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Abstract

With the growing interest of water utilities on digitalization, running multiple scenarios can 
become cumbersome with limited budget and short data collections. The total number of 
hydraulic simulations required (usually using commercial software), becomes a burden for 
near real-time operation. In order to circumvent the computational burden (limitation), since 
a couple of decades, several Machine Learning techniques have been used to create a meta-
model or surrogates of a Water Distribution Networks (WDN) based on a subset of data 
available through SCADA. Among the many possible surrogates a Sparse Identification of Non-
linear Dynamics (SINDy) method is presented. The method is applied to two datasets: i) to
obtain a surrogate of a benchmark network and ii) real data of water consumption of different 
District Metered Areas (DMA) of a real water utility. The method is: i) computationally 
inexpensive, ii) less data demanding for calibration than other modern methods, iii) 
parsimonious, and iv) could be used to infer physical relations among data.  
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1 INTRODUCTION

Since a couple of decades ago there has been an increase on the number assets which are 
registered by utilities and used as elements of hydraulic models. Such models are then used to for 
real-time applications. With the development of Digital Twins [1] by utilities the number of 
scenarios and decisions which can be pursued by operators increases exponentially the 
requirement of hydraulic simulations. This creates a trade-off between model size and number of 
simulations which can be carried out to answer a specific question (i.e. leakage detection, anomaly 
detection, long-term and short-term planning, condition assessment). A way of circumventing this 
trade-off is the use of additional computer processing, parallelization of model runs, 
skeletonization or model simplification or the use surrogates or meta-models of the Water 
Distribution Network (WDN) model. Although pushing additional computer processing and 
capacity in data warehouses it’s a possibility for some utilities, it is not sustainable in the long run. 
Within the meta-models category several applications for meta-modelling of WDN are available. 
Methods ranging from neural networks [2] [3], from simple types such as generalized and 
perceptron multilayers [4] [5], to more recent developments such as Deep learning networks 
(DNN) [6] are available. Most of these meta-models encapsulate a large amount of data (i.e. pipe 
flows, pressures or heads and demands) as black-box and their physical interpretation gets lost 
in the inner workings of these non-linear regressions. Since a few years ago some methods have 
been (re)discovered for the identification of principal modes from complex systems such as 
turbulent flows in the form of Koopman operators.  

There is a large amount of such methods such as Principal Component Analysis (PCA), ERA, PDO, 
ICA, KIC, Dynamic Mode Decomposition (DMD) [7] [8] and Sparse Identification Non-Linear 
Dynamics (SINDy) [9] [10]. Here the latter and its possible applications for WDN are presented.  
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2 SPARSE IDENTIFICATION NON-LINEAR DYNAMICS - SINDY

SINDy states that given a set of measurement data {x(t)}i ϵ I, it is possible to accurately learn a

function f(x(t)) so that 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡)) is identified. Two assumptions are required, i) the full state

measurements, and ii) that f only has a few active terms, (i.e. f is sparse) in the space of all possible 
functions of x(t).

𝑋 =

[

𝑥𝑇(𝑡1)
𝑥𝑇(𝑡2)

⋮
𝑥𝑇(𝑡𝑚)]

= [

𝑥1(𝑡1) 𝑥2(𝑡1) ⋯ 𝑥𝑛(𝑡1)
𝑥1(𝑡2) 𝑥2(𝑡2) ⋯ 𝑥𝑛(𝑡2)

⋮ ⋮ ⋱ ⋮
𝑥1(𝑡𝑚) 𝑥2(𝑡𝑚) ⋯ 𝑥𝑛(𝑡𝑚)

] (1) 

The rate of change of X can be estimated using finite differences or total variation derivatives. Or
simply by assuming an Euler update by taking the next time step as the outcome when dt is small.

�̇� =

[

�̇�𝑇(𝑡1)
�̇�𝑇(𝑡2)

⋮
�̇�𝑇(𝑡𝑚)]

= [

�̇�1(𝑡1) �̇�2(𝑡1) ⋯ �̇�𝑛(𝑡1)
�̇�1(𝑡2) �̇�2(𝑡2) ⋯ �̇�𝑛(𝑡2)

⋮ ⋮ ⋱ ⋮
�̇�1(𝑡𝑚) �̇�2(𝑡𝑚) ⋯ �̇�𝑛(𝑡𝑚)

] (2) 

In order to solve this the first step is to construct library Θ(X) of candidate nonlinear functions of 
X : 

Θ(X) = [
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
1 𝑋 𝑋2 𝑋3 ⋯ 𝑋𝑝

⋮ ⋮ ⋮ ⋮ ⋯ ⋮
] 

i.e. for p = 2, 𝑋2 =

[

𝑥1
2(𝑡1) 𝑥1(𝑡1)𝑥2(𝑡1) ⋯ 𝑥2

2(𝑡1) ⋯ 𝑥𝑛
2(𝑡1)

𝑥1
2(𝑡2) 𝑥1(𝑡2)𝑥2(𝑡2) ⋯ 𝑥2

2(𝑡2) ⋯ 𝑥𝑛
2(𝑡2)

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑥1

2(𝑡𝑚) 𝑥1(𝑡𝑚)𝑥2(𝑡𝑚) ⋯ 𝑥2
2(𝑡𝑚) ⋯ 𝑥𝑛

2(𝑡𝑚)]

(3) 

Then perform a sparse regression on 𝑋 = Θ(𝑋) ∑. This is required to solve for all coefficients
∑ = [𝜎1; … ;  𝜎𝑛] , 𝜎𝑖 ∈ 𝑅𝑝. Then, let λ > 0 be the sparsity threshold and the following iterative

procedure ensures that an sparse regression is obtained.  

1. Initial guess: solve 𝑋 = Θ(𝑋) ∑. via ordinary least squares

2. If ∑(𝑖, 𝑗) < λ set ∑(𝑖, 𝑗) = 0

3. For 𝑘 =  1, 2, . . . , 𝑛

solve �̇�(: , k) = Θ(X)(: , Σ(: , k)  >  λ)Σ(Σ(: , k)  >  λ), k) via least squares

4. Repeat steps 2-3 until the coefficients do not change (or for a fixed number of iterations)

3 CASE STUDIES

Two different case studies are used. Firstly, is the simulated data from a benchmark WDN known 
as C-Town. Secondly, the water balance data of a province located in the northern part of the 
Netherlands and operated by Vitens.  
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(a) C-Town- with 5 DMA’s. Shows also
selected monitoring locations for tanks and

pumping stations.

(b) Areas of water balance (large DMA’s) in a province of
the Netherlands operated by Vitens N.V.

Figure 1. Case studies

3.1 C-Town

It corresponds to a small WDN with 5 DMA’s from which flows and pressures at particular 
locations can be fetched from the system. In this case study two different configurations are 
assumed (Fig 1a).  

• First, a configuration in which all variables are observed. In this case a total of 724
variables is considered. Although it is unrealistic to collect all variables related to
demands, pressures and flows within a WDN, the goal here is to determine whether or not
SINDy is able to reconstruct both mass and energy balance according to the Global
Gradient Algorithm (GGA) [11] [12], without prior knowledge of the equations. A dataset
of 4 weeks (2688 timestamps every 15 minutes) is created.

• Second, a configuration of SINDy in which only a subset (43 variables) in the system are
collected in the SCADA system for each DMA is presented. Variables which show no
variation during the total length of the dataset where eliminated resulting in only 37
variables. The goal in this case is to be able to determine whether or not anomalies can be
detected. Anomalies can represent multiple behaviours such as change of valve status,
leakages, or even cyber-physical attacks. Here SINDy is compared to another surrogate.
Two datasets are obtained from BATADAL (Battle of Attack Detection Algorithms) one of
normal operation of the WDN and one abnormal (with anomalies). A SINDy model of the
normal operation data is trained and subsequently tested on the abnormal data. The
hypothesis is that SINDy is able to capture the system dynamics and will be able to identify
the timestamps of anomalies as such.

3.2 Water balance areas of a province

Data collected from the last 4 full calendar years (2018-2021) of a northern province operated by 
Vitens are analysed. Data corresponds to the water balance in each of the Water Balance Areas 
(WBA) of the province. It is not possible to assess WBA as District Metered Areas (DMA’s) due to 
the former being much larger. Fig. 1b, presents the localization of each of the WBA, while Fig. 2 
represents the total water consumption pattern of the province within a 24 hour period at an 
hourly resolution. This water consumption is obtained by taking into account all the production 
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locations of the province. The use of Automated Metered Readings (AMR’s) is only available for a 
pilot area in the largest city of the province and for large customers, however given the low 
leakage percentage Fig. 2 is representative of the demand pattern. In this case the area is 
composed of 12 different DMA’s where data is available between 2018 end 2021. The 
homogeneous period (Fig 2 below) where data is available for all variables is 11-Nov-2019 and 
30-Oct-2020 (7840 timestamps) is highlighted.

Figure 2. Water consumption province Period 2018-2021 in a North-Province of The Netherlands (a) daily
water balance, (below) time series for each DMA’s. Period in blue corresponds to a period of homogeneous

data collection.

4 RESULTS

C-Town fully monitored

A fully monitored WDN implies installing volume meters, pressure sensors and AMR’s on each 
location of the WDN. After training a SINDy model the results of RMSE for a full monitoring are 
presented in Fig. 3. Results have been ranked from higher to lower RMSE for pressure at nodes 
(A) and flows in links (B).
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Figure 3. RMSE of all variables of C-Town. (A) Node pressures, (B) pipe flows.

This results indicate that SINDy is a suitable alternative for representation of a fully monitored 
WDN. To portrait the results obtained for each variable Fig. 4 presents the fitness of the time series 
for flow in pipe 11 (Q11). This is a pipe where flows change direction throughout the simulation.
The RMSE of this variable is high 11.86 l/s, however one can assess that most of the large errors 
occur during the change of trajectory of the flows in consecutive time stamps and the SINDy 
surrogate is able to return to the trend of the variable very fast. A similar behaviour of the 
application of SINDy has been obtained by other authors [4] for complex dynamical systems (such 
as Lorenz attractor). The errors are normally distributed as presented in Fig 4 (lower right).  

Figure 4. SINDy results for flows at pipe 11 (Q11). Top left is the time series of Observed (EPANET) and
Simulated (SINDy). Top right is the scatter of the time series Simulated vs Observed. Bottom left is the error

obtained at each time stamp. Bottom right corresponds to the histogram of the errors obtained.

C-Town subset monitoring

On the second case, using a configuration with only 37 hydraulic variables the application of SINDy 
was not able to obtain similar results. The main issue on the formulation of the SINDy model is the 
fact that the data contains pump status as a variable. Such data was not used in the first case of 
analysis of the fully monitored network C-Town. Apparently, the inclusion of binary variables as 
independent variables in a SINDy model tends to create an overshoot in the behaviour of 
simulated dependent variables. Such behaviour is presented in Figure 5, where the time series 
shows that the status can have only values ϵ [0 or 1], while the estimation shows that the outcomes 
are real values in the range ϵ [-0.75, 1.30]. At this moment it is not known by the author whether 
or not there is a mechanism to handle binary variables within SINDy on the estimation of 
surrogates for WDN.  
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Figure 5. Results of time series for status of pump 2 and the corresponding error on the estimation.

Subsequently, the SINDy model obtained with normal data is applied to the data containing the 
anomalies (abnormal), however the results of the surrogate make it impossible to know whether 
the rapid variation of the time series is due to an event or due to the construct of the surrogate 
model itself.  

Water balance of a province

Data of the water consumption is divided by 100 to obtain rescaled values. Subsequently a SINDy 
model is built. Lambda (λ) is used for sparsification and set as [0.01, 0.1, 1.0]. The maximum 
polynomial order is set to 2. The total number of variables considered in each case for Θ(X) is 
equal to 91 (i.e. order 0: 1; order 1: 12; and order 2: 78). Results of the RMSE for each value of λ 
are presented in Figure 6 where on the left are the sparse elements of Θ(𝑋)𝑇 . Each row represents 
the coefficients which are active in the SINDy formulation for each DMA. Here nnz is equal to the
total number of non-zero elements in each case. A higher value of λ will reduce the number of 
coefficients in Θ(X) which are non-zero from 954 to 131. On the right, the corresponding RMSE 
obtained after estimation of the consumption in each DMA. It needs to be mentioned that for 
values of  > 1.0, the RMSEs increase continuously, while on the case that  < 0.01 the additional 
gains on the error reduction are imperceptible. In addition, it is noticeable that the RMSEs are not 
linearly dependent on . This may lead to potentially select a different  for the determination of 
the best surrogate of each area.  Given the average consumption per area, it is expected that 
different areas with larger consumption will present larger errors.  

Figure 6. Left, matrix 𝛩(𝑋) transposed. Right, the corresponding RMSE for each DMA.

Additional work is required to determine the minimum length of data required to generate 
comparable results. At this point 7,840 timestamps correspond to almost 1 year of continuous 
hourly data registration, this may not be possible for most utilities.  
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5 CONCLUSIONS

This article presents a new surrogate model for WDN. The method has been applied for both data 
of a benchmark WDN and for data of water consumption in a large province. In both cases SINDy 
was able to recreate the behaviour of the underlying system with low computational cost. The 
application for data of a fully monitored WDN shows the potential for the development of a very 
easy to setup surrogate model. Its application for a subset of monitoring variables of the same 
benchmark network were not able to reliably generate a surrogate model. In the case of the 
application of SINDy for the determination of a surrogate of water consumption in DMA’s, once 
again the results show relatively good accuracy with respect to the observed values. Larger DMA’s 
show larger RMSE and vice versa.  

In addition, the possible application of the method as an anomaly detection algorithm for leakage 
detection or leakage localization are yet to be explored in a real system.  Other aspect to consider 
as future work is the determination of the minimum length of the timeseries and the resolution 
required to build a trustworthy surrogate model.  
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