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Abstract

Nitrous oxide (N2O) is considered a potent and very harmful greenhouse gas (GHG), and 
wastewater treatment plants (WWTPs) are considered a potent source of it.  Predicting N2O 
emissions is a first step in reducing these. One way of doing this is by using a process-based 
biokinetic model, based on Activated Sludge Models (ASMs) that have been extended to 
include the N2O production pathways. Alternatively, data-driven Artificial Intelligence (AI) 
models can  be used  to predict N2O emissions. In this paper, a biokinetic model has been built 
and calibrated for the Amsterdam West WWTP (1.1 Million PE; 168 MLD), using the EnviroSim 
software, BioWin®. A comprehensive monitoring campaign was conducted to characterise the 
common quality parameters (COD, TKN, TP, TSS, etc.) into their fractions, which were then 
used as BioWin model inputs. The calibration was conducted in two stages to predict effluent 
quality followed by model calibration to predict N2O emissions. Additionally, an Artificial 
Neural Network (ANN) based model was developed using pertinent process parameters, such 
as the influent flowrate, and NH4 in the aerobic tank as inputs to predict the N2O 
concentration in the gas phase. Preliminary results demonstrate that the ANN model 
outperforms the BioWin model in terms of prediction accuracy. Still further work is required 
to better understand the pros and cons of the two modelling approaches. 
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1 INTRODUCTION

1.1 Background

With the increasing effects of climate change and global warming becoming more apparent, great 
efforts are being made in reducing the carbon footprint of industries and society in general. 
Nitrous oxide (N2O) is considered a potent and very harmful greenhouse gas (GHG); in addition, 
N2O has been considered to contribute to the depletion of the ozone layer in the stratosphere [1]. 
While the global anthropogenic GHG emission contribution from N2O can be considered minor 
(6.2% in terms of CO2eq), the global warming potential of N2O is very high, 298 times greater than 
that of CO2 on a 100-year time scale [2]. In the past decades, wastewater treatment plants 
(WWTPs) are increasingly considered to be one of the potent sources of N2O. Therefore, there is 
a global call for action to invest and investigate in advance wastewater treatment technologies 
and operational strategies to reduce the generation of the harmful gas [3]. As a result, the 
quantification of N2O emissions from full-scale plants have been considered greatly, and 
monitoring campaigns of varying durations have been conducted. Additionally, biokinetic models, 
primarily using the widely known activated sludge models (ASMs) have been extended to include 
the N2O production pathways. In parallel, like many other domains, more and more data-driven 
based analytics are being utilised and adopted in the wastewater field, to solve complex process 
challenges. Artificial Intelligence (AI) models also have been used in the prediction of key 
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wastewater parameters including N2O in data-rich systems. In this study, a biokinetic model was 
calibrated using long-term (1 year) N2O emissions data from a full-scale WWTP and its predictive 
capabilities were assessed. To acquire specific data on the raw influent wastewater that is 
necessary as input into the model, a comprehensive sampling campaign was also conducted. 
Finally, initial investigations of training AI models to predict the N2O emissions were conducted. 
Preliminary comparison of the performance with the biokinetic model predictions have been 
discussed. 

1.2 Biokinetic Modelling of N2O Emissions

Activated sludge models (ASMs) are widely and successfully used for process modelling, 
subsequentially supporting in finding solutions to process design and operational problems [4]. 
The production of N2O emissions in WWTPs has been associated with the process of biological 
nitrogen removal, where three production pathways are prominent, of which two are attributed 
to the ammonia oxidising bacteria (AOB), i.e., hydroxylamine oxidation and nitrifier 
denitrification; and one is attributed to incomplete heterotrophic denitrification. Over the past 
decade, such biokinetic models have been extended to also include the production pathways of 
N2O, for its prediction and to test control and mitigation strategies. While the current N2O 
biokinetic models have been able to predict the general trend of the observed N2O emissions, the 
prediction accuracies are still unsatisfactory [5, 6]. Furthermore, when a calibrated model is 
confronted with unseen data for validation, the prediction accuracy has been reported to be much 
lower, thereby questioning the capabilities of the models to future data [4, 5, 6, 7, 8].   

The modelling investigations were mostly carried out using datasets obtained from a controlled 
environment as a lab-scale or pilot-scale setup, barring a handful of cases that used data from full-
scale systems [5, 6, 7, 9, 10]. Therefore, the applicability of such biokinetic N2O models in a full-
scale WWTP can be questioned given the controlled operating and process conditions that are 
administered in lab/pilot scale setups. Furthermore, in the cases of full-scale based investigations, 
the duration of data used for the calibration and validation purposes can be considered short-
term (< 1 month) or medium-term (< 1 year). In the prediction of N2O emissions using biokinetic 
models, there is a clear requirement to analyse the performance of the models when calibrated on 
long-term data containing seasonal variations and under full-scale operating conditions.  

1.3 Data-driven Modelling of N2O Emissions

The use of data-driven based analytics or AI models to predict N2O emissions in WWTPs is still 
sparse. Even though advanced information extraction methods and dimensionality reduction 
techniques have been used on WWTP data, a handful of investigations have used these methods 
to analyse data from N2O monitoring campaigns [11]. For example in the investigation in [12], a 
Random Forest (RF) analysis, a machine learning method, was used to identify the primary 
effecters of N2O emissions from a full-scale BNR system. In [13], Support Vector Machine (SVM) 
classifiers were trained to predict, with high accuracy (95% - 99%), whether the dissolved N2O 
will be consumed during the anoxic and anaerobic phases and subsequently, used the information 
from the classifiers to predict the average dissolved N2O concentration in the anaerobic and 
aerobic phases by training a Support Vector Regression (SVR) model for each. The SVR models 
were reported to predict with good accuracy with R2 values ranging from 0.85 – 0.94 on the 
training dataset and 0.75 – 0.82 in the test dataset. The use of Deep Learning (DL) models for N2O 
predictions is still a novelty, with only a handful of studies being conducted [14, 15]. A Deep Neural 
Network (DNN) model was developed to predict the N2O in the liquid phase using over a year of 
operational data from a WWTP, while using the influent flowrate, DO, NH4, NO3, air flowrate and 
temperature as inputs. While using a trailing moving average to smoothen the data, a significantly 
high R2 value of 0.9 was achieved. Furthermore, the DNN model was compared with a Long Short 
Term Memory (LSTM) based Recurrent Neural Network (RNN) model, that utilised historical N2O 
data to predict future values. The two models were assessed for their forecasting capabilities over 
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a 1-day prediction horizon. It was seen that the DNN model’s performance was limited (R2 = 0.76), 
while the LSTM model achieved better results (R2 = 0.94). Accordingly, the application of data-
driven models could present a suitable alternative to biokinetic modelling, especially to overcome 
the latter’s limitations.  

2 METHODOLOGY

2.1 Brief Description of WWTP

The case study for this investigation is the 
Amsterdam West WWTP (¡Error! No se
encuentra el origen de la referencia.) that
is operated by the water company Waternet. 
Amsterdam West WWTP has a capacity of 
1.1 million population equivalent (168 MLD) 
and serves the Amsterdam city and its 
neighbouring regions. The raw influent 
wastewater, post the grit chambers and 
primarily settlers, is distributed to 7 
treatment lanes to conduct the activated 
sludge (AS) process for biological nitrogen and phosphorus removal.  The process configuration 
applied for the AS is the modified University of Cape Town (mUCT) process. 

For this study, data from legacy online sensors measuring key process parameters of the influent 
flow, wastewater quality parameters in the bioreactor, recirculation flowrates, sludge flowrates, 
and effluent flowrates, were used. Most importantly, time series online sensor data of the N2O 
emissions measured in one treatment lane is also available. A distinctive condition in Amsterdam 
West is that the bioreactor units are covered, which allows for the accurate capture of the off-gas 
emissions from the AS processes, providing direct measurements of the N2O in the gaseous phase. 
All signals have a time resolution of 1 minute. Furthermore, historical laboratory measurements 
are also available for TKN, TN, Total P, BOD, COD for all stages in the wastewater treatment 
process.  

2.2 Biokinetic Modelling to Predict N2O Emissions

A comprehensive sampling campaign was conducted to characterise the influent as well as to 
obtain additional effluent data to calibrate the biokinetic model. Flow proportional daily 
composite samples and diurnal sampling were taken for the raw influent and effluent wastewater, 
where the following parameters were monitored: CODtotal, CODfiltered, BODtotal, BODfiltered, TKN, NH4, 
NO3, Total P, Ortho-PO4, ISS and TSS. Numerous samples were also taken at various locations 
including the anaerobic, anoxic, and aerobic zones of the bioreactor, sludge treatment lines and 
return streams. 

For this investigation, a biokinetic model using the ASDM model coupled with a N2O model was 
calibrated for 1 treatment lane of the Amsterdam West WWTP. The simulation software by 
EnviroSim, BioWin® was used to conduct the research. Initially, the process configuration (Figure 
2) of the WWTP was set up in BioWin using the plant design and operating parameters.

Figure 1: Amsterdam West WWTP
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Figure 2: Process Configuration of 1 treatment lane in Amsterdam West WWTP, as setup in the simulation
software BioWin.

Subsequently, the calibration procedure was conducted in two stages. In the first stage, the model 
was calibrated using the wastewater characteristics and fractions obtained from the sampling 
campaign as well as historical datasets. Subsequently, steady-state and dynamic simulations were 
performed using the N2O model default values in BioWin. In the second stage, further calibration 
was conducted with a goal to match the observed plant N2O emission data. The N2O model 
provided in BioWin includes the description of all three N2O production pathways. The kinetic 
parameters specific to N2O production from the nitrification and denitrification processes were 
then fine-tuned to be able to match the observed N2O emissions from the gaseous phase. During 
the calibration of the N2O specific kinetic parameters, it was ensured that the effluent quality is 
matched at all times with the observed data which served as a strict boundary to adhere to. 

The calibration of the model for dynamic simulations was conducted using a variety of datasets as 
acquired from the sampling campaign, historical laboratory measurements and from online 
sensors. Simulations were performed by inputting the flowrate and quality parameters for the 
influent wastewater and return streams from laboratory measurements. Daily values of duration 
1 year from 11/2020 – 10/2021, covering all 4 seasons, were used.  

2.3 Preliminary AI Modelling Investigations

As an alternative to biokinetic modelling of N2O emissions, preliminary investigations were also 
made to assess the predictive capabilities of AI models. An Artificial Neural Network (ANN) model 
was developed. As input to the model, 3 parameters were used, namely the raw influent flowrate 
to 1 treatment lane, NH4 concentration levels in the aerobic tank of the bioreactor and the N2O 
concentration levels (in ppmv). The target variable is the N2O concentration levels. The data was 
resampled to a resolution of 15 minutes. The model structure included 1 hidden layer containing 
64 units. The model was trained to take a certain amount of historical input of the variables to 
make a one-step ahead prediction of the target. As a result, the data was prepared into sequences 
where data amounting to 2 days (192 values) of all input variables was used as historical input 
into the model. The data of the target variable were prepared accordingly to also facilitate the 
training of the ANN model to perform a one-step-ahead prediction. The model was trained on 1 
year of data (11/2020 – 10/2021), and 3 months of data was used for testing.    

3 RESULTS AND DISCUSSIONS

The results of the N2O emission predictions from the biokinetic model (black line) compared with 
the observed data (blue dots) are depicted in Figure 3, where a seasonal N2O peak is distinctive. 
To simulate this peak in the biokinetic model (in BioWin), season-specific fine-tuning of the N2O 
related parameters was necessary. Specifically, the parameters related to the nitrifier 
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denitrification production pathway were adjusted along with the free nitrous acid inhibition 
parameter to allow for more production of N2O due to incomplete denitrification. Furthermore, 
the Arrhenius value related to the mass transfer (Kl) of N2O was also changed (reduced by half) to 
allow for more stripping of N2O from the liquid to gaseous phase. While these changes resulted in 
successfully and accurately predicting the N2O seasonal peak, as shown in Figure 3, there are 
currently no proper scientific justification for these changes in the model. For such a justification, 
extended research and investigation on these kinetic and temperature dependent parameters are 
required, which is beyond the scope of this study. Moreover, the occurrence of the N2O seasonal 
peak could point in the direction that there are still a lot of uncertainties with regard to the 
biokinetic processes related to the N2O production pathways currently in the model. In the 
seasons where low N2O emissions were observed, the default parameters available in BioWin 
were sufficient to accurately predict the N2O emissions, except for the Arrhenius value for the NOB 
maximum specific growth rate. Such a result would be expected as the default values available in 
BioWin were calibrated on datasets obtained from bench-scale studies during summer-like 
conditions [16, 17]. Adjusting some of the N2O biokinetic model parameters without scientific 
justification in order to satisfactorily predict the seasonal peak implies the limitation of the 
biokinetic model. 

Figure 3: Comparing the Biokinetic Model N2O Emissions Predictions ( black line) and AI Model Predictions
(red line) with Observed N2O Emissions (blue dots) for a Period of 1 Year. The dark grey area signifies the

seasonal N2O emissions peak that was observed.

A similar simulation exercise was conducted using the developed AI model in order to compare 
with the biokinetic model predictions. From the initial results illustrated in Figure 3, the 
predictions from the AI model (red line) resulted in a good fit to the observed data, suggesting 
that the AI model outperforms the biokinetic model. This positive and encouraging outcome from 
the AI model presents a suitable alternative to overcome the limitations of the biokinetic model 
in satisfactorily predicting N2O emissions for all seasonal conditions.   

4 CONCLUSIONS

In this study, a biokinetic model was developed first using the BioWin software. This model was 
calibrated on 1 year of data from a real-life WWTP. Additional data were collected during a 
comprehensive sampling campaign conducted to characterise the raw influent into its fractions. 
During the calibration of the biokinetic model, it was established that the default values of the 
physical and kinetic parameters were unable to adequately predict the seasonal variations 
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observed in the N2O emissions. As a result, an AI based model in the form of an Artificial Neural 
Network was developed and trained on the same data set as an alternative. Preliminary results 
show that the AI model is outperforming the biokinetic model in terms of prediction accuracy. 
Therefore, further research on developing data-driven and possibly hybrid models should be 
pursued. An improved N2O prediction model can then be used for the development of (near) real-
time control strategies to mitigate the production of N2O emissions from WWTPs.  
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