 1)2

) .

Then, the second eigenvalue is 0 if 𝑧 = 1. Then, there is only one critical point with this structure which is the fixed point (1, 1).

• The points (𝑧, 𝑥) where 𝑧 = 𝑥. The eigenvalues of 𝑂𝑓 ′(𝑧, 𝑧) are 0 and −
8𝑚𝑛

(
𝑧2 − 1

)
(
𝑚(𝑧+ 1)2 + 𝑛(𝑧− 1)2

)2 .

The second eigenvalue is 0 if 𝑧 = ±1. So, the critical points that verify this structure are the non strange fixed points, that is, 
(1, 1) and (−1, −1).

Then, there are not free critical points for this rational operator. □

Below we show some real dynamical planes to see the behaviour of the method and the basins of attraction for the function 𝑓𝑚,𝑛
varying the value of 𝑚 and the value of 𝑛.

As with the previous dynamical planes, these planes were generated by making a mesh of 400 × 400 points, where each point 
represents the initial iterations of the method, in the abscissa axis we have the iteration 𝑥1 and in the ordinate axis the iteration 𝑥0.

The convergence criteria are the same as in the previous dynamical planes. Let remember, that in orange are represented the 
points that tends to 1 and in green are represented the points that tends to −1.

As we can see in Figs. 2 and 3, if we the value of 𝑛 is greater than the value of 𝑚, the zone of convergence to the root −1 is greater 
than the zone of convergence to the root 1. If both values are equal, then the convergence zones do not change if we increase the 
multiplicity value.

In the dynamical planes, all the initial points coming from the mesh converge to one of the roots. With this study we show that 
17

the method is stable for that family of polynomials that have two multiple roots.
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Fig. 2. Real dynamical planes.

Fig. 3. Real dynamical planes.

4. Without derivatives

To estimate the roots of 𝑓 (𝑥) = 0 with the 𝐾𝑀 method we calculate the derivative of 𝑓 (𝑥). In the following iterative method, 
which we denote by 𝐾𝑀𝐷, we modify the 𝐾𝑀 method, so that we do not use derivatives in the iterative expression:

𝑔(𝑥𝑘)
18

𝑥𝑘+1 = 𝑥𝑘 −
𝑔[2𝑥𝑘 − 𝑥𝑘−1, 𝑥𝑘−1]

,
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where 𝑔(𝑥) = 𝑓 (𝑥)
𝑓 [𝑥+ 𝑓 (𝑥), 𝑥]

.

Theorem 8. Assume 𝑓 ∶ 𝐷 ⟶ ℝ is a function sufficiently differentiable in an neighbourhood of 𝛼, denoted by 𝐷 ⊂ ℝ, such that 𝛼 is a 
multiple root of 𝑓 (𝑥) = 0 with unknown multiplicity 𝑚 ∈ ℕ − {1}. Based on an initial estimation 𝑥0 close to 𝛼, method 𝐾𝑀𝐷 generates a 
sequence of iterations {𝑥𝑘} that converges to 𝛼 with order 2.

Proof. We first obtain, around 𝛼, the Taylor expansion of 𝑓 (𝑥𝑘) where 𝑒𝑘 = 𝑥𝑘 − 𝛼:

𝑓 (𝑥𝑘) =
𝑓 (𝑚)(𝛼)
𝑚!

(
𝑒𝑚
𝑘
+𝐶1𝑒

𝑚+1
𝑘

)
+𝑂(𝑒𝑚+2

𝑘
),

being 𝐶𝑗 =
𝑚!

(𝑚+ 𝑗)!
𝑓 (𝑚+𝑗)(𝛼)
𝑓 (𝑚)(𝛼)

for 𝑗 = 2, 3, …

In the same way,

𝑓 (𝑥𝑘 + 𝑓 (𝑥𝑘)) =
𝑓 (𝑚)(𝛼)
𝑚!

((
𝑒𝑘 + 𝑓 (𝑥𝑘)

)𝑚 +𝐶1
(
𝑒𝑘 + 𝑓 (𝑥𝑘)

)𝑚+1)+𝑂(𝑒𝑚+2
𝑘

).

Then,

𝑓 (𝑥𝑘 + 𝑓 (𝑥𝑘)) − 𝑓 (𝑥𝑘) =
𝑓 (𝑚)(𝛼)
𝑚!

((
𝑒𝑘 + 𝑓 (𝑥𝑘)

)𝑚 − 𝑒𝑚
𝑘
+𝐶1

((
𝑒𝑘 + 𝑓 (𝑥𝑘)

)𝑚+1 − 𝑒𝑚+1
𝑘

))
+𝑂(𝑒𝑚+2

𝑘
).

Using Newton’s binomial and the Taylor expansion of 𝑓 (𝑥𝑘) around 𝛼 we obtain

𝑓 (𝑥𝑘 + 𝑓 (𝑥𝑘)) − 𝑓 (𝑥𝑘)
𝑥𝑘 + 𝑓 (𝑥𝑘) − 𝑥𝑘

= 𝑓 (𝑚)(𝛼)
𝑚!

(
𝑚𝑒𝑚−1

𝑘
+ (𝑚+ 1)𝐶1𝑒

𝑚
𝑘

)
+𝑂(𝑒𝑚+1

𝑘
).

We then calculate 𝑔(𝑥𝑘) from the above expressions:

𝑔(𝑥𝑘) =
𝑓 (𝑥𝑘)

𝑓 [𝑥𝑘 + 𝑓 (𝑥𝑘), 𝑥𝑘]
=

𝑒𝑚
𝑘
+𝐶1𝑒

𝑚+1
𝑘

+𝑂(𝑒𝑚+2
𝑘

)

𝑚𝑒𝑚−1
𝑘

+ (𝑚+ 1)𝐶1𝑒
𝑚
𝑘
+𝑂(𝑒𝑚+1

𝑘
)

= 1
𝑚

(
𝑒𝑘 −

1
𝑚
𝐶1𝑒

2
𝑘

)
+𝑂(𝑒3

𝑘
).

In an equivalent way we obtain the following expressions for 𝑔(𝑥𝑘−1) and 𝑔(2𝑥𝑘 − 𝑥𝑘−1)

𝑔(𝑥𝑘−1) =
1
𝑚

(
𝑒𝑘−1 −

1
𝑚
𝐶1𝑒

2
𝑘−1

)
+𝑂(𝑒3

𝑘−1),

𝑔(2𝑥𝑘 − 𝑥𝑘−1) =
1
𝑚

(
2𝑒𝑘 − 𝑒𝑘−1 −

1
𝑚
𝐶1(2𝑒𝑘 − 𝑒𝑘−1)2

)
+𝑂3(𝑒𝑘, 𝑒𝑘−1),

with 𝑒𝑘−1 = 𝑥𝑘−1 − 𝛼.
Then, applying the above relations, we obtain

𝑔[2𝑥𝑘 − 𝑥𝑘−1, 𝑥𝑘−1] =
𝑔(2𝑥𝑘 − 𝑥𝑘−1) − 𝑔(𝑥𝑘−1)

2(𝑥𝑘 − 𝑥𝑘−1)

=

(
2𝑒𝑘 − 2𝑒𝑘−1 −

1
𝑚
𝐶1((2𝑒𝑘 − 𝑒𝑘−1)2 − 𝑒2

𝑘−1)
)
+𝑂3(𝑒𝑘, 𝑒𝑘−1)

2𝑚(𝑒𝑘 − 𝑒𝑘−1)

= 1
𝑚

(
1 − 2

𝑚
𝐶1𝑒𝑘

)
+𝑂2(𝑒𝑘, 𝑒𝑘−1).

Thus, the error equation obtained is

𝑥𝑘+1 − 𝛼 = 𝑥𝑘 − 𝛼 −
𝑔(𝑥𝑘)

𝑔[2𝑥𝑘 − 𝑥𝑘−1, 𝑥𝑘−1]

= 𝑒𝑘 −

(
𝑒𝑘 −

1
𝑚
𝐶1𝑒

2
𝑘

)
+𝑂(𝑒3

𝑘
)(

1 − 2
𝑚
𝐶1𝑒𝑘

)
+𝑂2(𝑒𝑘, 𝑒𝑘−1)

= 𝑒𝑘 −
2
𝑚
𝐶1𝑒

2
𝑘
+ 𝑒𝑘𝑂2(𝑒𝑘, 𝑒𝑘−1) − 𝑒𝑘 +

1
𝑚
𝐶1𝑒

2
𝑘
+𝑂(𝑒3

𝑘
)

= − 1
𝑚
𝐶1𝑒

2
𝑘
+ 𝑒𝑘𝑂2(𝑒𝑘, 𝑒𝑘−1) +𝑂(𝑒3

𝑘
).
19

We have some different possibilities for the behaviour of 𝑒𝑘+1 respect to 𝑒𝑘 and 𝑒𝑘−1.
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Table 1

Results for the first equation, 𝑓1(𝑥) = 0.

𝑥0 𝑥−1 𝑥−2 ‖𝑥𝑘+1 − 𝑥𝑘‖ ‖𝑔(𝑥𝑘+1)‖ Iter ACOC

KM 0.5 0.1 1.5776e-13 0 8 1.9994
KMD 0.5 0.1 6.1173e-14 0 6 1.8434
gTM 0.5 0.1 -0.1 1.7764e-15 0 42 1.5850

By the expression, we only are going to take into account if the behaviour is like 𝑒2
𝑘

or 𝑒𝑘𝑒2𝑘−1, because 𝑒3
𝑘

and 𝑒2
𝑘
𝑒𝑘−1 converge 

faster to 0 than 𝑒2
𝑘
.

Then

• If 𝑒𝑘+1 ∼ 𝑒2
𝑘
, then the order of convergence is 2.

• If we assume that 𝑒𝑘+1 ∼ 𝑒𝑘𝑒
2
𝑘−1. Then, we assume that the method has 𝑅-order 𝑝, that means,

𝑒𝑘+1 ∼𝐷𝑘,𝑝𝑒
𝑝

𝑘
.

At the same time, 𝑒𝑘 ∼ 𝑒
𝑝

𝑘−1, then we obtain that

𝑒𝑘+1 ∼ 𝑒
𝑝2

𝑘−1.

From the last relation and the expression of the error equation, we have

𝑒𝑘+1 ∼ 𝑒𝑘𝑒
2
𝑘−1 ∼ 𝑒

𝑝+2
𝑘−1.

By equating the exponents of 𝑒𝑘−1 of the last two equations, we obtain the following polynomial 𝑝2 = 𝑝 + 2, whose positive root 
is 𝑝 = 2, then the order is 2. □

5. Numerical experiments

Using Matlab R2020b with accuracy in arithmetic of 500 digits, we compute calculations. Our stopping criterion is

|𝑓 (𝑥𝑘+1)| < 10−25.

Also, is used as a stopping criterion a maximum number of iterations that can be done, in this case is 100. We compare the proposed 
methods with the method coming from [9], which we denote by gTM.

The numerical results we are going to compare in the different examples are:

• last approximation given, 𝑥𝑘+1,
• absolute value of 𝑓 (𝑥𝑘+1),
• distance between 𝑥𝑘 and 𝑥𝑘+1,
• iterations performed to verify the stopping criterion,
• the computational time
• and the ACOC (approximate computational convergence order), defined in [14], which has the expression

𝑝 ≈𝐴𝐶𝑂𝐶 =
ln
(|𝑥𝑘+1 − 𝑥𝑘||𝑥𝑘 − 𝑥𝑘−1|

)
ln
( |𝑥𝑘 − 𝑥𝑘−1||𝑥𝑘−1 − 𝑥𝑘−2|

) .

We are going to solve two nonlinear equations:

• The equation 𝑓1(𝑥) = (𝑥3 − 1)4 = 0, which has three roots with multiplicity four.
• In [15], they considered the isothermal CSTR problem, with the following equation for the transfer function of the reactor: 
𝐾𝐶2.98(𝑥 +2.25)∕((𝑥 + 1.45)(𝑥 + 2.85)2(𝑥 + 4.35)) = −1, where KC is the gain of the proportional controller. If we choose KC = 
0, the nonlinear equation to solve is the following one:

𝑓2(𝑥) = 𝑥4 + 11.50𝑥3 + 47.49𝑥2 + 86.0325𝑥+ 51.23266875 = 0.

There is one multiple root with multiplicity 2.

As we can see in Table 1, all the methods obtain good results for the chosen initial points. The approximate computational 
20

convergence order coincides with the theoretical one. What is interesting from the table is that, for the initial points chosen, we see 
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Table 2

Results for the second equation, 𝑓2(𝑥) = 0.

𝑥0 𝑥−1 𝑥−2 ‖𝑥𝑘+1 − 𝑥𝑘‖ ‖𝑔(𝑥𝑘+1)‖ Iter ACOC

KM -3 -3.25 1.9884e-09 1.6566e-30 4 2.2725
KMD -3 -3.25 2.4269e-08 2.0293e-29 4 2.0649
gTM -3 -3.25 -3.5 2.5116e-11 1.0354e-29 5 1.7914

that the 𝐾𝑀𝐷 method performs less iterations to verify the stopping criterion than 𝐾𝑀 , but both perform far less iterations than 
the gTM method.

As we can see in Table 2, all the methods obtain good results for the chosen initial points. The approximate computational 
convergence order coincides with the theoretical one and the number of iterations to verify the stopping criterion is almost the same 
for all methods.

6. Conclusions

In this work, we have modified Kurchatov’s method to make it applicable to obtaining multiple roots while maintaining the 
quadratic order of convergence of Kurchatov’s method.

We have modified the method so that it does not use the multiplicity of the solution in its expression, so that it is not necessary 
to know this value before applying the iterative method.

We have performed the dynamical analysis of the iterative method for two families of functions, one of the polynomials with one 
simple root and one multiple root, and another with two multiple roots, showing that the method is stable in both cases.

We also modify the method we propose to obtain the 𝐾𝑀𝐷 method, which is a method with free memory of derivatives, with 
the same characteristics as the 𝐾𝑀 method, that is, it can be applied to obtain solutions with multiplicity greater than one, and does 
not involve the value of this multiplicity in its iterative expression.
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