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Abstract 

Water main breaks can jeopardize the safe delivery of clean water and incur significant costs. 
To mitigate these risks, water main breaks have been predicted through physical and 
statistical approaches. The latter are less complex and can provide satisfactory results with 
less data. While many factors can contribute to breaks, the factors applied in previous studies 
depended on local data availability. Because other studies have focused on a few systems at a 
time, a broad comparison of factor importance has not been possible. This limits the 
understanding of the impact of different factors on water main deterioration. 

The present study identifies the most important factors driving water main breaks across 13 
Canadian water systems. Twenty-eight factors describing physical, historical, protection, 
environmental and operational attributes were compiled and cleaned. Availability of each 
attribute differed by system. To evaluate the importance of both numerical and categorical 
attributes together, two approaches were tested, categorical principal component analysis 
(CATPCA) and recursive feature elimination with cross-validation (RFECV). The target 
variable in both cases was set as yearly break status, either broken or non-broken. While 
CATPCA provides the contribution of each attribute to the target, RFECV provides a tuned 
predictive model with selected attributes. The RFECV approach was applied with Random 
Forest and XGBoost models, both types of machine learning models which have been shown 
to produce accurate results in water main break prediction. 

Results from both approaches showed that physical and historical attributes are generally 
important across all systems. Other types of data, i.e. protection and operational are less 
available. When protection data is available it was shown to be even more important than 
physical and historical attributes. Specifically, with CATPCA, lining age and lining material 
were found to have a higher contribution to break status than pipe age and lining status. With 
RFECV lining age and lining material were also included in the best models, in particular for 
systems with greater percentage of lined pipes. These results indicate the choice and timing 
of lining are key in extending the service life of water mains. Furthermore, this data should be 
collected if protection practices are in place, to more accurately predict deterioration and 
future costs. 

The results also point to an opportunity to collect more operational data. Among attributes 
collected by only one utility, pipe pressure, roughness, and dead-end, were found to be 
important in RFECV. Thus, pipe dissipation and water stagnation could lead to greater pipe 
deterioration. Further studies are required to quantify the impacts of different pressure 
ranges and network designs on deterioration.   

Keywords  
Water main breaks, dimensionality reduction, machine learning, physical, historical, protection, 
environmental, operational. 
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1 INTRODUCTION 

Water main deterioration is a global challenge that can jeopardize water systems' ability to deliver 
clean water safely. The failure of water mains can affect individuals, businesses, industries, and 
institutions.  Water main breaks can directly disrupt the service provided by pipes [1]. According 
to the Canadian Infrastructure Report Card [2], the cost of upgrade and replacement of water and 
wastewater network in Canada is estimated to be more than CAD$ 80 billion. Hence, it is essential 
for water utilities to seek cost-effective rehabilitation and renewal strategies[3]. 

The factors that contribute to water main failure are diverse and collecting all data can be 
cumbersome. That is why statistical models have been preferred over physical models. However, 
the factors applied by previous studies differ, based on the availability of data for their given case 
studies. Accordingly, the present study seeks to identify the most contributing factors to water 
main breaks across 13 Canadian cities.  

2 LITERATURE REVIEW 

Physical pipe attributes such as diameter, length and age are widely collected and applied in 
predictive models. Diameter, length, age, soil type, previous failures, and failure type were 
consistently applied in historical studies[4]–[6]. Pipe length is identified as an important factor by 
many authors. However, there isn’t a consensus about whether breakage is positively[7] or 
negatively [8], [9] correlated with breaks [10]. Break rates also notably differ by material due to 
their structural resistance and vulnerability to corrosion[11], [12]. Unsurprisingly, protection of 
the pipe material can also extend service life[1], [12], [13]. While previous break prediction 
studies included data on lining status and material, the impact of lining age has not been explored. 

Barton et.al. [13] note that operational and environmental factors such as sudden changes of 
temperature, pressure, and soil moisture level, can also increase probability of failure by 
increasing internal and external stress on the pipes. Martinez et.al [14] accounted for average 
pressure, in addition to diameter, install year and pipe depth. Snider and McBean [12] found 
varying break year pattern depended on various factors, most importantly weather. The impact 
of weather, specifically on soil movement, i.e. freeze-thaw cycles and ground swelling is confirmed 
by other studies[15]. It is also observed that, pipes are more likely to break once they have broken 
before [5], [16]–[18]. Previous breaks can be a proxy for local conditions such as soil type, weather 
conditions, traffic load, etc. However, the importance of these factors is not clear. 

In order to identify the most important factors contributing to a target, dimensionality reduction 
approaches are commonly applied. However, they have not yet been applied to the analysis of 
water main break contributing factors. There are two general approaches for dimensionality 
reduction: feature elimination and feature extraction. The first reduces the number of variables 
by eliminating some, whereas the latter creates new independent variables from combinations of 
previous independent variables. A useful example of the first type is Recursive Feature 
Elimination with Cross-Validation (RFECV). RFECV finds the most important factors through a 
backward elimination process. This approach was initially introduced by Guyon et.al. [19] and is 
employed along with predictive models, either classification [20] or regression [21]. Previous 
studies have found a higher performance of RFECV with Random Forest [22], [23] and XGBoost 
[24]. One well-known feature extraction approach is Principal Component Analysis (PCA) [25]. 
This method however cannot handle categorical variables. Non-Linear PCA, also known as 
categorical PCA (CATPCA), is a dimensionality reduction method that, unlike PCA, can handle a 
non-linear relationship among variables. Categories of variables are replaced with numerical 
values through optimal scaling.  
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3 METHODOLOGY 

The analysis of important factors driving water main breaks was divided into three key steps, data 
cleaning, data visualization and analysis, and dimensionality reduction. Each is explained in more 
detail in the following paragraphs. 

3.1 Data preparation 

Data from the utilities was provided as separate pipe inventory and historical break datasets. 
Thus, the first step for analyzing characteristics of broken and non-broken pipes was to merge the 
data. The datasets for each utility were merged based on unique IDs, identifying each pipe. Next, 
missing values were filled with three approaches, depending on data availability and type of 
attribute: 1. assumed value; 2. mirroring attribute; and 3. homogeneous groups. The first was 
applied for binary attributes with a clear common value. For example, anode status was only 
collected for pipes with anodes and all missing values were assumed to be related to pipes without 
protection. In the second method, missing values were replaced based on other attributes with 
equivalent and more detailed information. For instance, lining status (yes/no) was filled based on 
values of lining material. If lining material was “unlined”, the lining status was set to “no”, and 
“yes” for other actual lining materials. The third approach used clusters of similar pipes to replace 
missing values. For example, pipes with the same install year were assumed to generally be of the 
same material. After filling gaps, inconsistencies and outliers were detected and removed from 
the analysis. Lastly, categorical variables were converted to numerical through optimal scaling in 
R (optiscale package) for input to the correlation analysis and RFECV.  

3.2 Data visualization and analysis 

To better understand variations and correlations in the data, multiple graphs were generated and 
correlation analyses run. Because correlation reveals the relationship between numerical 
attributes, optimally scaled categorical variables were used. An initial analysis was performed 
between break status and common attributes across all cities (diameter, age, length and material). 
Then, a correlation analysis was run for all data for each city, and presented in a boxplot. 

3.3 Dimensionality Reduction 

Two dimensionality reduction methods were applied to identify the most important factors 
driving watermain failure, CATPCA and RFECV. The target variable in both cases was set as yearly 
break status (broken or non-broken). The CATPCA analysis was conducted in R (princals function, 
Gifi package). The number of PCs selected for each city was determined to account for around 78-
85% of variance. Important factors were identified as those with a contribution above a cut-off, 
calculated as 100% divided by the number of attributes in each utility. The RFECV approach was 
conducted in python (Scikit-Learn library). Highly correlated predictors (correlation>0.8) were 
excluded from the analysis. Two types of estimators were employed, random forest and XGBoost. 
Hyperparameters were tuned for each estimator and each city. Overfitting was checked with 5-
fold cross validation. Lastly, to evaluate the effectiveness of dimensionality reduction. the fit of the 
full data model and reduced data model were compared with F1 score and recall. 

4 DATA DESCRIPTION 

This study is part of the project “Best Practices for Predicting Water Main Breaks,” a collaboration 
between the Canadian National Water and Wastewater Benchmarking Initiative (NWWBI) and 
the Concordia University research group “UrbanLinks”. Thirteen utilities across Canada, in the 
provinces of Ontario, Nova Scotia, Newfoundland, Manitoba, Saskatchewan, and British Columbia, 
shared their water main inventories and historical records of main breaks as spreadsheets or GIS 
shapefiles. The inventory file contains information on the characteristics of existing pipes in the 
system, and the break file lists the failure records of broken pipes. The utilities are identified 
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herein anonymously by the letters A through M. Overall, the data collected for this study can be 
categorized into five types of factors: physical, historical, protection, operational, and 
environmental. The attributes available in the datasets differ by utility, as shown in Table 1. 

Table 1. Data available by utility (grey cells indicate available data, blank not available) 

Attributes A B C D E F G H I J K L M 

P
h

y
si

ca
l 

Joint type 

Diameter 

Material 

Length 

Restrained 

Roughness 

Dead-end 

H
is

to
ri

ca
l 

Failure 
Month 

Install Month 

Status 

Age 

Replaced 
Status 

P
ro

te
ct

io
n

 

Casing 
Material 

Lining 
Material 

Lining Status 

Lining Age 

Cathodic 
Protection 
Status 

Cathodic 
Protection 
Age 

Coating 
Material 

O
p

e
ra

ti
o

n
a

l 

Service type 

Pressure 

It is clear that certain physical and historical attributes are collected consistently by all utilities: 
diameter, material, length and age. These attributes are not only among the easiest to collect as 
they are generally recorded at the time of design and installation, but are also the most commonly 
applied in predictive modelling. The majority of utilities also record information on lining. On the 
other hand, only one utility recorded pipe pressure in their inventory. 

Pipe materials have evolved throughout the years. The most common pipe material installed in 
the early to mid-1900s was cast iron, as shown in Figure 1. This market was taken over by ductile 
iron pipes in the 70s. Soon after, with the advent of plastic pipes, these became the most popular, 
in particular PVC.  
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Figure 1. Total lengths of the pipes installed in each decade 

Because material use trends changed over the years, the majority of pipes currently breaking are 
cast iron and ductile iron. This leads to a clear difference in material distribution for inventory 
and broken pipes, as illustrated in Figure 2. While almost 40% of pipes currently installed are PVC, 
more than 50%of the break records are for cast iron pipes.  

Figure 2. Breakdown of pipes by material for (a) all pipes and (b) broken pipes 

It should be noted that he period of historical data collected by each utility differs. While the 
earliest data collecting utilities began in the 1950s (B, H and M), others only have the last two 
decades of data available (J and L). The size of the networks varies significantly as well. The largest 
is B with 6,811 km and the smallest is E with 12 km.  
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Table 2. General characteristics of pipes in each utility 

Utility 
Length 

(km) 

Total 
breaks 

per KM 

Break 
decades 

% 
Cast 
Iron 

% 
Ductile 

Iron 

Average 
age 

% 
Lined 
pipes 

Average 
Lining 

age 

% 
Protected 

pipes 

A 897 15.1 
1970-
2010 

16 25 27 - - 4.3 

B 6,811 15.1 
1950-
2010 

21 23 30 - - - 

C 3,183 13.3 
1970-
2010 

17 20 31 13 32 13 

D 2,710 14.9 
1970-
2010 

44 48 39 44 - - 

E 12 956 
1980-
2010 

24 35 34 0.3 018 - 

F 1,501 15.7 
1970-
2010 

9 14 23 11.2 33 27 

G 392 10.2 
1980-
2010 

10 32 32 25 26 - 

H 1,363 27.4 
1950-
2010 

19 0.2 34 0.9 5 - 

I 694 15.4 
1980-
2010 

43 44 40 - - - 

J 1,577 25.5 
1990-
2010 

43 54 43 47 - - 

K 351 9.3 
1980-
2010 

49 37 56 5 - - 

L 481 13.4 
1990-
2010 

31 15 36 11 14 - 

M 4,862 33.2 
1950-
2010 

25 1 38 - - - 

5 RESULTS AND DISCUSSION 

5.1 Correlation analysis 

Analyzing all common utility attributes, material, diameter, length, age and their relation to 
break status does not reveal any high correlations. Figure 3 shows attributes are neither 
highly correlated with each other nor with the target break status. Among these common 
attributes, material and the length have the strongest association with the target.  
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Figure 3. Correlation analysis between common attributes and break status

To further explore the correlations in each city and all attributes, separate correlation analyses 
were conducted. Results are summarized in Figure 4. The number of values in each box 
plot depends on how many utilities recorded that data. Attributes collected by only one 
utility are represented as a line. The most correlated attribute to break status is material. 
Nonetheless, results vary significantly by utility. This could be related to the variation of 
material within the utility. The lowest correlation (0.08) was found for utility J whose pipes are 
97% either cast iron or ductile iron. 

While previous studies commonly applied age in predicting watermain failure, results show 
cathodic protection age is more highly correlated with break status than age. This highlights the 
benefit of cathodic protection especially for largely metallic networks such as those analyzed 
herein. 

Figure 4 Correlation coefficients - Break status
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5.2 Categorical Principal Component Analysis (CATPCA) 

CATPCA results (Table 3) show the contribution of each attribute to break status. Overall results 
point to the importance of protection in general, i.e. lining, coating, and cathodic protection. In 
particular, the age of the protection, not only status is important. The type of lining material was 
often more important than the pipe material as well.  Lining age was also found to be important 
for most utilities collecting this data, except utilities E and G, which have the lowest percentages 
of lined pipes, 0.3 and 0.9% respectively. Thus, collecting protection data can improve the 
selection and timing of protection activities, potentially reducing capital costs.  

Table 3. CATPCA results - Break Status (Dark grey-important factors, light grey-available factors, blank cells-
no available attribute) 

Attributes A B C D E F G H I J K L M 

P
h

y
si

ca
l 

Joint type 8 

Diameter 11 20 8 10 13 11 12 12 17 12 10 3 13 

Material 11 25 9 14 12 10 10 12 14 12 16 10 12 

Length 12 24 5 14 14 9 11 10 23 11 8 11 15 

Restrained 5 

Roughness 12 

Dead-end 10 

H
is

to
ri

ca
l 

Failure 
Month 12 10 17 14 12 10 17 15 14 9 15 

Install Month 12 

Status 11 9 11 4 16 

Age 9 21 8 14 11 9 11 12 16 11 10 10 15 

Replaced 
Status 10 

P
ro

te
ct

io
n

 

Casing 
Material 8 

Lining 
Material 10 16 13 12 11 13 14 11 

Lining Status 10 16 12 14 12 11 14 11 

Lining Age 10 12 14 11 9 11 

Cathodic 
Protection 
Status 12 10 11 

Cathodic 
Protection 
Age 10 11 

Coating 
Material 15 15 

O
p

e
ra

ti
o

n
a

l 

Service type 10 11 12 

Pressure 14 

% Contribution cut-
off level 10 20 9 14 13 11 11 10 17 13 13 10 14 
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The results also consistently identified the most collected physical factors, i.e., material, diameter, 
and length as important. This data was shown to be particularly important when other attributes 
such as protection factors were not available, as for utilities A and B. Less commonly collected 
data, such as install month and pressure were also found to be important. However, the range of 
their contribution requires further investigation as only one or two utilities collect this data. 

Failure month was found to be important for most utilities. Graphing the distribution of breaks 
over months as shown in Figure 5 elucidates the relationship between time of year and breaks. 
Breaks are more likely in colder months, i.e. January and February. An increase in breaks can also 
be seen at the height of summer in July when weather is dryer, confirming previous finding 
(Bruaset and Saegrov, 2018). 

Figure 5. Total percentage of the failed pipes in each month

5.3 Random Forest Recursive Feature Elimination with Cross-Validation (RF-RFECV) 

The RF-RFECV approach further reduces the number of selected features, compared with 
CATPCA. The reduced models, i.e. with fewer attributes, perform equally or slightly better than 
the full models, i.e. with all attributes, as shown in Table 4. Because the model predict 
the categorical target break status, they are evaluated according to F1 score and recall. Overall, 
the analysis rated physical and historical factors as the most important. Specifically length, age 
and material were consistently found to have the highest weights. Protection activities were 
rated less highly compared to CATPCA, but cathodic protection age and lining age were still 
found to be important. The results also selected joint type, pressure, roughness, and dead-
end among the important features. This points to the opportunity to collect more operational 
data and explore the relation between operational decision and infrastructure service life. 
Pipe dissipation and water stagnation could lead to greater pipe deterioration.  

To evaluate the performance and applicability of a model with even fewer attributes, models were 
developed with only common data (length, material, diameter and age). F1 and recall scores for 
these models are also provided in Table 4. The performance of these models is only slightly 
lower than the reduced models developed with RF-RFECV. Thus, for the purpose of 
predicting pipe deterioration for maintenance and capital planning, commonly available 
attributes should suffice. Nevertheless, in creating strategies for reducing maintenance and 
replacement costs, the relation between breaks and other adjustable factors such as pressure 
and protection should be explored. 
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Table 4. RF-RFECV weights and results - Break Status (Dark grey-important factors, light grey-available 
factors, blank cells-no available attribute) 

Attributes A B C D E F G H I J K L M 

P
h

y
si

ca
l 

Joint type 0.10 

Diameter 0.07 0.07 0.08 0.06 0.06 0.10 0.06 0.06 0.05 0.07 0.04 0.03 

Material 0.35 0.34 0.32 0.33 0.21 0.40 0.08 0.19 0.11 0.03 0.09 0.14 0.40 

Length 0.22 0.26 0.19 0.34 0.38 0.17 0.35 0.28 0.27 0.43 0.31 0.34 0.30 

Restrained 

Roughness 0.11 

Dead-end 0.01 

H
is

to
ri

ca
l 

Failure 
month 0.12 0.10 0.10 0.14 0.24 0.18 0.10 0.18 0.19 0.03 

Install month 

Status 0.03 0.003 0.003 

Age 0.19 0.32 0.18 0.17 0.22 0.18 0.23 0.37 0.26 0.36 0.29 0.23 0.24 

Replaced 
status 

P
ro

te
ct

io
n

 

Casing 
material 0.02 

Lining 
material 0.04 0.01 

Lining status 

Lining age 0.08 0.003 0.08 0.005 0.06 

Cathodic 
Protection 
status 0.01 

Cathodic 
Protection 
age 0.08 0.17 

Coating 
material 

O
p

e
ra

ti
o

n
a

l 

Service type 

Pressure 0.04 

Full F1 97.5 97.5 97.5 95.3 97.2 98.9 98.6 97.4 95.2 99.4 92.9 97.3 96.7 

Reduced F1 97.5 97.5 97.5 95.3 97.2 98.9 98.6 97.4 95.2 99.4 92.9 97.2 96.7 

Common F1 96.8 97.4 96.3 95.2 97.1 98.0 98.0 97.1 94.4 99.4 92.3 96.8 96.7 

Full Recall 98.4 98.3 98.6 96.7 98.8 99.2 100 98.6 97.6 99.9 96.8 98.5 97.2 

Reduced Recall 98.6 98.3 98.6 96.4 98.8 99.4 99.9 98.6 97.6 99.9 96.8 98.5 97.2 

Common Recall 97.7 98.3 98 96.3 98.7 99.2 99.7 98.5 96.8 100 96.2 97.3 97.2 

5.4 XGBOOST Recursive Feature Elimination with Cross-Validation (XGB-RFECV) 

The XGBOOST-RFECV approach yields slightly underperforming models, compared to RF-
RFECV, as shown in Table 5. The features selected, however are similar in both RFECV 
approaches. Physical and historical attributes are rated as the most important, specifically 
material, diameter, 
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length, age, and failure month. Similar to RF-RFECV, material is the most important factor. Lining 
age is consistently important for utilities collecting this data except E, which is only 0.3% lined. 
Lining material was found to be important for utilities D and J, with more than 40% of lined pipes. 
Thus, the contribution of certain factors depends on local practices and conditions.  

Table 5. XGB-RFECV weights and results - Break Status (Dark grey-important factors, light grey-available 
factors, blank cells-no available attribute) 

Attributes A B C D E F G H I J K L M 

Ph
ys

ic
al

 

Joint type 0.10 
Diameter 0.06 0.05 0.02 0.02 0.10 0.02 0.20 0.07 0.06 0.10 0.12 0.07 0.02 
Material 0.53 0.66 0.69 0.85 0.59 0.78 0.13 0.52 0.41 0.36 0.34 0.41 0.77 
Length 0.04 0.08 0.04 0.06 0.12 0.04 0.17 0.07 0.09 0.10 0.14 0.12 0.05 
Restrained 0.05 
Roughness 0.16 
Dead-end 0.01 

H
is

to
ri

ca
l 

Failure month 0.04 0.03 0.02 0.11 0.02 0.11 0.15 0.12 0.24 0.16 0.01 
Install month 0.02 
Status 0.07 0.05 0.04 0.06 
Age 0.05 0.20 0.07 0.03 0.07 0.07 0.11 0.16 0.13 0.12 0.16 0.10 0.09 
Replaced status 

Pr
ot

ec
tio

n 

Casing material 0.05 
Lining material 0.01 0.14 
Lining status 
Lining age 0.12 0.03 0.23 0.05 0.12 
Cathodic 
Protection 
status 0.09 
Cathodic 
Protection age 0.02 0.03 
Coating 
material 0.05 

O
pe

ra
tio

na
l 

Service type 0.04 

Pressure 

Full F1 86.5 91.8 89.7 90.9 79.6 90.3 61.3 88 77 35 69 74 86 

Reduced F1 86.5 91.8 89.7 90.9 73 90.3 61.3 88 77 27 69 74 86 

Common F1 85.9 85.9 88 91 78 90 58.8 86.2 72.5 24 68.5 66.5 85.6

Full Recall 84.8 89.3 85.9 89.1 78 86.6 60 84 71.5 27 62 68 83 

Reduced Recall 84.8 89.3 85.6 89.1 72 86.6 60 84 71.5 24 62 69 84 

Common Recall 84.8 84.8 84 89 71 87.5 52.6 81.8 66 17.5 61.6 62.6 83.5
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5.5 Discussion 

Although all approaches applied in this study are of dimensionality reduction, they differ in 
nature. When data are numerical and linearly related to the target, correlation-based approaches 
are most appropriate. However, this is not the case for water main break prediction as a mix of 
numerical and categorical factors is available. CATPCA, also known as non-linear PCA, can handle 
a linear and non-linear relationship among variables and is recommended when mixed types of 
data in the analysis are not linearly related to the target.  

RFECV can also handle different relations between predictors and targets through different 
estimators. The selection of an appropriate estimator based on the data structure is key to 
ensuring good results. In the present study XGBOOST and Random Forest estimators were 
selected and their hyperparameters tuned to maximize performance. In particular, the resulting 
random forest models were more accurate and, thus, provide more reliable feature selection 
results. However, the results are still largely dependent on the hyperparameter tuning. 

The most important factors differed between approaches. While physical and historical factors 
were the most contributing factors in RFECV, CATPCA found protection activities to be the most 
important. CATPCA also selected a greater number of important factors compared to RFECV. 
Results also differed by utility, depending on the application of certain protection strategies and 
the variability of local practices, e.g. different types of installed materials. Thus, data collection 
strategies should be tailored to the factors impacting the most common materials and protection 
approaches in each utility. 

6 CONCLUSION 

Because data collection can be a time and cost intensive process, identifying the driving factors 
for water main breaks is a valuable endeavour. Based on the results of the dimensionality 
reduction approaches, a three-step data collection framework is proposed, summarized in Table 
6. The first step represents the minimum level of data collection required to produce accurate
water main break prediction models. Factors include material, diameter, length and age
(calculated based on install date and failure date). This data is commonly collected across all
utilities and was found to generate models with high F1 and recall scores, slightly below the
optimal RFECV models.

Table 6. Three step data collection framework (1st step - dark grey, 2nd step- grey, 3rd step - light grey) 

Physical Historical Protection 
activities 

Operational 

Material Installation 
date 

Cathodic Protection 
year 

Pressure 

Diameter Failure date Lining Material Service Type 

Length Status Lining Year - 

Join type - Coating Material - 

Roughness - Anode type - 

Dead-end - - - 

Restrained - - - 

Pipe Depth - - - 

The second step comprises factors that were found to be important when relevant, especially 
protection data. Collecting protection data can improve the selection and timing of protection 
activities, potentially reducing capital costs. More research is required on the extension of pipe 
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service life caused by different types of protection and at different times. Lastly, the third step 
includes factors that were only collected by a few utilities and not identified as important in all 
approaches. Among attributes collected by only one utility, pipe pressure, roughness, and dead-
end, were found to be important in RFECV. The results also point to an opportunity to collect more 
operational data and further research to quantify the impacts of different pressure ranges and 
network designs on deterioration. 
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