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Abstract 

We adapt the Covasim agent-based model for predicting new COVID-19 cases by tuning the transmissibility rate with 

information on the impact of the most common non-pharmaceutical interventions (NPIs) obtained through machine 

learning models. Such impact has been estimated thanks to the information on applying pools of NPIs worldwide from 

the Oxford COVID-19 Government Response Tracker. 

This approach permits the simulation of a whole country or a smaller region, providing information about asymptomatic, 

recovery, severe, and critical new cases and enabling governments and authorities to set NPIs plans to cope with the 

pandemic. 
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1 Introduction 

Since the beginning of the COVID-19 pandemic, the mathematical modeling of the pandemic has 

permitted to forecast its evolution and determine whether sanitary services would eventually 

collapse. There was not a typical pattern for all patients. Moreover, there could be asymptomatic 

people and severe cases who finally die [1]-[3]. The application of different non-pharmaceutical 

interventions (NPIs) resulted in being the only kind of measures governments could take to contain 

the illness spreading and avoid collapses in health services. Meanwhile, a vast amount of medical 

research started in order to develop effective treatments based on existing drugs, and the appearance 

of new vaccines reduced mortality and illness severity [4]-[7]. 

The rapid and massive increase in cases has been forecasted using mathematical and computational 

base epidemic models [8],[9]. Most of these models, such as compartmental models, are tuned to 

predict the evolution in the number of cases and deaths [10],[11]. These models admit incorporating 

population vaccination [12]-[14]. However, the effect of the application of different combinations 

of NPIs is challenging to incorporate them into these models. Nevertheless, we can address 

statistical and artificial intelligence-based models [15]-[17] to estimate each NPIs contribution to 

modify the infection rates. 

Agent-based models (ABM) arise as an alternative to these approaches. In these models, people are 

considered agents. The NPIs are incorporated to modify the population’s behaviors and simulate 

future scenarios of the disease spreading after the applications of different pools of NPIs. More than 

a decade ago, they started to be used to simulate the spread of influenza across metropolitan areas 

and the continental United States of America [18]. That model was used at the pandemic’s 

beginning to simulate COVID-19 disease spreading in Singapore, accounting for geographical, 

demographic, and epidemiological data [19]. In [20], an ABM was used to model the French 

population integrating demographic and social contact data extracted from population statistics on 

age, household size and composition, workplace and school size, smartphone penetration, and 

commuting fluxes. Later, it was extended to incorporate the effect of vaccination policies [21]. In 

Australia, anonymized demographic information was completed with near real-time SARS-CoV-2 

virus genome sequencing in order to identify infection outbreaks where traditional epidemiological 

models could not find these links, simulating indoor spreading of the virus [22] and permit to 

evaluate of different strategies to control the virus spreading inside care homes [23]. Such an 

approach was also considered to model the COVID-19 spread in small [24] and big cities [25]. In 

this last case, data from mobile phone tracking, census, and building characteristics were combined 

with NPIs, such as contact tracing, compulsory mask usage and early testing. 

Beyond the simulation and prediction of the virus expansion, ABMs let researchers test the effect 

that different pools of NPIs can have in the control of the pandemics, deciding how to set postlock 

down NPIs in order to predict the number of deaths, new cases, and intensive care units (ICU) 

occupancy [26] or for deciding that it was better to prioritize the first dose of the vaccine to almost 

the whole population instead of completing the vaccination scheme with a second dose [27] for a 

part of the population. See also [28] for another use case of ABMs to determine vaccination policies 

among other NPIs. ABMs let us also study the impact of different NPIs applications on economic 

activities [29]. Early volunteer accomplished lockdowns resulted in a strategy with more negligible 

economic damage to stop the virus from spreading at an early stage. The impact increases as long as 

the percentage of the population who need to work for a living or depend on social services 

increases. In a similar line, in [30] it was shown that the dichotomy between deaths and economic 

costs is false. Scenarios simulated with no implemented NPIs to preserve the economy resulted in 

higher deaths, eventually negatively affecting a country’s economy. Besides, ABMs permit to 
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simulate the supply chain recovery process shows that a rapid increase in production permits a 

sooner economic recovery [31]. 

Remarkable ABM models have been used in Australia [22], Singapore [22], the United Kingdom 

[32] and the United States [33],[34]. Among all ABMs, Covasim was one of the most widely used 

agent-based modeling tools [35]. It is flexible and allows to be adapted to incorporate estimations 

on the effect of different NPIs. 

Since the beginning of the pandemic, two open data repositories have aided researchers and 

governments in coping with the pandemic. On the one hand, the John Hopkins Coronavirus 

Resource Center1 has gathered information on the number of cases, deaths, tests, hospitalizations, 

and vaccinated people since January 22nd, 2020, in order to help governments and healthcare 

professionals around the world to respond to the pandemic. On the other hand, the Oxford Covid-19 

Government Response Tracker (OxCGRT) [36] has collected information on policy measures, and 

NPIs applied by governments in 180 countries worldwide to tackle COVID-19. These NPIs have 

systematically been coded on 23 indicators, such as school closing level, gathering restrictions, or 

vaccination policies. The NPIs scheme and data can be downloaded from 2 the official GitHub 

repository. 

Although Covasim allows modeling non-pharmaceutical interventions using different layers, some 

NPIs that have commonly been applied are not included. Besides, an estimation of the effect on the 

population of these NPIs is not considered. To do so, we have adapted the Covasim model to 

incorporate information on the different application levels of NPIs. Our work is organized as 

follows: In Section 2, we describe how Covasim can model different populations and how it 

implements NPIs that can be applied to control the spread of COVID-19. We also introduce how we 

implement the usage of the Oxford Covid-19 Government Response Tracker of non-pharmaceutical 

interventions to extract accurate information about the NPIs application worldwide. Later, in 

Section 3, we show the results obtained and we present the conclusions in Section 4. 

2 Methodology 

There are three population network models already implemented in Covasim to simulate people 

interactions. These models simulate contacts among people in different situations. When an agent is 

infected with the virus, some of her interactions with other agents result in newly infected people. 

• Random networks. Each person can get in touch, transmitting or catching the COVID-19 

disease, with any other person in the simulated population. This basic model considers no 

other information like demographics or contacts at schools or workplaces, making it the less 

realistic model but the fastest one to be computed. 

• SynthPops. SynthPops3  is an open-source model which allows the creation of realistic 

contact networks for synthetic populations. This model permits setting contact patterns for 

different age groups in different environments like households, schools, workplaces, and the 

whole community. A Poisson distribution simulates the contacts. 

• Hybrid networks. This is a hybrid method of the random and SynthPop models. It inherits 

part of the realism from SynthPops but requires fewer input data. As in SynthPops, every 

 

1 https://github.com/govex/COVID-19 
2 https://github.com/OxCGRT/covid-policy-tracker 
3 https://www.synthpop.org.uk/ 

https://github.com/govex/COVID-19
https://github.com/OxCGRT/covid-policy-tracker
https://www.synthpop.org.uk/
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person in the population is assigned to contacts in her household, school (children), 

workplace (adults), and community. The initial population is created following the selected 

location age distribution. Each person is randomly assigned to a household, considering 

specific location information about households. All people between six and twenty-two 

years old are assigned to schools and universities, while all individuals between twenty-

three and sixty-five are assigned to workplaces. Nevertheless, household population age 

distribution is not considered when distributing the individuals. In our experiments, we have 

used this model for reducing computational costs, without committing the accuracy in the 

predictions. 

We can also model intervention policies that can affect how COVID-19 spreads, which helps us to 

understand their impact on spreading the disease. The basic default interventions included in 

Covasim are the following ones: 

• Physical distancing, masks, and hygiene. This intervention is modeled by reducing the 

propagation rate (𝛽)  or by reducing the number of links (edges) between individuals, 

depending on which population model we are using. 

• Testing and diagnosis. Testing can be modeled by the user providing a daily number of 

tests to be done or by establishing probabilities for an individual to get a test depending on 

symptoms or risk factor level. 

• Contact tracing. When an individual is tested positive, another individual who has been in 

contact with her should be traced to be set under quarantine, tested, and, if needed, change 

their state to positive. 

• Isolation of positives and contact quarantine. Isolation applies to an individual who has 

tested positive, while quarantine refers to someone who has been in contact with someone 

who has tested positive. 

• Vaccines and treatments. This intervention can be implemented in Covasim by modifying 

the probability of an individual infecting others and developing symptoms after receiving 

the vaccine. 

These interventions can be parametrized and estimated ad hoc. However, to facilitate its 

comprehension and generalization, we propose to tune the Covasim model with information from 

Oxford Covid-19 Government Response Tracker (OxCGRT) [36], whose database is the result of 

gathering information from monitoring the application of NPIs around the world. Other alternatives 

are discussed in [37], such as the Health Intervention Tracking for COVID-19 (HIT-COVID) [38], 

the Complexity Science Hub COVID-19 Control Strategies List (CCCSL) project, the 

Response2covid19 project [39], the CoronaNet Research Project (CoronaNet) [40], or the COVID-

19 Economic Stimulus Index [41]. 

In this work, we will rely on the OxGRCT, whose use was widely extended and was the base of the 

Pandemic Response Challenge organized by the XPRIZE Foundation. The real impact of each of 

these interventions was studied in great detail there, to use the subsequent analysis to study the 

period between December 22nd, 2020, and January 22nd, 2021, during the second wave of cases in 

the Dominican Republic. 
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2.1 Tuning the model with OxGRCT interventions 

Let us tune the parameters. We can start setting a default COVID-19 infection rate (𝛽) of 0.016, 

which was estimated at the beginning of the pandemic (Primal variant) when no intervention 

policies were set [35], see also [11]. In this work, we will use the default value, although it can be 

increased for high-transmission environments and reduced for low-transmission ones. Modifying 

the interventions mentioned above can restrict the value of 𝛽 to a minimum value of 0.001 since 

there is no viable way to prevent in-house contact. There will always be a minimal residual spread 

rate among families and close contact groups. 

In December 18th, 2020, the World Health Organization (WHO) included the Alpha variant (lineage 

B.1.1.t, henceforth VOC 202012/01) among the variants of concern due to its high transmissibility. 

It was firstly estimated to have an increase in the infection rate of a 77% (95% CI, 73 to 81%) in the 

United Kingdom, 55% (95% CI, 45 to 66%) higher in Denmark, 74% (95% CI, 66 to 82%) higher 

in Switzerland, and 59% (95% CI, 56to 63%) higher in the United States [42] because of mutations 

in the spike protein. As an average of the current results, we consider for our simulations that it is 

66% more transmissible, see [42] [Table 1], resulting in a value for 𝛽 of 0.02656. 

In both cases, we have estimated that the infection rate is reduced due to the application of NPIs 

informed in the OxGRCT database. Some were the basis of one of the most successful models in 

short and long-term predictions of the pandemics [15], which was developed by the Valencia 

IA4COVID team that won the Pandemic Response Challenge organized by the XPRIZE 

Foundation. 

Confinement intervention policies (C1 to C8) were used to predict COVID-19 cases of [15],[43], 

which were running during the period between December 2020 and February 2021. Confinement 

and public health interventions (H1, H2, H3, and H6) were considered in the prescriptor of NPI 

plans of [15]. The application of these NPIs is tagged with different levels as shown in Table 1, 

being 0 the lower level of application and the highest level the most restrictive one. Further details 

on the description of these NPIs can be found in the codebook of the OxCGRT dataset [44]. The 

vaccination policy (H7), with five levels, was later incorporated into both the predictor and 

prescriptor models, but this is outside the scope of this work since, during this period, no vaccines 

were administered in Dominican Republic. 

 Table 1. NPIs selected from the OxCGRT [36]. 

NPI name Values NPI name Values 

C1. School closing [0,1,2,3] C7. Internal movement restrictions [0,1,2] 

C2. Workplace closing [0,1,2,3] C8. International travel controls [0,1,2,3] 

C3. Cancel public events [0,1,2] H1. Public information campaigns [0,1,2] 

C4. Restrictions on gatherings [0,1,2,3,4] H2. Testing policy [0,1,2,3] 

C5. Close public transport [0,1,2] H3. Contact tracing [0,1,2] 

C6. Stay at home requirements [0,1,2,3] H6. Facial coverings [0,1,2,3,4] 

The importance of each NPI was estimated using a gradient-boosting algorithm, see [45], 

[Supplementary Material]. Their relative importance has been rescaled to add 100%. For 

completeness, we present this information in Table 2 regarding their relative importance. 
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 Table 2. NPIs relative importance from [45]. The sum of all of them is 100%. 

NPI name Import. NPI name Import. 

C2. Workplace closing 32.2% H1. Public information campaigns 5.6% 

C1. School closing 16.0% C6. Stay at home requirements 3.9% 

H2. Testing policy 10.3% C7. Internal movement restrictions 3.3% 

C8. International travel controls 7.7% H3. Contact tracing 2.9% 

C4. Restrictions on gatherings 7.0% H6. Facial coverings 2.7% 

C5. Close public transport 6.0% C3. Cancel public events 2.4% 

According to those above 𝛽 range values, the minimum stringency (all NPIs set to 0) corresponds to 

the maximum 𝛽 value of 0.016 for the Primal variant and 0.02656 for the Alpha variant, and the 

maximum stringency (all NPIs set to their respective maximum value) produces the minimum 𝛽 

value of 0.001. Given a policy plan determined by the application of some of these policies at 

certain levels 𝐿𝐶1 , 𝐿𝐶2 , … , 𝐿𝐶8 , 𝐿𝐻1 , … 𝐿𝐻6 gives the following estimation of the parameter 𝛽. 

 𝛽 = 𝛽0 − (∑8
𝑖=1 𝑤𝐶𝑖𝐿𝐶𝑖 + ∑𝑖=1,2,3,6 𝑤𝐻𝑖

𝐿𝐻𝑖
) ⋅ (

𝛽0−0.001

100
). (1) 

where 𝛽0 = 0.016,0.0256, depending on the variant (Primal/Alpha), 𝑤𝐶1 , … ,𝑤𝐻6  are the values 

with the relative importance of each NPI as stated in Table 2 and 𝐿𝐶𝑖, 𝐿𝐻𝑖
 are the levels of the 

applied NPIs divided by the maximum level of application of each one. 

NPIs are usually combined at different levels, so it is impossible to correctly determine the 

importance of each one in the reduction of the number of cases. In [17], the importance of each NPI 

is estimated through the weight of the regression coefficients in the model. Both estimations agree 

that school and workplace closings are among the most effective NPIs. There are also other 

measures, such as testing policy and contact tracing, in which both models differ in the assigned 

importance but are usually jointly applied. 

In the period under consideration, the NPIs were set almost all the days to the following levels: 

• C1 (3 - require closing all school levels), 

• C2 (2 - require closing (or work from home) for some sectors or categories of workers), 

• C3 (2 - require canceling public events), 

• C4 (3 - restrictions on gatherings between 11-100 people), 

• C5 (1 - recommend closing (or significantly reduce volume/route/means of transport 

available)), 

• C6 (2 - require not leaving the house with exceptions for daily exercise, grocery shopping, 

and ’essential’ trips), 

• C7 (0 - no restrictions on movement between regions), 

• C8 (3 - ban arrivals from some countries), 

• H1 (2 - coordinated public information campaign (e.g., across traditional and social media)), 
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• H2 (2 - testing of anyone showing COVID-19 symptoms), 

• H3 (1 - limited contact tracing; not done for all cases), 

• H6 (3 - facial coverings required in all shared/public spaces outside the home with other 

people present or all situations when social distancing is not possible). 

It is worth pointing out that this information merely shows the willingness to fulfill them, and it 

does not convey its efficacy. Nevertheless, as we will see in the next section, they are extremely 

helpful for simulating the evolution in predicting new COVID-19 cases. 

3 Results 

In this work, we will test the model with data from the Dominican Republic. We have considered a 

population of 1,099,664 people and the age distributions and household sizes reported by the UN 

Population Division 2019 [46], see Figure 1 for the results under the Primal variant scenario. This 

number is assumed to be constant during the period under analysis. Besides, since the pandemic’s 

beginning up to December 21st, 2020, were 160,386 people already infected, who were discounted 

from the total population for performing the simulations. 

 

 Figure 1. Population statistics for the Primal strain from the Dominican Republic between Dec. 22nd, 2020 

and Jan. 22nd, 2021. 
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 Figure 2. Comparison of new COVID-19 cases predictions for the Dominican Republic under the existence 

of just the Primal/Alpha variants vs. the real number of new COVID-19 cases between Dec. 22nd, 2020, and 

Jan. 22nd, 2021. 

One of the advantages of ABMs is that they easily permit the extraction of data in order to forecast 

the prevalence and incidence of an illness, as we can see in Figure 2 and Figure 3 from the 

simulations run for the Primal/Alpha variants under the application of the actual NPIs. 

 

 Figure 3. Comparison of the estimated COVID-19 prevalence and incidence under the existence of just the 

Primal/Alpha variants for the Dominican Republic between Dec. 22nd, 2020, and Jan. 22nd, 2021. 
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 Figure 4. Comparison of symptomatic and recovery cases under the existence of just the Primal/Alpha 

variants for the Dominican Republic between Dec. 22nd, 2020, and Jan. 22nd, 2021. 

 

 Figure 5. Comparison of new severe and critical cases for Primal/Alpha variants for the Dominican 

Republic between Dec. 22nd, 2020, and Jan. 22nd, 2021. 

Besides, it also permits estimating the number of asymptomatic cases and recoveries, see Figure 4, 

and the number of severe and critical cases, see Figure 5, beyond the total number of new cases of 

infected people. This information is extremely helpful in order to forecast the occupancy of health 

facilities, and in particular intensive care units. 
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4 Conclusions 

ABMs models show the effectiveness of NPIs in containing the virus spreading and reducing the 

number of COVID-19 infections. These models permit incorporating different data sources such as 

demographics, geographical, and mobile data information [47]. These models permit the simulation 

of scenarios with different NPIs configurations to evaluate the best policies to stop the pandemic 

spread. 

These models can be deployed with low computational cost since simulations can be run over a 

small population subgroup for later inferring the results for the whole group. It is also worth 

mentioning that it permits customized populations and contact networks down to the level of a 

university campus [48] or a city [49]. 

In this work, we have combined the ABM framework of Covasim with the information provided by 

the OxGRCT dataset. This shows that despite the simplifications in the description of the most 

common NPIs, the model can provide pretty accurate forecasts for several weeks, even considering 

the existence of different strains with different transmissibility rates. 

Despite managing ordinal information that illustrates the NPIs application, a satisfactory estimation 

of each NPI impact level through a machine learning model has permitted to set a fine-tuning of the 

model. This has been possible due to the abundance of data about how such NPI has been applied 

worldwide and the actual impact on the number of new COVID-19 cases. Besides, we can also 

estimate asymptomatic, recoveries, severe, and critical cases only with the information on the 

number of new cases. This information enables governments, policymakers, and health authorities 

to forecast the impact on the health facilities of an increment in the number of cases, as it 

commonly happens with the appearance of a new virus or a new variant of an existing one. 

Finally, it is also worth mentioning that with such an approach, it is straightforward to predict 

possible scenarios of pandemics under the application of different NPIs plans. 
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