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Abstract

Acoustic sensors are widely used for monitoring urbanized water distribution networks 
(WDNs) to detect and localize pipe leakages. Since their inception, few research studies have 
focused on developing a generic, effective, and practical methodology to analyse complex 
acoustics signals for leakage detection and localization in large-scale WDNs. In collaboration 
with PUB, Singapore’s National Water Agency, a generic acoustic data analysis approach has 
been developed to facilitate PUB’s present Smart Water Grid (SWG) management. The 
proposed approach encompasses multi-stage systematic analyses, namely: (1) data quality 
assessment; (2) data pre-processing; (3) near real-time leakage event detection and 
classification; and finally (4) near real-time leakage localization. Our proposed approach is 
then tested in major WDNs in Singapore having more than 1100km of underground water 
pipelines and 82 permanently installed hydrophone acoustic sensors between 1 Aug 2019 and 
31 Aug 2020, where multiple historical leakage events were reported to within 600m, or less, 
from neighbouring hydrophones across the large complex networks. By emulating the near 
real-time detection and localization analyses daily, our proposed methodology could localize 
reported leakage events to an error range of around 150m on average, while demonstrating 
significant and stable acoustic leakage power rate over the temporal size of the leakage event 
cluster(s).  

Keywords
Water distribution networks; acoustic signals; leakage detection and localization; acoustic energy analysis; 
autocorrelation analysis; peaks finding and pairing. 

1 INTRODUCTION

Drinkable water is an important resource for humanity’s livelihood. With rising uncertainty due 
to climate change and a growing global population, utility companies are facing increasing 
challenges to protect and ensure the supply of potable water to the public with minimum 
disruptions. For example, in the United States, an estimated volume of 6 billion gallons of treated 
water is reported to be lost each day where approximately 240,000 water mains breaks occur 
yearly [1]. In the context of Singapore, despite the continual investment in Smart Water Grid 
(SWG) management [2] by the state government, further reducing non-revenue water (NRW) 
losses continue to be major challenge due to the complexity of the real-world operations and 
hidden leakage events which can occur unexpectedly in the underground water distribution 
networks (WDNs) over time.  

Over the last decade, acoustics sensors have been increasingly deployed by utility companies as 
part of their 24/7 permanently monitoring or temporary leakage program(s) due to low capital 
cost involved and ease of use. It is believed that acoustic sensors can complement with traditional 
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flow and pressure sensors to readily detect and localize hidden and insidious leakage events, 
before becoming disruptive events to the local public. Typically, an acoustic signal, as caused by 
pipe leakages, is due to the complex interaction between the flowing water and the interiors of 
the underground pipe wall(s), hence generating random wave signals with both short-term 
nonstationary and long-term stationary components [3]. Since their inception, many research 
works have been done to develop different engineering approaches for leveraging on acoustic 
data signals to perform leakage detection and localization in WDNs which include, but not limited 
to, traditional experimental analysis to perform signal-based processing [4]–[9], and advanced 
data-driven and deep learning methods [10]–[12]. Multiple notable works have also been 
performed using controlled field tests in reasonably large networks (≥120km of pipelines) with 
high density of acoustic sensors (≥300 sensors) per area [13], [14]. To the very best of our 
knowledge, while significant research has been done over years, we note that most of the 
proposed approaches are unlikely to be applicable for the real-world practical context due to the 
following reasons: 

• The conducted works which have achieved high detection and localization accuracies are
confined to networks having very high density of sensors per area or pipeline, whether
under controlled experimental or field tests. For example, the case studies performed by
[13], [14] in the context of Adelaide involved the deployment of high density of acoustic
sensors per unit area, in order to detect and localize leakage events to within a limited
spatial distance range. However, this requirement may not be generalized to all real-world
WDNs as there can be cases having sparse number of acoustic sensors installed
permanently, hence there is a strong likelihood that leakage events may occur at
reasonably far locations from the nearest acoustic sensor(s), unlike from traditional
experiments where sensors are often deployed less than 5-10m away from the simulated
leaks in the networks.

• Limited number of acoustic datasets collected in real large-scale systems, pertaining to
historical leakage events, available for training detection and localization models via deep
learning. In the practical field context, it is not possible to collate large quantity of reported
leakage events in well-managed WDNs, thus leading to imbalanced datasets in terms of
the total number of leakages to non-leakage acoustic data records for training leakage
detection and localization models. This limitation thus challenges the necessity for
deploying advanced data-driven and deep learning methods for any engineering
modelling objectives, especially in cases having sparse datasets.

To address the above-outlined shortcomings, this work, in collaboration with PUB, Singapore, 
develops a practically novel and generic acoustic data analysis methodology for analysing 
complex acoustic data signals collected under uncontrolled field conditions for detecting and 
localizing historical leakage events in more than 1100km of underground water pipelines with 82 
permanently installed hydrophone sensors. This practical setting results in around 1 hydrophone 
availability for every 15km of pipeline in the combined network that is in stark contrast from the 
other notable reported field tests [13], [14]. By emulating the near real-time context to analyze 
acoustic data signals collected from the deployed hydrophones, the proposed methodology 
comprises of a series of systematic analyses which include: (1) data quality assessment, (2) 
features generation, (3) data pre-processing, (4) near real-time leakage detection, followed by (5) 
near real-time leakage localization.  

2 DATA DESCRIPTION

Acoustic signal is usually stored as raw audio file which represents the signal’s waveform 
amplitude profile. A typical waveform amplitude profile is illustrated in Figure 1a, which can be 
converted into its corresponding spectrogram and power spectral density (PSD) profiles as shown 
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in Figure 1b and 1c respectively. Spectrogram (Figure 1b) comprises of two dimensions where 
the x-axis represents time (seconds), while the y-axis represents the frequency (Hz) of the 
acoustic signal. An additional 3rd dimension, as represented by normalized color intensity values 
in decibels (Db), quantifies the signal strength at a specific frequency value. PSD (Figure 1c) 
analyses the power density distribution of the same signal over its frequency range, where its x-
axis represents the signal’s frequency (Hz), and the y-axis represents the corresponding power 
density (db/Hz) at a specific frequency value.  

(a) 

(b) (c) 
Figure 1. Basics of acoustic signals data: (a) time-series waveform (amplitude) profile; (b) spectrogram; and

(c) power spectral density (PSD).

3 METHODOLOGY

Figure 2 summarizes the key systematic procedures involved in our 
proposed generic leakage detection and localization approach, for every 
available acoustic sensor station(s) in the WDN system, that comprises 
of the following components: 

i. Data Quality Assessment: Remove acoustic audio data files of
“bad” quality characteristics.

ii. Features Generations: Generate acoustic power features for
leakage detection and localization analysis.

iii. Data Pre-processing: Remove large transient power values for
each acoustic sensor station.

iv. Near real-time leakage detection and clustering: Perform
outlier detection using pre-processed acoustic power data,
followed by clustering the detected outliers into leakage event
clusters.

v. Near real-time leakage localization: By linking to the detected
event clusters, perform leakage localization using
autocorrelation analysis for power-peaks finding and pairing.

Figure 2. Overview of
proposed leakage

detection and localization
using acoustic signals
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3.1 Data Quality Assessment

During the operations of WDNs in the practical field context, a mixture of unknown environmental 
noises is expected to be embedded in the acoustic signals. It is also common for long-term and 
permanently installed sensors to not function correctly in the field at all times, hence resulting in 
numerical errors to be introduced into the recorded acoustic readings over time. Therefore, it is 
necessary and imperative to assess the initial data quality of each acoustic audio file before further 
signal analysis. The overall acoustic data quality assessment is performed using several metrics, 
as summarized in Table 1, while following a proposed screening protocol in Figure 3. An acoustic 
data file is only classified as “good” quality if it passes all 3 criteria. 

Figure 3. Protocol to systematically preprocess each acoustic data file for constant signals, 
clipped signals, and offset/biased signal. 

Table 1. Descriptions of metrics adopted for performing acoustics data quality assessment. 
Data Quality Issue Problem Descriptions Rectification measure
Constant Signal Zero or constant amplitude values for a given 

datetime 
Exclude from analysis 

Clipped Signal Waveform profile is being clipped as only 
amplitude values within the known upper- and 
lower bounds for a given bit depth can be 
recorded 

Removal of clipped 
component 

Drifted Signal Signal amplitude values are not centered along 
the zero-axis.  

Zero-centering of signal 
values 

3.2 Feature Generation

After performing data quality assessment for each acoustic sensor station in the WDN system, we 
proceed to leverage on the “good” quality audio files to generate their corresponding total power 
(𝑃𝑎𝑙𝑙) data representations. Note that 𝑃𝑎𝑙𝑙 represents the basic case by using the original
waveform amplitude profiles, as previously illustrated in Figure 1a. In general, it is computed by 
first converting the waveform into its PSD profile (Figure 1c), followed by summing the power 
density values (normalized or un-normalized form) across their entire or selected frequency 
range (e.g., 100-750Hz). Note this summation is similar to the traditional power root-mean-
square (RMS) computations. 

3.3 Data Pre-processing

For each acoustic sensor station, the generated 𝑃𝑎𝑙𝑙 values then undergo a series of data pre-
processing procedures which encompass the following:   
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i. Histogram analysis (1st level of filtering): Distribute the data instances with a
defined number of bins (𝑁𝐵) where the data instances from the 1st bin are retained
and the remaining data instances from the other bins, i.e., 2nd bin and beyond, are
collated together.

ii. Data restoration: For each of the data instances in the combined 2nd bin and beyond,
compute the ratio between available adjacent data instances, namely: (1) between
𝑃(𝑡) and 𝑃(𝑡 − 1); and (2) between 𝑃(𝑡) and 𝑃(𝑡 + 1), where 𝑃(𝑡 − 1) and 𝑃(𝑡 + 1)
are the original data instance values. If either of the computed ratio values from the
above (1) and (2) computations are within a defined threshold scaling value (𝑆𝑡ℎ𝑟𝑒𝑠),
𝑃(𝑡) data instance will be formally restored back into the original 1st bin of data
instances, else 𝑃(𝑡) will formally remain in the 2nd bin and beyond. At this stage, the
original 1st bin of data instances has been updated with any restored data instances.
Finally, for the data instances, in the 2nd bin and beyond, without any adjacent
neighboring values, they will formally remain in the 2nd bin and beyond.

iii. Histogram re-analysis (2nd level of filtering): Re-distribute the data instances in the
final 1st bin of data instances from the preceding step (iii) with the same number of
bins (𝑁𝐵), as previously defined in step (i), to obtain a new 1st bin of data instances.

iv. Data normalization: For the new 1st bin of data instances after the data re-
distribution from preceding step (iii), normalize each data values accordingly (e.g.,
max-normalization or min-max-normalization).

To illustrate the above-proposed data pre-processing procedures, Fig. 4a shows a typical time-
series profile for 𝑃𝑎𝑙𝑙. Fig. 4b plots the distribution of the power values across 5 bins (𝑁𝐵). Fig. 4c
shows the collated data instances (total of 848) from the 1st bin as derived from Fig. 4b, while Fig. 
4d illustrates the updated time-series profile after data restoration. By performing another round 
of histogram re-analysis using the collated data values from Fig. 4d, Fig. 4e plots the time-series 
profile for the final 1st bin of data values. Finally, Fig. 4f  illustrates the normalized power values 
from Fig. 4e by using max-normalization method. 

(a) (b) 

(c) (d) 
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(e) (f)
Figure 4. Example for pre-processing procedures for 𝑃𝑎𝑙𝑙 values: (a) original time-series profile; 
(b) histogram distribution for original profile; (c) time-series profile after 1st filtering; (d) time-

series profile after data restoration; (e) final time-series profile after 2nd filtering; (f) normalized
final time-series profile 

3.4 Near real-time leakage detection & clustering

Using their corresponding normalized time-series profiles for 𝑃𝑎𝑙𝑙, leakage detection and 
classification is then performed for each available acoustic sensor station in the system by 
adopting temporal-based clustering which depends on several key model parameters, namely: (a) 
universal reference value (𝑃𝑟𝑒𝑓) to perform power-based outlier detection; 0 ≤ 𝑃𝑟𝑒𝑓 ≤ 1.0, (b)
minimum number of detected outliers (𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟) between 2am-4am required for each station
daily; 1 ≤ 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ≤ 3; (c) minimum number of consecutive days (𝑁𝑐𝑜𝑛𝑠) for each station to form
an anomaly cluster where each of the days fulfilled the prior 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 value defined; 1 ≤ 𝑁𝑐𝑜𝑛𝑠.

For each selected combination of 𝑃𝑟𝑒𝑓 , 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 , and 𝑁𝑐𝑜𝑛𝑠 (from model training) in the near real-

time context, the following set of systematic analyses is performed for each acoustic sensor 
station.  

i. Power-based outlier detection: Compare each of the normalized data values with the
universally defined 𝑃𝑟𝑒𝑓 value. If the normalized data value is greater than 𝑃𝑟𝑒𝑓 , then the

corresponding timestamp is marked as a detected outlier.

ii. Leakage Event Clustering: The detected outliers are then aggregated along the time
horizon and subsequently clustered or classified into leak events, where each of the
detected events is required to fulfill the following criteria:

a. Basic Criterion 1 (BC-1): The total number of outliers detected during the MNF
hours (e.g., 2am-4am) daily ≥ 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 .

b. Advanced Criterion 1 (AC-1): The detected outliers are then aggregated over
consecutive number of days into a single anomaly cluster event, where its
corresponding size (𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≥ 𝑁𝑐𝑜𝑛𝑠.

iii. Near real-time analysis: Referring to Figure 5, on a daily basis, BC-1 must be first
fulfilled, followed by adding the identified number of outliers into 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If BC-1 is not
fulfilled on any given day, AC-1 is then triggered to check if the respective criterion is
fulfilled for 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is then reset to 0 on the following day for continuing the near
real-time analysis.

Note that the selected 𝑃𝑟𝑒𝑓 , 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 , and 𝑁𝑐𝑜𝑛𝑠 parameters for the near real-time analysis are 

usually determined/optimized from the model training phase. Figure 6 exemplifies our proposed 
leakage event detection and clustering by using 𝑃𝑟𝑒𝑓 = 0.4, 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 1, and 𝑁𝑐𝑜𝑛𝑠 = 3, which

results in 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to be 11 days where no outliers are detected after Day 11th as shown. 
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Figure 5. Proposed procedures for performing near real-time leakage detection and clustering. 

Figure 6. Example for anomaly event detection and clustering using 𝑃𝑟𝑒𝑓 = 0.4, 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 1, and 
𝑁𝑐𝑜𝑛𝑠 = 3. 

3.5 Near real-time leakage localization

Upon detection of leakage event clusters based upon any selected combination of 𝑃𝑟𝑒𝑓 , 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 , 
and 𝑁𝑐𝑜𝑛𝑠, leakage localization is performed with the corresponding audio files for the associated 
detected outliers within the event cluster in the same near real-time context by adopting a set of 
mathematical procedures as follows: 

i. Bandpass filtering: For each detected outlier that corresponds to a specific audio file,
apply bandpass filter of a defined frequency range (e.g., 100-750Hz) to its original

 

   

   

   

   

   

   

   

   

   

 

    
                

317



Acoustic Data Analysis Framework for Near Real-Time Leakage Detection and Localization for Smart Water Grid 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

waveform profile to extract a filtered waveform profile, followed by generating its 
corresponding spectrogram. 

ii. Averaged spectral amplitude: For the same selected frequency range from (i), derive the
averaged spectral amplitude profile from the generated spectrogram using a defined
number of moving average points (𝑁𝑎𝑣𝑔).

iii. Autocorrelation analysis: Apply autocorrelation function to averaged spectral
amplitude profile that analyses all possible time-lags for the total time-length of the audio
file.

iv. Power-peaks finding & pairing: Perform peak finding and pairing on the derived
autocorrelation plot from (iv) using suitable confidence intervals (e.g., 95%) for multiple
tolerance bounds as follows:

a. Horizontal upper- and lower-bounds for autocorrelation values: ± 𝑍

√𝑁
, where 

𝑁 represents the total number of data points in the averaged spectral amplitude 
time-series profile, and Z represents the t-statistic score for a defined confidence 
interval. In principle, the autocorrelation values which are outside of the upper- 
and lower-bounds are retained for the subsequent analysis. 

b. Vertical bound for time-lag values: For the same defined confidence interval,

estimate the vertical time-lag bound using µ + 𝑛
𝜎

√𝑀
, where µ and 𝜎 represent the 

harmonic mean and standard deviation of the time-lag values corresponding to 
the M number of retained autocorrelation values from (a), and 𝑛 refers to the total 
number of sigmas to be considered. For example, for 95% confidence interval, 𝑛 
equates to 3.  

v. Localization distances estimation: For each pair of the power peaks identified from (iv),
check if (1) their corresponding time-offset (∆t) is within a defined threshold time-offset
(𝑇𝑡ℎ𝑟𝑒𝑠), and (2) the corresponding absolute difference between the pair of
autocorrelation values is within a defined threshold autocorrelation tolerance (𝐴𝑡ℎ𝑟𝑒𝑠). If
both criteria (1) and (2) are fulfilled, proceed to estimate the localization distance (𝑑𝑙𝑒𝑎𝑘)
for each pair by multiplying ∆t with the speed of sound in water (𝑣𝑠𝑜𝑢𝑛𝑑). Collate and
distribute all estimated 𝑑𝑙𝑒𝑎𝑘 values via histogram analysis with a defined distance width
(𝑑𝑤𝑖𝑑𝑡ℎ ), followed by determining the average localization distance (𝐷𝑙𝑒𝑎𝑘) from the
specific bin having the highest frequency count.

Figure 7 exemplifies the key procedures involved to estimate the localization distance(s) for a 
singular detected outlier and its associated audio file, where Figure 7a represents the original and 
bandpass filtered waveform profile for the audio file. Figure 7b then illustrates the averaged 
spectral amplitude profile derived from the bandpass filtered waveform, followed by using the 
filtered waveform to generate its autocorrelation plot and the associated peaks as shown in Figure 
7c. The same figure illustrates the resulting upper- and lower-horizontal bounds using 95% 
confidence interval to first identify the statistically significant peak autocorrelation values, i.e., 
those outside of the two bounds, followed by plotting the vertical bound, as shown, to isolate the 
key peak values to within a certain time-lag (s). Finally, Figure 7d shows the histogram plot for 3 
estimated 𝑑𝑙𝑒𝑎𝑘 of 40.5m, 445.2m, and 829.6m for 3 unique pairs of peaks identified from Figure 
7c, where each distance has a count of 1 when 𝑑𝑤𝑖𝑑𝑡ℎ  is fixed at 50.0m and 𝑣𝑠𝑜𝑢𝑛𝑑 = 1480m/s. In 
cases where there are multiple dominant localization distance ranges having the same counts, 
then we estimate their harmonic mean value among them, which will result in a 𝐷𝑙𝑒𝑎𝑘 value of 
106.6m for the current selected example.  
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(a) (b) 

(c) 

(d) 

Figure 7. Example for estimating localization distance for each detected outlier: (a) applying 
bandpass filter to original waveform profile; (b) derivation of averaged spectral amplitude 

profile from filtered profile; (c) derivation of autocorrelation plot with paired peaks; (d) 
localization distances estimation and histogram analysis 
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4 CASE STUDY

4.1 Description of WDN systems

In collaboration with PUB, Singapore’s National Water Agency, our proposed leakage detection, 
and localization methodology is verified with large-scale WDNs, which encompass three water 
supply zones (Zone-1, Zone-2, Zone-3) in Singapore, as shown in Figure 13. All three zones consist 
of underground water pipes having a total length of 1100km and 82 permanently installed 
hydrophone sensors. Table 2 summarizes the details of the audio files collected across all 
hydrophones in all three zones for the period between 1 Aug 2019 and 31 Aug 2020, where 18 
historical leakage events were reported to within 600m, or less approximately, from neighboring 
hydrophone acoustic sensors, as summarized in Table 3 for the respective zones.  

Table 2. Details pertaining to acoustic data files collected in Zone-1, Zone-2, and Zone-3. 

Detail Zone-1 Zone-2 Zone-3
Date range 1 Aug 2019 – 31 Aug 2020 
Total quantity of hydrophones 27 47 8 
Total quantity of .WAV files  156734 232026 44374 
Total quantity* of .WAV files from MNF 
hours 

21734 25518 6109 

Bit depth of .WAV files 16 
2048-8192 

6.0-30.0 
1 (mono) 

Sampling rates (Hz) 
Time length of .WAV files (s) 
No. of channels 
* After undergoing data quality assessment

Table 3. Summary of reported leakage events in Zone-1 to Zone-3, and their associated nearest
hydrophone stations. 

Zone 
Reported
Leak Dates

1st detected date
(nearest leakage

cluster to
reported leak)

Nearest
station

Pipeline
distance
between
leak &
nearest

station (m)

No. of
detected
leakage
clusters

Avg.
Predicted
localizatio
n dist. (m)

1 

9/11/2019 9/1/2019 STN_A 72 2 174 

9/9/2019 9/5/2019 STN_B 419 12 263 

8/16/2019 8/12/2019 STN_C 587 12 517 

2 

1/9/2020 1/5/2020 STN_A 36 3 157 

5/22/2020 5/20/2020 STN_B 111 7 363 

8/1/2019 8/2/2019 STN_C 202 3 234 

8/5/2020 8/3/2020 STN_D 324 7 146 

5/6/2020 5/7/2020 STN_E 530 7 473 

3/13/2020 3/7/2020 STN_F 600 
4 

280 

3/12/2020 3/7/2020 STN_F 600 280 

3 

3/6/2020 3/2/2020 STN_A 353 9 654 

1/23/2020 1/24/2020 STN_B 453 19 415 

3/28/2020 3/24/2020 STN_C 518 
13 

450 

6/28/2020 6/24/2020 STN_C 627 514 

1/21/2020 1/17/2020 STN_D 613 
21 

625 

1/20/2020 1/17/2020 STN_D 736 625 
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4.2 Near real-time leakage detection and localization

4.2.1 Leakage event detection

By emulating the near real-time context using the historical reported leakage events, we first 
perform the leakage detection and clustering analysis by adopting the model parameters of 𝑃𝑟𝑒𝑓 =
0.4, 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 1, and 𝑁𝑐𝑜𝑛𝑠 = 3. Table 4 summarizes the total number of detected event clusters
for the respective station in each zone, and the 1st detected date of the event cluster located closest 
to the reported event temporally. For example, for STN_A in Zone-1, there are 2 detected event 
clusters for that station during 1 Aug 2019 and 31 Aug 2020, where the detected cluster nearest 
to the reported event on 9/11/2019 is first formed on 9/1/2019 and lasted for a total 11 days till 
9/11/2019. We do, however, note that some cases may have the nearest detected event cluster(s) 
to be formed after the leakage event is reported with a maximum delayed time of 1 day, as 
demonstrated in the examples (see Table 3) for STN_B and STN_C in Zone-2, and STN_B in Zone-
3. For all stations in Table 3, it is worth highlighting that the other leakage event clusters, which
are not located temporally close to their respective reported events, may or may not represent
hidden and unreported leakage events that require further field investigations.

4.2.2 Leakage localization

For each of the nearest event cluster detected to the reported events in Table 3, we proceed to 
estimate their dominant localization distances (𝐷𝑙𝑒𝑎𝑘) for every detected outlier within the event 
cluster by following our proposed mathematical procedures as summarized previously. Figures 
8a-8c illustrates the resulting localization distances computed over the temporal size of the event 
cluster for a single leakage scenario from each of the zones, respectively:  

• STN_A from Zone-1 for leakage event reported on 9/11/2019 (see Figure 8a)
• STN_A from Zone-2 for leakage event reported on 1/9/2020 (see Figure 8b)
• STN_C from Zone-3 for leakage event reported on 3/28/2020 (see Figure 8c)

In each of the Figures 8a-8c, several important pointers must be noted, namely: (1) the estimated 
𝐷𝑙𝑒𝑎𝑘 values, as represented in the respective primary axis, over the temporal size of the event 
cluster are based upon harmonic mean computations in a rolling-forward temporal basis to 
emulate the near real-time context, (2) same harmonic mean computation principle is applied to 
compute the acoustic power over time in near real-time as represented in the corresponding 
secondary axis, and (3) the localization distance estimated for the final outlier of the event cluster, 
before the cluster breaks off, is then taken as the final average 𝐷𝑙𝑒𝑎𝑘 for the analysis.  

By adopting the universal model configurations of 100-450Hz frequency range, 𝑁𝑎𝑣𝑔 = 12, 95% 

confidence interval for the upper-, lower- and vertical-bounds, 𝑇𝑡ℎ𝑟𝑒𝑠 ≈ 0.676s, 𝐴𝑡ℎ𝑟𝑒𝑠 = 0.25, 𝑣𝑎𝑖𝑟 
= 1480m/s, and 𝑑𝑤𝑖𝑑𝑡ℎ  = 50.0m, the final column of Table 3 summarizes the final average 
predicted 𝐷𝑙𝑒𝑎𝑘 value for each of the reported events. In summary, the following key observations 
can be made at this stage, namely:  

• For most cases, the average error discrepancy between the reported and predicted
pipeline distances is approximately 150m in absolute value, except for STN_B (Zone-1),
STN_E and STN_F (Zone-2), and STN_A (Zone-3) where the bulk of their predicted
distances are underestimated by more than 150m from the actual reported distances.

• Conservatively, the minimum detection criteria of 𝑃𝑟𝑒𝑓 = 0.45, 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 1, and 𝑁𝑐𝑜𝑛𝑠 =
3 provide sufficiently high confidence level that a pipeline leakage event is most likely
taking place in the near proximity (≤ 600m) of the respective hydrophone station that is
detecting and reporting the event cluster to the operator.
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• As demonstrated in Figures 8a-8c, the normalized acoustic power values gradually
increase over time, or at the very least, maintain a near-constant value above the minimum
required power of 45% and above. This temporal observation can serve as an additional
indication that a pipeline leakage event is taking place in the near proximity of the
respective hydrophone station. Another common observation is that the power values
may first rise to high value (e.g., to around 70-80%), followed by approaching a near-
plateau power percentage value (> 45%) over the temporal size of detected event cluster.

(a) (b) 

(c) 
Figure 8. Estimated localization distances over temporal sizes of detected cluster located closest to 

respective reported leakage events: (a) STN_A from Zone-1 for leakage event reported on 
9/11/2019; (b) STN_A from Zone-2 for leakage event reported on 1/9/2020; and (c) STN_C from 

Zone-3 for leakage event reported on 3/28/2020. 

5 CONCLUSIONS

This paper develops a generalized acoustic data analysis methodology to perform near real-time 
leakage detection and localization in underground water distribution networks (WDNs). In 
collaboration with PUB, Singapore’s National Water Agency, our proposed methodology 
comprises of systematic procedures for analysing acoustic data signals, namely: (1) data quality 
assessment; (2) features generations; (3) data pre-processing; (4) near real-time leakage 
detection and clustering; and (5) near real-time leakage localization. It is believed that the 
methodology can detect and localize leakage events in large WDNs having permanently installed 
acoustic sensors and has since been verified with 3 WDN zones in Singapore having 82 
permanently installed hydrophone sensors across the networks. By emulating the near real-time 
context using historically available reported leakage events, our approach could successfully 
detect leakage events, as reported to within 600m or less from a neighbouring hydrophone 
station, with a maximum delayed time of 1 day in all 3 zones. The detected leakage event clusters 
are then further analysed to predict the likely locations of the leakage events from the nearest 
hydrophone stations, where the bulk of the events can be localized to within 150m error 
discrepancy, on average, with significant detected acoustic power of more than 45% over the 
temporal size of the event clusters.  
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