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Abstract. Necessary and sufficient conditions are given for mean ergod-
icity, power boundedness, and topologizability for weighted backward
shift and weighted forward shift operators, respectively, on Köthe ech-
elon spaces in terms of the weight sequence and the Köthe matrix. These
conditions are evaluated for the special case of power series spaces which
allow for a characterization of said properties in many cases. In order
to demonstrate the applicability of our conditions, we study the above
properties for several classical operators on certain function spaces.
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1. Introduction

The aim of this note is to investigate mean ergodicity and related properties
of weighted shift operators on Köthe echelon spaces. Recall that a continuous
linear operator T on a locally convex Hausdorff space (briefly, lcHs) E is said
to be mean ergodic if the limits

lim
n→∞

1
n

n∑

m=1

Tmx, x ∈ E,

exist in E. Since the seminal result of von Neumann (1931) who proved that
unitary operators on a Hilbert space are mean ergodic, numerous contributions
have been made to the topic of mean ergodicity and its applications. For the
special case when E is a Banach space, the theory is particularly well-developed
and rich, see e.g. [17, Chapter VIII], [18], and [28], and references therein.
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In recent years, several authors studied mean ergodicity and related prop-
erties of continuous linear operators on lcHs which are not Banach spaces
(but mainly Fréchet spaces) both from an abstract point of view (see e.g. [1–
4,12,30,31]) as well as for concrete types of continuous linear operators (see
e.g. [5–11,13,14], [15,16,19–21,23–27,32,33]).

In the present article we study mean ergodicity, power boundedness and
topologizability for weighted shift operators on Köthe echelon spaces. While
weighted shift operators on sequence spaces are a natural testing field to study
operator theoretic properties, several operators on Fréchet spaces which occur
naturally in analysis are conjugate to a weighted shift operator on a suitable
Köthe echelon space. Since the aforementioned properties are stable under con-
jugacy, our results will be used to investigate these properties for the Volterra
operator and the differentiation operator on spaces of holomorphic functions
as well as for the annihiliation and creation operator on the space of rapidly
decreasing smooth functions.

The paper is organized as follows. In Sect. 2 we recall some notation and
notions and we provide some basic results which will be used throughout. In
Sect. 3, we give necessary and sufficient conditions for topologizability, power
boundedness, and mean ergodicity of weighted shift operators on Köthe ech-
elon spaces λp(A) in terms of the weight sequence and the Köthe matrix A.
In Sect. 4 we evaluate our results for the special case of power series spaces.
In this special situation of Köthe echelon spaces, the special structure of the
Köthe matrix allows for particular simple characterizations of said properties
in many cases. Concrete examples are discussed in order to demonstrate the
applicability of our results.

2. Notation and Preliminary Results

Throughout this article we use standard notation from functional analysis; we
refer to [22,29]. As usual, we denote by ω = K

N0 the vector space of all K-
valued sequences (where as usual K ∈ {R,C}) equipped with the Fréchet space
topology of coordinatewise convergence. For a fixed sequence w = (wn)n∈N0 ∈
ω we define the corresponding weighted backward shift and weighted forward
shift, respectively, as

Bw : ω → ω, (xn)n∈N0 �→ (wnxn+1)n∈N0

and

Fw : ω → ω, (xn)n∈N0 �→ (wnxn−1)n∈N0
,

where we use the notational convention x−n := 0 for all n ∈ N which will be
employed throughout this paper. Additionally, throughout, we use the con-
vention 0

0 := 0, α
0 := ∞ for α > 0 as well as the notation er = (δm,r)m∈N0

(Kronecker’s δ) for r ∈ N0. For the special case of wn = 1, n ∈ N0, we simply
write B and F instead of Bw and Fw, respectively.
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Recall that a matrix of non-negative real numbers A = (an,k)n,k∈N0 is a
Köthe matrix if 0 ≤ an,k ≤ an,k+1 for every n, k ∈ N0, and if for each n ∈ N0

there is k ∈ N0 such that an,k > 0. For 1 ≤ p < ∞ we define as usual the
Köthe echelon space (of order p) by

λp(A) :=

⎧
⎨

⎩x ∈ ω : ‖x‖k,p := ‖x‖k :=

( ∞∑

n=0

|xnan,k|p
)1/p

< ∞, for each k ∈ N0

⎫
⎬

⎭ .

Analogously, for p = ∞, we have

λ∞(A) :=
{

x ∈ ω : ‖x‖k,∞ := ‖x‖k := sup
n∈N0

|xnan,k| < ∞, for each k ∈ N0

}

and

λ0(A) :=
{

x ∈ λ∞(A) : lim
n→∞ xnan,k = 0 for each k ∈ N0

}
.

Then, for 1 ≤ p ≤ ∞, λp(A) is a Fréchet space with fundamental sequence of
seminorms (‖ · ‖k,p)k∈N0 , λ0(A) is a closed subspace of λ∞(A), and λp(A) is
separable for p ∈ [1,∞) ∪ {0}.

Given an exponent sequence, i.e. a monotonically increasing sequence
α = (αn)n∈N0 in [0,∞) with limn→∞ αn = ∞. For arbitrary strictly increasing
sequences (sk)k∈N0 with limk→∞ sk = 0 and (tk)k∈N0 with limk→∞ tk = ∞
we define the Köthe matrices A0(α) := (exp(skαn))k,n∈N0

and A∞(α) :=
(exp(tkαn))k,n∈N0

as well as Λ0(α) := λ1(A0(α)) and Λ∞(α) := λ1(A∞(α)).
It is not hard to see that the definition of Λ0(α) and Λ∞(α) does not depend
on the particular choice of the sequences (sk)k∈N0 and (tk)k∈N0 , respectively.
Λ0(α) is called power series space of finite type and Λ∞(α) power series space
of infinite type (associated to α).

As we are interested in ergodicity and related properties of the weighted
backward and forward shift operators on λp(A), we first have to characterize
when Bw and Fw operate on these spaces.

Proposition 2.1. For a Köthe matrix A, p ∈ [1,∞]∪{0} and w = (wn)n∈N0 ∈ ω
the following results hold.
(a) For Bw the following are equivalent.

(i) Bw : λp(A) → λp(A) is correctly defined.
(ii) Bw : λp(A) → λp(A) is continuous.
(iii) For every k ∈ N0 there are l ∈ N0 and C > 0 such that

∀n ∈ N0 : |wn|an,k ≤ Can+1,l.

(b) For Fw the following are equivalent.
(i) Fw : λp(A) → λp(A) is correctly defined.
(ii) Fw : λp(A) → λp(A) is continuous.
(iii) For every k ∈ N0 there are l ∈ N0 and C > 0 such that

∀n ∈ N : |wn|an,k ≤ Can−1,l.
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Proof. We only prove part (a), the proof of part (b) is, mutatis mutandis, the
same. Since λp(A) is a Fréchet space and Bw : ω → ω is obviously continuous,
a standard application of the Closed Graph Theorem shows that (i) implies
(ii).

Next, if (ii) holds, we conclude

∀ k ∈ N0 ∃ l ∈ N0, C > 0∀x ∈ λp(A) : ‖Bwx‖k ≤ C‖x‖l.

Evaluating this inequality for x = en shows that (iii) is true.
Finally, (iii) trivially implies (i). �

The previous proposition yields the following result. Throughout the ar-
ticle we use the convention ln(0) = −∞.

Corollary 2.2. Let α = (αn)n∈N0
be an exponent sequence such that

lim supn→∞ αn+1α
−1
n < ∞. Then, for w ∈ ω the following results hold.

(a) For the weighted shifts Bw and Fw the following are equivalent.
(i) Bw is correctly defined on Λ∞(α).
(ii) Bw is continuous on Λ∞(α).
(iii) Fw is correctly defined on Λ∞(α).
(iv) Fw is continuous on Λ∞(α).
(v) lim supn→∞

ln |wn|
αn

< ∞.

(b) For the weighted shifts Bw and Fw the following are equivalent.
(i) Bw is correctly defined on Λ0(α).
(ii) Bw is continuous on Λ0(α).
(iii) Fw is correctly defined on Λ0(α).
(iv) Fw is continuous on Λ0(α).
(v) lim supn→∞

ln |wn|
αn

≤ 0.

Proof. By Proposition 2.1, (i) and (ii) are equivalent, as are (iii) and (iv), in
(a) and (b). We will show that (a) (v) is equivalent to condition (a) (iii) from
Proposition 2.1 for the particular case of Λ∞(α) as well as to condition (b)
(iii) from Proposition 2.1 which will finish the proof of part (a). Analogously,
(b) will be proved once we have shown that (b) (v) is equivalent to condition
(a) (iii) from Proposition 2.1 for the particular case of Λ0(α) as well as to
condition (b) (iii) from Proposition 2.1. We set M := lim supn→∞ αn+1α

−1
n .

Let us show that (a) (ii) implies (a) (v). It follows from Proposition 2.1
that for each k ∈ N0 there are l ∈ N0 and C > 0 with

∀n ∈ N0 : |wn| ≤ C exp (lαn+1 − kαn) .

Let M ′ > M be arbitrary and N0 ∈ N such that αn+1α
−1
n ≤ M ′ for n ≥ N0.

We conclude for n ≥ N0

|wn| ≤ C exp (αn(lM ′ − k))

which implies that lim supn→∞ ln |wn|(αn)−1 < ∞, i.e. (a) (v) holds.
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On the other hand, if (a) (v) holds, for fixed k ∈ N let N0 ∈ N and c > 0
be such that

∀n ≥ N0 : ln |wn| ≤ ckαn and αn > 0.

Then, for n ≥ N0 we conclude

|wn| exp(kαn) ≤ exp(k(c + 1)αn) ≤ exp(k(c + 1)αn+1)

so that condition (a) (iii) from Proposition 2.1 holds true for every l ∈ N with
l ≥ k(c + 1) which implies (a) (ii).

Next we assume that (a) (iv) holds. From Proposition 2.1 (b) we deduce
for k ∈ N0 for suitable l ∈ N0, C > 0

∀n ∈ N : |wn| ≤ C exp (lαn−1 − kαn) ≤ C exp ((l − k)αn) .

Thus, (a) (v) follows. On the other hand, if (a) (v) holds, for arbitrary k ∈
N there are c > 0 and N0 ∈ N such that for every n ≥ N0 there hold
αn ≤ M ′αn−1 as well as ln |wn| ≤ ckαn. Hence, for n ≥ N0 we deduce
|wn| exp (kαn) ≤ exp ((c + M ′)kαn−1) so that the condition (b) (iii) from
Proposition 2.1 follows and Fw is continuous on Λ∞(α). The proof of (a) is
complete.

In order to complete the proof of part (b), we first assume that Bw is
continuous on Λ0(α). Thus, by Propositions 2.1 (a), for every k ∈ N there are
l ∈ N and C > 0 such that

∀n ∈ N0 : |wn| exp
(

−1
k

αn

)
≤ C exp

(
−1

l
αn+1

)
,

so that

∀n ∈ N0 : |wn| ≤ C exp
(αn

k
− αn+1

l

)
≤ C exp

(
αn

(
1
k

− 1
l

))
.

Since α tends to infinity, there is Nk such that ln(C)/αn ≤ 1/k whenever
n ≥ Nk. Thus, by the above inequality we deduce supn≥Nk

ln |wn|
αn

≤ 2
k − 1

l < 2
k .

Since k ∈ N was chosen arbitrarily (b) (v) follows.
On the other hand, if (b) (v) holds, we fix k ∈ N0 as well as M ′ > M and

we choose l ∈ N with l/M ′ > (k + 1). Let N0 ∈ N be such that 1
k+1 − M ′

l >
ln |wn|

αn
as well as αn+1α

−1
n ≤ M ′ for each n ≥ N0. For n ≥ N0 we conclude

|wn| exp
(

− 1
k + 1

αn

)
≤ exp

(
−M ′

l
αn

)
≤ exp

(
−1

l
αn+1

)
.

Thus, conditions (a) (iii) from Proposition 2.1 holds which implies the conti-
nuity of Bw on Λ0(α).

Finally, to finish the proof of part (b), we assume that Fw is continuous
on Λ0(α). Thus, by Proposition 2.1 (b), we deduce for k ∈ N the existence of
C > 0 and l ∈ N such that

∀n ≥ Nk : |wn| ≤ C exp
(

1
k

αn − 1
l
αn−1

)
≤ C exp

(
αn

(
1
k

− k

M ′l

))
,
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where Nk is such that αn ≤ M ′αn−1 as well as c/αn ≤ 1/k for every n ≥ Nk.
From the previous inequality we derive supn≥Nk

ln |wn|/αn ≤ 2/k. Because
k ∈ N was chosen arbitrarily, the validity of (b) (v) follows. On the other
hand, if (b) (v) is valid, we fix k ∈ N. Moreover, let Nk ∈ N be such that
|wn| ≤ exp

(
αn(2k)−1

)
for each n ≥ Nk. For every n ≥ Nk

|wn| exp
(

−1
k

αn

)
≤ exp

(
− 1

2k
αn

)
.

Hence, we deduce that condition (b) (iii) from Proposition 2.1 holds so that
Fw is continuous on Λ0(α). �

Remark 2.3. It should be noted that without the hypothesis
lim supn→∞ αn+1α

−1
n < ∞ in Corollary 2.2, condition (a)(v) implies (a)(ii)

and follows from (a)(iv) while condition (b)(v) implies (b)(iv) and is implied
by (b)(ii).

In the rest of this section we recall some notions and abstract results
in order to motivate our considerations in the following section. Let E be a
locally convex Hausdorff space (briefly, lcHs) and T ∈ L(E), where as usual
we denote by L(E) the space of continuous linear operators on E. T is said to
be topologizable if for every continuous seminorm p on E there is a continuous
seminorm q on E such that for every m ∈ N there is γm > 0 with

p (Tmx) ≤ γmq(x) for all x ∈ E.

For the special case that in the above inequality one can take γm = 1 for all
m ∈ N we say that T is power bounded. In this case the family {Tm : m ∈ N}
is an equicontinuous subset of L(E). Moreover, T is Cesàro bounded if the
family

{
T [n] : n ∈ N

}
is an equicontinuous subset of L(E), where T [n] denotes

the n-th Cesàro mean given by

1
n

n∑

m=1

Tm.

An operator T ∈ L(E) is called mean ergodic if there is P ∈ L(E) such that
limn→∞ T [n]x = Px for each x ∈ E. In case that the convergence is uniform
on bounded subsets of E then T is called uniformly mean ergodic.

Let F be a lcHs. An operator S ∈ L (F ) is called conjugate to the operator
T ∈ L (E) if there is a bijective, continous linear operator Φ : E → F with
continuous inverse such that Φ ◦T = S ◦Φ. It is not hard to see that all of the
above properties of T are stable under conjugacy, i.e. S has any of the above
properties if (and only if) T does.

Clearly, every power bounded operator T is Cesàro bounded and
( 1

nTnx)n∈N converges to 0 for each x ∈ E. Moreover, on a barrelled space
E an operator T is mean ergodic if and only if (T [n]x)n∈N converges for ev-
ery x ∈ E. Additionally, on a barrelled space E, mean ergodic operators T
are Cesàro bounded and due to 1

nTnx = T [n]x − n−1
n T [n−1]x, the sequences



Vol. 78 (2023) Mean Ergodic Weighted Shifts on Köthe Echelon Spaces Page 7 of 29 180

(
1
nTnx

)
n∈N

, x ∈ E, converge to zero. Conversely, as shown in [1, Corollary
2.5] (see also [27, Theorem 2.3]) the following useful result holds. Recall that
a reflexive lcHs is always barrelled.

Theorem 2.4. Let E be a reflexive lcHs and T ∈ L(E). Then T is mean ergodic
if and only if T is Cesàro bounded and limn→∞ 1

nTnx = 0 for every x ∈ E.

Theorem 2.5 (see [27, Theorem 2.5]). Let E be a Montel space and let T ∈
L(E).

(a) T is mean ergodic if and only if T is uniformly mean ergodic.
(b) The following are equivalent.

(i) T is Cesàro bounded and limn→∞ Tn

n = 0, pointwise in E.
(ii) T is mean ergodic on E.
(iii) T is uniformly mean ergodic on E.
(iv) T t is mean ergodic on (E′, β(E′, E)).
(v) T t is uniformly mean ergodic on (E′, β(E′, E)).
(vi) T t is Cesàro bounded on (E′, β(E′, E)) and limn→∞

(T t)n

n = 0,
pointwise in (E′, β(E′, E)).

Here, as usual, β(E′, E) denotes the strong dual topology on E′.

In particular, power bounded operators on Montel spaces are uniformly
mean ergodic (see [12, p. 917]). In addition, as for a mean ergodic operator T on
a lcHs E, for each x ∈ E the sequence

(
1
nTnx

)
n∈N

is in particular bounded,
we see that under the additional hypothesis that E is barrelled the family
of operators

{
1
nTn; n ∈ N

}
is equicontinuous. It follows that mean ergodic

operators on barrelled spaces are topologizable.

3. Ergodicity and Related Properties for Weighted Shifts

We begin by characterizing when weighted backward shifts and weighted for-
ward shifts are topologizable or power bounded on λp(A). Setting B0

w = I
and F 0

w = I, observe that for m ∈ N0 the m-th iterate of Bw applied to
x = (xn)n∈N0

yields

B
m
w x =

⎛

⎝xn+m

m−1∏

j=0

wn+j

⎞

⎠

n∈N0

=

⎛

⎝x0+m

m−1∏

j=0

w0+j , x1+m

m−1∏

j=0

w1+j , x2+m

m−1∏

j=0

w2+j , . . .

⎞

⎠

while the m-th iterate of Fw is given by

F
m
w x =

⎛

⎝xn−m

m−1∏

j=0

wn−j

⎞

⎠

n∈N0

=

⎛

⎜⎝0, . . . , 0
︸ ︷︷ ︸
m-times

, x0

m∏

j=1

w0+j , x1

m∏

j=1

w1+j , x2

m∏

j=1

w2+j , . . .

⎞

⎟⎠ .
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Thus, in case of p ∈ [1,∞), for the k-th seminorm we have

‖Bmx‖p
k,p =

∞∑

n=0

∣∣∣∣∣∣
xn+m

⎛

⎝
m−1∏

j=0

wn+j

⎞

⎠ an,k

∣∣∣∣∣∣

p

=
∞∑

n=m

∣∣∣∣∣∣
xn

⎛

⎝
m∏

j=1

wn−j

⎞

⎠ an−m,k

∣∣∣∣∣∣

p

(1)
and

‖Fmx‖p
k,p =

∞∑

n=0

∣∣∣∣∣∣
xn−m

⎛

⎝
m−1∏

j=0

wn−j

⎞

⎠ an,k

∣∣∣∣∣∣

p

=
∞∑

n=0

∣∣∣∣∣∣
xn

⎛

⎝
m∏

j=1

wn+j

⎞

⎠ an+m,k

∣∣∣∣∣∣

p

(2)
while for p ∈ {0,∞} it follows

‖Bmx‖k,∞ = sup
n∈N0

∣∣∣∣∣∣
xn+m

⎛

⎝
m−1∏

j=0

wn+j

⎞

⎠ an,k

∣∣∣∣∣∣
= sup

n≥m

∣∣∣∣∣∣
xn

⎛

⎝
m∏

j=1

wn−j

⎞

⎠ an−m,k

∣∣∣∣∣∣
(3)

and

‖Fmx‖k,∞ = sup
n∈N0

∣∣∣∣∣∣
xn−m

⎛

⎝
m−1∏

j=0

wn−j

⎞

⎠ an,k

∣∣∣∣∣∣
= sup

n∈N0

∣∣∣∣∣∣
xn

⎛

⎝
m∏

j=1

wn+j

⎞

⎠ an+m,k

∣∣∣∣∣∣
.

(4)

Proposition 3.1. For a Köthe matrix A, p ∈ [1,∞] ∪ {0}, and w ∈ ω the
following hold.

(a) If Bw is continuous on λp(A) the following are equivalent.
(i) Bw is topologizable on λp(A).
(ii) For every k ∈ N0 there is l ∈ N0 such that for each m ∈ N0

sup
n∈N0

∣∣∣
∏m−1

j=0 wn+j

∣∣∣ an,k

an+m,l
< ∞. (5)

(b) If Fw is continuous on λp(A) the following are equivalent.
(i) Fw is topologizable on λp(A).
(ii) For every k ∈ N0 there is l ∈ N0 such that for each m ∈ N0

sup
n∈N0

∣∣∣
∏m

j=1 wn+j

∣∣∣ an+m,k

an,l
< ∞. (6)

Proof. We only give the proof of part (a) since the proof of part (b) is along
the exact same lines. Thus, let Bw be continuous on λp(A). Assume Bw is
topologizable. Given k ∈ N0 there is l ∈ N0 such that for every m ∈ N0 there
is cm > 0 with

‖Bm
w x‖k ≤ cm‖x‖l,
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for every x ∈ λp(A). By (1) and (3), respectively, taking x = en+m for n,m ∈
N0 we obtain

‖Bmen+m‖k =

∣∣∣∣∣∣

m∏

j=1

wn+m−j

∣∣∣∣∣∣
an,k ≤ cman+m,l.

Thus, (ii) follows.
Conversely, if (ii) is valid, fix k ∈ N0. Let l ∈ N0 be such that for every

m ∈ N0 there is cm > 0 with
∣∣∣
∏m−1

j=0 wn+j

∣∣∣ an,k

an+m,l
≤ cm

for every n ∈ N0. For arbitrary m ∈ N0, by (1) and (3), respectively, a straight
forward calculation gives ‖Bm

w (x)‖k,p ≤ cm‖x‖k,p. Thus, Bw is
topologizable. �

Proposition 3.2. For a Köthe matrix A, p ∈ [1,∞] ∪ {0}, and w ∈ ω the
following hold.
(a) If Bw is continuous on λp(A) the following are equivalent.

(i) Bw is power bounded on λp(A).
(ii) For every k ∈ N0 there is l ∈ N0 such that

sup
n∈N0,m∈N

∣∣∣
∏m−1

j=0 wn+j

∣∣∣ an,k

an+m,l
< ∞. (7)

(b) If Fw is continuous on λp(A) the following are equivalent.
(i) Fw is power bounded on λp(A).
(ii) For every k ∈ N0 there is l ∈ N0 such that

sup
n∈N0,m∈N

∣∣∣
∏m

j=1 wn+j

∣∣∣ an+m,k

an,l
< ∞. (8)

Proof. Again, we only present the proof of part (a) since the proof of (b) is
mutatis mutandis the same. Hence, let Bw be continuous on λp(A) and assume
that Bw is power bounded. Then given k ∈ N0 there is l ∈ N0 and c > 0 with

‖Bmx‖k ≤ c‖x‖l,

for every x ∈ λp(B) and m ∈ N0. Evaluating this inequality for x = en+m and
using (1) and (3), respectively, yields as in the proof of Proposition 3.1 that
(ii) holds.

Conversely, if (ii) is valid, fix k ∈ N0 and let l ∈ N0 be according to (ii)
and let c > 0 be such that∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
an,k ≤ c an+m,l



180 Page 10 of 29 T. Kalmes and D. Santacreu Results Math

for every n,m ∈ N0. Using (1) and (3) it easily follows that

∀x ∈ λp(A),m ∈ N0 : ‖Bm
w x‖k ≤ c‖x‖l

so that B is power bounded. �

Remark 3.3. It should be noted that for Bw and Fw the properties of being
correctly defined, continuous, topologizable, and power bounded on λp(A) do
not depend on the explicit value of p ∈ [1,∞] ∪ {0}.

Next, we study Cesàro boundedness of weighted backward shifts Bw.
For p ∈ [1,∞) and k ∈ N0 it holds for n ∈ N and x ∈ λp(A)

‖B[n]
w x‖p

k,p =
∞∑

j=0

∣∣∣∣∣
1
n

n∑

m=1

(
m−1∏

t=0

wj+t

)
xj+maj,k

∣∣∣∣∣

p

(9)

while for p = ∞ we have

‖B[n]
w x‖k,∞ = sup

j∈N0

∣∣∣∣∣
1
n

n∑

m=1

(
m−1∏

t=0

wj+t

)
xj+maj,k

∣∣∣∣∣ . (10)

Proposition 3.4. Let A be a Köthe matrix and let p ∈ [1,∞] ∪ {0}. Moreover,
let w ∈ ω be such that the weighted backward shift Bw is continuous on λp(A).
Consider the following conditions.
(i) (CbB

p ) holds, where

(CbBp ) =

⎧
⎪⎨

⎪⎩

If p ∈ [1,∞) : ∀ k ∈ N0∃ l ∈ N0 : supr∈N0,n∈N

∑n
m=1|∏m

s=1 wr−s|pap
r−m,k

nap
r,l

< ∞
If p ∈ {0,∞} : ∀ k ∈ N0∃ l ∈ N0 : supr∈N0,n∈N

∑n
m=1|∏m

s=1 wr−s|ar−m,k

nar,l
< ∞

(ii) Bw is Cesàro bounded on λp(A).
(iii) For every k ∈ N0 there is l ∈ N0 such that

sup
r∈N0,n∈N

|∑n
m=1 (

∏m
s=1 wr−s) ar−m,k|
nar,l

< ∞

Then, condition (i) implies (ii) and condition (ii) implies (iii).

Proof. We first show that (ii) implies (iii). In order to do so, keeping in mind
that by our convention as,k = 0 for s ∈ Z\N0, we evaluate (9) and (10) for
x = er and obtain

‖B[n]
w er‖p

k,p =
1
np

∣∣∣∣∣

n∑

m=1

(
m−1∏

t=0

wr−m+t

)
ar−m,k

∣∣∣∣∣

p

in case p ∈ [1,∞), respectively

‖B[n]
w er‖k,∞ =

∣∣∣∣∣
1
n

n∑

m=1

(
m−1∏

t=0

wr−m+t

)
ar−m,k

∣∣∣∣∣
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for p = ∞. Thus, Cesàro boundedness of Bw on λp(A) implies that for k ∈ N0

there are l ∈ N0 and c > 0 such that

∀ r ∈ N0, n ∈ N : c ar,l ≥
∣∣∣∣∣
1
n

n∑

m=1

(
m−1∏

t=0

wr−m+t

)
ar−m,k

∣∣∣∣∣

=

∣∣∣∣∣
1
n

n∑

m=1

(
m∏

s=1

wr−s

)
ar−m,k

∣∣∣∣∣

which proves (iii).
Now, assume that (i) holds for p ∈ [1,∞). Fix k ∈ N0 and choose l ∈ N0

according to (CbB
p ). For n ∈ N and x ∈ λp(A) it follows with the convexity of

the function [0,∞) → R, t �→ tp

‖B[n]
w x‖p

k,p ≤
∞∑

j=0

1
n

n∑

m=1

(∣∣∣∣∣

m−1∏

t=0

wj+t

∣∣∣∣∣ |xj+m|aj,k

)p

=
∞∑

r=0

(
1
n

n∑

m=1

∣∣∣∣∣

m−1∏

t=0

wr−m+t

∣∣∣∣∣

p

ap
r−m,k

)
|xr|p

=
∞∑

r=0

∑n
m=1 |∏m

s=1 wr−s|p ap
r−m,k

nap
r,l

(|xr|ar,l)p

≤ sup
r∈N0,n∈N

∑n
m=1 |∏m

s=1 wr−s|p ap
r−m,k

nap
r,l

‖x‖l,p.

Since by assumption (CbB
p ) the supremum is finite we conclude that Bw is

Cesàro bounded on λp(A).
Finally, if (i) holds for p ∈ {0,∞}, let k ∈ N0 be arbitrary. Choosing

l ∈ N0 according to (CbB
p ) implies for n ∈ N and x ∈ λp(A)

‖B[n]
w x‖k,p = sup

j∈N0

1
n

∣∣∣∣∣

n∑

m=1

(
m−1∏

t=0

wj+t

)
xj+m

∣∣∣∣∣ aj,k

≤ sup
j∈N0

∑n
m=1

∣∣∣
∏m−1

t=0 wj−m+t

∣∣∣ aj−m,k

naj,l
|xj |aj,l

= sup
j∈N0

∑n
m=1 |∏m

s=1 wj−s| aj−m,k

naj,l
|xj |aj,l

≤ sup
r∈N0,n∈N

∑n
m=1 |∏m

s=1 wr−s| ar−m,k

nar,l
‖x‖l,p

Since again by assumption (CbB
p ) the supremum is finite we conclude that Bw

is Cesàro bounded on λp(A) for p ∈ {0,∞} which proves the proposition. �
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As an immediate consequence of the previous proposition we obtain the
following result.

Corollary 3.5. Let A be a Köthe matrix and let w ∈ ω be such that wn ≥ 0,
n ∈ N0, and such that the weighted backward shift Bw is continuous on λp(A).
Then, the following are equivalent.

(i) Bw is Cesàro bounded on any/each of the spaces λ0(A), λ1(A), or λ∞(A).
(ii) For every k ∈ N0 there is l ∈ N0 such that

sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr−s) ar−m,k

nar,l
< ∞.

If additionally, wn ≤ 1, n ∈ N0, and if the Köthe matrix A = (an,k)n,k∈N0 sat-
isfies that (an,k)n∈N0 is increasing for every k ∈ N0, the equivalent conditions
(i) and (ii) are also equivalent to condition (iii):

(iii) Bw is power bounded on any/each of the spaces λ0(A), λ1(A), or λ∞(A).

Proof. That (i) and (ii) are equivalent follows immediately from Proposition
3.4. Now, assume that the additional hypothesis on w and A hold. We fix
k ∈ N0. From (ii) we conclude the existence of l ∈ N0 such that

∞ > sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr−s) ar−m,k

nar,l
≥ sup

r∈N0,n∈N

∑n
m=1 (

∏n
s=1 wr−s) ar−n,k

nar,l

= sup
r∈N0,n∈N

(
∏n

s=1 wr−n+n−s) ar−n,k

ar−n+n,l
= sup

j∈N0,n∈N

(∏n−1
t=0 wj+t

)
aj,k

aj+n,l
.

Proposition 3.2 (a) implies that Bw is power bounded. On the other hand, every
power bounded operator is Cesàro bounded which proves the
statement. �

Corollary 3.6. Let A be a Köthe matrix and let p ∈ (1,∞). Let w ∈ ω be
such that wn ≥ 0, n ∈ N0, and such that the weighted backward shift Bw is
continuous on λp(A). Consider the following conditions.

(i) For every k ∈ N0 there is l ∈ N0 such that

sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr−s)

p
ap

r−m,k

nap
r,l

< ∞.

(ii) Bw is mean ergodic on λp(A).
(iii) For every k ∈ N0 there is l ∈ N0 such that

sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr−s) ar−m,k

nar,l
< ∞.

Then, condition (i) implies (ii) and condition (ii) implies (iii).
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Proof. Assume that (i) holds. By Proposition 3.4, Bw is Cesàro bounded on
λp(A), i.e. {B

[n]
w ;n ∈ N} is equicontinuous on λp(A). Because 1

nBn
w = B

[n]
w −

n−1
n B

[n−1]
w the set { 1

nBn
w;n ∈ N} is equicontinuous on λp(A), too. Moreover,

span{er; r ∈ N0} is dense in λp(A) and obviously for each x ∈ span{er; r ∈ N0}
it holds 1

nBn
wx = 0 for sufficiently large n. From equicontinuity it follows that(

1
nBn

wx
)
n∈N

tends to 0 for every x ∈ λp(A). Since λp(A) is reflexive (see, e.g.
[29, Proposition 27.3]) Theorem 2.4 implies that Bw is mean ergodic on λp(A).

On the other hand, if (ii) holds, refereing to Theorem 2.4 again, it follows
that Bw is Cesàro bounded on λp(A) so that (iii) follows from
Proposition 3.4. �

Before we continue with a result characterizing mean ergodicity of Bw on
λ0(A) and λ1(A), we recall that by the Dieudonné-Gomes Theorem (see e.g.
[29, Theorem 27.9]) λ1(A) is reflexive if and only if λp(A) is a Montel space
for all/some p ∈ [1,∞] if and only if λ0(A) = λ∞(A) and that these properties
are equivalent to

∀ I ⊆ N0 infinite, k ∈ N0 ∃ l ∈ N0 : inf
n∈I

an,k

an,l
= 0. (11)

Moreover, recall that the above properties are equivalent to λ0(A) being a
Montel space (see e.g. [29, Proposition 27.15]).

Theorem 3.7. Let w ∈ ω be such that wn ≥ 0, n ∈ N0. Moreover, let A be a
Köthe matrix such that λp(A) is a Montel space and such that the weighted
backward shift Bw is continuous on λp(A) for some/all p ∈ [1,∞]∪{0}. Then,
the following are equivalent.
(i) Bw is Cesàro bounded on one /each of the spaces λ0(A) or λ1(A).
(ii) For every k ∈ N0 there is l ∈ N0 such that

sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr−s) ar−m,k

nar,l
< ∞.

(iii) Bw is (uniformly) mean ergodic on either of the spaces λ0(A) or λ1(A).
If additionally, wn ≤ 1, n ∈ N0, and if the Köthe matrix A = (an,k)n,k∈N0

satisfies that (an,k)n∈N0 is increasing for every k ∈ N0, the above conditions
are also equivalent to condition (iv):
(iv) Bw is power bounded on either of the spaces λ0(A) and λ1(A).

Proof. The equivalence of (i) and (ii) holds by Corollary 3.5. Moreover, since
Fréchet spaces are barrelled, mean ergodic operators on Fréchet spaces are
Cesàro bounded, so that condition (iii) implies (i).

Next, if (ii) holds, refering to Theorem 2.5 instead of Theorem 2.4, it
follows as in the proof of Corollary 3.6 that Bw is uniformly mean ergodic on
λ0(A) and λ1(A).

In case that the additional properties of A and w are satisfied it follows
from Corollary 3.5 that (i) and (iv) are equivalent. �
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In the remainder of this section we study Cesàro boundedness and mean
ergodicity of weighted forward shifts Fw. For p ∈ [1,∞) and k ∈ N0 it holds
for n ∈ N and x ∈ λp(A)

‖F [n]
w x‖p

k,p =
∞∑

j=0

∣∣∣∣∣
1
n

n∑

m=1

(
m−1∏

t=0

wj−t

)
xj−maj,k

∣∣∣∣∣

p

(12)

while for p = ∞ we have

‖F [n]
w x‖k,∞ = sup

j∈N0

∣∣∣∣∣
1
n

n∑

m=1

(
m−1∏

t=0

wj−t

)
xj−maj,k

∣∣∣∣∣ (13)

Using (12) and (13) instead of (9) and (10), respectively, the proof of the
next proposition is done precisely as the one of Proposition 3.4 and is therefore
omitted.

Proposition 3.8. Let A be a Köthe matrix and let p ∈ [1,∞] ∪ {0}. Moreover,
let w ∈ ω be such that the weighted forward shift Fw is continuous on λp(A).
Consider the following conditions.
(i) (CbF

p ) holds, where

(CbFp ) =

⎧
⎪⎨

⎪⎩

If p ∈ [1,∞) : ∀ k ∈ N0∃ l ∈ N0 : supr∈N0,n∈N

∑n
m=1|∏m

s=1 wr+s|pap
r+m,k

nap
r,l

< ∞
If p ∈ {0,∞} : ∀ k ∈ N0∃ l ∈ N0 : supr∈N0,n∈N

∑n
m=1|∏m

s=1 wr+s|ar+m,k

nar,l
< ∞

(ii) Fw is Cesàro bounded on λp(A).
(iii) For every k ∈ N0 there is l ∈ N0 such that

sup
r∈N0,n∈N

|∑n
m=1 (

∏n
s=1 wr+s) ar+m,k|
naj,l

< ∞

Then, condition (i) implies (ii) and condition (ii) implies (iii).

Analogously as Corollary 3.5 one obtains the next result.

Corollary 3.9. Let A be a Köthe matrix and let w ∈ ω be such that wn ≥ 0,
n ∈ N0, and such that the weighted forward shift Fw is continuous on λp(A).
Then, the following are equivalent.
(i) Fw is Cesàro bounded on any/each of the spaces λ0(A), λ1(A), or λ∞(A).
(ii) For every k ∈ N0 there is l ∈ N0 such that

sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr+s) ar+m,k

nar,l
< ∞.

If additionally, wn ≤ 1, n ∈ N0, and if the Köthe matrix A = (an,k)n,k∈N0 sat-
isfies that (an,k)n∈N0 is decreasing for every k ∈ N0, the equivalent conditions
(i) and (ii) are also equivalent to condition (iii):
(iii) Fw is power bounded on any/each of the spaces λ0(A), λ1(A).
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From (2) and (4) it follows that for x ∈ span{er; r ∈ N0} we have
limn→∞ 1

nFn
wx = 0 in λp(A) if and only if

∀ r, k ∈ N0 : lim
n→∞

|∏n
s=1 wr+s| ar+n,k

n
= 0.

Repeating the arguments from the proofs of Corollary 3.6 and Theorem 3.7,
we conclude the next results.

Corollary 3.10. Let A be a Köthe matrix and let p ∈ (1,∞). Let w ∈ ω be such
that wn ≥ 0, n ∈ N0, and such that the weighted foward shift Fw is continuous
on λp(A). Consider the following conditions.

(i) For every k ∈ N0 we have

∀ r ∈ N0 : lim
n→∞

(
∏n

s=1 wr+s) ar+n,k

n
= 0

and there is l ∈ N0 such that

sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr+s)

p
ap

r+m,k

nap
r,l

< ∞.

(ii) Fw is mean ergodic on λp(A).
(iii) For every k ∈ N0 we have

∀ r ∈ N0 : lim
n→∞

(
∏n

s=1 wr+s) ar+n,k

n
= 0

and there is l ∈ N0 such that

sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr+s) ar+m,k

nar,l
< ∞.

Then, condition (i) implies (ii) and condition (ii) implies (iii).

Theorem 3.11. Let w ∈ ω be such that wn ≥ 0, n ∈ N0. Moreover, let A be
a Köthe matrix such that λp(A) is a Montel space and such that the weighted
backward shift Fw is continuous on λp(A) for some/all p ∈ [1,∞]∪{0}. Then,
the following are equivalent.

(i) Fw is (uniformly) mean ergodic on any/each of the spaces λ0(A) or
λ1(A).

(ii) For every k ∈ N0 there is l ∈ N0 such that

sup
r∈N0,n∈N

∑n
m=1 (

∏m
s=1 wr+s) ar+m,k

nar,l
< ∞

and it holds

∀ r ∈ N0 : lim
n→∞

|∏n
s=1 wr+s| ar+n,k

n
= 0.



180 Page 16 of 29 T. Kalmes and D. Santacreu Results Math

4. Ergodic Properties of Weighted Shifts on Power Series
Spaces and Related Results

In this section we evaluate the results from the previous one for the special
case of power series spaces and we apply these in order to study dynamical
properties of some classical operators on certain function spaces. For an ex-
ponent sequence α = (αn)n∈N0 we have for the corresponding power series
spaces Λ∞(α) = λ1(A∞(α)) and Λ0(α) = λ1(A0(α)) with the Köthe matrices
A∞(α) = (exp(kαn))k,n∈N0

and A0(α) =
(
exp

(
− αn

k+1

))

k,n∈N0

, respectively.

In particular, property (11) is satisfied so that Λ∞(α) and Λ0(α) are both
Montel spaces.

Proposition 4.1. Let α = (αn)n∈N0
be an exponent sequence and let w ∈ ω.

Then the following hold.

(i) Assume that Bw is continuous in Λ∞(α). Then, Bw is topologizable on
Λ∞(α) if and only if

sup
m∈N

lim sup
n→∞

ln
∣∣∣
∏m−1

j=0 wn+j

∣∣∣
αn+m

< ∞. (14)

(ii) Assume that Fw is continuous in Λ∞(α). Then, Fw is topologizable on
Λ∞(α) if and only if

∀ k ∈ N0 : sup
m∈N

lim sup
n→∞

ln
∣∣∣
∏m

j=1 wn+j

∣∣∣ + kαn+m

αn
< ∞. (15)

(iii) Assume that Bw is continuous in Λ0(α). If Bw is topologizable on Λ0(α)
it holds

sup
m∈N

lim sup
n→∞

ln
∣∣∣
∏m−1

j=0 wn+j

∣∣∣
αn+m

≤ 0. (16)

If additionally supn∈N(αn+1 − αn) < ∞ holds, condition (16) gives that
Bw is topologizable on Λ0(α).

(iv) Assume that Fw is continuous in Λ0(α). Then Fw is topologizable on
Λ0(α) if and only if

sup
m∈N

lim sup
n→∞

ln
∣∣∣
∏m

j=1 wn+j

∣∣∣
αn+m

≤ 0. (17)

Proof. In order to prove (i), we observe that by Proposition 3.1 Bw is topolo-
gizable on Λ∞(α) if and only if for every k ∈ N0 there is l ∈ N0 such that

∀m ∈ N∃C > 0∀n ∈ N0 : ln

∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
≤ C + lαn+m − kαn. (18)
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Thus, if Bw is topologizable, evaluating (18) for k = 0 implies (14). On the
other hand, assuming (14) let k ∈ N0 be fixed. We set

R = supm∈N lim supn→∞
ln|∏m−1

j=0 wn+j|
αn+m

. For each m ∈ N0 there is Nm ∈ N such
that

∀n ≥ Nm : ln

∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
+ kαn ≤ (R + 1)kαn+m + kαn ≤ (R + 2)kαn+m.

Thus (18) holds true for l ∈ N0 with l ≥ (R + 2)k so that Bw is topologizable
on Λ∞(α).

For the proof of (ii) we observe that by Proposition 3.1 topologizability
of Fw on Λ∞(α) holds precisely when for every k ∈ N0 there is l ∈ N0 with

∀m ∈ N∃C > 0∀n ∈ N0 : ln

∣∣∣∣∣∣

m∏

j=1

wn+j

∣∣∣∣∣∣
+ kαn+m ≤ C + lαn.

From this one easily derives that (15) is equivalent to the topologizability of
Fw on Λ∞(α) so that (ii) follows.

For the proof of (iii) we apply Proposition 3.1 to see that Bw is topolo-
gizable on Λ0(α) if and only if for every k ∈ N0 there is l ∈ N0 with

∀m ∈ N∃C > 0∀n ∈ N0 : ln

∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
+

αn+m

l + 1
≤ C +

αn

k + 1
. (19)

Thus, if Bw is topologizable on Λ0(α), evaluating the above condition for k = 0
implies (16). On the other hand, under the assumption that (16) holds, for fixed
k ∈ N0 and arbitrary m ∈ N0 there is Nm ∈ N such that

∀n ≥ Nm : ln

∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
≤

(
1

k + 1
− 1

k + 2

)
αn+m

=
αn

k + 1
+

∑m−1
j=0 (αn+j+1 − αn+j)

k + 1
− αn+m

k + 2

≤ m

k + 1
sup
r∈N

(αr+1 − αr) +
αn

k + 1
− αn+m

k + 2
.

Thus, under the additional hypothesis that supr∈N(αr+1 − αr) < ∞ we see
that (19) is satisfied for l = k +1 so that Fw is topologizable. This proves (iii).

Finally, for the proof of (iv), by Proposition 3.1, Fw is topologizable on
Λ0(α) if and only if for arbitrary k ∈ N0 there is l ∈ N0 with

∀m ∈ N∃C > 0∀n ∈ N0 : ln

∣∣∣∣∣∣

m∏

j=1

wn+j

∣∣∣∣∣∣
+

αn

l + 1
≤ C +

αn+m

k + 1
. (20)
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Hence, if Fw is topologizable on Λ0(α) by the above condition (17) follows. On
the other hand, if (17) holds, for fixed k ∈ N0 we derive for arbitrary m ∈ N

the existence of Nm ∈ N for which

∀n ≥ Nm : ln

∣∣∣∣∣∣

m∏

j=1

wn+j

∣∣∣∣∣∣
≤ αn+m

2(k + 1)
≤ αn+m

k + 1
− αn

2(k + 1)
.

Thus, with l = 2k + 1 it follows

∀m ∈ N∀n ∈ N0 : ln

∣∣∣∣∣∣

m∏

j=1

wn+j

∣∣∣∣∣∣

+
αn

l + 1
≤ max

⎧
⎨

⎩ln

∣∣∣∣∣∣

m∏

j=1

wr+j

∣∣∣∣∣∣
+

αr

l + 1
; 1 ≤ r ≤ Nm

⎫
⎬

⎭ +
αn+m

k + 1

so that (20) holds which proves (iv). �

In order to give a simplified condition of power boundedness for Bw and
Fw on power series spaces we introduce the following notion. Given a matrix
(An,m)n∈N0,m∈N

∈ R
N0×N we define the superior limit along n + m as

lim sup
n+m→∞

An,m := inf
k∈N

{
sup

n+m≥k
{An,m}

}
.

Proposition 4.2. Let α = (αn)n∈N0
be an exponent sequence with α0 > 0 and

let w ∈ ω. Then the following hold.

(i) Assume that Bw is continuous in Λ∞(α). Bw is power bounded on Λ∞(α)
if and only if

sup
n∈N0,m∈N

ln
∣∣∣
∏m−1

j=0 wn+j

∣∣∣
αn+m

< ∞. (21)

(ii) Assume that Fw is continuous on Λ∞(α). Then Fw is power bounded on
Λ∞(α) if and only if

∀ k ∈ N0 : sup
n∈N0,m∈N

ln
∣∣∣
∏m

j=1 wn+j

∣∣∣ + kαn+m

αn
< ∞. (22)

(iii) Assume that Bw is continuous in Λ0(α). Then Bw is power bounded on
Λ0(α) if and only if

∀ k ∈ N0 : lim sup
n+m→∞

ln
∣∣∣
∏m−1

j=0 wn+j

∣∣∣ − αn

k+1

αn+m
< 0 (23)
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(iv) Assume that Fw is continuous on Λ0(α). Fw is power bounded on Λ0(α)
if and only if

lim sup
n+m→∞

ln
∣∣∣
∏m

j=1 wn+j

∣∣∣
αn+m

≤ 0. (24)

Proof. Let Bw be continuous on Λ∞(α). By Proposition 3.2 Bw is power
bounded on Λ∞(α) if and only if for each k ∈ N0 there are l ∈ N0 and
C > 0 with

∀n ∈ N0,m ∈ N :

∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
≤ C exp(lαn+m − kαn). (25)

Therefore, whenever Bw is power bounded, evaluating the previous condition
for k = 0 implies (21). Conversely, if (21) is satisfied, for a fixed k ∈ N0 we
can find c > 0 such that

∀n ∈ N0,m ∈ N : ln

∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
≤ ckαn+m.

Then, for every n ∈ N0,m ∈ N we conclude
∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
exp(kαn) ≤ exp(ckαn+m + kαn) ≤ exp(k(c + 1)αn+m)

so that (25) holds true for every l ∈ N with l ≥ k(c + 1) and C = 1 so that
Bw is power bounded. This proves (i).

In order to prove (ii) we apply Proposition 3.2 to deduce that Fw is power
bounded on Λ0(α) if and only if for each k ∈ N0 there are l ∈ N0 and C > 0
such that

∀n ∈ N0,m ∈ N : ln

∣∣∣∣∣∣

m∏

j=1

wn+j

∣∣∣∣∣∣
+ kαn+m ≤ C + lαn

which is easily seen to be equivalent to (22).
By Proposition 3.2 Bw is power bounded on Λ0(α) if and only if the

condition given in (a) (ii) holds which is clearly equivalent to for each k ∈ N0

there are l ∈ N0 and C > 0 such that

∀n ∈ N0,m ∈ N : ln

∣∣∣∣∣∣

m−1∏

j=0

wn+j

∣∣∣∣∣∣
− αn

k + 1
≤ C − αn+m

l + 1
. (26)

Hence, if Bw is power bounded on Λ0(α) it follows from the above condition and
the fact that (αn)n∈N0 is increasing and tends to infinity, that for each k ∈ N0
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there is Nk > 0 such that C/αn+m ≤ 1
2(l+1) for every pair (n,m) ∈ N0 × N

with n + m ≥ Nk. This gives

ln
∣∣∣
∏m−1

j=0 wn+j

∣∣∣ − αn

k+1

αn+m
≤ − 1

2(l + 1)
whenever n + m ≥ Nk is satisfied. Therefore, condition (23) holds.

Now assume that (23) holds. Then for a fixed k ∈ N0 there are Nk > 0
and Ak > 1 such that

ln
∣∣∣
∏m−1

j=0 wn+j

∣∣∣ − αn

k+1

αn+m
≤ − 1

Ak(k + 1)
is satisfied for every pair (n,m) ∈ N0 × N with n + m ≥ Nk. Now, since
{(n,m) : n + m < Nk} is finite this gives that condition (26) holds for every
l ≥ Ak(k + 1). This proves (iii).

Finally, in order to prove (iv), by Proposition 3.2 Fw is power bounded
on Λ0(α) if and only if for every k ∈ N0 there are l ∈ N0 and C > 0 such that

∀n ∈ N0,m ∈ N : ln

∣∣∣∣∣∣

n∏

j=1

wn+j

∣∣∣∣∣∣
+

αn

l + 1
≤ C +

αn+m

k + 1
. (27)

Now assume that Fw is power bounded. For each k ∈ N0 there are thus l ∈ N0

and C > 0 with

∀n ∈ N0,m ∈ N :
ln

∣∣∣
∏m

j=1 wn+j

∣∣∣
αn+m

≤ C

αn+m
+

1
k + 1

.

Now since (αn)n∈N0 tends to infinity, there is Nk > 0 such that C/αn+m ≤ 1
k+1

for every pair (n,m) ∈ N0 × N with n + m ≥ Nk. Thus the above inequality
implies condition (24).

On the other hand, if (24) is satisfied, for a fixed k ∈ N0 there is Nk such
that

∀n ∈ N0,m ∈ N, n + m ≥ Nk : ln

∣∣∣∣∣∣

m∏

j=1

wn+j

∣∣∣∣∣∣
≤ αn+m

2(k + 1)
.

Thus we obtain

∀n ∈ N0,m ∈ N, n + m ≥ Nk : ln

∣∣∣∣∣∣

m∏

j=1

wn+j

∣∣∣∣∣∣
+

αn

2(k + 1)
≤ αn + αn+m

2(k + 1)
≤ αn+m

k + 1

since α is monotonically increasing. Since the set {(n,m) : n + m < Nk} is
finite, this gives that condition (27) holds with l = 2k + 1 so that Fw is power
bounded on Λ0(α). This proves (iv). �

As an immediate consequence of Theorems 3.7 and 3.11 we obtain the
next corollary.
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Corollary 4.3. Let α be an exponent sequence and w ∈ ω with wn ≥ 0 for each
n ∈ N0.
(i) Assume that Bw is continuous on Λ∞(α). Bw is (uniformly) mean ergodic

on Λ∞(α) if and only if for every k ∈ N0 there is l ∈ N0 such that

sup
r,n∈N,r≥n

1
n

n∑

m=1

(
m∏

s=1

wr−s

)
exp (kαr−m − lαr) < ∞.

(ii) Assume that Fw is continuous on Λ∞(α). Fw is (uniformly) mean ergodic
on Λ∞(α) if and only if for every k ∈ N0

∀ r ∈ N0 : lim
n→∞

(
∏n

s=1 wr+s) exp(kαr+n)
n

= 0

and there is l ∈ N0 such that

sup
r∈N0,n∈N

1
n

n∑

m=1

(
m∏

s=1

wr+s

)
exp (kαr+m − lαr) < ∞.

(iii) Assume that Bw is continuous on Λ0(α). Bw is (uniformly) mean ergodic
on Λ0(α) if and only if for every k ∈ N0 there is l ∈ N0 such that

sup
r,n∈N,r≥n

1
n

n∑

m=1

(
m∏

s=1

wr−s

)
exp

(
αr

l + 1
− αr−m

k + 1

)
< ∞.

(iv) Assume that Fw is continuous on Λ0(α).Fw is (uniformly) mean ergodic
on Λ0(α) if and only if for every k ∈ N0

∀ r ∈ N0 : lim
n→∞

(
∏n

s=1 wr+s) exp
(
−αr+n

k+1

)

n
= 0

and there is l ∈ N0 such that

sup
r∈N0,n∈N

1
n

n∑

m=1

(
m∏

s=1

wr+s

)
exp

(
αr

l + 1
− αr+m

k + 1

)
< ∞.

Now we study ergodicity and related properties for some classical oper-
ators acting on the Fréchet spaces of holomorphic functions H(C) and H(D),
where D denotes the open unit disk in the complex plane. Via the mapping
Φ which assigns to a holomorphic function f the sequence of its Taylor coeffi-
cients in the origin, Φ(f) = ( f(n)(0)

n! )n∈N0 , these spaces are topologically isomor-
phic to the power series space Λ∞((n + 1))n∈N0 , respectively Λ0((n + 1)n∈N0).
For G ∈ {C,D} let Δ0 be the continuous linear operator on H(G) which
maps f to the holomorphic function Δ0(f)(z) = (f(z) − f(0))/z, z ∈ G\{0},
Λ0(f)(0) = f ′(0). Additionally, we denote by V the Volterra operator on H(G)
which takes f ∈ H(G) to the holomorphic function z �→ ∫ z

0
f(ζ) dζ, z ∈ G.

As usual, d
dz denotes the differentiation operator on H(G) which maps f to

its derivative f ′. Ergodicity and related properties of these classical operators
have been studied on Banach spaces of entire functions, see e.g. [6,7]. On H(C)
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and H(D), via the topological isomorphism Φ, they are conjugate to suitable
weighted shift operators.

In addition to these operators on spaces on holomorphic functions, we
apply our results to the annihilation operator and creation operator on the
space of rapidly decreasing smooth functions which we denote as usual by
S (R), i.e. on the space of complex valued smooth functions f on R which have
the property that supx∈R(1 + |x|)k|f (j)(x)| < ∞ for all k, j ∈ N0. We equip
S (R) with its standard topology which makes it a (nuclear) Fréchet space.
The creation operator A+ : S (R) :→ S (R) and the annihilation operator
A− : S (R) :→ S (R) are defined by

A+(f) =
1√
2

(−f ′ + xf) , A−(f) =
1√
2

(f ′ + xf) ,

respectively, where we denote the multipication operator with the identity on
S (R) simply by xf . As is well known, via Hermite expansion in L2(R), S (R)
is topologically isomorphic to the power series space s = Λ∞ ((ln(n + 1))n∈N0)
and via this topological isomorphism, the annihilation and creation operators
are conjugate to suitable weighted shift operators on s.

Theorem 4.4. With the notation from above, the following hold.

(i) For G ∈ {C,D} the operator Δ0 : H(G) → H(G) is power bounded and
(uniformly) mean ergodic.

(ii) For G ∈ {C,D} the Volterra operator V : H(G) → H(G) is power
bounded and (uniformly) mean ergodic.

(iii) For G ∈ {C,D} the differentiation operator d
dz : H(G) → H(G) is topol-

ogizable but not (uniformly) mean ergodic.
(iv) The annihilation operator A+ : S (R) → S (R) and the creation operator

A− : S (R) → S (R) are both topologizable but neither of them is power
bounded nor (uniformly) mean ergodic.

Proof. As already mentioned in the introduction to the theorem, the space
H(C) of entire functions is topologically isomorphic to the infinite type power
series space Λ∞((n + 1)n∈N0), i.e. αn = n + 1, n ∈ N0, while the space H(D) is
topologically isomorphic to the finite type power series space Λ0((n+1)n∈N0),
i.e. αn = n + 1, n ∈ N0. In both cases, the topological isomorphism is given
by the mapping which takes a holomorphic function f to the sequence of
its Taylor coefficients in the origin. Via this mapping the continuous linear
operator Δ0 is conjugate to the (unweighted) backward shift B on Λ∞((n +
1)n∈N0), respectively on Λ0((n+1)n∈N0). Therefore, it follows immediately from
Proposition 4.2 (i), respectively (iii), that Δ0 is power bounded and therefore
uniformly mean ergodic on H(C) and H(D), respectively, which proves (i).

(ii) Similarly to (i), the operator V : H(C) → H(C) is conjugate to
the weighted forward shift Fw with weight sequence w =

(
1

max{1,n}
)

n∈N0

on
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Λ∞((n + 1)n∈N0) and V : H(D) → H(D) is conjugate to the weighted for-
ward shift Fw with weight sequence w =

(
1

max{1,n}
)

n∈N0

on Λ0((n + 1)n∈N0).

Because

lim sup
n+m→∞

ln |n!/(n + m)!|
n + m + 1

≤ 0,

by Proposition 4.2 (iv), V is power bounded, thus, in particular, uniformly
mean ergodic on H(D).

We shall prove that V is power bounded on H(C) by applying Proposition
4.2 (ii). Thus, let k ∈ N0 be arbitrary. We have to show that

ln |n!/(n + m)!| + k(n + m + 1)
n + 1

=
k(n + m + 1) − ∑m

j=1 ln(n + j)
n + 1

(28)

has an upper bound independent of n ∈ N0 and m ∈ N. In order to do so, we
distinguish three cases depending on the choices of n and m.

Case 1: Fix an arbitrary N > 0. Consider every n < N and let m → ∞.
Then using Stirling’s formula we obtain

lim
m→∞

k(n + m + 1) − ∑m
j=1 ln(n + j)

n + 1
≤ lim

m→∞ k +
km

n + 1
−

∑m
j=1 ln(j)
n + 1

= lim
m→∞ k +

km

n + 1
− ln(m!)

n + 1
= lim

m→∞ k +
km

n + 1
− (m + 1

2 ) ln(m) − m

n + 1

= lim
m→∞ k +

(k − ln(m) − 1)m
n + 1

− ln(m)
2(n + 1)

≤ k < ∞,

for every n < N .
Case 2: Fix an arbitrary M > 0. Consider every m < M and let n → ∞.

Then we have

lim
n→∞

k(n + m + 1) − ∑m
j=1 ln(n + j)

n + 1
≤ lim

n→∞
k(n + m + 1)

n
− m ln(n)

n

≤ lim
n→∞ k +

(k − ln(n))m
n

≤ k < ∞.

Case 3: We choose both n and m tending to ∞. To that aim we introduce
the following notation. Given a matrix (An,m)n∈N0,m∈N

∈ R
N0×N we define the

superior limit along min(n,m) as

lim sup
min(n,m)→∞

An,m := inf
k∈N

{
sup

min(n,m)≥k

{An,m}
}

.
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Now we compute this superior limit for (28) using Stirling’s formula:

lim sup
min(n,m)→∞

ln |n!/(n + m)!| + k(n + m + 1)
n + 1

= lim sup
min(n,m)→∞

k +
km

n + 1
+

(n + 1
2 ) ln(n) − n

n + 1

− (n + m + 1
2 ) ln(n + m) − n − m

n + 1

≤ lim sup
min(n,m)→∞

k +
(k − ln(n + m) − 1)m

n + 1

+
(n + 1

2 )(ln(n) − ln(n + m))
n + 1

≤ k < ∞.

Combining the above three cases we conclude that

∀ k ∈ N0 : sup
n∈N0,m∈N

ln |n!/(n + m)!| + k(n + m + 1)
n + 1

< ∞.

Thus, by Proposition 4.2 (ii), V is power bounded and therefore also uniformly
mean ergodic on H(C) which proves statement (ii).

(iii) The operator d
dz : H(C) → H(C) is conjugate to the weighted back-

ward shift Bw with weight sequence w = (n + 1)n∈N0 on Λ∞((n + 1)n∈N0).
While it is well known that d

dz is topologically transitive and thus, it cannot
be power bounded on H(C), for arbitrary k, l ∈ N0 it follows from

sup
r,n∈N,r≥n

1
n

n∑

m=1

r!
(r − m)!

ek(r−m)−lr ≥ supr,n∈N,r≥n
er(k−l)

n

n∑

m=1

(m − 1)!e−km

≥ sup
r∈N

er(k−l)

r
(r − 1)!e−kr = sup

r∈N

e−lrr!
r2

≥ sup
r∈N

e−lr
√

2πrer ln(r)−r

r2

=
√

2π sup
r∈N

er(ln(r)−(l+1))

r3/2
= ∞

together with Corollary 4.3 (i) that d
dz is not mean ergodic on H(C). On the

other hand, with Stirling’s formula,

sup
m∈N

lim sup
n→∞

ln
∣∣∣ (m+n+1)!

n!

∣∣∣
n + m + 1

= sup
m∈N

lim sup
n→∞

(m + n + 3
2 ) ln(m + n + 1) − (m + n + 1) − (n + 1

2 ) ln(n) + n

n

= sup
m∈N

lim sup
n→∞

(m + 1) ln(m + n + 1) + (n + 1
2 ) ln

(
m+n+1

n

) − (m + 1)
n

= 0.

Thus, by Proposition 4.1 (i), d
dz is topologizable on H(C). Of course, the latter

can also be derived directly with the aid of the Cauchy formulas for derivatives.
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Likewise, the differentiation operator d
dz : H(D) → H(D) is conjugate

to the weighted backward shift Bw with weight sequence w = (n + 1)n∈N0 on
Λ0((n + 1)n∈N0). Because for arbitrary k, l ∈ N0 it holds

sup
r,n∈N,r≥n

1
n

n∑

m=1

r!
(r − m)!

exp
(

r

l + 1
− r − m

k + 1

)

≥ sup
r,n∈N,r≥n

exp
(
r
(

1
l+1 − 1

k+1

))

n

n∑

m=1

(m − 1)!

≥ sup
r∈N

exp
(
r
(

1
l+1 − 1

k+1

))
r!

r2

≥
√

2π sup
r∈N

exp
(
r
(

1
l+1 − 1

k+1 + ln(r) − 1
))

r3/2
= ∞,

by Corollary 4.3 (iii) it follows that d
dz is not mean ergodic on H(D). However,

due to

sup
m∈N

lim sup
n→∞

ln
∣∣∣ (n+m)!

n!

∣∣∣
n + m

= sup
m∈N

lim sup
n→∞

(n + m + 1
2 ) ln(n + m) − (n + m) − (n + 1

2 ) ln(n) + n

n + m

= sup
m∈N

lim sup
n→∞

m ln(n + m) − m + (n + 1
2 ) ln(n+m

n )
n + m

= 0,

it follows from Proposition 4.1 (iii) that d
dz is topologizable on H(D). Alterna-

tively, as mentioned before, this can be seen directly from Cauchy’s formulas
for derivatives.

(iv) The mapping

H : S (R) → s = Λ∞ ((ln(n + 1))n∈N0) , f �→ (〈f,Hn〉)n∈N0

is a topological isomorphism, where Hn, n ∈ N0, denotes the n-th Hermite
function and 〈f,Hn〉 the L2(R)-scalar product of f and Hn, see [29, Example
29.5.2]. Via this topological isomorphism the creation operator A− : S (R) →
S (R) is conjugate to the weighted backward shift B(

√
n+1)n∈N0

: s → s while
the annihilation operator A+ : S (R) → S (R) is conjugate to the weighted
forward shift F(

√
n)n∈N0

: s → s.
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Employing again Stirling’s formula as well as lim
n→∞(n+1/2) ln(1+m/n) =

m we see that

sup
m∈N0

lim sup
n→∞

ln
√

(n+m)!
n!

ln(n + m + 1)

=
1
2

sup
m∈N0

lim sup
n→∞

(
n + m + 1

2

)
ln(n + m) − m − (

n + 1
2

)
ln(n)

ln(n + m + 1)

=
1
2

sup
m∈N0

lim sup
n→∞

(
n + 1

2

)
ln

(
1 + m

n

) − m + m ln(n + m)
ln(n + m + 1)

=
1
2

sup
m∈N

m = ∞.

Hence, from Proposition 4.1 (i) we derive that A− is not topologizable, a
fortiori neither power bounded nor (uniformly) mean ergodic, on S (R).

Finally, similar as above,

sup
m∈N0

lim sup
n→∞

ln
√

(n+m)!
n!

ln(n + 1)

=
1
2

sup
m∈N0

lim sup
n→∞

(
n + 1

2

)
ln

(
1 + m

n

) − m + m ln(n + m)
ln(n + 1)

= ∞.

Therefore, applying Proposition 4.1 (ii) to k = 0, we see that A+ is not topol-
ogizable, hence neither power bounded nor mean ergodic on S (R). �
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Appl., pp. 1–20. Birkhäuser Verlag, Basel (2010)

[3] Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of
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composition operators on Banach spaces of holomorphic functions. J. Funct.
Anal. 270(12), 4369–4385 (2016)
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spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 113(4), 2959–2968
(2019)

[33] Seyoum, W., Mengestie, T., Bonet, J.: Mean ergodic composition operators on
generalized Fock spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.
114(1), 6 (2020)

Thomas Kalmes
Faculty of Mathematics
Chemnitz University of Technology
09107 Chemnitz
Germany
e-mail: thomas.kalmes@math.tu-chemnitz.de

Daniel Santacreu
Instituto Universitario Matemática Pura y Aplicada IUMPA
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