
2nd International Joint Conference on Water Distribution 

Systems Analysis & Computing and Control in the Water Industry 

Valencia (Spain), 18-22 July 2022 
doi: https://doi.org/10.4995/WDSA-CCWI2022.2022.14127 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint Conference 

ADVANCING TOWARDS SEMI-AUTOMATIC LABELING OF GPR IMAGES
TO IMPROVE VISUALIZATIONS OF PIPES AND LEAKS IN WATER
DISTRIBUTION NETWORKS USING MULTI-AGENT SYSTEMS AND

MACHINE LEARNING TECHNIQUES

Gemma Stanton1 and David Ayala-Cabrera2
1,2 CWRR-School of Civil Engineering, University College Dublin, Dublin (Ireland) 

1  gemma.stanton@ucdconnect.ie, 2  david.ayala-cabrera@ucd.ie

Abstract

Critical infrastructures such as water distribution networks (WDNs) require reliable and 
affordable information at a reasonable cost to address challenges that can negatively affect 
their operation. Inadequate knowledge about WDN assets and their state of health presents 
challenges for essential activities such as network modeling, operation, assessment, and 
maintenance. This work seeks to increase the availability of WDN asset data through improved 
interpretability of GPR images. The semi-automatic labeling approach presented here expands 
upon existing multi-agent image-cleaning methods and feature characterization techniques. 
The division of a pre-processed image, in the form of a matrix, into a grid of smaller blocks 
allowed the identification of relevant features using density of nonzero values in the blocks; 
this approach, conducted manually in this proof of concept, can provide a basis for training an 
intelligent system (e.g., a convolutional neural network) to extract the families of interest and 
eliminate noise. Thus, this research expands this methodology to advance towards automatic 
detection of pipes and leaks and easily visualize the data. In this paper, 3D visualizations of 
WDN assets have been created to demonstrate the usefulness of this semi-automatic process 
in delivering easily-interpretable GPR data for managers and operators of WDNs. 
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1 INTRODUCTION

Critical infrastructure such as water distribution networks (WDNs) present many challenges in 
their construction, operation, and maintenance. Effective management of these infrastructures 
requires economical, accessible, and reliable information [1] for decision-making processes. 
Information on the health of WDNs supports general operation activities such as modeling, 
operation, assessment, and maintenance [2] as well as resilient response to climate change [3], 
increasing digitization [4], and other such advances. WDNs and other buried assets may be 
difficult to assess and even locate, since manual inspection requires intensive labor and often 
necessitates excavation and significant social and economic disruption and even safety risks to 
carry out [5]. Minimizing the negative impacts of disrupting the WDNs and related infrastructure 
(e.g., roads) is imperative [6] and calls for the incorporation of non-destructive testing methods
to gather compile data on WDN health. Thus, non-destructive testing methods have been 
incorporated into the surveys to address the need for non-invasive procedures that provide 
relevant information on buried assets, including WDNs, gas pipelines, and more [7]. Non-
destructive testing methods such as ground penetrating radar (GPR) are easy to deploy, but they 
present several difficulties (e.g., absence of consistent GPR data interpretation protocols,
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excessive noise, and heterogeneity of environmental conditions and equipment settings [8]) in 
the data interpretation process. 

GPR is a non-destructive testing method which is deployable in a variety of environmental 
conditions (e.g., urban environments [9]) and does not require disruption in the operation of the
critical infrastructure inspected; e.g., water supplies in WDN [1]. GPR is examined in this research
as an alternative to destructive testing to obtain relevant information regarding buried assets of 
WDN due to its potential to detect components (e.g., pipes) and their integrity with great detail
(e.g., pipe with water leak [10], clogged pipe [11], deteriorated pipe [12]). Among the main
advantages of the GPR as a non-destructing method, its inspection ability for successfully inspect 
different pipe materials has been evidenced in several studies (see [11, 12, 13]). GPR signals are 
capable of detecting materials, both metallic and non-metallic [14] (e.g., PVC, asbestos cement,
polyethylene), which are commonly used in assets of WDNs. GPR has the sensitivity to detect leaks 
in the media surrounding pipes [8], and this non-destructive method also offers accurate depth 
estimation and has an advantage of high resolution of up to a centimeter [15]. In the field of leak 
detection, other non-destructive methods such as thermography and tracer gas are limited by 
temperature, leak depth, and disruption to WDNs [16]. Furthermore, GPR is an inexpensive and 
non-destructive method, and it is easy for unskilled personnel to operate. However, the raw 
images produced by current GPR method require personnel with expertise to interpret them, 
increasing the cost and time that this method demands for analysis, and causes human 
interpretation errors [17]. While current GPR analysis requires expert interpretation, innovative 
processing methods can facilitate overcome this barrier.  

Reliable data about WDNs can help their managers make responsible asset management decisions 
on when and how to make repairs and maintenance. Additionally, leak detection through GPR 
image analysis has the potential to prevent (i.e. by favoring the detection of water leaks at early
stages) the waste of water, energy, and infrastructure [18] in those leaks that can only be 
identified when damage to a road surface occurs (i.e. when leaked water is visible [19). A raw GPR 
image may be used to detect and characterize a variety of subsurface assets (e.g. pipes of drinking 
water [20], gas [21], among others), but it is not easily interpretable, particularly for unskilled 
personnel as mentioned above. Although the raw GPR images are difficult to interpret, they 
contain a wealth of data that can be processed to extract useful information [22]. The work 
presented in this paper will serve managers and operators of WDNs who need accurate 
information about their networks. Basic data such as size and layout of pipes as well as material, 
interior build-up, leakage, and illegal connections can be detected more easily with this image 
cleaning technology.  

The generation of 3D models of buried assets is an important final step in GPR data analysis since 
a key motivation of this work is to enhance site safety and deliver interpretable information for 
any operator without expertise [23, 24]. The 3D models generated from the information obtained 
after processing the GPR images can be used to feed augmented reality visualizations that can 
facilitate the assets assessment process [25] in a dynamic manner. The literature has examples of 
3D model generation ranging from simple raw data plotting [16] to contours created from a series 
of pre-processed cross sections [8, 26]. These contours created from pre-processed cross sections 
are a significant step towards interpretable GPR images; however, they rely on comparison of 
initial and final states of leaking pipes to extract the relevant features and construct a 3D image. 
In this work, this comparison is eliminated from the process using semi-automatic extraction of 
relevant features and reconstruction of cross-sectional profiles in 3D space. The results displayed 
here will demonstrate that it is possible to reconstruct 3D representations of buried pipes from a 
single set of GPR data collected at a the same time period.  
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2 METHODS

This section presents the treatment of GPR data proposed in this paper both for the semi-
automatic labeling of the information and its previsualization in a 3D model. The generation of 3D 
models from GPR images can consist of 6 steps of which the current paper focuses particularly on 
the semi-automatic labeling, through a density boundary extraction, and its subsequent 3D model 
previsualization (see Figure 1). Each step of this process is described in the subsections below.

Figure 1. Proposed semi-automatic labeling of GPR images and 3D model previsualization. a) Raw GPR
image, b) multi-agent pre-processing (vertical direction), c) multi-agent pre-processing (horizontal

direction) d) semi-automatic feature extraction, e) semi-automatic feature extraction (visualization), f) semi-
automatic labeling: density boundary, g) manual feature labeling, and f) 3D previsualization.

2.1 Raw GPR Images

GPR functions by propagating electromagnetic waves from a transmitter antenna below the 
ground at a specific velocity which is related to the medium through which it travels [7]. Parts of 
these waves return to a receiver antenna whenever an interface between two different media is 
reached; the wave is then partly propagated to deeper layers [17]. The reflected electromagnetic 
wave that is received by the receiver antenna has an amplitude proportional to the dielectric 
constant of the media through which it travels; a reflection at an interface between two materials 
correspond to a change in wave amplitude [22]. Thus, a raw GPR image, or radargram, contains a 
record of all the wave amplitudes recorded by a receiver in a matrix, 𝐴, of size 𝑚 by 𝑛, where 𝑚 
represents the total two-way travel time of all the received signal of each trace (𝑖 = 1, … , 𝑚) and

𝑛 corresponds to the total of traces captured (𝑗 = 1, … , 𝑛) with the survey (see Figure 1). A naked
eye is unlikely to detect a hyperbola in a radargram, making these images difficult to interpret 
without processing. 

2.2 Pre-Processing

[27] developed a multi-agent algorithm called “agent race” based on game theory to reduce the
dimensionality of matrix 𝐴 and prepare it for feature detection. This multi-agent algorithm pre-
processes the radargram based on wave amplitudes intensity, as shown in Figure 2. The result of
this algorithm is an 𝑚1 × 𝑛 matrix (see Figure 2, Output 1), where the key features are registered
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as movements of the agents in each 𝑗 trace, and m1 represents the maximum total of movements 
obtained by the agent winner of the competition. 

Figure 2. Agent race algorithm process. Adapted from [10]. 

The uses of the multi-agent pre-processing described above can generate groups (families), that 
contain features (in the form of functions) that specifically represent noise, horizontal lines, and 
objects (Figure 1, insets b and c). According to [28], agents run their moves on the rows of the 𝐴 
matrix (see the output in Figure 1c) and not on the columns (as it originally designed, see the 
output in Figure 1b) the removal of families that contain horizontal lines from these GPR images 
can be obtained. This removal was completed in [28] and [29] with the incorporation of noise 
removal through the use of perceptron neural network. In these studies, the geometric properties 
of the generated groups were used both to label (Area) and as a key feature for classification (𝑋 
component of the centroid) of them (see Figure 1d). 

Separating the noise and horizontal lines from the raw GPR images allows further analysis to 
detect features of interest in the objects group without the hindrance of noise and horizontal lines. 
This can be observed by comparing the raw GPR image (Figure 1a) with the resulting 
preprocessed image, 𝐴’ matrix (Figure 1e). The 𝑚 × 𝑛 matrix 𝐴’ (pre-processed image), consists 
of 0 and 1 values, where nonzero values indicate a feature of the target objects. 

2.3 Semi-Automatic Labeling and Refinement

Labeling is an essential task in machine learning, in particular when the classification is conducted 
via supervised learning. This pre-preprocessing activity is conducted on various occasions 
manually as a preamble for the classification (via machine learning methods) of the embedded 
objects into the GPR images (e.g., subsoil background [20], metallic and no- metallic pipes [31],
among others). In order to reduce the dependency on personnel with high experience in 
interpreting GPR images and minimize the human errors that the manual labeling can generate, 
the analysis of densities is proposed as an alternative in this paper. In this sense, the GPR images 
cleaned by both the agents and the perceptron (see Section 2.2.), that had horizontal lines and 
noise removed, were used in this section as the starting point for the semi-automatic labeling 
proposal and to generate images that can be more easily interpreted.  

Families of functions that represent embedded objects (e.g., pipe objects) were preserved in 𝐴’
matrix. These families contain additional information about the objects beyond the initial 
hyperbola identification that is commonly used to label the objects embedded into the GPR images 
[10, 32]. However, many of these families exist in the images and further analysis is necessary to 
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extract and classify those families of interest. In order to locate the features of interest, the 
proposed density analysis can be formulated as in equation (1) [19].  

𝐵𝑖𝑟,𝑗𝑟 = ∑ ∑ (
𝑎′(𝑖𝑦𝑖𝑟,𝑖𝑦𝑖𝑟+1],(𝑗𝑥𝑗𝑟,𝑗𝑥𝑗𝑟+1]

(𝑖𝑦𝑖𝑟+1 − 𝑖𝑦𝑖𝑟 + 1)(𝑗𝑥𝑗𝑟+1 − 𝑗𝑥𝑗𝑟 + 1))

𝑗𝑥𝑗𝑟+1

𝑗𝑥𝑗𝑟

𝑖𝑦𝑖𝑟+1

𝑖𝑦𝑖𝑟

 (1) 

In there, the pre-processed images in 𝐴’ were further processed by dividing them into a grid of 

blocks (𝑎’𝑖𝑦,𝑗𝑥) with size 𝑖𝑦 = {1: 𝑚−1
𝑙𝑦

: 𝑚} (the step in 𝑦-axis) by 𝑗𝑥 = {1: 𝑛−1
𝑙𝑥

: 𝑛} (the step 𝑥-axis).

Where 𝑙𝑦 and 𝑙𝑥 represents the dimension of the new matrix, 𝐵, generated for the blocks. Each 

block in 𝐵 consists of 𝑖𝑟 = {1, … , 𝑙𝑦} ∈ ℕ = {1,2,3 … } and 𝑗𝑟 = {1, … , 𝑙𝑥} ∈ ℕ = {1,2,3 … }. In
essence, 𝐵 represents the density calculation of nonzero values, from 𝐴’, in each grid block. Figure 
3 presents an example of a grid of 75 × 75 blocks which represents the subdivision of matrix 𝐴’
(inset a) and the density of each block in a color scale (inset b). 

Figure 3. Generation of the density matrix 𝐵. a) Grid of 75 × 75 blocks (𝑙𝑦 = 𝑙𝑥 = 75) for 𝐴’ matrix and, b)
the respective densities; matrix 𝐵. 

The example presented in Figure 3 corresponds to a GPR image of a pipe buried in a wooden tank
to emulate the phenomena of water leaks. More detailed information is presented in Section 3. 

Figure 3b the hyperbola in the center of the image corresponds to the pipe itself, and is the most
dense part of the figure. This detection of the hyperbola by the density method proposed herein, 
in addition to the highlighting of the tank reflections on the sides, shows the use of density as a 
useful tool for extracting features from GPR images.  

Matrix 𝐵 can be rescaled to the dimension of the original matrix 𝐴’ (i.e., from size of 𝑙𝑦 × 𝑙𝑥 to size
of 𝑚 × 𝑛). Based on the observation of the densities generated by the object in the resulting matrix 
𝐵 (resized), it is proposed to iteratively determine a density threshold for each object. This 
thresholding generates groups that are captured by using the Matlab’s bwboundaries function. 
In this work, we have selected the boundary of the group with the largest area as a representative 
element of the desired object to be extracted. 

This extraction process can be used to label certain and particular objects of the GPR image in 
order to feed more robust classification processes. Likewise, these labels can be used to refine the 
pre-processing process presented above. This will allow the inclusion of new parameters to be 
considered, among other advantages. In addition, it is already possible to preview these images in 
3D models as a preamble to automatic visualizations and it is in this sense that we will discuss 
about this process in Section 3.  
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3 CASE STUDY

In this section, we present both the application of the proposed GPR image labeling procedure and 
its results through 3D reconstructions. To do this, we have used as a case study the work 
presented in [10], where GPR images of a pipe leaking water were collected (at different stages of 
maturity of the phenomena) in a laboratory set up, depicted in Figure 4. In this configuration, a 
PVC pipe with diameter 100 mm and length of 0.95 m with one hole drilled to mimic a leak in the 
pipe and two points water input (WI) and water output (WO) was buried in dry soil in a wood 
tank (with size of 1.0 m × 1.0 m × 0.70 m). The tank was covered in a polypropylene plate with 
eleven paths parallel to the X-axis (transversal paths) and eleven paths parallel to the Y-axis 
(longitudinal paths), each path spaced 0.10 m from the next. A GPR (with a central frequency of 
1.5 GHz) was run over each path as shown in Figure 4c, s5. Two samples of each of the 22 profiles 
were taken, one set without water in the setup and one set with water in the pipe and leakage 
around it. These two sets of samples are referred to as without water and with water, respectively. 

a)   b)   c) 

Figure 4. Tank configuration (from [10]).

Density-boundary analysis. By using the density boundary procedure described in Section 2.3
and adjusting the number of blocks (both 𝑙𝑦 and 𝑙𝑥) and density threshold, the pipe reflections 
were removed from transverse images to capture the boundary of the relevant feature (pipe, leak 
or tank reflection). Figure 5a shows a transversal profile, as an example, in which the boundary 

includes both the pipe and the tank reflections. Figure 5b shows how removing the tank
reflections on the periphery of the central hyperbola allowed the pipe boundary to be captured. 

a)              b) 

Figure 5. Example of the labelling of the pipe in Profile 11 (s11) with the use of density-boundary process.
a) before peripheral tank reflection removal and, b) after peripheral tank reflection removal.

The step and the density affect the resolution with which the boundaries of the features will be 
traced. The 𝑦 blocks (𝑙𝑦) and 𝑥 blocks (𝑙𝑥) the required density to locate the relevant features in 
each profile were adjusted manually in order to determine the optimal values for each parameter. 
The adjustments to these parameters ensured that the boundary of the relevant feature would be 
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as accurate as possible. For example, Figure 6 shows how increasing the 𝑥 and 𝑦 blocks from 40 
(Figure 6a) to 100 (Figure 6b) increases the precision of the boundary.  

a)                                                             b)      

Figure 6. Profile 11, a) 𝑙𝑦 = 𝑙𝑥 = 40 and, b) 𝑙𝑦 = 𝑙𝑥 = 100. 

Some images contained spots of noise that would be included in the boundary if the required 
density of the feature was low (close to a value of 0); increasing the density would skip over this 
noise. In addition, a very high density (close to a value of 1) would skip over relevant parts of the 
desired boundary. Figure 7 illustrates the results for three density values. 

a)                b)   c) 

Figure 7. Profile 11, a) density threshold=0.1 b) density threshold=0.4 and, c) density threshold=0.8. 

For the profiles taken without water, the only boundaries identified were the tank reflection and 
the pipe.  

Preliminary classification. The three main classes of objects in the profiles are tank reflection,
pipe, and leak. It should be noted that in longitudinal profiles (s12-s22), pipes are represented as 
horizontal lines, and thus are removed in the pre-processing stage. As a result, no pipe classes 
exist in the longitudinal profiles. These classes were identified for each boundary in order to 
produce a clear 3D image. For the profiles taken with water into the system, boundaries obtained 
fell into five classes: 

• Pipe,
• Leak,
• Pipe+leak (this due to difficulty in separating the two in one of the profiles),
• Tank reflection,
• Tank reflection+ leak (this due to difficulty in separating the two in one of the profiles).

The process of identifying boundaries based on determining an appropriate grid size and density 
threshold was conducted on transversal profiles (s1-s11). For the case of the system with water, 
the boundaries obtained for s1-s11 are displayed in Figure 8.
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Figure 8. Boundary of pipe/pipe+leak for each transversal profile. 

In Figure 8, the inlet and outlet for the system with water can be seen as peaks in the first and last 
profile. In [10], these peaks at the inlet (Figure 9a) and outlet (Figure 9k) are also observed in the 
images obtained through initial/final (without/with water into the system) image contrast. The 
capacity to identify the boundaries of the objects embedded into the GPR images without the 
requirement of a reference image to contrast, is one of the main virtues of the system proposed in 
this paper.  

Figure 9. Images obtained using contrasts between initial and final states for transversal images (from [10]). 

3D Image Construction. After the boundaries of these features were obtained, they were plotted
in 3D space. The interp2 function in Matlab was used to interpolate between 2D profiles. The 

known distance from the tank edge was inserted as 𝑋 (for longitudinal) and 𝑌 (for transversal) 
coordinates. These distances are based on the GPR operator’s selection of surface lines along 
which to take profile data. The interpolation between the boundaries of each profile without and 
with leakage in the transversal direction yielded the results in Figure 10(insets a and b; 
respectively).  
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a)          b) 

Figure 10. 3D reconstruction of pipe and leak for a) without water and b) with water into the system. 

The pipe and leakage are clearly visible in the 3D image. The pipe/leakage representation in the 
transversal direction (gray) extends laterally past the leakage from the longitudinal direction 
(blue) in a few points as a result of the leakage from the longitudinal direction being difficult to 
capture in several profiles due to comprising disconnected shapes. For example, Figure 11 
displays spots that represent the leak, that were not dense enough to be captured as one unit. 

Figure 11. Profile 20, with tank reflection outlined by the boundary and leaks faintly represented. 

Figure 12 presents the success in outlining the tank reflections in the longitudinal direction by 
means of the proposed semi-automatic labeling process. Outlining these reflections was useful to 
characterize their shape in the pre-processed GPR images, and may allow conversion to their real 
shape (a box) in the future.  
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Figure 12. Representation of pipe and tank reflections for the system without water.

A few difficulties arose in the reconstruction of the 3D images from GPR data. For example, the 
sizes of the radargram matrix 𝐴 for each profile had the same 𝑛 dimension and varying 𝑚 
dimensions. This variation was due to the speed at which the GPR was run along the profile, taking 
a 120 traces/second, regardless of the total distance covered. This resulted in the first 3D 
reconstructions being askew. This problem was remedied by incorporating the estimated spatial 
coordinates for each trace in the analysis. However, the interpolation used in this reconstruction 
resulted in some inaccuracies due to the number of points in each cross section. For example, the 
interpolation between profiles 4 and 5 resulted in the constriction of the diameter of the profile 
as shown in Figure 13. This discrepancy in the interpolation may be resolved through the use of 
another interpolation function that will be tested in future work. 

Figure 13. Transversal 3D image in Y-Z plane.

4 CONCLUSIONS

This approach to 3D image construction from GPR data began with a radargram matrix of the raw 
GPR data that was pre-processed using multi-agent techniques. The semi-automatic labeling of 
relevant features was conducted manually on the pre-processed images using the numerical 
approach of assessing the density of nonzero values in the pre-processed matrix. By extracting 
desired boundaries manually and plotting these, the need for initial/final state comparison was 
eliminated. Basic identification of classes was also possible due to the manual extraction and 
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classification of boundaries. This semi-automatic approach to labeling through density of grid 
blocks, as explained, offers a potential pathway to machine learning.  

5 REFERENCES

[1] A. Aijazi, L. Malaterre, L. Trassoudaine, T. Chateau, and P. Checchin, “Automatic Detection and Modeling
of Underground Pipes Using a Portable 3D LiDAR System,” Sensors, vol. 19, no. 24, Dec. 2019, pp. 1-21.

[2] J. Liang, Q. Liu, H. Zhang, X. Li, Z. Qian, M. Lei, X. Li, Y. Peng, S. Li, and G. Zeng, “Interactive Effects
of Climate Variability and Human Activities on Blue and Green Water Scarcity in Rapidly Developing
Watershed,” Journal of Cleaner Production, vol. 265, Aug. 2020, pp. 1-13.

[3] M. Karl, E. Culbertson, and J. Abrera, “Optimize Water Distribution Pipes and Water Loss with Digital
Solutions,” Journal AWWA, vol. 113, no. 7, Sept. 2021, pp. 69-73.

[4] P. Lau, B. W. Y. Cheung, W. W. Lai, and J. Sham, “Characterizing Pipe Leakage with a Combination of
GPR Wave Velocity Algorithms,” Tunnelling and Underground Space Technology, vol. 109, no. 1, Mar.
2021, pp. 1-12.

[5] T. Hao, C.D.F. Rogers, N. Metje, D.N. Chapman, J.M. Muggleton, J.Y. Foo, P. Wang, S.R. Pennock, P.R.
Atkins, S.G. Swingler, J. Parker, S.B. Constello, M.P.N. Burrow, J.H. Anspach, R.J. Armitage, A.G. Cohn,
K. Goddard, P.L. Lewin, G. Orlando, M. Redfern, A.C.D. Royal, and A.J. Saul, “Condition Assessment of
the Buried Utility Service Infrastructure,” Tunnelling and Underground Space Technology, vol. 28, Mar.
2012, pp. 331-344.

[6] S. Kerwin and B. Adey, “Optimal Intervention Planning: a Bottom-Up Approach to Renewing Aging Water
Infrastructure,” Journal of Water Resources Planning and Management, vol. 146 no. 7, Jul. 2020, pp. 1-16.

[7] M. Gupta, M. A. Khan, R. Butola, and R. M. Singari, “Advances in Applications of Non-Destructive Testing
(NDT): a Review,” Advances in Materials and Processing Technologies, Apr. 2021, pp. 1-22.

[8] D. Ayala-Cabrera, J. Izquierdo, S.J. Ocaña-Levario, and R. Pérez-García, “3D Model Construction of Water
Supply System Pipes Based on GPR Images,” in Proc. 7th International Congress on Environmental
Modelling and Software, San Diego, C.A., USA: iEMSs, 2014.

[9] P. Song, Z. Pu, B. Ren, X. Tang, and J. Wang, “Application of Transient Electromagnetic Method in
Municipal Buried Gas Pipelines Detection,” in Proc. ASME 2020 Pressure Vessels and Piping Conference,
Aug. 2020.

[10] D. Ayala-Cabrera, M. Herrera, J. Izquierdo, S.J. Ocaña-Levario, and R. Pérez-García, “GPR-Based Water
Leak Models in Water Distributions Systems,” Sensors, vol. 13, no. 12, Nov. 2013, pp. 15912-15936.

[11] S. Zhang, Y. Li, G. Fu, W. He, D. Hu, and X. Cai, “Wavelet Packet Analysis of Ground-Penetrating Radar
Simulated Signal for Tunnel Cavity Fillings,” Journal of Engineering Science and Technology Review, vol.
11, no. 6, Dec. 2018, pp. 62-69.

[12] C. Lin, X. Wang, Y. Li, F. Zhang, and Z.H. Xi, “Forward Modelling and GPR Imaging in Leakage Detection
and Grouting Evaluation in Tunnel Lining,” KSCE Journal of Civil Engineering, vol. 24, no. 1, Dec. 2019,
pp. 278-294.

[13] R. Ahmadi, N. Fathianpour, and G.H. Norouzi, “Detecting Physical and Geometrical Parameters of Some
Common Geotechnical Targets through their Effects on GPR Responses,” Arabian Journal of Geosciences,
vol. 8, Jul. 2014, pp. 4834-4854.

[14] A. S. Rao, M. Radanovic, Y. Liu, S. Hu, Y. Fang, K. Khoshelham, M. Palaniswami, and T. Ngo, “Real-Time
Monitoring of Construction Sites: Sensors, Methods, and Applications,” Automation in Construction, vol.
136, April 2022, pp. 1-22.

[15] S. Li, H. Cai, and V. Kamat, “Uncertainty-Aware Geospatial System for Mapping and Visualizing
Underground Utilities,” Automation in Construction, vol. 53, May. 2015, pp. 105-119.

[16] A. De Coster, J.L Pérez Medina, M. Nottebaere, K. Alkhalifeh, X. Neyt, J. Vanderdonckt, and S. Lambot,
“Towards and Improvement of GPR-Based Detection of Pipes and Leaks in Water Distribution Networks,”
Journal of Applied Geophysics, vol. 162, Mar. 2019, pp. 139-151.

[17] N. Kim, K. Kim, Y.K. An, H.J. Lee, J.J. “Deep learning-based underground object detection for urban road
pavement,” International Journal of Pavement Engineering, vol. 21, no. 13, Jan. 2020, pp. 1638-1650.

[18] S. Ali, M. A. Hawwa, and U. Baroudi, “Effect of Leak Geometry on Water Characteristics Inside Pipes,”
Sustainability, vol. 14, no. 9, April. 2022. pp. 1-21.

380



Advancing towards semi-automatic labeling of GPR images to improve visualizations of pipes and leaks in water distribution 
networks using multi-agent systems and machine learning techniques 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

[19] B. Wong, and J. A. McCann, “Failure Detection Methods for Pipeline Networks: From Acoustic Sensing to
Cyber-Physical Systems,” Sensors, vol. 21, no. 15, Jul. 2021. pp. 1-83.

[20] D. Ayala-Cabrera, “Characterization of Components of Water Supply Systems from GPR Images and Tools
of Intelligent Data Analysis,” Ph.D. thesis, Universitat Politècnica de València, Valencia (Spain), 2015.

[21] A. Akbarpour, S. Chamaani, J. Sachs, G.D. Galdo “Clutter Removal of Near-Field UWB SAR Imaging for
Pipeline Penetrating Radar,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, April. 2020, pp. 1527-
1539.

[22] M. Rasol, J. Pais, V. Pérez-Gracia, M. Solla, F. Fernandes, S. Fontul, D. Ayala-Cabrera, F. Schmidt, H.
Assadollahi, “GPR Monitoring for Road Transport Instracture, A Systematic Review and Machine Learning
Insights,” Construction and Building Materials, vol. 324, Mar. 2022, pp. 1-21.

[23] A. Shekargoftar, H. Taghaddos, A. Azodi, A. N. Tak, and K. Ghorab, “An Integrated Framework for
Operation and Maintenance of Gas Utility Pipeline Using BIM, GIS, and AR,” Journal of Performatnce of
Constructed Facilities,  vol. 36, no. 3, Mar. 2022.

[24] S. Li, H. Cai, and V. Kamat, “Uncertainty-Aware Geospatial System for Mapping and Visualizing
Underground Utilities,” Automation in Construction, vol. 53, May 2015, pp. 105-119.

[25] M. Zahlan Abdul Muthalif, D. Shojaei and K. Khoshelham, “A Review of Augmented Reality Visualization
Methods for Subsurface Utilities,” Advanced Engineering Informatics, vol. 51, Jan. 2022, pp. 1-18.

[26] S. Ocaña-Levario, E. Carreño-Alvarado, D. Ayala-Cabrera, J. Izquierdo, “GPR Image Analysis to Locate
Water Leaks from Buried Pipes by Applying Variance Filters,” Journal of Applied Geophysics, vol. 152,
May. 2018, pp. 236-247.

[27] D. Ayala-Cabrera, J. Izquierdo, I. Montalvo, and R. Pérez-García, “Water supply system component
evaluation from GPR radargrams using a multi-agent approach,” Mathematical and Computer Modelling,
vol. 57, no. 7-8, April. 2013, pp. 1927-1932.

[28] D. Ayala-Cabrera, M. Herrera, J. Izquierdo, R. Perez-Garcia, O. Piller, “A New GPR Image Analysis
Proposal Based on a Multi-agent Approach and Properties of Groups – Towards Automatic Interpretations,”
in Proc. 8th International Congress on Environmental Modelling and Software, Toulouse, France: iEMSs,
2016, pp. 678-685.

[29] D. Ayala-Cabrera and J. Izquierdo, “GPR Image Interpretation Advancement for Smarter Technical
Management of Water Leakage in Urban Water Infrastructures,” in Proc. Earth Resources and Environmental
Remote Sensing/GIS Applications XII, Madrid, Spain: SPIE 118630S, 2021.

[30] N. Kim, K. Kim, Y.K. An, H.J. Lee, J.J. Lee, “Deep Learning-Based Underground Object Detection for
Urban Road Pavement,” International Journal of Pavement Engineering, vol. 21, no. 13, 2020, pp. 1638-
1650.

[31] Z. Zong, C. Chen, X. Mi, W. Sun, Y. Song, J. Li, Z. Dong, R. Huang, B. Yang, “A Deep Learning Approach
for Urban Underground Objects Detection from Vehicle-Borne Ground Penetrating Radar Data in Real-
Time,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., XLII-2/W16, Sep. 2019, pp. 293-
299.

[32] W. Lei, J. Luo, F. Hou, L. Xu, R. Wang, and X. Jiang, “Underground Cylindrical Objects Detection and
Diameter Identification in GPR B-Scans via the CNN-LSTM Framework,” Electronics, vol. 9, no. 11, pp.
1804, Oct. 2020, pp. 1-16.

381


	14127



