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Abstract

Beside the immense impacts on public health, the COVID-19 pandemic also disrupted daily 
routines for people around the globe due to the adoption of social distancing measures, such 
as working from home and restricted travel in order to minimize viral exposure and 
transmission. Changes in daily routines created new water demand patterns, and the spatial 
redistribution of water demands in urban water distribution system networks affects water 
age, nodal pressures, and energy consumption. A range of factors influence individuals’ social 
distancing decisions including demographics, risk perceptions, and prior experience with 
infectious disease. This presentation reports a comprehensive modeling framework to capture 
decisions to social distance, the effect of social distancing on water demands, and the effects 
on the performance of water infrastructure. First, new Bayesian Belief Network (BBN) models 
are developed to simulate social distancing decision-making based on publicly available 
survey data describing COVID-19 risk perception, social distancing behaviors, and 
demographics. Data were collected in March and April of 2020 and included over N=6,991 
participants from 11 countries in North America, Europe, and Asia. Feature sets are developed 
from participant characteristics using forward selection and Naïve Bayes classifiers to predict 
behaviors, including working from home. BBN model output is used within an agent-based 
modeling (ABM) framework to simulate how individuals interact within a community and 
dynamically adopt social distancing behaviors based on communication and transmission of 
infection. Agents represent individuals who transmit COVID-19, communicate with each 
other, decide to social distance, and exert water demands at residential and non-residential 
locations. COVID-19 transmission among agents is modelled using a susceptible-exposed-
infected-removed (SEIR) model. Finally, the ABM is coupled with a water distribution model 
to simulate how changes in the location of demands affect water distribution metrics. The 
model is applied for a virtual city, Micropolis, to explore how varying population 
characteristics can affect water infrastructure. This research provides a new framework to 
develop and evaluate water infrastructure management strategies during pandemics. 
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1 INTRODUCTION

The COVID-19 pandemic, caused by the novel coronavirus (SARS-CoV-2), has caused immense 
public health concerns and impacted communities around the world. Governmental mitigation 
efforts including lockdowns and mask mandates have been widely instituted, and one third of the 
global population lived under some form of restriction in April 2020 [1]. By January 1, 2021, more 
than 80% of countries had a mask mandate in effect, and approximately 50% had mandated one 
or more social distancing measures, such as working from home, workplace closures, school 
closures, or international travel controls [2]. These social and economic restrictions were 
implemented to mitigate the transmission of the coronavirus but also had profound impacts on 
the daily lives of the people living with restrictions [3]. Many individuals adapted their daily 
routines of commuting to work and visiting places of interest to shop, dine out, or socialize. As a 
result, communities changed their interactions with infrastructure and their consumption of 
resources and services provided by infrastructure. One impact of these behavioral changes is the 
spatial and temporal change to domestic water demand, with an overall increase in residential 
water demand, reduction in the overall demand, and shifting of the common bimodal daily pattern 
[4]. Changes in demand subsequently impact the operation and management of the water 
distribution systems (WDSs), which are designed to deliver water to meet demands and 
expectations around the levels of service, including pressure. Water utilities reported a range of 
operational and management challenges due to changes in customer behaviours and observed 
noticeable differences in water demands during the COVID-19 pandemic [5]. 

To address water management challenges that arise during pandemics, water utilities need 
comprehensive modelling tools for demand, pipe flow, and pressure prediction that account for 
consumer behaviors, pandemic coping strategies, mobility, and changes in demands. Integrated 
modelling frameworks have been developed to simulate consumer behaviors to estimate changes 
in water demands and the associated effect on network performance. Modelling frameworks were 
developed to simulate demand changes and changes in infrastructure performance based on 
consumer decisions to adopt water reuse technology and alternative water sources [6-8] and 
consumer responses to contamination of drinking water [9-11]. The tool developed in this 
research builds on these previously developed frameworks, listed above, that couple agent-based 
models (ABMs) with hydraulic modeling. Agents represent individual water consumers that exert 
demands at nodes in a water distribution system and travel among nodes using diurnal patterns. 
As agents become aware of disease transmission, they make decisions to social distance, including 
working from home and cooking meals at home. A Bayesian Belief Network (BBN) modeling 
approach is used to represent agent decision-making around social distancing behaviors. The BBN 
model was developed using survey data that was collected to explore psychological predictors, 
risk perception, and coping strategies during the COVID-19 pandemic (N=6,991). A susceptible-
exposed-infected-removed (SEIR) model is integrated to simulate COVID-19 transmission, using 
parameter settings that are specific to the transmission of COVID-19 [12]. The ABM framework is 
applied to simulate coping strategies that are taken by consumer agents to avoid exposure to 
COVID-19 and the emergent shifts in water distribution system performance metrics, including 
pipe flows and nodal pressures. 

2 MATERIALS AND METHODS

An ABM framework is developed to integrate three modules, including a BBN model for agent 
decision making, a SEIR model for COVID-19 transmission, and a hydraulic model for simulation 
of the water distribution system flows and pressures (Figure 1). Individual water consumers are
represented as agents that move between work and home nodes based on predetermined 
patterns. Agents make decisions to work from home based on the posterior probability of the BBN 
based on their individual state and parameters at each time step (Table 1 lists agent parameters).
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COVID-19 is transmitted between agents when a healthy agent occupies the same node as an 
infected agent and a threshold exposure probability is attained. Information about other infected 
agents is used to update an agent’s understanding of the environment and inform its decision at 
the next time step. Once agent mobility and COVID-19 transmission are complete, the demand at 
each water network node is calculated based on the number of individual agents at each node 
compared the node capacity. This framework is shown in Figure 1, and the modules of the
framework are described in the following sections. 

2.1 COVID-19 Risk Perception Dataset

A new dataset was collected and made publicly available to explore how individuals around the 
world responded to the coronavirus and perceived information about protective behaviors [12]. 
Responses were collected from N=6,991 participants in 11 countries (Australia, Canada, Germany, 
Italy, Japan, Mexico, Spain, Sweden, South Korea, United Kingdom, and United States), between 
mid-March and mid-April, 2020. The timing was specifically chosen to capture a subset of 
countries before governmental mandates and others after mandates were put into place. This also 
induced differences in the number of infected individuals in each country, increasing the 
complexity of the survey cross-section. Participants were selected as representative based on age, 
gender, and ethnicity with approximately 700 participants selected from each country. The 
dataset was used to train the BBN model, which predicts agent decisions on coping strategy based 
on interactions with other agents and the environment.  Development of the BBN using this 
dataset is described below. 

2.2 Agent-based Model Framework

The ABM implements consumer agents that communicate with each other, exert water demands 
at their current location, transmit COVID-19, and employ personal social distancing measures. The 
ABM was developed using Mesa, a Python package specifically designed for ABM creation and data 
collection. Agents are instantiated as objects using the Mesa framework and assigned parameters 
to describe specific attributes of interest (Table 1). Agents then move between home and work
nodes according to predetermined patterns and spread COVID-19 through contact with other 
agents. Each agent’s decision to work from home is updated each time they are potentially 
exposed. The coupling of the ABM with the hydraulic simulation is based on frameworks that were 
developed in previous research [13, 14]. 

Figure 1. Agent-based modelling framework including BBN model for agent coping strategy decision making,
SEIR model for COVID-19 transmission dynamics, and a hydraulic model for water distribution simulation.
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Each simulation was run with an hourly time-step and continued for a total of 90 days. The model 
reports agent location, disease state, and work-from-home status and nodal demand and pressure 
at each hourly time-step. 

Table 1. Agent parameters and state variables. All COVID-19 related time data are reported by Kerr et al. [12]. 

Attribute Value
Work node All work nodes 

Home node All residential nodes 

Age [0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90+] 

COVID-19 status [Susceptible, exposed, infected, removed] 

Time in exposed compartment ~  log-normal(4.5, 1.5) 

Time in infectious compartment All time spent in symptomatic, severe, critical states 

Time in symptomatic state ~  log-normal(1.1, 0.9) (to severe state) 
~  log-normal(8.0, 2.0) (to removed compartment) 

Time in severe state ~  log-normal(1.5, 2.0) (to critical state) 
~  log-normal(18.1, 6.3) (to removed compartment) 

Time in critical state ~  log-normal(10.7, 4.8) (to dead state) 
~  log-normal(18.1, 6.3) (to removed compartment) 

Symptomatic [Symptomatic, asymptomatic] 

WFH decision [Not WFH, WFH] 

Predictors* All predictors in Table 2

2.2.1 Coping Strategy Decision Model

Each agent uses a Bayesian Belief Network (BBN) model to select work-from-home (WFH) 
decisions, expressed as WFH and Not WFH in Table 1. BBN models were constructed using
forward selection and the Naive Baye's classifier. Previous work showed little difference between 
forward selection and backward elimination, and forward selection is a more efficient model-
building approach [15]. Models were evaluated and selected using accuracy and F1. Accuracy is 
defined as the ratio of the number of true predictions made to the total number of predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

The F1 metric is the harmonic mean of the recall and precision metrics. Recall and precision are 
defined as the proportion of true positives to the total correct values and the total true values, 
respectively. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (3) 

𝐹1 =
2 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (4) 

A series of cross-validation steps were performed to reduce systematic error in the selection of 
responses used for the training and validation datasets. Cross-validation was completed with 10 
runs of 10 folds with each run, using nine folds for training and one fold for validation. Each run 
used a different fold for validation. 
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2.2.2 COVID-19 Transmission Model

Disease transmission of COVID-19 is modeled using a SEIR model called Covasim, which was 
developed by Kerr et al. [11]. At the beginning of each simulation, 5% of the population was 
assumed as infected, while the remaining agents were susceptible. As agents move between 
nodes, susceptible agents have an age-progressive (increasing with age) probability of becoming 
exposed when an infected agent occupies the same node. For nodes with capacities greater than 
10 agents, the maximum number of agents that was potentially exposed was restricted to 10 to 
reflect realistic contact dynamics. Once an agent is flagged as exposed, they can become exposed 
and then pre-symptomatic or asymptomatic, based on an age-progressive probability. Time spent 
in each stage is log-normally distributed with mean and variance calculated using a range of 
sources, as reported by Kerr et al. [12]. If an agent is asymptomatic, they progress to the removed 
stage where they stay until the end of the simulation. If an agent is symptomatic, they progress 
through increasing stages of disease severity from mild to severe to critical, based on age-
progressive probabilities. Agents in the mild and severe stage move to the removed stage after a 
recovery period, and agents in the critical state have an age-progressive probability of entering a 
death state.  Agents that are in the removed stage no longer contract or transmit the disease. 

2.2.3 Hydraulic Model

Hydraulic simulation is modeled using the Python package Water Network Tool for Resilience 
(WNTR) which utilizes EPANET, version 2.2 [16, 17]. Each agent exerts water demand at the node 
they occupy at each hourly time step, and demands are aggregated at each node and passed to the 
EPANET simulation using WNTR. The WNTR package is built in Python, which allows for direct 
communication between the agents in the ABM and the hydraulic simulation. Results from the 
hydraulic simulation for each node and for each hourly time step were recorded. 

3 CASE STUDY

The ABM framework was developed and applied for Micropolis, a virtual city developed by 
Brumbelow et al. [13] for the purpose of modelling a small, realistic city for water distribution 
system security research. The network consists of 458 terminal nodes (434 residential, 15 
industrial, and nine commercial nodes), which represent 4,606 residents and a daily demand of 
4.54 ML/day. Diurnal demand patterns are defined for each node type to simulate hourly changes 
in demand throughout the network. Each node is initialized with a base demand that is updated 
by the ABM based on node capacities and the number of agents at each node. 

4 RESULTS

4.1 BBN Model Performance

A naïve model was constructed using work-from-home (WFH) as the predictant. The predictors 
were added using forward selection. The model with the largest accuracy was chosen, and 
included the predictors shown in Table 2. The model is defined as a naïve Bayes model, where the
predictant is the only parent node, and all selected predictors are children nodes. The percentage 
of ‘yes’ responses in the dataset used for this model was 39%, and a WFH decision of ‘yes’ is 
labeled true, and ‘no’ is considered false. The accuracy and F1 of this model were 63% and 51%, 
respectively.   
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Table 2. Predictors selected for inclusion in the BBN model for agent WFH decision making.

Predictor Selected Question

Prosociality 
To what extent do you think it’s important to do things 
for the benefit of others and society even if they have 
some costs to you personally? 

Anticipating personal financial 
problems 

How likely do you think it is that you will be directly 
and personally affected by the following in the next 6 
months: Financial problems? 

Exposure to COVID-19 media 
through place of work of education. 

Have you come across information about 
coronavirus/COVID-19 from: Official messages from 
your place of work or education? 

Exposure to COVID-19 media from 
the World Health Organization 

Have you come across information about 
coronavirus/COVID-19 from: World Health 
Organization? 

COVID-19 worry, 2 months ago 
Thinking back, how worried were you about 
coronavirus/COVID-19: 2 months ago? 

Personal worry about terrorism 
How worried are you personally about the following 
issues at present: Terrorism? 

Healthcare worker 
Are you a healthcare provider (e.g. doctor, nurse, 
paramedic, pharmacist, carer)? 

Trust in immigrants 
How much do you trust each of the following: 
Immigrants? 

Trust in neighbors 
How much do you trust each of the following: People 
in your neighborhood? 

Ethnic Minority 
Do you consider yourself to be part of a minority 
group within the country you are currently living in? 

Previously affected by SARS 
epidemic 

Have you personally been affected by a previous 
similar epidemic such as SARS (Severe Acute 
Respiratory Syndrome), MERS (Middle East 
Respiratory Syndrome) or Ebola? 

COVID-19 worry: 1 month ago 
Thinking back, how worried were you about 
coronavirus/COVID-19: 1 month ago? 

Effect of COVID-19 pandemic 

To what extent have you been affected by the 
coronavirus/COVID-19 in the following ways: I have 
experienced social difficulties as a result of the 
pandemic? 

Sought information about COVID-19 
Have you sought out information specifically about 
coronavirus/COVID-19? 

Education qualification Highest educational qualification 

General trust in society 
Generally speaking, would you say most people can be 
trusted, or that you can't be too careful in dealing with 
people? 

Exposure to COVID-19 through 
media mass media 

Have you come across information about 
coronavirus/COVID-19 from: Journalists and 
commentators in the media (TV, radio, newspapers)? 

4.2 Agent-based Modelling Results

Two scenarios were tested. In the base case, agents visit nodes using their mobility patterns and 
become infected through disease transmission.  In the second case, WFH, agents are mobile, 
become infected, and decide to work from home. The SEIR model and hydraulic model were used 
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for both scenarios, and the WFH scenario include an active BBN model. In the base scenario, agents 
followed mobility patterns throughout the 90-day simulation and do not work from home, and 
they spread COVID-19 and progress through disease severity states. In the WFH scenario, agents 
follow the established mobility patterns unless they had previously decided to work from home 
based on the BBN model, in which case, that agent would stay at their residential node and not 
travel to work for the remainder of the simulation. 

The daily maximum and mean system water demand for both scenarios are shown in Figure 2.Also
demonstrated in Figure 2 is the increase in max water demand as more agents work from home
but shows an overall drop in water demand across the system, corroborating previous work 
showing decreasing water demand as a result of social distancing [4]. The cumulative number of 
infected agents and the current number of agents working from home is shown in Figure 3.  The
disease dynamics are shown in Figure 3 where early decisions to work from home prevented
wide-spread transmission of COVID-19. To understand the impact of working from home on the 
hydraulic system, the system-wide pressure was compared for both scenarios at hour 12 during 
day 45 (near the peak number of agents working from home from Figure 3). These plots are shown
in Figure 4, which exhibits the differences in system-wide pressure when agents are working from
home and exerting demand at their residential node rather than their work node. No pressures 
changed alarmingly, but the main trunk leading from the reservoir at the north end of the system 
saw a 50% reduction in demand at this time point. This could lead to changes in water delivery 
stability or flow changes, causing downstream disruptions. 

Figure 2. Daily maximum and mean system demand during both scenarios.
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a) 
b) 

Figure 4. Node pressure comparison between base (a) and WFH (b) scenarios.

5 CONCLUSION

A Bayesian Belief Network was trained using COVID-19 centered survey data from N=6,991 
participants to produce a naïve Bayes predictive model for work-from-home prediction. The 
accuracy and F1 for the model were 63% and 51%. The BBN was used to simulate agent decisions 
to work from home within the ABM framework. Trends in overall water demand and system-wide 
pressure were analyzed and indicated overall changes in system dynamics due to agents working 
from home. Demand patterns mirrored real-world quantitative and qualitative results, and 
changes in nodal pressures demonstrate system-wide impacts from agent social distancing. 

Figure 3. Cumulative percent infected for both scenarios plotted along with
the percentage of agents working from home.
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Future work will continue to explore other BBN models and predictors to tune the decision 
making model to better match observed patterns, and further analysis will evaluate the range of 
change in hydraulic performance due to social distancing behaviors during pandemics. 
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