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Abstract: Let f : V(G) → {0, 1, 2} be a function defined from a connected graph G. Let Wi = {x ∈
V(G) : f (x) = i} for every i ∈ {0, 1, 2}. The function f is called a total Italian dominating function on
G if
∑

v∈N(x) f (v) ≥ 2 for every vertex x ∈ W0 and if
∑

v∈N(x) f (v) ≥ 1 for every vertex x ∈ W1 ∪W2. The
total Italian domination number of G, denoted by γtI(G), is the minimum weight ω( f ) =

∑
x∈V(G) f (x)

among all total Italian dominating functions f on G. In this paper, we provide new lower and upper
bounds on the total Italian domination number of trees. In particular, we show that if T is a tree of
order n(T ) ≥ 2, then the following inequality chains are satisfied.

(i) 2γ(T ) ≤ γtI(T ) ≤ n(T ) − γ(T ) + s(T ),

(ii) n(T )+γ(T )+s(T )−l(T )+1
2 ≤ γtI(T ) ≤ n(T )+γ(T )+l(T )

2 ,

where γ(T ), s(T ) and l(T ) represent the classical domination number, the number of support vertices
and the number of leaves of T , respectively. The upper bounds are derived from results obtained for
the double domination number of a tree.

Keywords: total Italian domination number; double domination number; domination number; trees
Mathematics Subject Classification: 05C69, 05C05

1. Introduction

In this article, we consider G as a simple graph of order n(G) = |V(G)| and size m = |E(G)|. Given
a vertex v of G, N(v) = {x ∈ V(G) : xv ∈ E(G)} and N[v] = N(v) ∪ {v}. The degree of v in G,
denoted by degG(v), is the cardinality of N(v). A vertex v ∈ V(G) is a leaf if degG(v) = 1, and v is a
support vertex if it is adjacent to a leaf. The set of leaves and support vertices are denoted by L(G) and
S(G), respectively. The values l(G) and s(G) represent the number of leaves and the number of support
vertices, respectively, i.e., l(G) = |L(G)| and s(G) = |S(G)|. A set of vertices D ⊆ V(G) is a dominating
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set of G if |N(x) ∩ D| ≥ 1 for every vertex x ∈ V(G) \ D. The domination number of G, denoted by
γ(G), is the minimum cardinality among all dominating sets of G. A γ(G)-set is a dominating set of G
of cardinality γ(G).

For an arbitrary subset P of nonnegative reals, a function f : V(G) → P is a dominating function
on G if the set {x ∈ V(G) : f (x) > 0} is a dominating set of G. In 1998, the authors of the books [1, 2]
exposed some of the first studied varieties of dominating functions in graphs. Similarly, in the last
two decades, dominating functions have been topics of interest within domination theory in graphs. In
particular, the study of the Roman dominating functions and their variants stands out.

Recently, a new variant of Roman domination, called total Italian domination number, was
introduced in [3] and independently in [4], under the name of total Roman {2}-domination number.
For a graph G with no isolated vertex, a total Italian dominating function (TIDF) on G is a dominating
function f : V(G)→ {0, 1, 2} which satisfies the following two conditions.

• Every vertex x ∈ V(G) for which f (x) = 0 satisfies that
∑

u∈N(x) f (u) ≥ 2.
• The subgraph induced by the set {x ∈ V(G) : f (x) ≥ 1} has no isolated vertex.

Observe that the function f generates three sets W0, W1 and W2, where Wi = {x ∈ V(G) : f (x) = i}
for i ∈ {0, 1, 2}. In such a sense, we write f (W0,W1,W2) so as to refer to the TIDF f . Sometimes
we will introduce the notation f (V0,V1,V2), with vertex sets Vi instead of vertex sets Wi, in order to
distinguish some functions. Given a set D ⊆ V(G), f (D) =

∑
x∈D f (x). The total Italian domination

number of G, denoted by γtI(G), is the minimum weight ω( f ) =
∑

x∈V(G) f (x) = |W1| + 2|W2| among
all TIDFs f (W0,W1,W2) on G. For simplicity, a TIDF f of weight ω( f ) = γtI(G) will be called a
γtI(G)-function.

The problem of computing the total Italian domination number of a graph is NP-hard [3, 4]. This
suggests obtaining closed formulas or giving tight bounds for this parameter. Further combinatorial
results on total Italian domination can be found for example, in [5–8]. In [4, 5] some results for the
case of trees were presented. For instance, in [4] the authors showed that

⌈
2(n(T )−l(T )+3)

3

⌉
≤ γtI(T ) ≤

3n(T )+2s(T )
4 for any tree of order n(T ) ≥ 4. Moreover, in [5] the authors characterized the trees T with

γtI(T ) = 3γ(T ).
In this paper we continue with the study of this parameter in trees. In such a sense, our main

goal is to provide some new tight bounds on the total Italian domination number in trees. The article
is organized as follows. In Section 2 we introduce some additional concepts and notation needed
to develop the remaining sections. Sections 3 and 4 are devoted to obtaining new lower and upper
bounds on the total Italian domination number in terms of order, domination number, number of
support vertices and number of leaves of a tree. In particular, we show that if T is a tree of order
n(T ) ≥ 2, then the following inequality chains hold.

(i) 2γ(T ) ≤ γtI(T ) ≤ n(T ) − γ(T ) + s(T ).
(ii) (n(T ) + γ(T ) + s(T ) − l(T ) + 1)/2 ≤ γtI(T ) ≤ (n(T ) + γ(T ) + l(T ))/2.

In addition, we show some classes of graphs for which the bounds above are achieved. We end with
a concluding remark section, where we provide two interesting consequences derived from the new
bounds given and propose some open problems.
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2. Additional concepts and notation

We first present additional necessary terminology and notation. Given a graph G and a set D ⊆
V(G), N(D) = ∪x∈DN(x) and N[D] = N(D) ∪ D, respectively. As usual, by G-D we denote the graph
obtained from G by removing all the vertices of D and all the edges incident with a vertex in D. In
addition, let Ss(G) = {x ∈ S(G) : |N(x) ∩ L(G)| ≥ 2}. Moreover, a vertex x ∈ V(G) is a semi-support
vertex if x ∈ N(S(G)) \ (S(G) ∪ L(G)). The set of semi-support vertices is denoted by SS(G). The
minimum and maximum degrees of a graph G will be denoted by δ(G) and ∆(G), respectively. For any
two vertices x, y ∈ V(G), the distance d(x, y) between x and y is the minimum length of a x − y path.
The diameter of G, denoted by diam(G), is the maximum distance among all pairs of vertices in G.

Given a rooted tree T (with root r) and a vertex v ∈ V(T ) \ {r}, we say that a descendant of v is a
vertex u ∈ V(T ) such that the unique r − u path contains v. The set of descendants of v is denoted by
D[v]. The maximal subtree at v, denoted by Tv, is the subtree of T induced by D[v].

A set D ⊆ V(G) is said to be a double dominating set (DDS) of G if |N[x] ∩ D| ≥ 2 for every vertex
x ∈ V(G). The double domination number of G, denoted by γ×2(G), is the minimum cardinality among
all DDSs of G. A γ×2(G)-set is a DDS of G of cardinality γ×2(G). This parameter was introduced in [9]
by Harary and Haynes, and has been extensively studied. For instance, we cite the recent works [10–
14]. In addition, we observe that a set D ⊆ V(G) is a DDS of G if and only if there exists a TIDF
f (W0,W1,W2) such that W1 = D and W2 = ∅. Therefore, and by definition, it follows that γtI(G) ≤
γ×2(G).

Any other definitions that are of interest, will be introduced where needed.

3. Bounds in terms of order, domination number and number of support vertices

The main goal of this section is to show that for any tree T of order n(T ) ≥ 2,

2γ(T ) ≤ γtI(T ) ≤ n(T ) − γ(T ) + s(T ). (3.1)

The previous inequality chain will be deduced as a direct consequence of Theorem 3.2 and
Corollary 3.5. Before, we shall need to introduce the following useful lemma.

Lemma 3.1. If G is a connected graph of order at least four, then there exists a γtI(G)-function
g(W0,W1,W2) such that the following conditions hold.

(a) Ss(G) ⊆ W2 and |N(x) ∩ L(G) ∩W0| ≥ |N(x) ∩ L(G)| − 1 for every x ∈ Ss(G).
(b) V≤2(G) ⊆ W0 ∪W1, where V≤2(G) = {x ∈ V(G) : degG(x) ≤ 2}.

Proof. Among all the γtI(G)-functions f (V0,V1,V2) satisfying that |Ss(G) ∩ V2| is maximum, let
g(W0,W1,W2) be a function such that |V≤2(G) ∩W2| is minimum.

We first suppose that there exists a vertex v ∈ Ss(G) \ W2. This implies that v ∈ W1 and N(v) ∩
L(G) ⊆ W1. Now, we consider the function g′(W ′

0,W
′
1,W

′
2) defined by g′(v) = 2, g′(N(v) ∩ L(G)) =

g(N(v)∩L(G))−1 and g′(x) = g(x) whenever x ∈ V(G)\({v}∪(N(v)∩L(G))). Since |N(v)∩L(G)| ≥ 2,
it follows that g′ is a γtI(G)-function such that |Ss(G)∩W ′

2| > |Ss(G)∩W2|, a contradiction. Therefore,
Ss(G) ⊆ W2. In addition, and as an immediate consequence of the previous inclusion, we have that
|N(x) ∩ L(G) ∩W0| ≥ |N(x) ∩ L(G)| − 1 for every x ∈ Ss(G). Hence, condition (a) follows.
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Finally, we proceed to prove (b). Let x ∈ V≤2(G). If x ∈ L(G), then it is straightforward that
x ∈ W0∪W1. Now, we assume that N(x) = {y, z} and without loss of generality, suppose that g(y) ≤ g(z).
If g(z) = 0 then g(y) = 0, and as a consequence, we have that N(x) ⊆ W0, which contradicts the fact
that N(x) ∩ (W1 ∪W2) , ∅ by definition. Hence, g(z) > 0. If x ∈ W2 then y ∈ W0, which implies that
the function h(V ′0,V

′
1,V

′
2) defined by h(x) = h(y) = 1 and h(u) = g(u) whenever u ∈ V(G) \ {x, y}, is

a γtI(G)-function such that |Ss(G) ∩ V ′2| = |Ss(G) ∩ W2| (observe that x < Ss(G) because |N(x)| = 2
and n(G) ≥ 4) and |V≤2(G) ∩ V ′2| = |V≤2(G) ∩ (W2 \ {x})| < |V≤2(G) ∩ W2|, a contradiction. Hence,
x ∈ W0 ∪W1, which implies that V≤2(G) ⊆ W0 ∪W1. Therefore, the proof is complete. �

In order to prove the next result, we need to introduce the following definition. A set S ⊆ V(G) is
a 2-packing set of G if N[x] ∩ N[y] = ∅ for every pair of different vertices x, y ∈ S . The 2-packing
number of G, denoted by ρ(G), is the maximum cardinality among all 2-packing sets of G.

Theorem 3.2. For any connected graph G of order at least two,

γtI(G) ≥ γ(G) + s(G).

Furthermore, for any tree T of order n(T ) ≥ 2,

γtI(T ) ≥ 2γ(T ).

Proof. If n(G) ∈ {2, 3}, then it is straightforward that γtI(G) ≥ γ(G) + s(G). From now on, we assume
that n(G) ≥ 4. Let g(W0,W1,W2) be a γtI(G)-function defined as in the proof of Lemma 3.1. Hence, g
satisfies the conditions given in Lemma 3.1. As S(G) ⊆ W1 ∪W2 and |Ss(G) ∩W2| is maximum, then
it is easy to deduce the following conditions.

(i) L(G) ⊆ W0 ∪W1.
(ii) |N(x) ∩ L(G) ∩W1| ≤ 1 for every vertex x ∈ S(G).

By the previous conditions and the fact that S(G) ⊆ W1 ∪W2, we have that |S(G) ∩W1| ≤ |L(G) ∩W1|

and that W2 ∪ (W1 \ L(G)) is a dominating set of G. Therefore,

γ(G) + s(G) = γ(G) + |S(G)|

≤ |W2 ∪ (W1 \ L(G))| + |S(G)|

≤ |W2| + |W1| − |L(G) ∩W1| + |S(G)|

≤ |W2| + |W1| − |S(G) ∩W1| + |S(G)|

≤ 2|W2| + |W1| − |S(G) ∩W1| − |S(G) ∩W2| + |S(G)|

= 2|W2| + |W1| = γtI(G),

as desired. Now, let T be any tree of order at least two and let S be a 2-packing set of T of cardinality
ρ(T ). From any γtI(T )-function f , it follows that f (N[x]) ≥ 2 for every x ∈ V(G). Since N[x]∩N[y] = ∅

for every pair of different vertices x, y ∈ S , we deduce that

γtI(T ) ≥
∑
x∈S

f (N[x]) ≥ 2|S | = 2ρ(T ).

Finally, the result follows due to the fact that γ(T ) = ρ(T ) for any tree T (see [15]). �
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Now, we consider the following family of trees. We say that a tree T belongs to the family T if it
satisfies one of the following two conditions.

• T is a subdivided star, i.e., T is a graph obtained from a star by subdividing every edge exactly
once.
• T can be obtained from a star K1,n by subdividing exactly n − 1 edges at most twice.

The following theorem provides a lower bound for any tree T with s(T ) = l(T ). In addition, this
result shows that the bounds given in Theorem 3.2 are achieved for any tree T belongs to the family T
previously defined.

Theorem 3.3. The following statements hold for any tree T of order n(T ) ≥ 2 with s(T ) = l(T ).

(i) γtI(T ) ≥ γ(T ) + ∆(T ).
(ii) γtI(T ) = γ(T ) + ∆(T ) if and only if T ∈ T .

Proof. By Theorem 3.2 and the fact that s(T ) = l(T ) ≥ ∆(T ), it follows that γtI(T ) ≥ γ(T ) + s(T ) =

γ(T ) + l(T ) ≥ γ(T ) + ∆(T ). Hence, (i) follows. Now, we proceed to prove (ii). First, we suppose
that γtI(T ) = γ(T ) + ∆(T ). From the previous inequality chain we obtain that l(T ) = ∆(T ) and that
γtI(T ) = γ(T ) + s(T ). The equality l(T ) = ∆(T ) implies that V(T ) \ {v} ⊆ V≤2(T ), where v ∈ V(T ) is a
vertex of maximum degree. Let g(W0,W1,W2) be a γtI(T )-function which satisfies Lemma 3.1 (notice
that n(T ) ≥ 4 because s(T ) = l(T )). Thus, S(T ) \ {v} ⊆ V≤2(T ) ⊆ W0 ∪ W1. In addition, as γtI(T ) =

γ(T ) + s(T ), then we have equalities through the inequality chain given in the proof of Theorem 3.2. In
particular, we have that |W2 ∪ (W1 \L(T ))| = γ(T ), which implies that D = W2 ∪ (W1 \L(T )) is a γ(T )-
set. In order to deduce that T ∈ T , we first show that d(v, h) ≤ 3 for every h ∈ L(T ). For this purpose,
we suppose that there exists a leaf h′ such that d(v, h′) ≥ 4. Let us consider the path v = v0v1 · · · vr = h′

(r ≥ 4). Since V(T )\{v} ⊆ V≤2(T ), it follows by Lemma 3.1 that V(T )\{v} ⊆ W0∪W1, and without loss
of generality, we can assume that vr, vr−1, vr−3 ∈ W1, vr−2 ∈ W0 and vr−4 ∈ W1 ∪W2. Hence, D \ {vr−3}

is a dominating set of T of cardinality |D| − 1 = γ(T ) − 1, a contradiction. Therefore, d(v, h) ≤ 3
for every h ∈ L(T ), as required. Now, we suppose that T is not a subdivided star and that v < S(T ).
Hence, there exists a path vv1v2v3 with v3 ∈ L(T ). As above, and without loss of generality, we can
assume that v ∈ W1 ∪W2 and that v1 ∈ W0. Since S(T ) ⊆ W1 and N(v)∩W1 , ∅, it follows that D \ {v}
is a dominating set of T of cardinality |D| − 1 = γ(T ) − 1, a contradiction. Therefore, either T is a
subdivided star or T can be obtained from a star K1,n by subdividing exactly n − 1 edges at most twice
(recall that s(T ) = l(T )). That is, T ∈ T , as required. Finally, it is straightforward to observe that if
T ∈ T , then γtI(T ) = γ(T ) + ∆(T ). �

Theorem 3.4. If T is a tree of order n(T ) ≥ 2, then

γ×2(T ) ≤ n(T ) − γ(T ) + s(T ).

Proof. Let S be a 2-packing set of T of cardinality ρ(T ) such that |S ∩ L(T )| is maximum. By the
maximality of |S ∩ L(T )|, it follows that |N(x) ∩ L(T ) ∩ S | = 1 for every x ∈ S(T ), which implies
that |S ∩ L(T )| = |S(T )|. Let D = (V(T ) \ S ) ∪ L(T ). Observe that |D| = n(T ) − |S | + |S ∩ L(T )| =
n(T )−ρ(T ) + s(T ). Now, we proceed to prove that D is a DDS of T . As V(T ) \D ⊆ S \L(T ), it is easy
to observe that |N(x) ∩ D| ≥ 2 for any vertex x ∈ V(T ) \ D. Now, if x ∈ D, then N(x) ∩ D , ∅ because
N(x) * S . Hence, D is a DDS of T , as desired. Therefore, γ×2(T ) ≤ |D| = n(T ) − ρ(T ) + s(T ). Finally,
the result follows due to the fact that γ(T ) = ρ(T ) for any tree T (see [15]). �
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The following result is an immediate consequence of the previous theorem and the fact that γtI(T ) ≤
γ×2(T ) for any nontrivial tree T .

Corollary 3.5. If T is a tree of order n(T ) ≥ 2, then

γtI(T ) ≤ n(T ) − γ(T ) + s(T ).

To see the tightness of the bounds given in Theorem 3.4 and Corollary 3.5 we consider for instance
the path P3k+1 with k ≥ 1. For this particular tree, it is easy to deduce that γ×2(P3k+1) = γtI(P3k+1) =

2k + 2 = n(P3k+1) − γ(P3k+1) + s(P3k+1).

4. Bounds in terms of order, domination number, number of support vertices and number of
leaves

The main goal of this section is to show that for any tree T of order n(T ) ≥ 2,

n(T ) + γ(T ) + s(T ) − l(T ) + 1
2

≤ γtI(T ) ≤
n(T ) + γ(T ) + l(T )

2
. (4.1)

The previous upper bound is a direct consequence of the well-known relationship γtI(T ) ≤ γ×2(T ) and
the inequality γ×2(T ) ≤ (n(T ) + γ(T ) + l(T ))/2 given by Cabrera-Martı́nez in [10]. In order to deduce
the lower bound, we first need to state the following useful lemmas.

Lemma 4.1. [16] The following statements hold for any tree T of order n(T ) ≥ 2.

(i) If T is obtained from any nontrivial tree T ′ by attaching a path P2 to any vertex u ∈ S(T ′) ∪
SS(T ′), then γ(T ) = γ(T ′) + 1.

(ii) If T is obtained from any nontrivial tree T ′ by attaching a path P3 to any vertex u ∈ V(T ′), then
γ(T ) = γ(T ′) + 1.

Lemma 4.2. If T is a tree obtained from any nontrivial tree T ′ by attaching a path P3 to any vertex
u ∈ V(T ′), then

γtI(T ) ≥ γtI(T ′) + 2.

Proof. Let T be a tree obtained from T ′ by adding the path ud−1udud+1 and the edge uud−1, where
u ∈ V(T ′). By Lemma 3.1-(b) and the fact that ud ∈ S(T ), ud+1 ∈ L(T ) and ud−1 ∈ V≤2(T ), there exists
a γtI(T )-function f such that f (ud) = f (ud+1) = 1 and f (ud−1) ≤ 1. We next define a function f ′ on T ′

as follows.

(a) If f (ud−1) = 0, then f ′(x) = f (x) whenever x ∈ V(T ′).
(b) If f (ud−1) = 1 and f (u) = 0, then f ′(u) = 1 and f ′(x) = f (x) whenever x ∈ V(T ′) \ {u}.
(c) If f (ud−1) = 1 and f (u) > 0, then f ′(u′) = 1 for some u′ ∈ N(u)\{ud−1} and f ′(x) = f (x) whenever

x ∈ V(T ′) \ {u′}.

It is straightforward that the function f ′, defined through any of the three previous options, is a TIDF
on T ′ with weight ω( f ) − 2. Hence, γtI(T ′) + 2 ≤ ω( f ′) + 2 = ω( f ) = γtI(T ), as desired. �

Theorem 4.3. If T is a tree of order n(T ) ≥ 2, then

γtI(T ) ≥
n(T ) + γ(T ) + s(T ) − l(T ) + 1

2
.
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Proof. We proceed by applying induction on the order of T . If n(T ) ∈ {2, 3}, then it is straightforward
that γtI(T ) ≥ (n(T ) + γ(T ) + s(T ) − l(T ) + 1)/2. These particular cases establish the base cases. Let T
be a tree of order at least four, and P = u1u2 · · · ud+1 be a diametrical path in T , where d = diam(T ).
Observe that u1, ud+1 ∈ L(T ). From now on, we consider that each tree T ′ with n(T ′) < n(T ) satisfies
that γtI(T ′) ≥ (n(T ′) + γ(T ′) + s(T ′) − l(T ′) + 1)/2. Now, we differentiate the following cases.

Case 1. degT (ud) ≥ 3. In this case, we consider that T ′ = T − {ud+1}. Let g(W0,W1,W2) be a γtI(T )-
function that satisfies the conditions of Lemma 3.1. By the condition (a) it follows that ud ∈ W2 and,
without loss of generality, we can assume that ud+1 ∈ W0. So, the function g restricted to V(T ′) is
a TIDF on T ′. Hence, γtI(T ′) ≤ g(V(T ′)) = ω(g) − g(ud+1) = γtI(T ). In addition, as there exists a
γ(T )-set containing no leaves, it is straightforward that γ(T ′) = γ(T ). Thus, by the inequalities above,
the induction hypothesis and the fact that n(T ) = n(T ′) + 1, s(T ) = s(T ′) and l(T ) = l(T ′) + 1, we have
the following desired result.

γtI(T ) ≥ γtI(T ′) ≥
n(T ′) + γ(T ′) + s(T ′) − l(T ′) + 1

2

=
n(T ) − 1 + γ(T ) + s(T ) − (l(T ) − 1) + 1

2

=
n(T ) + γ(T ) + s(T ) − l(T ) + 1

2
.

As can be seen from the proof above, the position of vertex ud ∈ S(T ) is not relevant. Hence, we
may henceforth assume that Ss(T ) = ∅.

Case 2. degT (ud) = 2 and degT (ud−1) ≥ 3. Let T ′ = T − {ud+1, ud}. Let g(W0,W1,W2) be a γtI(T )-
function such that |W1 ∩ L(T )| is maximum.

Subcase 2.1. The function g restricted to V(T ′) is a TIDF on T ′. As g(ud+1) + g(ud) = 2, it follows
that γtI(T ′) ≤ g(V(T ′)) = ω(g) − (g(ud+1) + g(ud)) = γtI(T ) − 2. Also, as degT (ud−1) ≥ 3, it follows that
ud−1 ∈ S(T ′) ∪ SS(T ′), which leads to γ(T ) = γ(T ′) + 1 by Lemma 4.1-(i). Thus, by the inequalities
above, the induction hypothesis and the fact that n(T ) = n(T ′)+2, s(T ) = s(T ′)+1 and l(T ) = l(T ′)+1,
we have the following desired result.

γtI(T ) ≥ γtI(T ′) + 2 ≥
n(T ′) + γ(T ′) + s(T ′) − l(T ′) + 1

2
+ 2

=
n(T ) − 2 + γ(T ) − 1 + s(T ) − 1 − (l(T ) − 1) + 1

2
+ 2

>
n(T ) + γ(T ) + s(T ) − l(T ) + 1

2
.

Subcase 2.2. The function g restricted to V(T ′) is not a TIDF on T ′. Let us observe that
N(ud−1) \ {ud, ud−2} ⊂ S(T ) ∪ L(T ) and ud−1 < Ss(T ). If degT (ud−1) ≥ 4 or g(ud−1) = 1, then
g(N(ud−1) \ {ud, ud−2}) > 0, and as a consequence, we obtain that g restricted to V(T ′) is a TIDF
on T ′, a contradiction. Therefore, degT (ud−1) = 3 and g(ud−1) , 1.

First, we consider that g(ud−1) = 0. In this case, it follows that ud−1 ∈ SS(T ), |V(Tud−1)| = 5 and
V(Tud−1) \ {ud−1} ⊆ W1 (recall that |W1 ∩ L(T )| is maximum). Let T ′′ = T − V(Tud−1). Notice that g
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restricted to V(T ′′) is a TIDF on T ′′, which implies that γtI(T ′′) ≤ g(V(T ′′)) = ω(g) − g(V(Tud−1)) =

γtI(T ) − 4. Also, it is straightforward that γ(T ) ≤ γ(T ′′) + 2. Thus, by the inequalities above, the
induction hypothesis and the fact that n(T ) = n(T ′′) + 5, s(T ) ≤ s(T ′′) + 2 and l(T ) ≥ l(T ′′) + 1, we
have the following desired result.

γtI(T ) ≥ γtI(T ′′) + 4 ≥
n(T ′′) + γ(T ′′) + s(T ′′) − l(T ′′) + 1

2
+ 4

=
n(T ) − 5 + γ(T ) − 2 + s(T ) − 2 − (l(T ) − 1) + 1

2
+ 4

=
n(T ) + γ(T ) + s(T ) − l(T ) + 1

2
.

Finally, we consider that g(ud−1) = 2. This implies that ud−1 ∈ S(T ), |V(Tud−1)| = 4 and ud, ud+1 ∈ W1.
If g(N[ud−2] \ {ud−1}) > 0, then the function g′(W ′

0,W
′
1,W

′
2), defined as g′(x) = 1 whenever x ∈ V(Tud−1)

and g′(x) = g(x) otherwise, is a γtI(T )-function satisfying that |W ′
1 ∩ L(T )| > |W1 ∩ L(T )|, which is a

contradiction. Therefore, N[ud−2] \ {ud−1} ⊆ W0, which implies that degT (ud−2) = 2 as a consequence
of the maximality of |W1 ∩ L(T )|. Let T ∗ = T − V(Tud−2). Since ud−2 ∈ W0, it follows that g restricted
to V(T ∗) is a TIDF on T ∗, which implies that γtI(T ∗) ≤ g(V(T ∗)) = ω(g) − g(V(Tud−2)) = γtI(T ) − 4.
Notice that γ(T ) ≤ γ(T ∗) + 2, n(T ) = n(T ∗) + 5, s(T ) ≤ s(T ∗) + 2 and l(T ) ≥ l(T ∗) + 1. Hence, and
proceeding analogously to the previous case (g(ud−1) = 0), it follows the following desired inequality.

γtI(T ) ≥
n(T ) + γ(T ) + s(T ) − l(T ) + 1

2
.

Case 3. degT (ud−1) = degT (ud) = 2. In this case, let T ′ = T − {ud−1, ud, ud+1}. By Lemmas 4.2 and
4.1-(ii) we have that γtI(T ) ≥ γtI(T ′) + 2 and γ(T ) = γ(T ′) + 1, respectively. Now, we observe that
s(T ′) ≥ s(T ) − 1 and l(T ′) ≤ l(T ). Next, we analyse the following two subcases.

Subcase 3.1. s(T ′) ≥ s(T ) or l(T ′) ≤ l(T ) − 1. In this subcase, by the previous inequalities, the
induction hypothesis and the fact that n(T ) = n(T ′) + 3, we have the following desired result.

γtI(T ) ≥ γtI(T ′) + 2 ≥
n(T ′) + γ(T ′) + s(T ′) − l(T ′) + 1

2
+ 2

≥
n(T ) − 3 + γ(T ) − 1 + s(T ) − l(T ) + 1

2
+ 2

=
n(T ) + γ(T ) + s(T ) − l(T ) + 1

2
.

Subcase 3.2. s(T ′) = s(T ) − 1 and l(T ′) = l(T ). These previous conditions lead to degT (ud−2) =

2 and ud−3 ∈ S(T ). Let T ′′ = T − {ud, ud+1} and let g(W0,W1,W2) be a γtI(T )-function such that
|W1 ∩ {ud−2, ud−1, ud, ud+1}| is maximum. Since ud−3 ∈ W1 ∪W2, we can assume that ud−2, ud, ud+1 ∈ W1

and ud−1 ∈ W0. Notice that the function g′, defined by g′(ud−1) = 1 and g′(x) = g(x) if x ∈ V(T ′′)\{ud−1},
is a TIDF on T ′′. Therefore, γtI(T ′′) + 1 ≤ ω(g′) + 1 = ω(g) = γtI(T ). In addition, we can deduce that
γ(T ′′) = γ(T ) because ud−3 ∈ S(T )∩S(T ′′). By the previous inequalities, the induction hypothesis and
the fact that n(T ) = n(T ′′) + 2, s(T ′′) = s(T ) and l(T ′′) = l(T ), we have the following desired result.
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γtI(T ) ≥ γtI(T ′′) + 1 ≥
n(T ′′) + γ(T ′′) + s(T ′′) − l(T ′′) + 1

2
+ 1

=
n(T ) − 2 + γ(T ) + s(T ) − l(T ) + 1

2
+ 1

=
n(T ) + γ(T ) + s(T ) − l(T ) + 1

2
.

Therefore, and as consequence of the three cases above, the proof follows. �

In order to show the sharpness of the lower bound given in Theorem 4.3, we need to define the next
family of trees. Given an integer r ≥ 2, the tree Gr is constructed from the path P2r+1 = v1v2 · · · v2r+1

and the path P1 by taking one copy of P2r+1 and r +1 copies of P1 and adding edges between the vertex
v2i+1 and the i-th copy of P1 with i ∈ {0, . . . , r}. In Figure 1 we can show the tree G2. Observe that
n(Gr) = 3r + 2, γ(Gr) = s(Gr) = l(Gr) = r + 1 and γtI(Gr) = 2r + 2. Therefore,

γtI(Gr) = 2r + 2 =
(3r + 2) + (r + 1) + 1

2
=

n(Gr) + γ(Gr) + s(Gr) − l(Gr) + 1
2

.

Figure 1. The graph G2.

5. Conclusions

In this article we studied the total Italian domination number of nontrivial trees. In particular,
we obtained new lower and upper bounds on this domination parameter in terms of order, domination
number, number of support vertices and number of leaves of a nontrivial tree. In addition, we discussed
some extreme cases.

The problem of computing γtI(T ) for trees T can be solved in polynomial time according to [4].
Nevertheless, through the relationships given in this article, new results can be obtained, as well as
defining some new open problems. The following theorem provides two consequences derived from
inequality chain (3.1) and the bound γ(T ) ≥ (n(T ) − l(T ) + 2)/3 given in [17].

Theorem 5.1. The following statements hold for any tree T of order n(T ) ≥ 3.

(i) γ(T ) ≤ n(T )+s(T )
3 .

(ii) γtI(T ) ≤ 2n(T )+l(T )+3s(T )−2
3 .

Proof. By Theorem 3.2 and Corollary 3.5, we have that 2γ(T ) ≤ γtI(T ) ≤ n(T ) − γ(T ) + s(T ). From
this previous inequality chain we deduce that γ(T ) ≤ (n(T )+ s(T ))/3, which completes the proof of (i).

Finally, we proceed to prove (ii). By Corollary 3.5 and the fact that γ(T ) ≥ (n(T ) − l(T ) + 2)/3
(see [17]), it follows that

γtI(T ) ≤ n(T ) − γ(T ) + s(T ) ≤ n(T ) −
n(T ) − l(T ) + 2

3
+ s(T ) =

2n(T ) + l(T ) + 3s(T ) − 2
3

,
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which completes the proof. �

In addition, the bound γtI(T ) ≥ d(2(n(T ) − l(T ) + 3))/3e given in [4] can also be deduced as a
consequence of the relationships γtI(T ) ≥ 2γ(T ) and γ(T ) ≥ (n(T )−l(T )+2)/3 and the characterization
of the previous equality given by Lemańska [17].

Finally, we propose some open problems that arise from the results obtained in the article.

(i) Characterize the trees with γtI(T ) = 2γ(T ).
(ii) Characterize the trees with γtI(T ) = n(T ) − γ(T ) + s(T ) or γ×2(T ) = n(T ) − γ(T ) + s(T ).

(iii) Characterize the trees attaining the bounds given in the inequality chain (4.1).
(iv) Obtain new lower and upper bounds on the total Italian domination number of trees.
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