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Abstract 

Water	distribution	systems	(WDSs)	face	a	significant	challenge	in	the	form	of	pipe	leaks.	Pipe	
leaks	can	cause	 loss	of	a	 large	amount	of	treated	water,	 leading	to	pressure	 loss,	 increased	
energy	costs,	and	contamination	risks.	Locating	pipe	leaks	has	been	a	constant	challenge	for	
water	 utilities	 and	 stakeholders	 due	 to	 the	 underground	 location	 of	 the	 pipes.	 Physical	
methods	 to	 detect	 leaks	 are	 expensive,	 intrusive,	 and	 heavily	 localized.	 Computational	
approaches	 provide	 an	 economical	 alternative	 to	 physical	methods.	 Data‐driven	machine	
learning‐based	computational	approaches	have	garnered	growing	interest	in	recent	years	to	
address	 the	 challenge	of	detecting	pipe	 leaks	 in	WDSs.	While	 several	 studies	have	applied	
machine	 learning	models	 for	 leak	detection	on	 single	pipes	and	 small	 test	networks,	 their	
applicability	 to	 the	 real‐world	WDSs	 is	 unclear.	 Most	 of	 these	 studies	 simplify	 the	 leak	
characteristics	and	 ignore	modeling	and	measuring	device	uncertainties,	which	makes	 the	
scalability	of	 their	approaches	questionable	 to	 real‐world	WDSs.	Our	 study	addresses	 this	
issue	by	devising	four	study	cases	that	account	for	the	realistic	leak	characteristics	(multiple,	
multi‐size,	and	randomly	located	leaks)	and	incorporating	noise	in	the	input	data	to	account	
for	 the	 model‐	 and	 measuring	 device‐	 related	 uncertainties.	 A	 machine	 learning‐based	
approach	that	uses	simulated	pressure	as	input	to	predict	both	location	and	size	of	leaks	is	
proposed.	 Two	 different	 machine	 learning	 models:	 Multilayer	 Perceptron	 (MLP)	 and	
Convolutional	Neural	Network	(CNN),	are	trained	and	tested	for	the	four	study	cases,	and	their	
performances	are	compared.	The	precision	and	recall	results	for	the	L‐Town	network	indicate	
good	accuracies	 for	both	the	models	 for	all	study	cases,	with	CNN	generally	outperforming	
MLP.	

Keywords  
Leak	detection,	machine	learning,	multilayer	perceptron,	convolutional	neural	network,	hydraulic	
simulation,	water	distribution	systems.	

1 INTRODUCTION 

Water	distribution	systems	(WDSs)	face	a	significant	challenge	in	the	form	of	pipe	leaks.	Pipe	leaks	
can	cause	loss	of	large	amount	of	treated	water	in	WDSs	leading	to	pressure	loss	and	increased	
energy	costs.	Leaks	can	also	pose	risks	of	water	contamination	[1].	As	reported	in	[2],	an	estimated	
126	billion	cubic	meters	of	water	 is	 lost	every	year	worldwide.	With	 increasing	demands	and	
growing	 concerns	about	water	 scarcity	 in	 the	 face	of	 climate	 change,	 the	prevention	of	water	
losses	 from	WDSs	 is	crucial.	Moreover,	pipe	 leaks	can	grow	over	 time	and	 lead	 to	breaks	and	
bursts	 causing	 property	 damage	 and	 traffic	 disruptions.	 Therefore,	 timely	 detection	 and	
prevention	of	pipe	leaks	are	paramount.	Unlike	pipe	breaks,	pipe	leaks	are	tough	to	detect	as	the	
flow	or	pressure	changes	produced	by	 leaks	are	not	humanly	discernable	 [3].	 In	addition,	 the	
underground	location	of	pipes	makes	it	even	harder	to	detect	leaks.	Physical	methods	to	detect	
leaks	are	expensive	and	can	cause	interruption	to	water	service	[4].	Computational	approaches	
provide	an	economical	alternative	to	physical	methods.	

Several	computational	approaches	have	been	proposed	for	leak	detection	(an	extensive	review	is	
provided	 in	 [5]).	 Machine	 learning	 approaches	 are	 one	 of	 the	 data‐driven	 computational	
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approaches	that	have	gathered	increasing	interest	in	the	last	two	decades	in	leak	detection	studies	
[6].	Machine	learning	methods	use	a	large	amount	of	data	related	to	the	hydraulic	properties	of	
WDSs	such	as	pressure,	flowrate,	acoustic	vibration,	optics,	or	temperature	for	leak	detection	[7].	
Pressure	and	flowrates	are	the	most	commonly	used	properties	for	leak	detection	[8].	

While	a	good	amount	of	 research	has	been	 conducted	on	 the	application	of	machine	 learning	
models	for	leak	detection	in	pipes	[9],	the	question	about	their	applicability	to	real‐world	WDSs	
remains	unclear.	One	of	the	critical	reasons	for	this	lack	of	clarity	concerns	the	scalability	of	the	
approaches	considered	in	these	studies.	In	[10]	and	[11],	Convolutional	Neural	Network	(CNN)	
was	used	for	leak	detection	in	a	single	pipe	using	simulated	negative	pressure	wave	and	scalogram	
images	of	vibration	signals	as	inputs,	respectively.	In	[12],	MLP	was	used	with	a	cascade‐forward	
back‐propagation	 to	 detect	 leaks	 in	 a	 single	 pipe	 using	 simulated	 pressure	 data.	 However,	
analyzing	 leaks	by	 isolating	 individual	pipes	 in	 complex	 interconnected	WDSs	 is	not	 a	 viable	
solution	 in	 the	 field	as	 it	 is	difficult	 to	 isolate	 specific	pipes.	Further,	 the	 tools	and	 resources	
required	 to	collect	some	of	 these	 input	data	 for	 individual	pipes	 in	 large	real‐world	WDSs	are	
infeasible.	 Beyond	 single	 pipe	 analyses,	 several	 studies	 have	 considered	 complete	 or	 partial	
hydraulic	 systems.	MLP	was	used	 in	 [13]	 to	predict	 leaks	 in	a	 simple	hydraulic	 system	using	
numerically	obtained	fluid	transient	waves	as	input.	In	[14],	SVM	was	used	to	predict	leak	size	and	
location	for	an	isolated	section	of	a	WDS	based	on	simulated	pressure	data.	In	[15],	a	model‐based	
k‐Nearest	 Neighbors	 (k‐NN)	 classifier	was	 used	 to	 identify	 leak	 events	 and	 locations.	 These	
studies	 still	 face	 the	 challenge	 of	 scalability	 as	 extrapolating	 their	 results	 and,	 therefore,	
application	to	the	larger	real‐world	WDSs	is	very	challenging.	

Another	 factor	 that	 limits	 the	real‐world	application	of	some	of	 the	existing	machine	 learning	
approaches	relates	to	the	simplifying	assumptions	regarding	the	characteristics	of	pipe	leaks	in	
WDSs.	For	example,	the	application	of	the	Bayesian	classifier	in	[16]	to	detect	leaks	assumes	that	
there	 is	 only	 a	 single	 leak	 in	 the	WDS,	which	 is	 rarely	 true.	 In	 [17],	 unsupervised	 principal	
component	analysis	(PCA)	was	used	for	leak	detection	by	assuming	a	single,	constant	size	leak.	

Furthermore,	 very	 few	 studies	 have	 considered	 uncertainties	 associated	 with	 hydraulic	
simulation	models	and	imprecision	of	measurement	devices	in	real‐world	WDSs.	The	parameters	
such	as	demands,	pipe	roughness,	pipe	diameters,	and	lengths	used	in	the	hydraulic	models	have	
associated	uncertainties	[18].	These	uncertainties	affect	the	accuracy	of	the	simulated	pressure	
and	flow	data.	One	way	to	account	for	the	hydraulic	model	parameter	uncertainties	is	to	add	noise	
to	these	parameters	prior	to	simulation,	as	shown	in	[19]	and	[20].	However,	such	an	approach	is	
inadequate	to	encapsulate	the	uncertainties	related	to	the	imprecision	of	measurement	devices	
such	as	pressure	sensors	and	flow	meters	of	the	real‐world	WDSs.	

This	study	proposes	a	machine	learning‐based	approach	to	detecting	and	localizing	leaks	in	WDSs,	
which	considers	multiple	realistic	leak	scenarios	and	accounts	for	hydraulic	model	uncertainties	
and	 instrument	 imprecision.	Two	different	machine	 learning	models	are	used	 to	predict	 leaks	
using	simulated	pressure	measurements	as	input.	The	key	contributions	of	this	study	with	respect	
to	previous	approaches	include:	

 Overcoming	 the	 unrealistic	 simplification	 about	 occurrence	 of	 a	 single	 leak	 at	 a	 time
assumed	by	most	state‐of‐the‐art	techniques	[15]	by	generalizing	to	multi‐leak	problems.

 Considering	leaks	of	varying	sizes	to	represent	more	realistic	leak	scenarios.

 Accounting	 for	 the	 realistic	 nature	 of	 leak	 locations	 by	 considering	 the	 possibility	 of
random	leak	locations	anywhere	within	a	WDS.

 Consideration	 of	 the	 most	 common	 and	 impactful	 hydraulic	 model	 uncertainty,	 i.e.,
demand	uncertainty,	as	well	as	measuring	instrument	imprecision	through	the	addition	of
noise	to	the	input	data.

• Simultaneous	prediction	of	location	as	well	as	siz e	of	the	leaks.
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Even	 though	 the	machine	 learning	models	are	 trained	using	simulated	pressure	data,	 they	are	
applicable	 to	predict	 leaks	using	real‐world	measurements	as	 long	as	 the	hydraulic	model	 is	a	
reasonable	representation	of	the	real	system.	For	WDSs	that	have	abundant	real‐world	pressure	
sensor	measurements,	these	models	can	easily	be	fine‐tuned	and	tested	using	the	real	data.	

2 METHODS 

2.1 General Framework 

Figure	1	illustrates	the	general	framework	proposed	in	this	study	to	detect	and	localize	leaks	in	
WDS	 pipes.	 The	 framework	 starts	 with	 a	 WDS	 hydraulic	 model	 that	 generates	 simulated	
operational	pressure	data.	First,	pressure	data	for	a	leak‐free	scenario	is	generated	by	simulating	
the	hydraulic	model	using	the	EPANET	simulator	[21].	It	is	followed	by	pressure	data	generation	
for	multiple	different	 leak	 scenarios.	Pressure	differences	between	 the	 leak	 scenarios	and	 the	
leak‐free	 scenario	 are	 then	 computed	 and	 stored	 as	 a	 pressure	 readings	 dataset.	 The	
corresponding	 leak	 scenarios	 are	 stored	 as	 a	 leak	 values	 dataset.	Noise	 is	 then	 added	 to	 the	
pressure	readings	dataset	when	required	for	the	case	under	study	described	in	Section	2.5.	The	
resulting	pressure	readings	dataset	and	the	leak	values	dataset	are	then	randomly	shuffled	and	
split	into	training	sets	and	testing	sets;	a	train	to	test	ratio	of	80	to	20	is	used.	The	training	pressure	
dataset	and	the	training	leak	values	dataset	are	scaled	and	fed	to	machine	learning	models.	The	
pressure	data	is	considered	as	covariates	and	the	leak	values	as	responses.	The	models	are	trained	
and	 tuned,	and	 the	optimized	models	are	selected	 for	 the	prediction	of	 leaks.	Finally,	 the	 leak	
prediction	and	model	evaluation	are	performed	on	the	testing	pressure	and	leak	values	datasets	
using	the	optimized	models;	predicted	model	outputs	are	compared	with	the	corresponding	true	
leak	values.	

Figure 1. General framework for detecting leaks in WDS 

2.2 Machine Learning Models 

2.2.1 Multilayer Perceptron (MLP) 

Multilayer	Perceptrons	(MLPs)	are	supervised‐learning	models	based	on	deep	neural	networks.	
An	MLP	model	consists	of	an	input	layer,	an	output	layer,	and	a	selected	number	of	dense	hidden	
layers	located	between	the	input	and	the	output	layers	(Figure	2).	Activation	layers	follow	hidden	
layers	to	activate	or	deactivate	received	signals.	Multiple	activation	functions	are	available	to	be	
used	in	these	activation	layers.	

2.2.2 1‐D Convolutional Neural Network (CNN) 
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Similar	to	MLPs,	Convolutional	Neural	Networks	(CNNs)	are	also	supervised‐learning‐based	deep	
neural	networks.	The	key	difference	between	CNNs	and	MLPs	is	the	presence	of	convolutional	and	
pooling	layers	in	CNNs.	As	shown	in	Figure	3,	the	convolutional	layers	produce	convolved	feature	
maps,	which	allow	 for	contextual	 learning,	and	 the	pooling	 layers	downsample	 these	maps	 to	
extract	abstract	features	from	the	data.	The	convolutional	layers	use	kernels	or	filters	to	extract	
the	 features.	A	one‐dimensional	(1‐D)	CNN	model	uses	 filters	 that	only	vary	 in	depth	(i.e.,	one	
dimension).	CNN	models	 also	have	 an	 input,	 an	 output	 layer,	 some	dense	hidden	 layers,	 and	
activation	layers	similar	to	the	MLPs.	

2.2.3 Hyperparameters and Model Tuning 

Total Number of Iterations (Epochs):	MLP	 and	 CNN	models	 are	 trained	 for	 a	 number	 of	
iterations	 (epochs)	 to	 ensure	 the	 stability	 in	 the	 training	process.	The	optimal	model	 and	 its	
corresponding	weights	are	determined	by	monitoring	the	training	and	validation	errors	over	the	
entire	number	of	epochs.	

Error Function:	The	functions	to	calculate	the	training	and	validation	errors	are	chosen	based	on	
the	nature	of	the	problem.	In	this	study,	leak	detection	is	formulated	as	a	regression	type	problem	
to	 simultaneously	 solve	 for	both	 leak	 locations	 and	 sizes.	Therefore,	 the	mean	 squared	 error	
(MSE)	function	is	used;	mean	absolute	error	(MAE)	can	be	used	as	an	alternative	to	MSE.	

Activation Function:	A	trial‐and‐error	evaluation	of	multiple	activation	functions	identified	the	
Leaky	Rectified	 Linear	Unit	 (L‐ReLU)	 as	 a	 suitable	 activation	 function	 for	 this	 study.	 L‐ReLU	
prevents	the	problem	of	vanishing	gradient	during	forward	propagation	like	the	regular	rectified	
linear	 unit	 (ReLU)	 and	 has	 an	 added	 advantage	 of	 preventing	 vanishing	 gradients	 during	
backward	propagation	[22].	

Optimizer:	The	commonly	used	Adam	optimizer	is	used	in	this	study.	

Figure 2: Multilayer Perceptron 

Figure 3: Convolutional Neural Network 

2.2.2    1-D Convolutional Neural Network (CNN) 
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simulation	related	researches.	For	example,	this	network	was	also	used	in	the	Leakage	Detection	
and	 Isolation	Methods	 (BattLeDIM	 2020)	 [23]	 competition	 to	 evaluate	 the	 performances	 of	
different	machine	 learning	and	computational	models	 for	 leak	detection.	The	L‐Town	network	
consists	of	905	pipes	and	782	junctions	and	is	primarily	a	tank‐regulated	model	network.	

Figure 4: L‐Town water network 

2.4 Candidate Leak Regions 

Localizing	leaks	to	the	actual	pipes	or	junctions	requires	large	amount	of	data,	which	is	infeasible	
to	obtain	from	real‐world	WDSs.	Therefore,	a	lesser	resolution	is	adopted	for	leak	localization	in	
this	 study.	 The	 entire	 water	 network	 is	 divided	 into	 several	 sub‐areas	 that	 are	 considered	
candidate	leak	regions.	The	L‐Town	network	is	divided	into	33	candidate	leak	regions	(Figure	5a).	
A	k‐means	clustering	technique	[24]	is	used	to	divide	the	network	into	these	33	candidate	leak	
regions	based	on	Euclidean	distances.	Leaks	are	modelled	as	emitters	in	EPANET	and	are	assumed	
to	occur	at	the	center	of	each	pipe.	Since	EPANET	supports	emitters	only	on	nodes,	new	junction	
nodes	are	inserted	at	the	middle	of	every	pipe	in	the	network	using	the	Morph	package	in	WNTR	
[25].	Candidate	leak	nodes	representing	each	leak	region	is	assumed	to	be	at	the	centroid	of	each	
leak	region.	Centroids	of	leak	regions	are	estimated	using	k‐nearest	neighbour	search	algorithm.	
For	any	given	leak	scenario,	a	leak	located	anywhere	within	the	boundaries	of	a	candidate	leak	
region	is	defined	by	this	region.	While	a	hydraulic	distance‐based	clustering	measure	results	in	
more	homogeneous	clusters,	the	less	homogeneous	clusters	obtained	using	Euclidean	distance‐
based	measure	may	pose	a	more	significant	challenge	for	the	leak	detection	models.	Therefore,	
the	Euclidean	distance‐based	clustering	used	here	is	a	more	conservative	approach.	

A	pressure	node	is	assigned	to	each	of	the	33	candidate	regions	to	track	the	pressure	changes	due	
to	leak/s	in	that	region.	These	pressure	nodes	represent	pressure	sensors	in	real‐world	WDSs.	
The	locations	of	the	pressure	nodes	are	based	on	the	locations	used	in	BattLeDIM	2020	and	are	
shown	in	Figure	5b.	

2.3 Study Network 

In	this	study,	the	leak	detection	methods	are	applied	to	a	standard	test	network	called	the	L‐Town	
water	network	(Figure	4).	The	L‐Town	network	has	been	previously	used	in	several	modeling	and	
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(a) (b) 

Figure 5: Candidate leak regions: (a) Leak regions; (b) Pressure sensors within each region 

2.5 Study Cases 

Four	study	cases	are	considered	in	this	study	to	represent	the	realistic	leak	characteristics,	and	
the	uncertainties	in	input	data	due	to	water	network	model	inaccuracies	and	measuring	device	
imprecision	are	considered	for	this	study.	

Case A: No‐noise	–	Input	pressure	difference	data	is	free	of	noise.	It	represents	the	ideal	case	of	
accurate	WDS	models	and	precise	measuring	devices.	Leaks	are	assumed	to	occur	at	the	centroid	
of	each	leak	region.	

Case B: Demand‐noise	 –	 Input	 pressure	 difference	 data	 accounts	 for	 the	 WDS	 model	
inaccuracies.	To	mimic	the	inaccuracies	in	demand	values	in	the	WDS	model,	random	Gaussian	
noise	are	added	to	the	demands	prior	to	simulation.	Simulated	pressure	data	are	then	generated	
using	the	modified	WDS	model.	A	ten	percent	Gaussian	noise	is	used.	Leaks	are	assumed	to	occur	
at	the	centroid	of	each	leak	region.	

Case C: Mixed‐noise	–	Input	pressure	difference	data	accounts	for	the	WDS	model	inaccuracies	
as	well	as	the	measuring	device	imprecision.	Unlike	the	demand‐noise	case,	noise	is	added	to	the	
final	pressure	differences	of	the	leak	and	leak	free	scenarios.	A	ten	percent	Gaussian	noise	is	used.	
Leaks	are	assumed	to	occur	at	the	centroid	of	each	leak	region.	

Case D: Random leaks –	 The	 leaks	 can	 be	 located	 anywhere	within	 the	 boundaries	 of	 the	
candidate	leak	regions	instead	of	their	centroids.		No	additional	noise	is	imposed.		

2.6 Data Generation 

The	 input	datasets	used	 in	 this	study	constitute	 the	 leak	scenario	and	 the	pressure	difference	
datasets,	which	are	generated	in	two	sequential	steps.	

2.6.1 Leak Scenario Generation 

The	following	four	assumptions	are	considered	for	the	generation	of	realistic	leak	scenarios	for	
this	study:	

 A	leak	scenario	must	consist	of	at	least	one	leak.

 A	leak	scenario	can	include	a	maximum	of	3	leaks.

 A	leak	can	be	located	in	any	of	the	33	candidate	leak	regions.

 The	leak	size	ranges	from	0	to	5	as	compared	to	the	0	to	3	range	used	in	BattLeDIM	2020.
The	leak	size	is	the	discharge	coefficient	in	the	leak	equation	(1).
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ݍ ൌ 	ఊ݌	ܥ (1)	

where	q	=	flow	rate,	p	=	pressure,	C	=	discharge	coefficient,	and	Υ (=0.5)	=	pressure	exponent.	

Applying	 the	 above	 assumptions,	 leak	 scenarios	 are	 generated	 using	 the	 following	 general	
procedure:	

Step	1	–	For	a	 leak	scenario,	 the	 total	number	of	 leaks	 is	determined	by	drawing	 in	random	a	
number	n	from	the	set	{1,	2,	3}.	

Step	2	–	Based	on	the	outcome	n	of	the	previous	draw,	n	candidate	leak	locations	out	of	the	33	
candidate	leak	locations	are	drawn	at	random.	

Step	3	–	For	these	n	candidate	leak	locations,	the	leak	sizes	are	randomly	drawn	from	the	leak	size	
range	of	0	to	5.	

Step	4	–	Repeat	steps	1	–	3	for	100,000	times	to	generate	100,000	leak	scenarios.	

The	100,000	leak	scenarios	generated	from	the	above	procedure	were	saved	as	a	leak	scenario	
dataset.	

2.6.2 Pressure Data Generation 

Simulated	pressure	data	are	generated	by	the	following	procedure:	

Step	1	–	As	discussed	in	Section	2.4,	assign	one	pressure	node	each	to	all	33	candidate	regions.	
The	locations	of	the	pressure	nodes	are	based	on	the	locations	used	in	BattLeDIM	2020.	

Step	2	–	Simulate	a	leak‐free	scenario	for	the	specified	study	case	defined	in	Section	2.5	by	running	
the	base	model	with	the	EPANET	simulator.	Store	the	resulting	pressure	values	at	the	33	pressure	
nodes.	

Step	3	–	Pick	a	leak	scenario	from	the	leak	scenario	dataset	and	add	the	associated	leaks	to	the	
base	model.	Then,	run	this	modified	model	with	the	EPANET	simulator	and	store	the	resulting	
pressure	values	at	the	33	pressure	nodes.	

Step	4	–	Repeat	Step	3	for	all	the	100,000	leak	scenarios	in	the	dataset.	

Step	5	–	Compute	the	pressure	differences	between	each	of	the	100,000	leak	scenarios	and	the	
leak‐free	 scenario.	 Then,	 combine	 the	 100,000	 pressure	 differences	 together	 as	 a	 pressure	
difference	dataset.	

Step	6	–	Add	noise	to	the	pressure	difference	data	depending	upon	the	study	case	discussed	in	
Section	2.5. 

2.7 Model Validation and Testing 

2.7.1 Train‐Test Split 

The	input	pressure	and	leak	datasets	are	divided	into	training	and	test	data.	A	training	to	test	ratio	
of	80	to	20	is	used	to	split	the	data.	The	two	models	are	validated	using	the	test	datasets.	

2.7.2 Metrics and Thresholds 

The	performance	of	the	two	machine	learning	models	to	predict	leaks	is	evaluated	using	the	two	
standard	classification	metrics:	precision	and	recall.	

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ܶܲ

ܶܲ ൅ ܲܨ
	ൈ 	100	 (2)	

ܴ݈݈݁ܿܽ ൌ
ܶܲ

ܶܲ ൅ ܰܨ
	ൈ 	100	 (3)	
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where,	TP	=	True	Positives;	FP	=	False	Positives;	and	FN	=	False	Negatives.	

In	the	context	of	this	study,	precision	is	the	percentage	of	the	actual	leaks	out	of	all	leak	predictions	
made	by	the	models.	Recall	is	the	percentage	of	the	actual	leaks	identified	by	our	models	out	of	all	
the	leaks	in	the	dataset.	

In	 this	 study,	 the	 problem	 of	 leak	 detection	 is	 formulated	 as	 a	 regression	 type	 problem	 to	
simultaneously	solve	for	both	leak	locations	and	sizes.	To	assess	the	model	performances	in	terms	
of	 precision	 and	 recall,	 a	 post‐processing	 of	model	 outputs	 is	 required.	 This	 post‐processing	
involves	the	use	of	thresholds	to	determine	correct/incorrect	location	and	size	classifications.	A	
set	 of	 nine	 thresholds	 ranging	 from	 0.1	 to	 0.9	 increasing	 incrementally	 by	 0.1	 are	 used.	The	
thresholds	are	in	the	same	unit	as	leak	sizes	and	represent	the	precision	of	the	measuring	devices	
for	real‐world	systems.	For	example,	a	threshold	of	0.1	means	that	the	leaks	that	are	smaller	than	
0.1	in	the	dataset	are	considered	as	no‐leaks	and	only	the	predictions	that	are	within	0.1	units	of	
the	actual	leak	values	are	considered	as	correct	classifications.	

2.8 Software and Tools 

The	following	software	and	tools	were	used	in	this	study:	

 EPANET	 Simulator	 2.0	 version	 –	Hydraulic	 simulations	 are	 performed	 using	 EPANET
simulator.

 WNTR	Morph	package	–	For	splitting	the	network	to	add	junction	nodes	at	the	middle	of
each	pipe.

 MatLab	2019b	version	–	Input	data	generation	is	done	by	running	EPANET	simulator	in
MatLab.	Matlab	is	also	used	to	generate	candidate	leak	regions	and	nodes.

 Python	version	3.7	–	Model	training,	testing,	and	validation	is	done	in	Python.

 Tensorflow	 version	 2.1.6	 –	Machine	 learning	models	 are	 built	 using	 the	 Tensorflow
package.

3 RESULTS AND DISCUSSION 

Leak	prediction	performance	of	the	MLP	and	CNN	models	are	studied	 for	the	 four	study	cases	
described	 in	Section	 2.5.	 The	 two	 models	 are	 compared	 by	 calculating	 precision	 and	 recall	
accuracies	for	the	test	dataset.	Table	1	summarizes	the	architecture	and	hyperparameters	for	the	
optimal	MLP	and	CNN	models.	The	optimal	MLP	model	has	four	dense	layers:	the	input	layer	and	
the	output	layer,	with	33	units	each,	and	the	two	central	dense	layers	with	64	and	128	units.	The	
optimal	CNN	model	consists	of	six	layers	‐	four	dense	layers	and	two	convolutional	layers.	Like	
MLP,	two	out	of	the	four	dense	layers	are	the	input	and	the	output	layers,	with	33	units	each.	The	
remaining	 two	dense	 layers	 are	hidden	 layers	with	500	 and	100	units,	 respectively.	The	 two	
convolutional	 layers	 (also	 hidden)	 that	 follow	 the	 input	 layers	 consist	 of	 256	 and	 128	
filters.	Figure	6	shows	the	trend	of	the	training	and	validation	mean	squared	errors	 for	the	no‐
noise	case	for	the	two	models.	The	validation	errors	show	a	general	decreasing	trend	that	stops	
after	the	100th	epoch,	indicating	model	overfitting	beyond	100	epochs.	The	same	is	true	for	the	
validation	errors	for	the	other	three	study	cases.	Therefore,	the	required	number	of	iterations	for	
all	model	training	is	set	to	100	epochs.	
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Table 1. Machine learning model details 

Model	 Architecture	 Hidden	
Layers	

Dense	
Layers	

Convolutional	
Layers	

Activation	
Functions	

Learning	
Rate	

Optimizer	

MLP	 33‐64‐128‐
33	

2	 4 ‐ LReLU	 0.05	 Adam	

CNN	 33‐256‐128‐
500‐100‐33	

4	 4	 2	 LReLU	 0.05	 Adam	

Figure 6. Training and validation error dynamics 

3.1 Comparison of CNN and MLP model performance 

The	complete	model	performances	for	the	MLP	and	the	CNN	models	for	the	four	study	cases	are	
summarized	in	Tables	2	and	3.	Figures	7	–	10	show	the	precision	and	recall	for	the	two	models	at	
three	selected	 thresholds	 (0.1,	0.5,	and	0.9)	 for	 the	 four	study	cases	 (no‐noise,	demand‐noise,	
mixed‐noise,	and	random	 leaks).	The	results	at	these	three	thresholds	are	representative	of	all	
nine	thresholds	considered	in	this	study,	with	0.1,	0.5,	and	0.9	indicating	the	most,	the	mild,	and	
the	 least	stringent	condition,	respectively.	The	 figures	show	 that	precision	 is	generally	high	(>	
60%)	for	the	CNN	model	at	all	three	thresholds	for	all	study	cases	except	for	the	random	leak	case.	
Comparatively,	precision	for	the	MLP	model	is	lower	at	all	thresholds.	The	difference	in	precision	
between	the	two	models	is	significantly	high	(>	40%)	at	0.1	threshold	for	the	no‐noise,	demand‐
noise,	 and	 mixed‐noise	 cases.	 This	 difference,	 however,	 starts	 to	 diminish	 as	 the	 threshold	
becomes	less	stringent.	The	higher	precision	for	the	CNN	model	compared	to	the	MLP	model	for	
all	four	study	cases	indicates	its	superiority	in	minimizing	false	leak	predictions	even	with	noise	
in	the	input	data.		

Similar	to	precision,	recall	for	the	CNN	model	is	higher	than	the	MLP	model	at	the	most	stringent	
threshold	(0.1)	for	all	four	study	cases.	However,	the	difference	in	recall	of	the	two	models	at	0.1	
threshold	 is	 not	 as	 high	 as	 the	 difference	 in	 precision.	 At	 the	 lesser	 stringent	 thresholds,	
particularly	at	0.9,	 the	difference	 in	recall	 for	 the	 two	models	 is	 insignificant	 for	 the	no‐noise,	
demand‐noise,	and	mixed‐noise	cases.	However,	this	difference	is	significant	for	the	random	leak	
case	at	all	thresholds,	with	the	CNN	model	outperforming	the	MLP	model	throughout.	Overall,	the	
recall	results	are	consistent	with	the	precision	results	in	implying	the	superior	performance	of	the	
CNN	model	over	the	MLP	for	the	L‐Town	network.	
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(a) (b) 

Figure 7. Model performance for no‐noise case: (a) Precision; (b) Recall. 

(a) (b) 

Figure 8. Model performance for demand‐noise case: (a) Precision; (b) Recall. 

(a) (b) 

Figure 9. Model performance for mixed‐noise case: (a) Precision; (b) Recall. 
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(a) (b) 

Figure 10. Model performance for random leaks case: (a) Precision; (b) Recall. 

3.2 Problem complexity of the study cases 

The	precision	and	recall	 for	the	 four	study	cases	(with	both	CNN	and	MLP)	were	compared	to	
understand	 the	 complexity	of	 the	 leak	detection	 task	 associated	with	 each	of	 the	 cases.	Both	
precision	and	recall	at	all	thresholds	 for	the	 ideal	but	unrealistic	no‐noise	case	(Figure	7)	rank	
highest	compared	to	the	other	three	study	cases	(Figure	8	–	10)	for	both	MLP	and	CNN	models.	
Precision	and	recall	are	comparatively	high	(>	40%)	even	at	the	most	stringent	threshold	(0.1)	for	
the	no‐noise	case.	These	high	accuracies	can	be	attributed	to	the	fact	that	the	leak	signatures	in	
the	input	pressure	difference	data	that	are	key	to	locating	leaks	are	unaffected	without	noise.	The	
demand‐noise	case	ranks	second	among	these	four	cases	based	on	the	precision	and	recall	values.	
While	the	uncertainty	 in	demand	parameters	 in	the	hydraulic	model	can	generate	noise	 in	the	
simulated	pressure	data,	the	noise	is	systematic.	Therefore,	it	affects	the	leak	signatures	to	a	lesser	
degree.	For	the	mixed‐noise	case,	the	10%	Gaussian	noise	added	to	the	input	pressure	differences	
introduces	 randomness	 in	 the	data	 that	 affect	 the	 leak	 signatures	 to	 a	 comparatively	 greater	
degree.	 Therefore,	 the	 precision	 and	 recall	 of	 the	 two	 models	 for	 the	 mixed‐noise	 case	 are	
significantly	lower	compared	to	no‐noise	and	demand‐noise	cases.	The	leak	signatures	are	affected	
to	the	highest	degree	for	the	random leaks	case.	While	no	direct	noises	are	added	to	the	input	data	
as	 is	 done	 for	 the	 mixed‐noise	 case,	 the	 randomness	 in	 leak	 locations	 within	 a	 leak	 region	
introduces	the	possibility	of	a	multitude	of	leak	signatures	for	the	same	leak	scenario,	which	is	the	
most	challenging	for	the	machine	learning	models	to	learn.	Therefore,	the	random leaks	case	ranks	
lowest	in	precision	and	recall.	The	effect	of	the	complexity	of	the	mixed‐noise	and	the	random leaks 
cases	is	profound	at	the	0.1	threshold	because	the	artificial	noise	created	by	the	randomness	in	
the	 input	 data	 drowns	 out	 the	 changes	 in	 pressure	 input	 caused	 by	 a	 leak	 size	 or	 leak	 size	
difference	of	0.1.	
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Table 2. Precision for the study cases 

Threshold	 No‐noise	 Demand‐noise	 Mixed‐noise	 Random	leaks	

MLP	 CNN	 MLP	 CNN	 MLP	 CNN	 MLP	 CNN	

0.1	 45.2	 87.2	 28.8	 80.5	 15.9	 60.5	 2.7	 7.1	

0.2	 78.5	 94.4	 63.7	 89.7	 43.2	 77.0	 9.1	 22.5	

0.3	 89.4	 96.3	 79.9	 93.5	 61.6	 84.0	 17.7	 36.9	

0.4	 93.9	 97.4	 87.4	 95.4	 72.6	 87.7	 27.1	 48.0	

0.5	 96.0	 98.0	 91.6	 96.5	 79.2	 90.0	 36.1	 56.5	

0.6	 97.3	 98.5	 94.0	 97.2	 83.7	 91.5	 44.2	 63.0	

0.7	 98.0	 98.7	 95.5	 97.7	 87.0	 92.6	 51.2	 68.3	

0.8	 98.5	 98.8	 96.5	 98.1	 89.3	 93.5	 57.3	 72.3	

0.9	 98.8	 98.9	 97.1	 98.3	 91.1	 94.3	 62.8	 75.6	

Table 3. Recall for the study cases 

Threshold	 No‐noise	 Demand‐noise	 Mixed‐noise	 Random	leaks	

MLP	 CNN	 MLP	 CNN	 MLP	 CNN	 MLP	 CNN	

0.1	 43.9	 64.1	 31.5	 58.3	 22.7	 31.7	 8.1	 13.0	

0.2	 69.3	 82.5	 54.9	 77.2	 40.5	 50.4	 15.3	 24.8	

0.3	 81.6	 88.9	 69.6	 85.4	 53.0	 62.0	 22.1	 34.9	

0.4	 88.4	 92.3	 79.2	 89.7	 62.7	 69.0	 29.2	 43.1	

0.5	 92.2	 94.3	 85.6	 92.4	 69.8	 73.9	 35.9	 50.0	

0.6	 94.6	 95.6	 89.8	 94.0	 75.1	 77.7	 41.8	 55.8	

0.7	 96.1	 96.4	 92.6	 95.1	 79.3	 80.6	 47.3	 60.8	

0.8	 97.0	 97.0	 94.4	 95.8	 82.6	 82.8	 52.2	 65.0	

0.9	 97.7	 97.4	 95.7	 96.5	 85.4	 84.7	 56.7	 68.6	

4 CONCLUSIONS 

In	this	study,	a	machine	 learning‐based	approach	 is	proposed	 for	detecting	 leaks	 in	WDSs	that	
takes	into	account	the	characteristics	of	leaks	present	in	real‐world	WDSs.	The	impact	of	WDS	leak	
characteristics	(varying	size,	multiple	occurrences,	and	random	 location)	and	the	uncertainties	
associated	with	the	hydraulic	model	parameter	and	measuring	devices	are	studied	by	analyzing	
the	performance	of	two	different	machine	learning	models.	One	of	the	key	findings	of	this	study	is	
that	the	effectiveness	of	the	machine	learning‐based	leak	detection	method	is	model‐dependent.	
In	this	study,	the	CNN	model	is	more	effective	than	the	MLP	model	in	detecting	leaks.	While	this	
result	is	specific	to	the	study	network	(L‐Town)	using	pressure	differences	as	input,	its	implication	
expands	beyond	this	study.	It	establishes	the	need	to	explore	multiple	models	when	developing	a	
leak	detection	method.	The	other	key	finding	of	this	study	highlights	the	necessity	of	considering	
various	types	of	 leak	scenarios	that	bear	realistic	 leak	characteristics	to	understand	better	the	
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applicability	of	the	leak	detection	models	to	real	WDSs.	Simplistic	and	unrealistic	leak	scenarios	
such	 as	 the	 no‐noise	 case	overestimate	 the	performance	of	 the	models,	 as	 seen	 in	 this	 study.	
Models	trained	under	such	scenarios	can	severely	underperform	and	be	deemed	useless	for	real	
WDSs.	However,	the	high	accuracies	of	the	CNN	and	the	MLP	models	for	the	three	realistic	study	
cases	involving	data	noise,	random	leaks,	and	model	and	instrument	uncertainties	are	proof	of	
their	potential	for	application	to	real‐world	leak	detection	problems.	It	is	also	important	to	point	
out	that	the	locations	of	the	pressure	sensors	used	to	generate	the	input	data	in	this	study	are	not	
based	on	hydraulic	analysis	and,	therefore,	are	not	optimal.	Optimally	located	pressure	nodes	can	
further	improve	the	accuracies	of	the	models.	

Several	 possibilities	 remain	 open	 for	 improving	 the	work	 done	 in	 this	 study.	 Continuing	 the	
exploration	 of	 real‐world	 leak	 characteristics,	 the	 addition	 of	 other	 types	 of	 noise	 can	 be	
considered	for	the	input	data.	Using	multiple	inputs	instead	of	a	single	input	such	as	pressure	is	
another	possibility	to	improve	leak	detection	accuracy.	Our	work	in	progress	includes	adding	flow	
data	alongside	pressure	data	 to	predict	 leak	 locations	and	size.	Finally,	 to	understand	 the	 true	
potential	of	these	leak	detection	models,	the	next	step	forward	for	this	study	is	to	apply	them	to	a	
real‐world	WDS.	
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