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Abstract

Many scientific problems related to water distribution systems like optimization problems or 
sensitivity analysis require the creation and execution of a large number of hydraulic models. 
To reduce computation times, different approaches have been used in the past, often by 
employing multiple CPU cores to solve the hydraulic equations of a single model or to simulate 
multiple models in parallel on a single computer. However, these approaches often cannot 
make use of distributed computing. Furthermore, using these approaches in applications with 
a (web-based) graphical user interface (GUI) often requires the development of tailored 
software solutions and application programming interfaces (API) to link GUI and model 
execution backend. 

To tackle these issues, we propose COSMOS (Containerised Model Simulator), a highly scalable 
Python-based framework which allows for the modification of hydraulic models using 
OOPNET, an API between Python and the hydraulic solver of the modelling software EPANET 
and can run model simulations. Simulation results can be then further analysed while all these 
tasks run encapsulated in containers in a cluster. It also allows to easily link the described 
functionality with other applications by providing a REST API. 

A standard-based OpenAPI allows for passing hydraulic models and running scientific 
workflows via HTTP and generating clients based on the provided OpenAPI schemas, which 
simplifies the creation of web-based user interfaces. Python was chosen because of its growing 
spread in the scientific community, the availability of data processing and optimization 
packages and its high code readability. 

Prefect, a data workflow orchestration framework, is employed to create workflows, starting 
with the transformation of hydraulic models into JSON representations for further use in web 
applications. The models can then be executed and simulated distributed over the available 
CPU cores (locally or in a cluster). Further tasks for doing analysis in the cluster can be easily 
added if necessary. Hydraulic models and simulation artifacts are stored on S3-compatible 
storage and can be easily retrieved. 

A main advantage of this approach is the use of containers, which allows for reproducible 
workflows. Compared to other high performance computing approaches and container-based 
systems, Prefect has the advantage of being able to keep dedicated worker nodes available for 
use. This comes in handy especially when dealing with relatively short computation times 
where the start of a container might take longer than the actual simulation. Additionally, 
simulation data post-processing can be easily added to workflows in Prefect. Furthermore, as 
the structure of COSMOS is highly scalable, it can be used for different levels of problem 
complexity and simulation runtimes. 
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1 INTRODUCTION

Hydraulic models have a wide variety of applications, from optimization problems like optimal 
design or optimal sensor placement, to simulating different kinds of operating conditions like 
system failures, to tasks like leak localization. Several application programming interfaces 
between the hydraulic modelling software EPANET [1] and different programming interfaces 
have been developed to simplify these tasks [2]–[5]. While there are several examples of web 
applications that use simulation results from water distribution system models [6]–[9], there 
appears to be only one framework that is targeted at linking web applications with simulating 
hydraulic models, epanet-js [3]. 

To link such a web interface with simulating hydraulic models, an interface to a hydraulic solver 
is necessary and the library epanet-js, written in JavaScript, provides such an interface. However, 
it is not does not provide a framework for running more complex workflows and that supports 
the fast simulation of many hydraulic simulations in parallel [3]. Speeding up the execution of 
hydraulic models in general has already been of interest to researchers in the past. 

One possible way to speed up model execution is to employ several CPU cores in parallel to 
simulate a model. Wu and Elsayed developed a parallelization algorithm to concurrently run 
hydraulic and quality simulations [10]. Some employed parallelization to compute the individual 
models faster by distributing the computational load across several CPU cores [11], [12]. This 
approach’s scalability however is limited, since the execution is constrained by the number of 
processor cores available at the used workstation. Additionally, Burger et al. found that they were 
not able to develop a solver that outperformed EPANET’s solver when using real-world hydraulic 
models and even raised the question, if any solver will ever be faster than EPANET’s original 
solver [11]. 

Another approach is to parallelize the computation of a set of hydraulic models. In this case, every 
processor core handles the computation of a single model. This approach however is again limited 
by the number of processor cores available at the used workstation [13].  

Instead of doing calculations on a local workstation, computations can also be outsourced to a 
dedicated server infrastructure. Using distributed computing the computational load is spread 
across many computers and therefore the number of available CPU cores is increased. This 
approach has already been employed in the field of water distribution systems in the past. Alonso 
et al. used the Message Passing Interface (MPI) to distribute the calculation of hydraulic equations 
across several PCs with a custom hydraulic solver [14]. Wu and Zhu also used MPI to distribute 
the optimization of pump schedules [15]. Hu et al. developed a genetic algorithm for sensor 
placement that is based on the cluster computing framework Apache Spark [16]. Additionally, 
several frameworks written in the popular programming language Python have been developed 
for distributing calculations in a cluster in a simple manner. Examples for such frameworks are 
Celery, Apache Airflow, Prefect, and Dask.  

Any results generated in a scientific context should be reproducible by others to validate 
conclusions or develop new methods based on existing research. Containers that package the 
environment and software required for running code can help facilitate reproducibility [17]. 

Containers are similar in their functioning to virtual machines (VMs) as both concepts rely on 
virtualization. In contrast to VMs, containers however virtualize software while virtual machines 
also virtualize the underlying hardware. Containers in contrast to virtual machines share the 
host’s kernel and offer almost the same performance as the host’s operating system, decreased 
starting times and a reduced storage footprint on the host machine [14].  

Containerizing model execution has several advantages. First, containers can help with analysis 
reproducibility. When using a suitable container image repository (e.g., Docker Hub or GitLab), 
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versioned images can be kept as an archive and later be reused. Second, it leads to the possibility 
to quickly scale the number of available worker nodes by using a suitable orchestration software 
(e.g., Kubernetes or Docker Swarm). Third, containers can be easily deployed on workstations 
locally, to develop and test the containers. This can be further enhanced with continuous 
integration and continuous delivery (CI/CD) systems that automatically test analysis tasks for 
their correctness [15] and build the images for the containers. A container image is a blueprint for 
containers that include the entire environment and include all code necessary for running the 
code in the container. 

In this paper we present COSMOS (Containerised Model Simulator), a framework for 
containerised hydraulic simulations that employs cloud computing and can be accessed by web-
apps via a standard-based API. Section 2 describes the requirements that were determined while 
developing a frontend for hydraulic model simulations. In section 3 different available cloud 
computing frameworks are analysed regarding their suitability as web-app backends for scientific 
applications. COSMOS itself is described in section 4 and section 5 finally gives an outlook into 
further possible enhancements and use cases of COSMOS. 

2 REQUIREMENTS FOR HYDRAULIC MODEL SIMULATION WEB-APP BACKENDS

Requirements for a hydraulic model simulation backend were derived during the development of 
an interactive web-based application that allows users to execute complex scientific workflows 
that are based on hydraulic simulations (e.g., sensitivity analysis or calibration).  

The frontend should provide users with the possibility to manage stored models and their 
simulation and analysis results and run pre-defined algorithms or tasks via a REST API. Optionally, 
a graphical user interface (GUI) should provide a platform for easy execution of workflows.  

First, the requirements for the backend were derived. They can be grouped into general, web 
application specific and scientific requirements. Below is a list and description of the 
requirements that were identified during an internal co-creation process: 

Common requirements: 

• Scalability

The system should be able to cope with both very short tasks as well as longer-running
and more complex tasks that require the simulation of many hydraulic models at the same
time. This required a framework that allows for scaling from a small number of computing
nodes to a large-scale computing cluster. The web application and the distributed
computing framework should finally be deployed to a Kubernetes cluster.

• Python-based or existing Python client

A well-established programming language was required to reach a wide audience. The
choice fell on Python due to its simple syntax, its many existing libraries (by May 2022 the
Python Package Index listed more than 375.000 projects) in general and especially the
libraries tailored towards scientific usage like NumPy, SciPy or pandas.

• Usage of open-source and free software

Open-Source provides a transparent view on the implementation of the underlying
algorithms and delivers an easy way to communicate about issues in implementations or
get helpful support from the community. Using free software in addition mitigates
financial obstacles for reproducing results.
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• Stability and support

A mature and well supported framework was required to guarantee long-term support.
Also, the documentation should be extensive and well written to enable new users to get
into the framework more easily.

• General Data Protection Regulation (GDPR) conformity

Scientific analysis is sometimes based on personal data that must be treated according to
GDPR requirements. An on-premises solution was sought after to keep all data on internal
servers in a controlled environment.

• Easy-to-use

One of the most important requirements was the usability for users. The platform should
provide convenient and easy-to-use entry points for both experienced developers via a
standard-based API as well as for users without a dedicated IT background via a web GUI.

• Centralized and findable

To help other scientist in getting insights in already processed research topics, a history
of executed workflows and their metadata should be centrally stored together with used
parameters and obtained results.

• Monitoring and alerting

Users should be alerted about failed tasks and workflows via multiple channels (e.g., email
or different messengers) and querying the current state of running workflows as well as
their results should be possible. Keeping track of computing resources requires easy-to-
use monitoring that allows for assessing the computing resources in use.

Web application specific requirements: 

• Low-latency Execution

Users should be able to interactively explore algorithms and their results in a responsive
environment. Short running tasks should provide immediate feedback, which lead to the
requirement of “low-latency” workflow executions. This means that when executing a
relatively small number of models with a short runtime, the system should return results
as quickly as possible. This requires a framework that adds little overhead to the executed
analysis and simulation tasks.

• Easy API Access

Integrating the platform into other web apps should be possible via an easily accessible
API. Creating clients in different programming languages should facilitate the integration
in other apps, for example by providing an OpenAPI or GraphQL API.

• Result and model storage

Results and models should be stored centrally and in an easy-to-use fashion. Versioning
of results and models should guarantee reproducibility. Hosting the storage on-premises
should be possible as well as access via APIs in different programming languages.

Scientific requirements: 

• Reproducible and repeatable complex workflows

Main goals for research tasks and workflows are reproducibility and repeatability, so that
others can evaluate and reproduce any generated results. This requires management of
input and output data, the corresponding metadata and which programming code or
workflow description was used to generate the results. Easy exchange and versioning of
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workflow descriptions also contributes to the openness of the methods used and makes it 
easier for other researchers to reproduce the results. This also includes any used software 
in the workflow run’s environment, for instance EPANET if its hydraulic solver is being 
used. 

Depending on the algorithms used (e.g., evolutionary algorithms) the need for complex 
workflows can arise, where one or many steps can be dependent on the previous ones. 
Therefore, only frameworks that already support separating tasks in terms of small units 
of code and task dependencies were considered. 

• Easy integration into existing scientific software packages

Since Python and its accompanying scientific stack offer a variety of scientific tools, a
solution that provides a similar interface was required. Users familiar with those tools
should be able to transition seamlessly into the new distributed computing environment.

• Easy local development, testing and debugging

Developing workflows locally should allow researchers to test and debug their code. Being
able to run and test algorithms locally before running them in a computing cluster was
deemed necessary to support the scientific workflow.

• Integration with already existing workflows

While the execution of models is the main use case discussed in this paper, an integration
of other already existing scientific tasks like machine learning or measurement data
pipelines would provide a great benefit. The focus however lies on running hydraulic
simulations.

3 DISTRIBUTED COMPUTING FRAMEWORKS

One of the most important aspects of the development of COSMOS was the evaluation of 
distributed computing frameworks with Python bindings. 

Based on the requirements stated above, several frameworks were evaluated. Frameworks that 
did not fulfil all requirements but where the missing features could be implemented with low 
effort were also considered. Exchange and versioning of workflow descriptions if not already 
integrated into the framework can for instance be provided by git or other versioning systems. 
The evaluation was based on the framework documentations and small test runs to get to know 
the frameworks. Additionally, some of the software packages listed below have been in use at the 
Institute for several years so limitations and features were already clear. 

All the frameworks were open-source and freely available. They all provided enough 
documentation and support to get to know the frameworks well enough to assess their features. 
Only frameworks where scalability according to the requirements listed above was given and 
which enable GDPR conformant workflows were considered. Support for containers should 
provide a reproducible environment and while the actual implementation between the 
frameworks is different, they all provide a way to use containers as execution layers. 

Besides full-blown workflow scheduling solutions, GitLab as advocate for classical DevOp 
platforms and Jenkins as a more general automation platform were taken into account. Celery and 
Dask, while being more low-level in their abstractions, were also evaluated especially because the 
web-app approach requires a low-latency execution of certain workflows and tasks. Argo 
Workflows was considered because it provides support for running tasks in Kubernetes clusters 
as well. HTCondor was added to the mix as a more classical batch system which is often readily 
available on super-computers in scientific infrastructures. Prefect as a rather new competitor was 
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considered because of its included abstractions and the good documentation. Finally, because of 
its widespread usage for cloud computing tasks, Apache Airflow was considered. 

• Apache Airflow [18]

Apache Airflow is a workflow scheduling and monitoring solution. It provides dynamic
workflow descriptions written in Python, which helps users who already have experience
in Python to generate more formalized workflow descriptions. Versioning of workflow
descriptions is therefore very easy using git or other version control systems. It provides
modular executors which allow scaling to different infrastructures like Kubernetes. It can
act as layer over Celery and Dask which provides great flexibility. Integrated monitoring
and logging as well as great expandability would make this a great solution for many of
the requirements. However, Apache Airflow uses a central scheduling loop and jobs
require a distinct execution date and time, which does not cover the use case of interactive
web applications very well. First tests also showed that it did not behave according to the
low-latency requirement when many workflows with small fast returning tasks are
executed.

• Argo Workflows [19]

Argo Workflows is a Kubernetes based and container native workflow-engine with good
documentation and support for complex workflows. Workflows are created using
Kubernetes manifests and can therefore easily be versioned and integrated in Kubernetes
native GitOps frameworks like Argo CD. By using Argo Events the scheduling of workflows
can be abstracted and there are many event-sources supported. Protocols like MQTT or
NATS could then be used to send events that trigger a workflow execution.

Being (only) Kubernetes based can be seen as a plus or minus depending on the use-cases
stated in the requirements. While the main execution platform for the web-application is
a Kubernetes cluster that can be easily scaled, reusing the workflow description in another
infrastructure would not be possible.

The main disadvantage however is the fact that Argo Workflows usually starts containers
in the cluster only when needed and not permanently. While this provides great
reproducibility and repeatability, it also adds significant overhead to the workflow
execution and seems more suited to long running tasks. In our trials the container start
time often exceeded the model execution time, especially when simulating small hydraulic
models with run-times of less than a second. Therefore, the low-latency requirement is
not fulfilled.

• Celery [20]

Celery is a distributed task queue system with a large community of users. By building on
a message broker like RabbitMQ or Redis and by deploying long-running workers, it adds
very little. It provides a result backend abstraction which allows for keeping results
connected to the task executions and therefore fulfils some of the centralization and
findability requirements. In comparison to Apache Airflow and Prefect it appears to be a
more low-level framework (for instance Apache Airflow has its dedicated Celery
executor). Celery does not expose a standard based API for starting workflow runs,
although the tool Flower provides API endpoints for monitoring Celery [21]. Triggering
workflows via an API would therefore require the implementation of a custom API with a
web framework like Flask, FastAPI or Django.

• Dask [22]

Dask provides readily available larger-than-memory data structures built on common
interfaces like NumPy, pandas or Python iterators making it well-suited for many scientific
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workflows. Switching between a local and a distributed scheduler is easily possible and 
does not impact the basic algorithms’ design. The distributed scheduler adds very little 
overhead and seems similar in performance to Celery with its message broker approach. 
Also of interest are the multiple ways of deploying Dask clusters. It is possible to execute 
tasks on Kubernetes, via SSH and even on high performance computing (HPC) resources. 
This allows users to design scientific algorithms independent of the infrastructure it is 
running on. However, Dask does not include an abstraction layer for workflow definitions 
and task execution monitoring via an API.  

• HTCondor [23]

HTCondor is a batch software which was already used extensively at our Institute for large
scale model execution and well documented. Being a more classical batch system, the tool
DAGMan adds support for workflow definitions. An advantage of HTCondor is the
possibility to use free computing resources from user workstations when they are not in
use. It is very well suited for an extremely large number of models and monitoring can be
performed over the command line. Preliminary tests showed that the low-latency
execution of models was slower than the other approaches. Also there seems to be no
already available monitoring solution that can be integrated easily in a web app.

• GitLab [24]

GitLab as a representative for git implementations with support for continuous
integration and continuous delivery (CI/CD) pipelines was considered as well. Some of the
scaling requirements are fulfilled by the concept of GitLab runners and GitLab also
provides an easy-to-use API for querying pipeline runs and their status. However, it seems
not to be very well suited for the low-latency requirement and first tests showed a
considerable delay between starting, scheduling and running pipeline executions.

• Jenkins [25]

Jenkins is an open-source automation server and is used for CI/CD pipelines. While being
mainly built for CI/CD pipelines, Jenkins can also be used for more general automation
tasks. Using Jenkins pipelines, reproducibility and repeatability requirements can be
fulfilled by using a version control system. Running pipeline steps either in a Kubernetes
cluster, via SSH on Linux worker nodes and even Windows workstation, the scalability
requirement was met as well. However, as with GitLab, low-latency execution of tasks
could not be achieved.

• Prefect [26]

Prefect is a data pipeline orchestration and runtime system that can use Dask for executing
complex workflows. It offers abstractions for tasks, workflows, storage and executors.
Among the supported storages are Docker images, Git, AWS Simple Storage Service (S3)
and Bitbucket. Workflow definitions and result storages can be defined for workflows and
tasks individually. A web interface can be used to trigger workflow runs. Workflow runs
are then started by Agents. Agents provide the environment that is needed to start the
workflow, i.e., they contain all the necessary code and dependencies and keep track of the
workflow run’s status. KubernetesAgents for instance start Kubernetes jobs that first pull
the newest workflow definition from the designated storage and then start the workflow
run. A GraphQL API supports triggering workflow runs, monitoring their status, and
reading a task’s result location in the used storage. Furthermore, since Dask can be used
as an executor, Dask’s API for larger-than-memory objects is available for usage as well.
Prefect can be either used in its free and open-source version called Prefect server, or as
the paid service Prefect Cloud. Prefect Cloud includes further functionalities like user

146



COSMOS – A framework for containerised, distributed creation, execution and analysis of hydraulic water distribution system models 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

authentication and a secret store. Prefect 2.0 Orion is currently under development, which 
will include an OpenAPI instead of a GraphQL API. 

After the first evaluation, Celery and Prefect seemed to fulfil the requirements better than the 
other frameworks. To choose between them, the two frameworks were further evaluated in terms 
of the required service infrastructure to assess their integration in scientific workflows. Figure 1 
shows Celery’s service structure, while Figure 2 shows a simplified version of Prefect’s structure. 

Celery itself does not include an API that enables starting workflow runs via HTTP requests. A 
REST API would have to be implemented using a Python web framework like FastAPI, Flask or 
Django (“Producer”). This API would then send a task to a task queue system. Celery offers support 
for RabbitMQ, Redis, Amazon SQS and Zookeeper.  

The tasks in the task queue are then scattered across Celery workers running in a cluster. These 
workers are responsible for executing the tasks (“Consumers”) and need all the dependencies 
required for the task’s execution in their environment. The task results are then sent to a central 
result backend. Out of the box, Celery supports Redis, RabbitMQ and SQLAlchemy as backend. 

Figure 1. Celery service structure.

Prefect follows a slightly different approach by implementing its own task scheduling system and 
adding additional layers of abstraction. It also requires more dedicated services to be running. 
Prefect uses Apollo and Hasura to host a GraphQL API for many functionalities like starting 
workflow runs and querying workflow states. Prefect 2.0 however will implement an OpenAPI. 
Using the GraphQL API, users can trigger workflow runs by sending a request to the Prefect Server 
or Prefect Cloud, depending on whether Prefect’s cloud service is being used or if Prefect is being 
hosted on-premises.  

Prefect Agents query Prefect Server/Cloud for any scheduled workflow runs and are responsible 
for providing an environment that can execute the workflow (i.e., all dependencies and 
requirements are fulfilled in the environment). There are several different Agents available, that 
rely on different technologies for providing the environment (e.g., a DockerAgent that starts a 
workflow run from within docker containers or a KubernetesAgent that runs flows as Kubernetes 
Jobs). 
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How the Agent accesses the workflow definition can be controlled by choosing a suitable storage 
and including it in the workflow definition. Options range from Python modules accessible within 
the Agent’s environment, to GitStorage that pulls the newest workflow definition via git or 
DockerStorage which pulls a container image that includes the workflow definition. If a storage 
solution like DockerStorage or GitStorage is chosen, the Prefect Agent pulls the newest workflow 
definition before executing it. 

How a workflow is then executed, is part of the workflow definition. A LocalExecutor executes the 
workflow in the Agent’s local environment, while a DaskExecutor can execute tasks in a Dask 
cluster. 

Finally, results are stored in a Storage as well and the path to the result can be queried via the 
GraphQL API. 

In addition to the services shown in Figure 2, Prefect also relies on additional services for stopping 
tasks that no longer communicate with the API, scheduling new tasks and maintenance routines. 

Figure 2. Prefect service structure.

Compared to Celery, Prefect includes more abstractions that can be used to control how artifacts 
and workflows are stored or how workflows are executed. It also provides a GUI for starting and 
monitoring workflow runs, whereas Celery does not provide any GUI. Different Agents allow for 
using different technologies to encapsulate a workflow depending on the available infrastructure 
and needs.  

Native support for Kubernetes and Docker, a good documentation, the easy syntax that uses 
regular Python constructs for defining task dependencies and the additional functionality 
provided by Dask in the end lead to Prefect being chosen as basis for COSMOS. 

4 COSMOS

COSMOS was created with the intention to provide a platform for executing a variety of different 
modelling tasks, from simulating simple hydraulic models to more complex analysis workflows if 
necessary. COSMOS is built upon several existing services, frameworks and standards that allow 
for an open structure that can be easily enhanced and is focused on reproducibility, easy usage, a 
central model and result storage and low-latency task execution. 

To develop an API for webapps that is based on Python, one of two hydraulic modelling APIs can 
be used: the Water Network Tool for Resilience (WNTR) [5] and OOPNET [2]. Both provide basic 
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functionalities like parsing EPANET input files, manipulating hydraulic models and simulating 
hydraulic models with EPANET. OOPNET was chosen as basis for COSMOS, since it has been in use 
at the Institute for several years and therefore many algorithms have already been implemented 
using it. This leads to an increased available codebase for future applications. 

4.1 Service structure and functionality

COSMOS employs several services to satisfy the requirements specified in section 2: 

• Prefect serves as workflow management and scheduling system

• Dask acts as execution backend

• The Amazon Simple Storage Solution (S3) compatible storage MinIO is used as model and
simulation result storage

• FastAPI provides a RESTful interface following OpenAPI specifications and authorization

• Elasticsearch for finding models and simulation results in the storage backend

To use COSMOS, users first have to upload their hydraulic models via the provided REST API by 
sending a POST request to the FastAPI backend. This REST API wraps Prefect’s GraphQL API. This 
was done to add a layer of abstraction so that the execution backend can be easily exchanged in 
the future, if Prefect 2.0 shows significant advantages after it has reached a stable state. As part of 
the upload request, users are able to add tags that can later be used for querying stored models, 
and a description. The hydraulic models are then converted into GeoJSON files, which are more 
widely compatible with web applications compared to EPANET input files. 

GeoJSON is a file format based on JSON (JavaScript Object Notation) but includes geographical 
features. It implements different “Geometry” types (e.g., Points, LineStrings or Polygons), that 
include one or more “Positions" which themselves are an array of coordinates. Geometries are 
then combined with properties to form “Features”. A collection of Features can finally be 
represented as a “FeatureCollection”. 

In COSMOS, features are equivalent with physical model components. Nodes (junctions, tanks and 
reservoirs) are modelled as Points and links (pipes, pumps and valves) as LineStrings. The model 
itself is represented as a FeatureCollection. Curves, patterns, and model settings are converted 
into regular JSON objects and also added to the GeoJSON model as so called “foreign members”. 
Foreign members extend the GeoJSON specification with additional key-value pairs.  

The conversion is handled by a Prefect task that employs pydantic, a package for creating data 
models based on the native type hints integrated in Python 3. Different validators can be used to 
for examples validate data types and value ranges in an intuitive manner. Additional custom 
validators can be added to the models as well (e.g., validating the IDs of model components 
corresponding to EPANET’s ID length requirement or ensuring that a tank’s initial tank level is 
between the tank’s minimum and maximum water levels). A basic check of model validity can 
therefore be optionally run open model upload. 

Pydantic can also write model instances into regular JSON files but does not include base models 
for GeoJSON objects. This functionality is provided by another package: geojson-pydantic. 
geojson-pydantic provides additional models that follow the GeoJSON specifications for the data 
types described above (e.g., Points and LineStrings but also Properties and FeatureCollections). 

After a model has been uploaded and converted into a FeatureCollection object along with all 
settings and model components, this new model representation is stored on an S3 storage. The 
example deployment that comes with COSMOS includes MinIO, a S3 compatible object storage that 
can be hosted on-premises. Alternatively, Amazon S3 could be used as storage as well. S3 
compatible storage was chosen for several reasons: 
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1. S3 storage is an object storage.

COSMOS can simply create a GeoJSON object and store it on S3. Any web application can
then load the GeoJSON object and parse it. Furthermore, other files can easily be stored on
S3 without more complex preparatory steps like writing database models.

2. S3 provides versioning for objects.

When models or simulation results are updated, the original file is not lost but can still be
recovered afterwards.

3. Files on S3 can be encrypted.

S3 provides the possibility to encrypt data very easily. While this was not a requirement
for COSMOS, this might be beneficial for users who want to store sensitive data.

Upon model upload on S3, an event notification pushes the model JSON and any passed metadata 
to the search engine Elasticsearch. Elasticsearch is a search engine written in Java that stores data 
as JSONs. Clients can afterwards run queries using a RESTful API to find stored models. 

After a model has been stored on S3, it is available for use in COSMOS. Three additional Prefect 
tasks are available in COSMOS:  

• One task is responsible for querying a hydraulic model stored on S3 by model name and
tags, loading the corresponding GeoJSON file and converting it back into an OOPNET
model object.

• Alternatively, another Prefect task can be used to load a GeoJSON model from S3. This task
simply takes the model’s path on S3 as argument, loads the model’s GeoJSON
representation from the provided path from S3 and converts the model back into an
EPANET model. This task comes in handy when a model has been uploaded to an S3
storage by another application and stored for use in COSMOS.

• Finally, the third Prefect task handles the simulation of an EPANET model. The task only
takes one argument: the hydraulic model to simulate. OOPNET is used for simulating the
model and creating a SimulationReport object. This object serves as a container for
simulation results like node pressure and pipe flow rates in OOPNET. For further use in
other applications, this object is again transformed into a JSON object via pydantic and
stored on S3. The path to the result file is automatically stored in Prefect Server/Cloud and
can be queried using either Prefect’s GraphQL API or the REST API included in COSMOS.

While the tasks are executed, the COSMOS’ FastAPI can be used to query their status via a 
dedicated API endpoint to check if a task has been executed successfully. Finally, a route allows 
users to query the results for a specific workflow execution. 

4.2 Continuous integration

To keep the basis of COSMOS reliable, allow for linking COSMOS versions with simulation results 
for increased reproducibility and to make releases easier, a continuous integration pipeline has 
been implemented. The pipeline runs through several stages: 

- Testing

- Version number generation

- Python package and Docker image building

- Creating a new release of COSMOS

The testing stage runs several hydraulic simulations (both single period analysis and extended 
period simulations) in COSMOS and compares the results with pre-calculated results that are 
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included in COSMOS’ testing module. This in combination with other unit-tests assures the reliable 
functioning and reproducibility of results generated with COSMOS. This however also requires an 
S3 storage available in the testing environment. If any test fails, the CI pipeline itself fails as well 
and no new COSMOS version is released. 

Next, the version of the next COSMOS release is determined. The version numbers follow semantic 
versioning and is automatically generated based on the git commit messages that haven been 
submitted since the last release. This 

After the new version number has been derived, first a Python package is built and uploaded to a 
Python package registry. Afterwards, a Docker image based on a Docker image provided by Dask 
itself (daskdev/dask) is built. In addition to the services and packages required for running a Dask
worker node, EPANET, OOPNET and COSMOS are added to the Docker image.  

In a final step, a new release is created that uses the previously derived version number, the 
corresponding Python package and Docker image and a changelog based on the Angular git 
commit messages. 

Users are then able to install the framework on their local workstations and develop workflows 
for usage in COSMOS. If additional dependencies have to be available in a workflow run’s 
execution environment, users can build their own Docker images if needed using the COSMOS 
image as base image. 

4.3 Low-latency execution vs. flexibility during development

For low-latency execution tasks like running a small number of hydraulic simulations, the 
deployment of Prefect has to be optimized. This includes choosing a suitable Agent and Storage 
type for the workflow definition. 

The Agent type used is an important aspect regarding execution speed on the one hand and 
flexibility during development on the other. A DockerAgent is able to pull a Docker image to 
provide the environment necessary for a workflow’s execution every time a workflow is executed. 
While this approach is very flexible since the Agent requires hardly any further setup, it also leads 
to longer workflow execution times. A LocalAgent however is meant to be running in an 
environment that already fulfils the requirements and dependencies of the workflow. An easy way 
for keeping the time from workflow run submission to workflow execution low is running a 
LocalAgent in a dedicated container that already contains all the dependencies needed. However, 
this requires users to take care of running an Agent based on the most recent execution 
environment Docker image. A CI/CD pipeline can be used to simplify this process. 

In addition to Agents, different Storage types are available in Prefect as well. Storage types like 
DockerStorage or GitLabStorage provide users with the possibility to load the most recent 
workflow definition from a central storage. This is well suited for tasks that don’t require a low-
latency execution since it also adds overhead to the execution. Pulling the latest workflow version 
can be skipped if the most recent version of the flow is already available in the Prefect Agent. This 
can be achieved by packaging all dependencies and workflows in a Docker image and using a 
ModuleStorage in the workflow definition. A ModuleStorage points to a workflow already 
available in a local Python module. Similar to the LocalAgent, this means that the most recent 
workflow definition has to be available in the execution environment image. 

4.4 Extending COSMOS

Since COSMOS mainly provides additional features in Prefect, new Prefect tasks can be created 
and added to the existing workflows using the Prefect syntax. Hydraulic modelling tasks can be 
implemented using OOPNET’s syntax, while simulation results are available as pandas 
DataFrames. Pandas is a powerful library for data manipulation and analysis which leads to high 
flexibility regarding result analysis in dedicated analysis tasks. 
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Due to being based on containerization, any newly added tasks and workflows have to be included 
in the used container images. This can be done by using a CI pipeline similar to the one used in 
COSMOS itself, or manually by using the Docker command line interface to build a new container 
image. 

5 CONCLUSIONS

COSMOS is already being actively used while developing a scientific task execution platform. It 
provides an OpenAPI based RESTful API that can be used in any web application that requires 
more complex workflows or the execution of several hydraulic models at once. Hydraulic models 
and simulation results are both stored in conformity with the JSON and GeoJSON standards which 
makes working with them in a web context easy. 

JSON files however tend to be verbose compared to EPANET input files and therefore increase in 
size rather quickly. This should be mitigated in the future by e.g., using compression or other file 
size reducing approaches. Also use cases outside of web development might benefit from more 
concise file formats. 

Concerning storage, alternatives to S3 might be added in the future to support storing models and 
results in a database. Databases like PostGIS would add further usability options to software like 
the geographic information system QGIS and would enable the modelling of relationships 
between, for example, measurement data and hydraulic models. 

The current version only implements basic functionalities regarding the handling of simulations, 
hydraulic models and simulation artifacts.  Future releases it will be extended to include various 
algorithms and methods related to hydraulic modelling. Work on migrating already existing 
algorithms (e.g., roughness calibration and water distribution system sectorization) have already 
begun. While right now COSMOS is not publicly available yet, it will be hosted on a code sharing 
platform like GitHub to reach a wider scientific audience and gather a user community that can 
add new algorithms.  

In addition to the platform for running scientific analysis with COSMOS, another useful feature 
would be a graphical user interface for managing hydraulic models and linked model simulations. 
There are already plans to implement such an interface for the task execution platform. 

Currently, a new version of Prefect is being developed. The new version promises to be easier in 
usage, has a slimmer structure that requires less services to be running. Furthermore, the 
integration of Prefect flows and tasks into native Python code is claimed to be improved which 
would be beneficial for using COSMOS as a general model simulation backend in scripts.  

COSMOS’ approach could also be used for other types of models such as EPA SWMM using one of 
the Python to SWMM APIs available. This would shift COSMOS from being focused on water 
distribution system models to being a more flexible model execution backend. 

Since COSMOS was developed while building a scientific platform for modelling and result 
analysis workflows, it can be used in a wide variety of ways. It supports long running tasks but 

also rather short running simulation tasks while providing a standard-based interface that allows 
for the easy creation of clients in many different programming languages. 

Exemplary other use cases are more complex online EPANET editors that take factors into account 
that lead to an increase in necessary model execution runs like different operating conditions or 
Monte Carlo simulations. Furthermore, COSMOS could be integrated into analysis scripts written 
in Python to easily parallelize the execution of many hydraulic models at once while also making 
use of the reproducibility features of Prefect and COSMOS. 
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