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Valencia 46022, Spain

2 Escuela de Matemática, Universidad Autónoma de Santo Domingo (UASD), Alma Máter, 10105
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Abstract: In this paper, a new fourth-order family of iterative schemes for solving nonlinear equations
has been proposed. This class is parameter-dependent and its numerical performance depends on the
value of this free parameter. For studying the stability of this class, the rational function resulting
from applying the iterative expression to a low degree polynomial was analyzed. The dynamics of this
rational function allowed us to better understand the performance of the iterative methods of the class.
In addition, the critical points have been calculated and the parameter spaces and dynamical planes
have been presented, in order to determine the regions with stable and unstable behavior. Finally,
some parameter values within and outside the stability region were chosen. The performance of these
methods in the numerical section have confirmed not only the theoretical order of convergence, but
also their stability. Therefore, the robustness and wideness of the attraction basins have been deduced
from these numerical tests, as well as comparisons with other existing methods of the same order of
convergence.
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1. Introduction

An active topic in numerical analysis is the estimation of the solution of nonlinear equations
and systems of equations by means of iterative processes. This activity results in a large variety of
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publications from different authors, such as Petković et al. [30] in the scalar case, Ahmad et al. [1], or
Zhanlav et al. [36], among other researchers in vectorial problems.

The limited existence of analytical methods to find the solution compels us to use iterative methods
to obtain an approximation. These schemes generate a sequence of real numbers that converges to a
solution of the equation f (x) = 0, if it exists, being f : I ⊂ R→ R.

A scalar iterative method is defined by a fixed-point expression

xk+1 = g(xk), k = 0, 1, 2, . . . ,

where g : R→ R is a fixed-point function. These methods can be classified as one-point or multipoint
schemes. In the first ones, the k + 1 iteration is obtained using only functional evaluations at the k-th
iteration of f and its derivatives. Meanwhile in multipoint methods, the k + 1 iteration is obtained
using functional evaluations at different points, which are taken as intermediate steps of the same
iteration [34].

In this manuscript, by using the weight-function technique, we present a parametric family of
optimal iterative schemes of fourth-order involving derivatives at different points. The stability of
this class is studied in order to select its most stable elements and refuse the unstable ones.

There are problems in engineering, technology and in different fields of science that require the
solution of nonlinear equations. For example, Qureshi et al. in [31] proposed a hybrid three-step
iterative method for solving nonlinear equations in the field of medical science (blood rheology,
population growth and neurophysiology). Yaseen et al. in [35] applied Jarratt-type methods to global
positioning systems problems. Also, Chand et al. in [11] applied weight functions on several methods:
Potra-Pták procedure and two iterative schemes (optimal and non-optimal, respectively) of fourth and
sixth orders of convergence and a family of optimal eighth order methods, aiming to solve problems
related to the effect of water flow, other factors in the flow of open channels (rivers or canals), and the
determination of fluid flow through tubes and pipes [9].

Ostrowski in [29] defines the efficiency index of an iterative method as I = p1/d, where p is the
convergence order and d is the number of functional evaluations per iteration. According to Kung-
Traub’s conjecture [27]: The convergence order of an iterative method without memory cannot be
greater than 2d−1 (called optimal order), where d is the number of functional evaluations per iteration.
As long as the condition established in the conjecture is satisfied, the method is considered optimal.
For a deeper insight in optimal methods, we refer to [18].

Regarding the speed at which an iterative method reaches the zero of the equation f (x) = 0, it is
possible to define a aproximated computational order of convergence (ACOC) [17], which considers
the rate at which successive approximations approach the zero to estimate the order of convergence of
the method:

p ≈ ACOC =
ln (|xk+1 − xk|/|xk − xk−1|)

ln (|xk − xk−1|/|xk−1 − xk−2|)
.

On the other hand, the dynamical analysis has become a very useful tool for studying iterative
methods (see the work of different authors and their colleagues as Behl in [6], Campos [10],
Cordero [16], Khirallah [26], Kansal [25], Geum [22], Sayevand [32], or Scott in [33]) since it enables
us to classify different iterative formulas, not only from the point of view of their order of convergence,
but from the analysis of how these formulas behave depending on the chosen initial estimation. In
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addition, it provides valuable information about the stability and reliability of the iterative method.
The dynamical analysis characterizes the stability of the fixed points of the rational function R resulting
from the application of the iterative expression on a low-degree polynomial p(x). This study, joined
with that of the existence of critical points, gives us a clear idea of the best elements of a class of
iterative methods. Moreover, it is possible to obtain graphical representations that allow us to compare
methods beyond mere numerical results. The dynamical plane allows us to visualize the stability of
a method, the size of its convergence basins and the viability of certain initial estimations. Also,
for uniparametric families of methods, the parameter plane will contribute to the choice of the most
suitable family member.

Prior to performing the dynamical analysis of the family of iterative methods when applied over a
low degree polynomial, we must remember a few ideas and definitions of complex dynamics [3, 7].
Given a rational operator R : Ĉ→ Ĉ, where Ĉ is the Riemann sphere, the orbit of a point x0 is defined
as the sequence {

x0,R(x0),R2(x0), . . . ,Rn(x0), . . .
}
.

A point x∗ ∈ Ĉ is a k-periodic point of R if it is kept invariant by the action of operator after k
iterations, that is, Rk(x∗) = x∗; if k = 1, it is called a fixed point. A periodic point is attracting if
|R′(x∗) · (R1(x∗))′ · · · (Rk−1(x∗))′| < 1, superattracting if |R′(x∗) · (R1(x∗))′ · · · (Rk−1(x∗))′| = 0, repulsive
if |R′(x∗) · (R1(x∗))′ · · · (Rk−1(x∗))′| > 1 and neutral or parabolic if |R′(x∗) · (R1(x∗))′ · · · (Rk−1(x∗))′| = 1.
Furthermore, if x∗ ∈ Ĉ is a fixed point, but not a zero of the polynomial p(x), then it is called a strange
fixed point.

On the other hand, a point xc is a critical point of R if R′(xc) = 0. Free critical points are those that
do not coincide with the zeros of the polynomial.

The basin of attraction of an attracting fixed (or periodic) point x∗ is defined as

A(x∗) = {x0 ∈ Ĉ : Rn(x0)→ x∗, n→ ∞}.

Moreover, the Fatou set of the rational function R (see [21]), denoted by F (R), is the set of points
x∗ ∈ Ĉ whose orbits tend to an attractor of any kind. The Julia set [24], denoted by J(R), is the
complementary of the Fatou set in Ĉ, which includes the repulsive and neutral points and defines the
boundaries between basins of attraction [12]. The key role of the critical points is stated in the following
classical result (see, for example, [19]), which sets a relationship between the connected component
of a basin of attraction including the attractive or periodic point (called immediate basin of attraction)
and the critical point.

Theorem 1 (Fatou-Julia Theorem). Let R be a rational function. The immediate basin of attraction of
a periodic (or fixed) attractor point contains at least one critical point.

In order to perform the dynamical analysis, we use an arbitrary quadratic polynomial p(x) = (x −
a)(x − b), where a, b ∈ C and Möbius conjugacy map considered by Blanchard [8],

M(x) =
x − a
x − b

,

which satisfies the properties: M(∞) = 1, M(a) = 0, M(b) = ∞.

It is easy to prove that the proposed class of iterative methods LCT, defined in Section 2, satisfies
the scaling theorem (see, for example, [2]). So, the dynamical performance of the rational function
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obtained by applying the class of methods on quadratic polynomials is equivalent by conjugation.
We then use the Möbius conjugacy map to get a conjugate rational function that does not depend
on the roots of the polynomial p(x) used. We discuss the discrete dynamical systems: We obtain
the asymptotic performance of fixed points. In addition, we calculate the critical points and generate
the parameter planes associated with the free critical points showing the stable and unstable regions,
depending on the chosen parameter. These elements, therefore, allow us to determine which members
of the class of iterative methods show more stable behavior.

This paper is organized as follows: In Section 2, we present the new class of multipoint methods
and analyze its convergence. Using complex dynamics tools in Section 3, we study the dependence
on initial estimates of the proposed family. These tools allow us to transform the analysis of the
method into the study of a rational function obtained by applying the method over a generic quadratic
polynomial. In Section 4, we perform some numerical tests, selecting parameter values within and
outside the stability region of the parameter plane obtained in the previous section. Also, a comparison
with other known methods is made. Finally, Section 5 is devoted to exhibit some conclusions.

2. Development of a new class of iterative schemes

Chun in [15] stated that weight functions with a parameter can be successfully introduced into an
iteration process to increase its order of the convergence. Also, Artidiello et al. proposed families of
iterative schemes (see [4, 5]) by using the weight function technique.

In this section, we present a new class of fourth-order multipoint Newton-like methods by means of
a weight function Hm(µ), that we deonote by LCT:

yk = xk − θ
f (xk)
f ′(xk)

,

xk+1 = xk −
[
Hm(µ)

] f (xk)
f ′(xk)

, k = 0, 1, 2, . . . , (2.1)

where Hm(µ) = m1 + m2 µ(xk, yk) + m3
[
µ(xk, yk)

]−1
+ m4

[
µ(xk, yk)

]2 is a real-valued weight function,

µ(xk, yk) =
f ′(xk)
f ′(yk)

, and θ, mi, i = 1, 2, 3, 4 are arbitrary parameters.

The next result states the conditions under which the class defined in (2.1) reaches order of
convergence four. Hence, the methods that compose it are optimal in the sense of Kung-Traub’s
conjecture [27].

Theorem 2 (LCT family convergence order). Let f : I ⊂ R → R be a differentiable enough function
defined in the open interval I. Let us also assume that ξ is a simple zero of f and x0 is sufficiently
close to ξ, then family (2.1), which we denote by LCT, has local order of convergence 4, as far as

m1 =
5
8
− m2, m3 =

m2

3
, m4 =

3
8
−

m2

3
, and θ = 2

3 .
In this case, the error equation obtained is

ek+1 =
1

81

(
(117 + 64m2)C3

2 − 81C2C3 + 9C4

)
e4

k + O (ek)5 ,

where Cq =
1
q!

f (q)(ξ)
f ′(ξ)

for q = 2, 3, ..., and ek = xk − ξ.
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Proof. Let us consider ξ as a zero of f (x), such that f ′(ξ) , 0 and let xk = ξ + ek. Using a Taylor series
expansion of f (xk) and f ′(xk) around x = ξ, we get

f (xk) = f (ξ + ek)

= f ′ (ξ)
[
ek + C2e2

k + C3e3
k + C4e4

k + C5e5
k

]
+ O

(
e6

k

)
, (2.2)

and

f ′ (xk) = f ′ (ξ + ek)

= f ′ (ξ)
[
1 + 2C2ek + 3C3e2

k + 4C4e3
k + 5C5e4

k

]
+ O

(
e5

k

)
, (2.3)

respectively.
By direct division of (2.2) and (2.3), we obtain

f (xk)
f ′ (xk)

= ek −C2e2
k +

(
2C2

2 − 2C3

)
e3

k +
(
7C2C3 − 3C4 − 4C3

2

)
e4

k + O
(
e5

k

)
. (2.4)

Since xk = ξ + ek, the error at the first step is

yk − ξ = (1 − θ) ek + θC2e2
k − 2θ

(
C2

2 −C3

)
e3

k − θ
(
7C2C3 − 3C4 − 4C3

2

)
e4

k + O
(
e5

k

)
. (2.5)

Thus,

f (yk) = f ′ (ξ)
[
(1 − θ) ek +

(
1 − θ + θ2

)
C2e2

k

+
(
−2θ2C2

2 −
(
−1 + θ − 3θ2 + θ3

)
C3

)
e3

k (2.6)

+
(
5θ2C3

2 + θ2 (−10 + 3θ) C2C3 +
(
1 − θ + 6θ2 − 4θ3 + θ4

)
C4

)
e4

k

]
+ O

(
e5

k

)
and

f ′ (yk) = f ′ (ξ)
[
1 − 2 (−1 + θ) C2ek +

(
2θC2

2 + 3 (−1 + θ)2 C3

)
e2

k

+2
(
−2θC3

2 + (5 − 3θ) θC2C3 − 2 (−1 + θ)3 C4

)
e3

k

]
+ O

(
e4

k

)
. (2.7)

Now, let us consider the µ = µ(xk, yk) function as

µ =
f ′(xk)
f ′(yk)

= 1 + 2θC2ek + θ
(
(6 + 4θ) C2

2 − 3 (2 − θ) C3

)
e2

k (2.8)

+4θ
(
2
(
2 − 3θ + θ2

)
C3

2 +
(
−7 + 9θ − 3θ2

)
C2C3 +

(
3 − 3θ + θ2

)
C4

)
e3

k + O
(
e4

k

)
.

We propose the real-valued weight function depending of parameters m1, m2, m3 and m4 as

Hm(µ) = m1 + m2µ(xk, yk) + m3
[
µ(xk, yk)

]−1
+ m4

[
µ(xk, yk)

]2

= (m1 + m2 + m3 + m4) + 2(m2 − m3 + 2m4)θC2ek

+θ
(
2(3m3 + 6m4(−1 + θ) + m2(−3 + 2θ))C2

2 − 3(m2 − m3 + 2m4)(−2 + θ)C3

)
e2

k
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+4θ
(
2
(
−2m3 + m2

(
2 − 3θ + θ2

)
+ m4

(
4 − 9θ + 4θ2

))
C3

2 (2.9)

−
(
m3(−7 + 3θ) + m2

(
7 − 9θ + 3θ2

)
+ m4

(
14 − 24θ + 9θ2

))
C2C3

+(m2 − m3 + 2m4)
(
3 − 3θ + θ2

)
C4

)
e3

k + O
(
e4

k

)
.

Combining (2.1) and (2.9), we obtain the error equation

ek+1 = (1 − m1 − m2 − m3 − m4)ek + [m1 + (1 − 2θ)m2 + (1 − 2θ)m3 + (1 − 4θ)m4] C2e2
k

+
[(

2m1 + (2 − 6θ + 3θ2)m2 + (2 + 6θ − 3θ2)m3 + (2 − 12θ + 6θ2)m4

)
C3

−2
(
m1 + (1 − 4θ + 2θ2)m2 + (1 + 4θ)m3 + (1 − 8θ + 6θ2)m4

)
C2

2

]
e3

k

+
[(

4m1 + (4 − 26θ + 28θ2 − 8θ3)m2 + (4 + 26θ)m3 + (4 − 52θ + 84θ2 (2.10)

−32θ3)m4

)
C3

2 +
(
−7m1 − (7 + 38θ − 39θ2 + 12θ3)m2 + (−7 − 38θ

+15θ2)m3 + (−7 + 76θ − 102θ2 + 36θ3)m4

)
C2C3 +

(
3m1 + (3 − 12θ + 12θ2

−4θ3)m2 + (3 + 12θ + 12θ2 + 4θ3)m3 + (3 − 24θ + 24θ2 − 8θ3)m4

)
C4

]
e4

k + O
(
e5

k

)
.

In order to attain a class of iterative schemes with fourth-order of convergence, the coefficients of ek,
e2

k and e3
k in (2.10) must be simultaneously zero. We then solve the resulting system of equations to

obtain the parametric solution:

θ =
2
3
,m1 =

5
8
− m2,m3 =

m2

3
,m4 =

3
8
−

m2

3
,∀m2 ∈ R. (2.11)

By replacing (2.11) in (2.10), we have a family of fourth-order optimal methods, with error equation

ek+1 =
1

81

(
(117 + 64 m2)C3

2 − 81C2C3 + 9C4

)
e4

k + O (ek)5 .

�

We have proven that the convergence order of the proposed class is 4 and it requires three functional
evaluations per iteration: f (xk), f ′(xk) and f ′(yk). Therefore, d = 3 and the proposed family of methods
is optimal under Kung-Traub’s conjecture [27], with an efficiency index of I = p1/d = 41/3 ≈ 1.5874.

In the next section, we analyze the behavior of the class of iterative schemes using complex
dynamics tools, which transforms the study of the family into the analysis of its associated rational
function when the class is applied on a generic quadratic polynomial.

3. Stability of the parametric family

The proposed class of iterative schemes (2.11) holds a great amount of elements, as the only
restrictions are those required in Theorem 2. Selecting a member requires to choose a specific weight
function satisfying those conditions and, among all the infinite members that this weight function
defines, all the schemes have the same order of convergence. The next question to be answered is
how to choose the final members in order to be applied on a problem. A key characteristic of iterative
methods, as important as the order of convergence, is the stability. This fact allows us to select the
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most appropriate members to be used, as the notion of stability involves the dependence on the initial
estimation.

The usual reasons for the lack of convergence of an iterative method are divergence (convergence
to infinity), a bad initial estimation and the presence of attracting elements (different to the solutions)
that makes the iterate generate a periodic orbit that never converges. So, fixed (and periodic points)
are the object of this study. As the most simple nonlinear function is a quadratic polynomial, we
make the stability analysis on a generic one. The obtained results can not be directly extrapolated to
any nonlinear function, but in practice the bad performance on quadratic polynomials yields to the
worst performance on other functions. Moreover, the number of attracting elements is defined by the
amount of free critical points (see Theorem 1). Therefore, the quantity of critical points and the basins
of attraction that they hold are necessary to completely understand the performance of the different
elements of the class.

In the family of methods proposed in (2.1), let us denote m2 = α. Using conditions defined in (2.11),
we have

yk = xk −
2
3

f (xk)
f ′(xk)

, k = 0, 1, 2, . . . (3.1)

xk+1 = xk −

(5
8
− α

)
+ α

f ′(xk)
f ′(yk)

+
α

3
f ′(yk)
f ′(xk)

+

(
3
8
−
α

3

) (
f ′(xk)
f ′(yk)

)2 f (xk)
f ′(xk)

.

Applying the LCT family on the quadratic polynomial p(x) = (x − a)(x − b), where a, b ∈ C and
applying the Möbius conjugacy map, we obtain the rational operator Lgp,α(x),

Lgp,α(x) = x + (x − a)(x − b)
(

5 − 8α
8(a + b − 2x)

+
3(a + b − 2x)α

3a2 + 2ab + 3b2 − 8(a + b)x + 8x2 (3.2)

+
(3a2 + 2ab + 3b2 − 8(a + b)x + 8x2)α

9(a + b − 2x)3 −
3(a + b − 2x)3(−9 + 8α)

8(3a2 + 2ab + 3b2 − 8(a + b)x + 8x2)2

)
,

with α ∈ C as arbitrary parameter. The rational operator associated to that family of methods, using
Möbius conjugacy map, is

Rα(x) =
(
T ◦ Lgp,α ◦ T−1

)
(x) (3.3)

= x4 81x4 + 270x3 + 414x2 + 342x + (117 + 64α)
(117 + 64α)x4 + 342x3 + 414x2 + 270x + 81

, (3.4)

depending on α.
Factor x4 obtained in (3.3) shows that the family of methods, for any parameter α, has order of

convergence 4 (at least over quadratic polynomials) and Rα(x) does not depend on parameters a and b,
as it satisfies the scaling theorem.

3.1. Fixed points: calculation and stability analysis

Previously, we obtained the rational operator and with it, we now get the fixed points of operator
Rα(x). A fixed point is one that is kept invariant by the operator, therefore, all the roots of Rα(x) = x are
naturally fixed points. The existence of strange fixed points is not desirable (from the numerical point
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of view) or, if they exist, the best situation is that they are repulsive. The performance of an iterative
method may be compromised if there are strange fixed points or periodic orbits of its associate rational
function that are attracting.

Campos et al. [10] studied and characterized the stability of z = 1 as strange fixed point of any
multipoint Newton-like methods (those where the intermediate evaluations are variations of Newton’s
scheme), as well as the character of point z = −1. They proved the hypothesis that makes this point
a strange fixed or critical point, being pre-image of z = 1. These results involve the first item of the
next result (the existence of z = 1 as strange fixed point), and also its stability, of which we provide
in Theorem 4 an alternative proof. The rest of the items in Theorem 3 or in the rest of the dynamical
analysis cannot be deduced from any result appearing in [10].

Theorem 3. The zeros of the equation Rα(x) = x are the fixed points of the rational function Rα(x),
that is, x = 0, x = ∞, and also the (strange) fixed points:

i). ex0(α) = 1, whether α , −153
8 .

ii). exi(α) (for i = 1, 2, . . . , 6), which corresponds to the 6 zeros of the polynomial

q(t) = 81t6 + 351t5 + 765t4 + (990 − 64α)t3 + 765t2 + 351t + 81.

Thus, in general there are 9 fixed points, of which x = 0 and x = ∞ are related to the zeros of p(x).
However, this amount of fixed points is reduced for α = 423

8 , as it can be checked that ex1

(
423

8

)
=

ex2

(
423
8

)
= 1 = ex0

(
423

8

)
, and when α = −153

8 , the rational function is simplified and x = 1 is not a
fixed point.

Proof. Using the definition of fixed point, we solve

x4 81x4 + 270x3 + 414x2 + 342x + (117 + 64α)
(117 + 64α)x4 + 342x3 + 414x2 + 270x + 81

= x.

Simplifying and factoring the previous equation, we get

x (x − 1)
(
81x6 + 351x5 + 351x + 765x4 + (990 − 64α)x3 + 765x2 + 81

)
= 0.

It can be checked in a similar way that x = 0 is a fixed point of 1/Rα(1/x), so x = ∞ is a fixed point of
Rα. �

The derivative of the rational operator associated to the LCT family of methods, which is used to
analyze the stability of fixed points and to obtain critical points, is:

R′α(x) =
4x3(3 + 2x + 3x2)(39 + 58x + 39x2)

(9 + 12x + 13x2 + 64x4α)2

+
128x3(3 + 2x + 3x2)(6 − x − 2x2 − x3 + 6x4)α

9(1 + x)2(9 + 12x + 13x2 + 64x4α)2 , (3.5)

with a free parameter α ∈ C.
In order to perform the stability analysis of the fixed points, we evaluate the derivative operator in

each of them. As |R′α(0)| =
∣∣∣∣ 1
R′α(1/0)

∣∣∣∣ = 0, x = 0 and x = ∞ are superattracting fixed points. Nevertheless,
the stability of strange fixed points changes according to the values of parameter α.
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Theorem 4 (Stability of ex0 (α) = 1). The asymptotical behavior of the strange fixed point of Rα(x),

ex0 (α) = 1 (for α , −
153
8

), obtained by evaluating |R′α(1)|, is:

i). It is an attractor for

∣∣∣∣∣∣α +
153
8

∣∣∣∣∣∣ < 72, but it cannot be superattracting.

ii). It is parabolic for

∣∣∣∣∣∣α +
153
8

∣∣∣∣∣∣ = 72 and repulsive in other cases.

Proof. The stability function of ex0(α) is∣∣∣∣∣∣R′α(1)

∣∣∣∣∣∣ =

∣∣∣∣∣ 576
153 + 8α

∣∣∣∣∣ .
Let us remark that

∣∣∣∣∣∣R′α(1)

∣∣∣∣∣∣ , 0 for all α ∈ C, so it cannot be superattracting. Therefore,

∣∣∣∣∣∣ 576
153 + 8α

∣∣∣∣∣∣ ≤ 1⇔ 576 ≤
∣∣∣153 + 8α

∣∣∣.
Let us consider α = a + ib is an arbitrary complex number, then we have the inequation

(576)2 ≤ (153)2 + 2448a + 64a2 + 64b2.

By simplifying, we get (
a +

153
8

)2

+ b2 ≤ (72)2.

Thus,

|R′α(1)| ≤ 1 if and only if

∣∣∣∣∣∣α +
153
8

∣∣∣∣∣∣ ≤ 72.

�

It is possible to analyze the stability of a strange fixed point numerically by graphing its stability
surface, which is a three-dimensional representation of the stability function. On the z-axis, the stability
function of the fixed point |R′α(exi(α))| is represented, while on the complex plane we have the real and
imaginary parts of parameter α. These diagrams allow us to identify the regions of the plane where a
strange fixed point is an attractor or a repulsor. Figures 1 and 2 display the stability surfaces of exi(α)
for i = 0, 1, 2, 3, 4, 5, 6 and show that the strange fixed points are repulsive in the grey complex area,
while the colored surface represents the attraction zone, that is, the zone of complex values of α where
the strange fixed points are attracting. In the boundary between those areas, the strange fixed points
are parabolic or neutral.
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Figure 1. Stability surface of ex0(α) = 1.

(a) Stability surface of ex1. (b) Stability surface of ex2.

(c) Stability surface of ex3. (d) Stability surface of ex4.

(e) Stability surface of ex5. (f) Stability surface of ex6.

Figure 2. Stability surfaces of strange fixed points exi(α) for i = 1, 2, 3, 4, 5, 6.
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By using this technique, it can be stated that

(i) ex1 (α) is parabolic for α =
423

8
, where ex1

(
423

8

)
= ex0

(
423
8

)
= 1; in other cases, ex1 (α) for

α ,
423
8

is a repulsor (see Figure 2(a)).

(ii) ex2 (α) is parabolic for α =
423

8
, where ex1

(
423
8

)
= ex0

(
423

8

)
= 1; it is also parabolic for

α = 5
288 (20 ±

√
5i). For any other value of α, it is a repulsor (see Figure 2(b)).

(iii) ex3 (α) and ex4 (α) have the same stability: They are superattracting for α≈0.346163±0.0326984i,
attracting in the colored area of Figure 2(c) and (d). For any other value of α, they are repulsive.

(iv) ex5 (α) is superattracting for α = 30.2862, attracting for any α in the region of the complex plane
delimited by {z ∈ C : z = a + ib, 20 < a < 55,−18 < b < 18} (see Figure 2(e)). It is parabolic in
its boundary and, for any other value of α, is repulsive.

(v) ex6 (α) is superattracting for α = 30.2862. For any other value of α, it is a repulsor (see
Figure 2(f)).

Now, we know some areas of the complex plane where choosing the value of α must be avoided,
as the rational function Rα(x) has an attracting strange fixed point, and our iterative methods can fail.
However, attracting fixed points are not the only pathological elements that can be found. In order to
get them, we use the critical points of the rational function.

3.2. Critical points: calculation and analysis

The critical points are those making null the derivative of the rational operator. Note that
superattracting fixed points are simultaneously critical points. Those critical points that do not coincide
with the zeros of the polynomial p(x) (0 and∞, after Möbius map) are called free critical points, which
are related to the different basins of attraction, according to Julia-Fatou Theorem 1.

Theorem 5. Critical points of the rational operator Rα(x) are x = 0 and x = ∞, directly related to the
zeros of the polynomial and free critical points:

i). cr1(α) = −1;
ii). cri(α) = 1

3

(
−1 ± 2i

√
2
)
, i = 2, 3;

iii). cri (α) = 1
24

(
1 − 2565

A −
8B
√

A2
∓ 16

√
153(−5265+D)−4α(E+D)

A3

)
, i = 4, 5;

iv). cri (α) = 1
24

(
1 − 2565

A + 8B
√

A2
∓ 16

√
−153(5265+D)−4α(E−D)

A3

)
, i = 6, 7;

where A=117+64α, B=
√

2025 + 16α(−981 + 1348α), D =
√

A2 ·B, E=1246347+8α(91611 + 7616α).

Proof. Using the derivative of the rational operator,

R′α(x) = 0⇔ 36x3(1 + x)2(3 + x(2 + 3x))r(x) = 0,

being r(x) = 351 + 1224x + 1746x2 + 1224x3 + 351x4 + 192α − 32xα − 64x2α − 32x3α + 192x4α.
The zeros of the previous equation are the critical points of the rational operator. However, the amount
of critical points can be reduced for values of α satisfying that any root of r(x), cri(α), i = 4, 5, 6, 7
coincides with cr j(α), j = 1, 2, 3. �
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Moreover, the critical points cr1(α) = −1, cr2(α) = 1
3

(
−1 + 2i

√
2
)
, and cr3(α) = 1

3

(
−1 − 2i

√
2
)

are
pre-images of ex0(α) = 1. Thus, their stability corresponds to the stability of the fixed point ex0(α) = 1.

Remark 1. Conjugate free critical points are those that satisfy cri(α) = 1
cr j(α) for i , j. From the

proof of Theorem 5, it is straightforward that cr3(α), cr5(α), and cr7(α) are conjugate critical points of
cr2(α), cr4(α), and cr6(α), respectively.

So, there are four independent free critical points. Furthermore, for α = 9(109 − 24
√

6)/2696 and
α = 9(109+24

√
6)/2696, critical points cr4(α) and cr6(α) match in pairs for α≈−0.795073−0.606513 i

and α ≈ −0.657558 − 0.753404 i, respectively, and critical points cr5(α) and cr7(α) match in pairs for
α ≈ −0.795073 + 0.606513 i and α ≈ −0.657558 + 0.753404 i, respectively.

Remark 2. Moreover, some strange fixed points coincide with critical point ex0(α) = 1 or any of its
pre-images at several values of the parameter: α = −153

8 , α = 0, and α = 9
8 . At these values of α, x = 1

is repulsive, so they do not generate their own basin of attraction.

3.3. Bifurcation diagram

The bifurcation diagram is a graphical tool that represents the real values of the fixed and critical
points of the rational operator depending on the parameter α [28]. The parameter is represented on
the abscissa axis and the real value of the fixed or critical point is represented on the ordinate axis. It
is a very useful tool for understanding the dynamical behavior of a dynamical system, confirming the
stability analysis of the fixed points.

Figure 3 shows that ex1(α), ex2(α), cr4(α), and cr5(α) coincide with cr1(α) for α = 0, cr6(α) and
cr7(α) coincide with each other for α = −153

8 . Thus, for α = 0, ex1(α) and ex2(α) are superattracting
fixed points. This confirms the results presented in Section 3.1.

Figure 3. Bifurcation diagram of fixed and critical points for real values of α.

3.4. Parameter spaces

The main goal for drawing dynamical and parameter planes is to have a visual interpretation of the
behavior of the iterative methods in terms of the initial estimation taken, or the selected member of the
class, respectively. A parameter space is constructed by means of a mesh where each node is related to
a different complex value of parameter α. Once the value of α is selected, a free independent critical
point is used as initial estimation. The point of the mesh is colored in red if the critical point converges
to 0 or∞ (belongs to their basin of attraction) and it is represented in black color in other cases. In the
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parameter plane, the red values of the parameter are related with a good performance (convergence to
the roots) and black values correspond to unstable performance.

The long-term performance of the Rα(x) operator depends on parameter α. Therefore, it is important
to find regions of the parameter plane as stable as possible and those corresponding values of α will
give us the best members of the family (in terms of numerical stability) [12]. In order to obtain these
parameter spaces, we must associate each point of the parameter plane with a complex value of α, that
is, with an element of (3.2). Each α belonging to the same connected component of the parameter
plane produces sets of schemes (3.2) with similar asymptotic performance.

Parameter spaces belonging to the family of methods are generated on a 16 MB RAM computer
with an Intel Core i7 processor using a MATLAB R2021b programming package.

The graph has been drawn for values of α in [−100, 60] × [−80, 80], with a mesh of 1000 × 1000
points, a maximum of 200 iterations, and a 10−3 tolerance. It shows the behavior of a method of the
LCT class associated with α by means of a free critical point cr(α) appearing in Theorem 5 as the
initial estimate. In the parameter spaces displayed in this section, the values of α for which the method
converges to zero or infinity are plotted in red, and those values that converge to any other attracting
element are plotted in black.

Rα(x) has at most 7 free critical points. Of them, cr1(α), cr2(α), and cr3(α) have the same parameter
plane corresponding to the stability of ex1, as they are its pre-images, so their parameter planes are not
necessary. The remaining free critical points are conjugated in pairs: cr4(α) to cr5(α), cr6(α) to cr7(α)
(see Remark 1), which results in 2 different parameter spaces, namely P1 (for x = cr4(α), cr5(α)), and
P2 (for x = cr6(α), cr7(α)), shown in Figure 4.
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(a) P1 for cr4(α) and cr5(α).
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(b) P2 for cr6(α) and cr7(α).

Figure 4. Parameter spaces associated to the free independent critical points.

Taking into account the wideness of the red areas in both parameter planes, the members of the
proposed class can be considered as mainly stable. However, those elements in the black regions show
any kind of unstable behavior. In Figure 5, the unified parameter plane [13] is presented, where the
white color represents those values of the parameter that are simultaneously red in all parameter planes
(including those from cr2(α) and cr3(α)) meanwhile, in the black color appears those that are also black
in any of the parameter planes.
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Figure 5. Unified parameter plane.

Let us remark that the outer black circle corresponds to the area where the strange fixed point
ex0(α) = 1 is attracting; meanwhile, the big circle at the right side is related to the values of α where
ex6(α) is attracting. The rest of the black areas correspond to values of the parameter that define
iterative methods where there exist attracting periodic orbits of different periods.

3.5. Dynamical planes

The stability of specific members of the family of iterative methods, given by a fixed value of α, is
studied using dynamical planes [12]. This graphical tool is constructed by defining a mesh where each
complex node corresponds to a value of x0. The convergence of the method to any of the attracting
fixed points starting from x0 with a maximum of 200 iterations and a tolerance of 10−3 is shown in it.
The fixed points are presented with a white circle (◦), the critical points with a white square (�), and
the attracting points with an asterisk (∗).

To study the stability of some elements of LCT class, several values of parameter α are chosen
inside and outside the white stability regions observed in the unified parameter space, as shown in
Figure 5. We choose α = 0, α = −1

2 , α = 9
8 and α = −153

8 as values within the stability zone.

For α = −153
8 , x = 1 is not a fixed point (Theorem 3). Figure 6(a) shows 2 basins of attraction: the

zero basin (orange) and the ∞ basin (blue). All free critical points are located in the infinity basin and
the strange fixed points lay at the Julia set, as they are repulsive.

Let us notice in Figures 6(b) and 6(c) that, for parameters α = −1
2 and α = 0, respectively, there

are also 2 basins of attraction of zero (orange) and ∞ (blue) that are superattracting. All free critical
points are located in the zero basin and the behavior is stable. cr1(α) = −1 is pre-image of x = 1, that
is, it is repulsive and belongs to the Julia set. For α = 9

8 , Figure 6(d) shows that there are 2 basins of
attraction: the zero basin (orange) and the∞ basin (blue). All critical points are located in the∞ basin,
which is a sign of stable behavior.
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(b) α = −
1
2

.

(c) α = 0.
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(d) α =
9
8

.

Figure 6. Dynamical planes for methods within the stability region (zero basin of attraction
in orange,∞ basin in blue).

As values out of stability zone, α = −55 − 55i, α = 423
8 , and α = ±100 are chosen.

Figure 7(a) shows that for parameters α = −55− 55i, there are 3 basins of attraction: the zero basin
(orange), the∞ basin (blue), and another basin (black) that corresponds to a periodic orbit of period 3.
This is an important finding because, according to Sharkovsky’s theorem ( [19, 20]), if there are orbits
of period 3, we can assert that orbits of any period can be obtained.

For α = ∓100 (Figure 7(b) and 7(c), respectively), there are 3 basins of attraction: the zero basin
(orange), the∞ basin (blue), and another one that is not related to the zeros (green). The superattracting
fixed points are 0 and ∞. There is an attracting fixed strange point: ex0 = 1. All free critical points
are located in the green region, so they do not converge to any of the zeros of the polynomial, as they
converge to ex0(α) = 1. That is a sign of unstable behavior.

For parameter α = 423
8 , Figure 7(d) shows 3 basins of attraction: the zero∞ basins and another one

in black. There is an attracting strange fixed point: ex0(α) = 1. All free critical points are located in
the black region, so they do not converge to any of the zeros of the polynomial, as they converge to
ex0(α) = 1. It is an unstable behavior.

In the next section, we choose some members of the proposed family of methods in order to perform
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numerical tests, and also compare them to other known iterative schemes.
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(a) α = −55 − 55i.

z=0.99978+i-0.0032522

-6 -4 -2 0 2 4

Re{z}

-6

-4

-2

0

2

4

6

Im
{z

}

(b) α = −100.

z=1.0004+i-0.0011437
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(c) α = 100.
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(d) α = 423
8 .

Figure 7. Dynamical planes for methods outside the stability region.

4. Numerical results

Now, numerical tests are performed in order to corroborate the convergence and stability of the
proposed family (3.1) of methods whose stability has been previously studied. The process consists of
selecting values of parameter α that lie inside and outside the stability region of Scetion 3, and then
applying them to six nonlinear test functions, with the following expressions and zeros

f1(x) = xex2
− cos(x), ξ ≈ 0.5884017765,

f2(x) =
√

3x2 + 5 + e−x + x2, ξ ≈ 2.0937067230,

f3(x) = x4 − sin
(

1
x2

)
− 7, ξ ≈ 1.6471152393,
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f4(x) = arctan(x) + ex, ξ ≈ −0.6065554097,
f5(x) = ln(x2 + 1) − sec(x) ex, ξ ≈ −0.9809458443,

f6(x) = xex2
− sin2(x) + 3 cos(x) + 5, ξ ≈ −1.2076478271.

We conduct the study in two stages:

(1) The selection of three values of α within the stability zone (α = −1
2 , α = 0, α = 9

8 ) and three
values outside the stability area (α = −100, α = 423

8 , α = 100).
(2) A comparative study between one selected member with best stability properties of the family of

methods and three other iterative methods with four order of convergence: Chun [14], Jarratt [23],
and Ostrowski [29].

To perform numerical tests, we choose different values for the initial estimates relative to the zero
ξ : very near (x0 ≈ 1.1 ξ), near (x0 ≈ 3 ξ), far (x0 ≈ 10 ξ), and very far (x0 ≈ 100 ξ).

Calculations are performed on a 16 MB of RAM computer with an Intel Core i7 processor using
MATLAB R2021b programming software, taking variable precision arithmetics with 2000 digits of
mantissa and an error tolerance of ε = 10−100. For each method, the stopping criterium is |xk+1 − xk| +

| f (xk+1)| < ε, where |xk+1 − xk| is an error estimate between two consecutive iterations and | f (xk+1)|
being the residual error. The number of iterations (iter) required to converge to the solution is also
shown.

The ACOC is calculated in order to check the theoretical order of convergence p. In the numerical
tests performed in this section, if ACOC does not stabilize along the successive iterations, the result
will display “-”, and if any scheme does not converge in 50 iterations, the result will display “nc”.

The execution time (ex-time) needed to converge to the solution is shown (in seconds) and it is
calculated as the average of 10 consecutive runs of the scheme.

4.1. First stage

Now, we consider values of α within the stability areas of the parameter planes
(
α = −1

2 , 0,
9
8

)
and

also outside
(
α = −100, 423

8 , 100
)
.

In Tables 1–3, the numerical performance of iterative methods associated with values of α inside
the stability region for very near, near, far, and also very far from initial guesses are shown. From these
tables we notice that the schemes associated with α = −1

2 , 0,
9
8 always reach the solution (except in

f4(x), f5(x), and f6(x) for far and very far values from ξ). The amount of iterates needed to converge
varies for each seed and each test function, but when the initial estimation is very close to the zero, the
methods converge to ξ in 5 iterations. When the initial estimation is close to the zero, they converge to
ξ between a minimum of 5 and a maximum of 11 iterations. In cases where the estimates are far and
very far from the zero, the iterative schemes reach ξ between 7 and 26 iterations. For f1(x), when the
initial estimate is very far from the zero, it takes more than 1600 iterations for the iterative process to
reach ξ.
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Table 1. Numerical performance of the iterative family of methods (3.1) for α = −1
2 in

nonlinear equations.

fi(x)fi(x)fi(x) x0x0x0 x̃̃x̃x |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
x0 very near ξ (x0 ≈ 1.1 ξ)

f1(x) 0.7 0.5884 4.33 × 10−266 1.28 × 10−265 5 4.0000 0.0756
f2(x) 2.5 2.0937 5.57 × 10−250 1.58 × 10−249 5 4.0000 0.0922
f3(x) 2 1.64713 1.17 × 10−161 2.14 × 10−160 5 4.0000 0.0867
f4(x) −0.75 −0.6066 3.40 × 10−322 4.34 × 10−322 5 4.0000 0.0678
f5(x) −1 −0.9809 1.20 × 10−345 7.99 × 10−346 5 4.0000 0.1109
f6(x) −1 −1.2076 8.03 × 10−197 1.63 × 10−195 5 4.0000 0.1025

x0 near ξ (x0 ≈ 3 ξ)
f1(x) 2 0.5884 6.37 × 10−140 1.87 × 10−139 7 4.0000 0.1025
f2(x) 6 2.0937 6.59 × 10−257 1.87 × 10−256 6 4.0000 0.1059
f3(x) 5 1.6471 3.84 × 10−245 7.03 × 10−244 7 4.0000 0.1154
f4(x) −2 −0.6066 1.91 × 10−260 2.44 × 10−260 7 4.0000 0.0921
f5(x) −3 −0.9809 1.72 × 10−311 1.15 × 10−311 5 4.0000 0.1604
f6(x) 1 −1.2076 3.12 × 10−111 6.33 × 10−110 11 4.0000 0.2040

x0 far from ξ (x0 ≈ 10 ξ)
f1(x) 6 0.5884 4.31 × 10−187 1.27 × 10−186 23 4.0000 0.2965
f2(x) 20 2.0937 8.46 × 10−264 2.40 × 10−263 7 4.0000 0.1221
f3(x) 16 1.6471 1.29 × 10−253 2.35 × 10−252 9 4.0000 0.1451
f4(x) −6 nc nc - - - -
f5(x) −10 nc nc - - - -
f6(x) −10 −1.2076 1.44 × 10−296 2.92 × 10−295 > 50 4.0000 0.8882

x0 very far from ξ (x0 ≈ 100 ξ)
f1(x) 60 0.5884 4.62 × 10−130 1.36 × 10−129 > 50 4.0000 34.3970
f2(x) 200 2.0937 9.16 × 10−382 2.60 × 10−381 9 4.0000 0.1507
f3(x) 160 1.6471 2.68 × 10−289 4.91 × 10−288 13 4.0000 0.2003
f4(x) −60 nc nc - - - -
f5(x) −100 nc nc - - - -
f6(x) −100 nc nc - - - -
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Table 2. Numerical performance of the iterative family of methods (3.1) for α = 0 in
nonlinear equations.

fi(x)fi(x)fi(x) x0x0x0 x̃̃x̃x |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
x0 very near ξ (x0 ≈ 1.1 ξ)

f1(x) 0.7 0.5884 1.91 × 10−241 5.64 × 10−241 5 4.0000 0.0781
f2(x) 2.5 2.0937 7.28 × 10−239 2.06 × 10−238 5 4.0000 0.0775
f3(x) 2 1.6471 3.05 × 10−150 5.58 × 10−149 5 4.0000 0.0863
f4(x) −0.75 −0.6066 2.40 × 10−298 3.06 × 10−298 5 4.0000 0.0667
f5(x) −1 −0.9809 4.06 × 10−338 2.70 × 10−338 5 4.0000 0.1038
f6(x) −1 −1.2076 1.65 × 10−151 3.34 × 10−150 5 4.0000 0.0963

x0 near ξ (x0 ≈ 3 ξ)
f1(x) 2 0.5884 3.01 × 10−111 8.86 × 10−111 7 4.0000 0.1015
f2(x) 6 2.0937 1.12 × 10−238 3.18 × 10−238 6 4.0000 0.1019
f3(x) 5 1.6471 1.84 × 10−212 3.37 × 10−211 7 4.0000 0.1101
f4(x) −2 −0.6066 1.62 × 10−186 2.07 × 10−186 6 4.0000 0.0697
f5(x) −3 −0.9809 5.53 × 10−212 3.69 × 10−212 7 4.0000 0.1440
f6(x) 1 −1.2076 1.28 × 10−197 2.60 × 10−196 11 4.0000 0.2036

x0 far from ξ (x0 ≈ 10 ξ)
f1(x) 6 0.5884 4.82 × 10−269 1.42 × 10−268 24 4.0000 0.2821
f2(x) 20 2.0937 1.67 × 10−238 4.74 × 10−238 7 4.0000 0.1164
f3(x) 16 1.6471 4.89 × 10−203 8.94 × 10−202 9 4.0000 0.1369
f4(x) −6 −0.6066 9.14 × 10−358 1.17 × 10−357 18 4.0000 0.1782
f5(x) −10 nc nc - - - -
f6(x) −10 −1.2076 8.90 × 10−390 1.87 × 10−388 > 50 4.0000 0.8805

x0 very far from ξ (x0 ≈ 100 ξ)
f1(x) 60 0.5884 2.31 × 10−224 6.81 × 10−224 > 50 4.0000 33.9810
f2(x) 200 2.0937 4.81 × 10−329 1.36 × 10−328 9 4.0000 0.1477
f3(x) 160 1.6471 5.69 × 10−198 1.04 × 10−196 13 4.0000 0.1928
f4(x) −60 −0.6066 9.90 × 10−299 1.26 × 10−298 > 50 4.0000 27.4611
f5(x) −100 nc nc - - - -
f6(x) −100 nc nc - - - -

AIMS Mathematics Volume 9, Issue 4, 8564–8593.



8583

Table 3. Numerical performance of the iterative family of methods (3.1) for α = 9
8 in

nonlinear equations.

fi(x)fi(x)fi(x) x0x0x0 x̃̃x̃x |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
x0 very near ξ (x0 ≈ 1.1 ξ)

f1(x) 0.7 0.5884 2.18 × 10−214 6.43 × 10−214 5 4.0000 0.0736
f2(x) 2.5 2.0937 5.62 × 10−222 1.59 × 10−221 5 4.0000 0.0865
f3(x) 2 1.6471 1.73 × 10−133 3.17 × 10−132 5 4.0000 0.0809
f4(x) −0.75 −0.6066 1.36 × 10−271 1.73 × 10−271 5 4.0000 0.0601
f5(x) −1 −0.9809 2.59 × 10−325 1.73 × 10−325 5 4.0000 0.1053
f6(x) −1 −1.2076 4.13 × 10−106 8.40 × 10−105 5 4.0000 0.0986

x0 near ξ (x0 ≈ 3 ξ)
f1(x) 2 0.5884 3.68 × 10−282 1.08 × 10−281 8 4.0000 0.1076
f2(x) 6 2.0937 2.77 × 10−208 7.84 × 10−208 6 4.0000 0.1049
f3(x) 5 1.6471 1.9 × 10−160 3.47 × 10−159 7 4.0000 0.1071
f4(x) −2 −0.6066 6.81 × 10−276 8.69 × 10−276 8 4.0000 0.0825
f5(x) −3 −0.9809 3.57 × 10−374 2.38 × 10−374 8 4.0000 0.1630
f6(x) 1 −1.2076 1.26 × 10−201 2.55 × 10−200 10 4.0000 0.1786

x0 far from ξ (x0 ≈ 10 ξ)
f1(x) 6 0.5884 1.51 × 10−364 4.44 × 10−364 26 4.0000 0.3157
f2(x) 20 2.0937 1.52 × 10−195 4.30 × 10−195 7 4.0000 0.1163
f3(x) 16 1.6471 9.34 × 10−127 1.71 × 10−125 9 4.0000 0.1354
f4(x) −6 nc nc - - - -
f5(x) −10 nc nc - - - -
f6(x) −10 −1.2076 8.22 × 10−206 1.67 × 10−204 > 50 4.0000 0.9431

x0 very far from ξ (x0 ≈ 100 ξ)
f1(x) 60 0.5884 7.31 × 10−124 2.16 × 10−123 > 50 4.0000 37.9505
f2(x) 200 2.0937 1.34 × 10−241 8.11 × 10−241 9 4.0000 0.1455
f3(x) 160 1.6471 2.72 × 10−337 4.97 × 10−336 14 4.0000 0.2065
f4(x) −60 nc nc Inf - - -
f5(x) −100 nc nc Inf - - -
f6(x) −100 nc nc - - - -

Tables 4–6 show that methods related to α = −100, 423
8 , 100 do not always reach the solution (except,

in a few cases, for initial estimates very near ξ), confirming that these values are indeed in the unstable
area, even when the function is not a polynomial. The convergence depends, to a great extent, on the
nonlinear test function used and the initial estimate. Thus, for estimates near, far, and very far from the
zero, these methods do not reach the solution.

AIMS Mathematics Volume 9, Issue 4, 8564–8593.



8584

Table 4. Numerical performance of the LCT iterative family of methods for α = −100 in
nonlinear equations.

fi(x)fi(x)fi(x) x0x0x0 x̃̃x̃x |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
x0 very near ξ (x0 ≈ 1.1 ξ)

f1(x) 0.7 0.5884 2.51 × 10−288 7.40 × 10−288 6 4.0000 0.0920
f2(x) 2.5 2.0937 3.17 × 10−373 8.99 × 10−373 6 4.0000 0.1078
f3(x) 2 nc nc nc - - -
f4(x) −0.75 −0.6066 8.39 × 10−131 1.07 × 10−130 5 4.0000 0.0628
f5(x) −1 −0.9809 4.94 × 10−207 3.30 × 10−207 5 4.0000 0.1073
f6(x) −1 nc nc - - - -

x0 near ξ (x0 ≈ 3 ξ)
f1(x) 2 0.5884 1.42 × 10−119 4.19 × 10−119 > 50 4.0000 8.2713
f2(x) 6 nc nc nc - - -
f3(x) 5 nc nc nc - - -
f4(x) −2 nc nc π

2 - - 0.0562
f5(x) −3 nc nc nc - - 0.0915
f6(x) 1 nc nc - - - 1.8067

x0 far from ξ (x0 ≈ 10 ξ)
f1(x) 6 0.5884 1.85 × 10−268 5.45 × 10−268 > 50 4.0000 16.8797
f2(x) 20 nc nc nc - - -
f3(x) 16 nc nc nc - - -
f4(x) −6 nc nc - - - -
f5(x) −10 nc nc nc - - -
f6(x) −10 nc nc - - - -

x0 very far from ξ (x0 ≈ 100 ξ)
f1(x) 60 0.5884 4.04 × 10−194 1.19 × 10−193 > 50 4.000 55.6831
f2(x) 200 nc nc nc - - -
f3(x) 160 nc nc nc - - -
f4(x) −60 nc nc - - - -
f5(x) −100 nc nc - - - -
f6(x) −100 nc nc - - - -
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Table 5. Numerical performance of the LCT iterative family of methods for α = 423
8 in

nonlinear equations.

fi(x)fi(x)fi(x) x0x0x0 x̃̃x̃x |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
x0 very near ξ (x0 ≈ 1.1 ξ)

f1(x) 0.7 0.5884 6.71 × 10−380 1.98 × 10−379 6 4.0000 0.0874
f2(x) 2.5 2.0937 6.71 × 10−116 1.90 × 10−115 5 4.0000 0.0892
f3(x) 2 1.6471 9.21 × 10−121 1.68 × 10−119 6 4.0000 0.1023
f4(x) −0.75 −0.6066 2.58 × 10−153 3.30 × 10−153 5 4.0000 0.0640
f5(x) −1 −0.9809 1.06 × 10−227 7.06 × 10−228 5 4.0000 0.1053
f6(x) −1 nc nc - - - 1.7796

x0 near ξ (x0 ≈ 3 ξ)
f1(x) 2 nc nc nc - - -
f2(x) 6 2.0937 6.13 × 10−228 1.73 × 10−227 10 4.0000 0.1647
f3(x) 5 nc nc nc - - -
f4(x) −2 nc nc nc - - -
f5(x) −3 nc nc nc - - 0.1858
f6(x) 1 nc nc - - - 1.7511

x0 far from ξ (x0 ≈ 10 ξ)
f1(x) 6 nc nc nc - - -
f2(x) 20 2.0937 5.22 × 10−382 1.48 × 10−381 > 50 4.0000 1.0582
f3(x) 16 nc nc nc - - -
f4(x) −6 nc nc - - - -
f5(x) −10 nc nc - - -
f6(x) −10 nc nc - - - -

x0 very far from ξ (x0 ≈ 100 ξ)
f1(x) 60 nc nc nc - - -
f2(x) 200 nc nc nc - - -
f3(x) 160 nc nc nc - - -
f4(x) −60 nc nc - - - -
f5(x) −100 nc nc - - - -
f6(x) −100 nc nc - - - -
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Table 6. Numerical performance of the LCT iterative family of methods for α = 100 in
nonlinear equations.

fi(x)fi(x)fi(x) x0x0x0 x̃̃x̃x |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
x0 very near ξ (x0 ≈ 1.1 ξ)

f1(x) 0.7 0.5884 2.04 × 10−287 6.01 × 10−287 6 4.0000 0.0913
f2(x) 2.5 2.0937 3.55 × 10−370 1.01 × 10−369 6 4.0000 0.1057
f3(x) 2 1.6471 1.07 × 10−161 1.96 × 10−160 7 4.0000 0.1112
f4(x) −0.75 −0.6066 3.58 × 10−130 4.57 × 10−130 5 4.0000 0.0624
f5(x) −1 −0.9809 4.78 × 10−205 3.19 × 10−205 5 4.0000 0.1080
f6(x) −1 nc nc - - - -

x0 near ξ (x0 ≈ 3 ξ)
f1(x) 2 nc nc nc - - -
f2(x) 6 nc nc nc - - -
f3(x) 5 nc nc nc - - -
f4(x) −2 nc nc nc - - -
f5(x) −3 nc nc Inf - - 1.1493
f6(x) 1 nc nc - - - -

x0 far from ξ (x0 ≈ 10 ξ)
f1(x) 6 nc nc nc - - -
f2(x) 20 nc nc nc - - -
f3(x) 16 nc nc nc - - -
f4(x) −6 nc nc - - - -
f5(x) −10 nc nc - - - -
f6(x) −10 nc nc - - - -

x0 very far from ξ (x0 ≈ 100 ξ)
f1(x) 60 nc nc nc - - -
f2(x) 200 nc nc nc - - -
f3(x) 160 nc nc nc - - -
f4(x) −60 nc nc - - - -
f5(x) −100 nc nc - - - -
f6(x) −100 nc nc - - -

4.2. Second stage

In this stage, we perform a comparative analysis of an LCT(α) class considering three methods with
the same order of convergence: Chun [14], Jarratt [23], and Ostrowski [29] in order to contrast their
performance on nonlinear equations. A stable member of LCT(α) family is chosen, the scheme related
to α = −1

2 , that is, LCT(−1
2 ), based on its performance at the first stage.

Tables 7–10 show the numerical results of LCT
(
−1

2

)
and three known methods, considering near,

very near, far, and very far seeds. Therefore, from the results shown in these tables, we conclude that
the LCT

(
−1

2

)
scheme has similar or best numerical performance to comparison methods, considering

a stable element of the family
(
α = −1

2

)
.
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For initial estimations close to the zero, the Chun’s scheme does not converge to the zero in f5(x)
and the Ostrowski’s scheme does not converge to the zero in f6(x).

For initial estimations far from the zero, none of the schemes converge in f5(x). For estimations
very far away from the zero, the schemes do not converge in f5(x) and f6(x).

Table 7. Numerical performance of iterative methods for nonlinear equations, taking x0 very
near ξ (x0 ≈ 1.1 ξ).

MethodMethodMethod |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
f1(x) = xex2

− cos(x); x0 = 0.7 ; x̃ = 0.5884
LCT

(
−1

2

)
4.33 × 10−266 1.28 × 10−265 5 4.0000 0.0756

Jarratt 1.90 × 10−280 5.59 × 10−280 5 4.0000 0.0783
Chun 4.16 × 10−183 1.22 × 10−182 5 4.0000 0.0710
Ostrowski 1.42 × 10−293 4.20 × 10−293 5 4.0000 0.0724

f2(x) =
√

3x2 + 5 + e−x + x2; x0 = 2.5; x̃ = 2.0937
LCT

(
−1

2

)
5.57 × 10−250 1.58 × 10−249 5 4.0000 0.0922

Jarratt 5.58 × 10−254 1.58 × 10−253 5 4.0000 0.0878
Chun 3.01 × 10−196 8.54 × 10−196 5 4.0000 0.0859
Ostrowski 4.95 × 10−253 1.40 × 10−252 5 4.0000 0.0832

f3(x) = x4 − sin
(

1
x2

)
− 7; x0 = 2; x̃ = 1.6471

LCT
(
−1

2

)
1.17 × 10−161 2.14 × 10−160 5 4.0000 0.0867

Jarratt 5.10 × 10−169 9.34 × 10−168 5 4.0000 0.0863
Chun 2.37 × 10−110 4.33 × 10−109 5 4.0000 0.0817
Ostrowski 1.60 × 10−169 2.93 × 10−168 5 4.0000 0.0781

f4(x) = arctan(x) + ex; x0 = −0.75; x̃ = −0.6066
LCT

(
−1

2

)
3.40 × 10−322 4.34 × 10−322 5 4.0000 0.0678

Jarratt 3.04 × 10−322 3.88 × 10−322 5 4.0000 0.0573
Chun 4.90 × 10−235 6.25 × 10−235 5 4.0000 0.0537
Ostrowski 2.23 × 10−318 2.84 × 10−318 5 4.0000 0.0549

f5(x) = ln(x2 + 1) − sec(x) ex; x0 = −1; x̃ = −0.9809
LCT

(
−1

2

)
1.20 × 10−345 7.99 × 10−346 5 4.0000 0.1109

Jarratt 3.71 × 10−346 2.47 × 10−346 5 4.0000 0.1107
Chun 8.19 × 10−303 5.46 × 10−303 5 4.0000 0.1048
Ostrowski 1.00 × 10−347 6.68 × 10−348 5 4.0000 0.0990

f6(x) = xex2
− sin2(x) + 3 cos(x) + 5; x0 = −1; x̃ = −1.2076

LCT
(
−1

2

)
8.03 × 10−197 1.63 × 10−195 5 4.0000 0.1025

Jarratt 2.09 × 10−199 4.25 × 10−198 5 4.0000 0.0968
Chun 1.67 × 10−217 3.38 × 10−216 6 4.0000 0.1170
Ostrowski 4.35 × 10−224 8.82 × 10−223 5 4.0000 0.0938
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Table 8. Numerical performance of iterative methods for nonlinear equations, taking x0 near
ξ (x0 ≈ 3 ξ).

MethodMethodMethod |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
f1(x) = xex2

− cos(x); x0 = 2; x̃ = 0.5884
LCT

(
−1

2

)
6.35 × 10−140 1.87 × 10−139 7 4.0000 0.1025

Jarratt 1.99 × 10−217 5.88 × 10−217 7 4.0000 0.0982
Chun 6.21 × 10−134 1.83 × 10−133 8 4.0000 0.1051
Ostrowski 1.19 × 10−247 3.50 × 10−247 7 4.0000 0.0879

f2(x) =
√

3x2 + 5 + e−x + x2; x0 = 6; x̃ = 2.0937
LCT

(
−1

2

)
6.59 × 10−257 1.87 × 10−256 6 4.0000 0.1059

Jarratt 1.70 × 10−269 4.83 × 10−269 6 4.0000 0.1028
Chun 9.07 × 10−162 2.57 × 10−161 6 4.0000 0.0982
Ostrowski 3.45 × 10−268 9.78 × 10−268 6 4.0000 0.0948

f3(x) = x4 − sin
(

1
x2

)
− 7; x0 = 5; x̃ = 1.6471

LCT
(
−1

2

)
3.84 × 10−245 7.03 × 10−244 7 4.0000 0.1154

Jarratt 1.6744 × 10−290 3.06 × 10−289 7 4.0000 0.1082
Chun 2.40 × 10−384 4.39 × 10−383 8 4.0000 0.1179
Ostrowski 7.06 × 10−293 1.29 × 10−291 7 4.0000 0.0990

f4(x) = arctan(x) + ex; x0 = −2; x̃ = −0.6066
LCT

(
−1

2

)
1.91 × 10−260 2.44 × 10−260 7 4.0000 0.0921

Jarratt 3.60 × 10−270 4.59 × 10−270 6 4.0000 0.0683
Chun 1.56 × 10−236 1.99 × 10−236 39 4.0000 0.3218
Ostrowski 2.85 × 10−258 3.64 × 10−258 6 4.0000 0.0609

f5(x) = ln(x2 + 1) − sec(x) ex; x0 = −3; x̃ = −0.9809
LCT

(
−1

2

)
1.72 × 10−311 1.15 × 10−311 5 4.0000 0.1604

Jarratt 8.36 × 10−259 5.57 × 10−259 7 4.0000 0.1461
Chun nc nc - - -
Ostrowski 1.90 × 10−125 1.27 × 10−125 6 4.0000 0.1232

f6(x) = xex2
− sin2(x) + 3 cos(x) + 5; x0 = 1; x̃ = −1.2076

LCT
(
−1

2

)
3.12 × 10−111 6.33 × 10−110 11 4.0000 0.2040

Jarratt 3.27 × 10−237 6.64 × 10−236 14 4.0000 0.2723
Chun 2.76 × 10−344 5.61 × 10−343 12 4.0000 0.2023
Ostrowski 0.0979 9.20 × 1065 - 1.0158 1.6059
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Table 9. Numerical performance of iterative methods for nonlinear equations, taking x0 far
from ξ (x0 ≈ 10 ξ).

MethodMethodMethod |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
f1(x) = xex2

− cos(x); x0 = 6; x̃ = 0.5884
LCT

(
−1

2

)
4.31 × 10−187 1.27 × 10−186 23 4.0000 0.2965

Jarratt 8.87 × 10−175 2.62 × 10−174 21 4.0000 0.2602
Chun 5.32 × 10−259 1.57 × 10−258 29 4.0000 0.3243
Ostrowski 2.12 × 10−291 6.26 × 10−291 21 4.0000 0.2352

f2(x) =
√

3x2 + 5 + e−x + x2; x0 = 20; x̃ = 2.0937
LCT

(
−1

2

)
8.46 × 10−264 2.40 × 10−263 7 4.0000 0.1221

Jarratt 4.30 × 10−286 1.22 × 10−285 7 4.0000 0.1162
Chun 2.79 × 10−133 7.91 × 10−133 7 4.0000 0.1105
Ostrowski 1.07 × 10−284 3.04 × 10−284 7 4.0000 0.1109

f3(x) = x4 − sin
(

1
x2

)
− 7; x0 = 16; x̃ = 1.6471

LCT
(
−1

2

)
1.29 × 10−253 2.35 × 10−252 9 4.0000 0.1451

Jarratt 2.22 × 10−350 4.06 × 10−349 9 4.0000 0.1267
Chun 3.82 × 10−208 6.98 × 10−207 10 4.0000 0.1370
Ostrowski 1.94 × 10−355 3.55 × 10−354 9 4.0000 0.1264

f4(x) = arctan(x) + ex; x0 = −6; x̃ = −0.6066
LCT

(
−1

2

)
nc π/2 - - 0.0452

Jarratt 1.04 × 10−109 1.33 × 10−109 13 4.0000 0.1269
Chun nc nc - - -
Ostrowski 5.43 × 10−114 6.94 × 10−114 13 4.0000 0.1220

f5(x) = ln(x2 + 1) − sec(x) ex; x0 = −10; x̃ = −0.9809
LCT

(
−1

2

)
nc nc - - -

Jarratt 1.35 × 10−171 1.76 × 10−171 - 4.0000 0.1773
Chun nc nc - - -
Ostrowski 5.45 × 10−185 7.12 × 10−185 - - 1.1100

f6(x) = xex2
− sin2(x) + 3 cos(x) + 5; x0 = −10; x̃ = −1.2076

LCT
(
−1

2

)
1.44 × 10−296 2.92 × 10−295 > 50 4.0000 0.8882

Jarratt 1.70 × 10−251 3.44 × 10−250 48 4.0000 0.7855
Chun 4.91 × 10−144 9.96 × 10−143 > 50 4.0000 1.0184
Ostrowski 2.91 × 10−202 5.90 × 10−201 47 4.0000 0.7501
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Table 10. Numerical performance of iterative methods for nonlinear equations, taking x0

very far from ξ (x0 ≈ 100 ξ).

MethodMethodMethod |xk+1 − xk||xk+1 − xk||xk+1 − xk| | f (xk+1)|| f (xk+1)|| f (xk+1)| iteriteriter ACOCACOCACOC ex-timeex-timeex-time
f1(x) = xex2

− cos(x) ; x0 = 60 ; x̃ = 0.5884
LCT

(
−1

2

)
4.62 × 10−130 1.36 × 10−129 > 50 4.000 34.3970

Jarratt 4.27 × 10−150 1.26 × 10−149 > 50 4.000 32.2707
Chun 3.57 × 10−182 1.05 × 10−181 > 50 4.000 42.2520
Ostrowski 1.50 × 10−339 4.42 × 10−339 > 50 4.000 28.1076

f2(x) =
√

3x2 + 5 + e−x + x2; x0 = 200; x̃ = 2.0937
LCT

(
−1

2

)
9.16 × 10−382 2.60 × 10−381 9 4.0000 0.1507

Jarratt 5.83 × 10−110 1.65 × 10−109 8 4.0000 0.1405
Chun 4.32 × 10−129 1.22 × 10−128 9 4.0000 0.1393
Ostrowski 2.00 × 10−109 5.67 × 10−109 8 4.0000 0.1228

f3(x) = x4 − sin
(

1
x2

)
− 7; x0 = 160; x̃ = 1.6471

LCT
(
−1

2

)
2.68 × 10−289 4.91 × 10−288 13 4.0000 0.2003

Jarratt 7.35 × 10−136 1.35 × 10−134 12 4.0000 0.1668
Chun 4.61 × 10−263 8.44 × 10−262 15 4.0000 0.1993
Ostrowski 1.65 × 10−139 3.02 × 10−138 12 4.0000 0.15963

f4(x) = arctan(x) + ex; x0 = −60; x̃ = −0.6066
LCT

(
−1

2

)
nc nc - - -

Jarratt 2.26 × 10−105 2.88 × 10−105 > 50 4.0000 18.9409
Chun nc nc - - -
Ostrowski 2.76 × 10−109 3.52 × 10−109 > 50 4.0000 17.6281

f5(x) = ln(x2 + 1) − sec(x) ex; x0 = −100; x̃ = −0.9809
LCT

(
−1

2

)
nc nc - - -

Jarratt 2.6503 6.18 × 1046 - - 1.9046
Chun nc nc - - -
Ostrowski 1.04 × 10−117 6.93 × 10−118 46 4.0000 0.7738

f6(x) = xex2
− sin2(x) + 3 cos(x) + 5; x0 = −100; x̃ = −1.2076

LCT
(
−1

2

)
0.0107 5.98 × 104253 - 1.0002 1.7159

Jarratt 0.0118 7.32 × 104243 - 1.0002 1.6747
Chun 0.0083 3.14 × 104274 - 1.0002 0.7222
Ostrowski 0.0121 1.24 × 104292 - 1.0002 1.6241

5. Conclusions

A new family of optimal fourth-order multipoint methods has been proposed for solving nonlinear
equations f (x) = 0. As the order of convergence is not the only key fact to be considered, the stability
of the class has been analyzed by using complex dynamical tools. This study allows us to select the
elements of the family with wider sets of converging initial estimations, as well as the member with
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chaotic behavior. These results are confirmed by the numerical tests, in which we also compare the
proposed methods with other known ones, with the same order of convergence.

Future works based on these results are focused on the extension to vectorial problems and the
semilocal analysis of convergence, using majorizing sequences.
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