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Abstract

Leaks represent a major issue impacting the management and efficiency of Drinking Water 
Networks (DWN) in cities worldwide. According to the Development Bank of Latin America, 
by 2018 the losses in DWN range from 40 to 60% in the region. In Europe, the OECD reports a 
wider range with few losses in cities like Amsterdam (4%) up to 37% in Naples. With this 
context, some regional policies have emerged like the 2020 european drinking directive 
“Right2Water”, that aims to encourage major suppliers (more than 50000 users), to develop 
tools to measure and reduce leakages by 2025. Considering this situation, we introduce here 
a systematic approach for leak management that combines field data, hydraulic models (HM) 
and machine learning. 

Model-based and data driven methods have been of great interest for leak location 
methodologies in DWN. This research will design energy-efficient and cost-efficient leak 
localization hotspots in the DWN. The approach is intended for sectorized DWN, equipped 
with a SCADA system and where a calibrated hydraulic model (e.g. EPANET) is available. This 
latter serves to evaluate the sensitivity of the system to leaks and identify potential points for 
pressure measurements in order to optimise the number of installed sensors.  

Given a detected leak in the network, a multiclass classifier using pressure data is developed 
to reduce the inspected pipe length for the leak location. The leakage localization method is 
implemented combining multiple individual classifiers using ensemble learning methods and 
a reduced number of decision variables.  

The methodology is tested on a real case study from a Colombian site. The method faces 
challenges in (a) collecting correctly labelled real leak data, and (b) modelling and calibrating 
hydraulic models. Those challenges are being addressed. The outcome shows that the length 
of pipes inspected can be reduced by one third with high performance in accuracy with few 
sensors required (low capital expenditures) and low computational effort (low energy and 
low operational expenditures). 

Keywords
Water distribution systems, Leak zone location, Hydraulic modelling, Mixed model-based/data driven 
methods. 
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1 INTRODUCTION

The constant increase of urban populations requires a more efficient management of the water 
resources. One of the aspects that affects the efficient use of water resources are leaks in DWNs 
[1], representing the main source of water physical losses in these systems [2]. They can cause 
significant economic losses in fluid transportation leading to increased reparations and therefore, 
a potential extra cost for the final user [3].  Since it is a major issue in the performance of DWN, 
leak detection and management have been a subject of studies with different approaches and 
important evolutions as detailed in different literature reviews [2, 4, 5]. 

Leak localization is frequently performed using acoustic methods using hardware such as leak 
correlators and leak noise loggers and other non-acoustic methods [2]. These methods are 
accurate, however, it can take extensive labour effort to find a leak, even in small District Metered 
Areas (DMAs). Leak localization processes can benefit from software-based methods using 
mathematical modelling in addition to pressure and flow field measurements. Usually, the leak is 
localised in a zone (a group of network nodes). Hardware-oriented technologies can then be used 
to identify the exact location of the leak at pipeline level. Hu et. al. [6] provide a detailed literature
review on model based and data-driven approaches for leak detection and localization. Some leak 
localization approaches can reduce the area of interest and facilitate traditional DMA techniques 
to locate leaks. In addition to the possibility of saving large volumes of water, software-based 
methods also represent financial savings when using only a few pressure sensors.  

Mixed model-based/data driven approaches have been developed aiming to predict leak 
locations. These methods consist in the (i) construction of a hydraulic model, (ii) calibration of the 
hydraulic model, (iii) leak detection, and (iv) leak localization. After a leak has been detected, it is 
necessary to localise it within the network. The step (iv) characterises the mixed model-
based/data-driven approach using Machine Learning algorithms. Compared to a leak-free 
situation, a leak results in larger flow in a pipe, with larger head loss, and differences in pressure 
within the DWN. In a monitored DWN, signatures on pressure data can be used to find leak 
location [7]. A calibrated hydraulic model can be used to generate synthetic data based on a 
multitude of demand scenarios. Subsequently the synthetic data can be used to train a classifier. 
Researchers have used a variety of classification methods. Rojek and Jan Studzinski [8] train  
Artificial Neural Networks (ANNs) such as Multi-Layer Perceptron (MLP) and Self-Organising Map 
(SOM). Their goal is to find the exact node where a leak is occurring. De Silva et. al. [9] use Support
Vector Machines (SVMs) and claim better results compared to Neural Networks. Gupta [10] trains 
SVMs, ANNs, Random Forest classifiers and Ensemble methods using all the previous methods to 
improve leak localization predictions. Ares-Milian et. al. [1,11] train a SVM classifier to find the
leak zone. The authors then apply a model/optimization-based approach to refine and reduce the 
leakage detection zone. Soldevila and al. [3] present a slightly different approach, where the 
modelling of the DWN is made and compared to the measured pressures in real time. The 
comparison is made using residuals. A residual represents the difference between the pressure 
measured and a reference leak-free scenario pressure from the model. Bayesian classifiers and k-
Nearest Neighbour classifiers are trained for the localization task. In this work, the authors 
overcome the difficulty related with the implicit difference of synthetic data from noisy measured 
data. The method requires measurements to control all the boundary conditions on the hydraulic 
model. These constraints can be hard to obtain on most hydraulic networks. Other improvements 
include the selection of better locations for pressure sensors [12]. From the aforementioned 
contributions, we can also point out the difficulty to assess the classifiers' performances on real 
scenarios as collection of leak and leak-free data is hard. To date, model-based leak detection 
methodologies have not reached the maturity expected by the water industry.  

Considering this, this article presents an improved model-based approach for early leak 
localization in DWNs from pressure measurements. Field data includes days of normal operation 
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without leaks and a set of nine controlled leaks (leak campaigns). On the other hand, a synthetic 
dataset gathers the result of hundreds of thousands of scenarios generated from a calibrated 
hydraulic model (EPANET [14]), including demand variations on each node, and leaks of different 
sizes on every pipe of the network. Classifiers for the leak localization tasks are trained on 
residuals computed against leak-free scenarios from simulations and known days of normal 
operation. Then, we propose a domain adaptation technique to correct the differences between 
synthetic and measured data distributions by searching for a new representation of the data in 
which both domains (measured and synthetic) are similar.  The performance of the trained 
classifier is evaluated on measured data only. The performance on synthetic data is not of interest. 
The methodology is tested in a real district metered Area (DMA). 

2 METHODS

2.1 Early leak localization methodology overview

The methodology proposed for early leak localization is presented in Figure 1. The proposed 
method localises leaks in a DWN once a leak has been detected with any procedure available 
(examples in the literature [5]).  

The requirements for the proposed methodology in a DWN application are: 

• A hydraulic model (EPANET) of a DWN or a District Metered Area (DMA);
• A set of pressure sensors (installed on the network using sensitivity matrices-based

methods[13])
• Inlet and outlet (if applicable) flowmeters to capture the hydraulic information;
• An IT system for data acquisition and processing;
• A calibration procedure for the hydraulic model.

The classifying task for early leak localization is computed in two main stages. First the network 
is partitioned into a set of candidate leak zones using sensitivity matrices [13] considering the 
topological relationships between the network nodes. Leak zones correspond to groups of pipes 
with similar hydraulic response to leaks (see section 2.3). Then a trained multiclass classifier is 
used to estimate a potential leak zone (see sections 2.4).  

2.2 Training and testing sets

Machine learning algorithms require an important number of training examples. Nevertheless, 
obtaining real-world DWN leak data is near-to-impossible, since it would imply collecting data for 
leaks in all pipes multiple times. The lack of historical data is a great challenge. We will have at 
our disposal only a limited set of samples. In addition, these records are, most of the time, not 
properly labelled. For example, start and end days of the leak and/or location might not be 
properly logged.  

The training database will be constructed from simulated scenarios of variable demands. 
Simulations are run using EPANET Programmer’s Toolkit. On the other hand, the test database 
will be created with measured pressure data. Leaks are created by opening purge valves or fire 
hydrants. The advantage of synthetic data is that it is properly labelled and balanced for machine 
learning applications. Although DWN models remain only an approximation (even if calibrated), 
the use of synthetic data is commonly accepted in the field of machine learning [15]. 
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Figure 1. Methodology overview for early leak localization 

2.3 Leak Zone labels

Using sensitivity matrices methodologies [13], multiple groups of pipes are defined from the 
position of sensors and their sensitivity to leaks. A sensitivity leak analysis is done by simulating 
leaks with different flow rates at all possible pipes within the DWN and calculating the 
corresponding sensitivity in flow and pressure at each point by comparing with the base-case 
scenario (i.e. no leaks in the network). The two main limitations to directly use these groups are 
that they are often groups of one pipe and groups of multiple pipes can include pipes not located 
in the same part of the DMA. 

The spectral clustering method [16] has proven itself to be effective in many different situations. 
The network of pipes is considered as a mathematical graph with a set of edges and a set of 
vertices. The mapping from the hydraulic model to the graph model is as follows: pipes (and 
valves) correspond to edges and junctions (such as pipe intersections, water sources) correspond 
to nodes. Spectral clustering is applied considering only the  distance between nodes.  

The search zones can be constructed from groups of pipes defined by hydraulic sensitivity to leaks 
and groups of pipes defined from the spectral clustering with an ensemble method [17]. Finally, 
labels for the multiclass classifier are defined by matching every sample with the zone that 
contains the actual leak node. 
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2.4 Classifier and input variables

In this study, we propose the use of the Gradient Boosting Classifier [18], that is a set of machine 
learning algorithms which include several weaker models that are combined together to get 
higher predictive output. Gradient Boosting algorithms are popular due to their ability to classify 
datasets effectively. Finding the leak zone where a leak occurred can be framed as a multiclass 
classification task. The Scikit-learn [20] project provides a set of machine learning tools that can 
be used for the multiclass classification task.  

In order to remove long-term seasonality, the classification tasks proposed will not be carried out 
directly on the pressure and flow raw variables. We use residuals to remove a short-term mean 
behaviour of the network from the measured signal. To do so, we take the average of M days to 
classify and subtract the mean over N past days labelled as having normal behaviour (no leaks, no 
outliers). A process to identify days with normal conditions is thus essential. The residuals are 
defined by Equation 1: 

𝑋𝑟𝑒𝑠(𝑡)  =  
𝑋𝑀(𝑡)̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅  −  𝑋𝑁(𝑡)̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

𝜎(𝑋𝑁(𝑡)) (1) 

where: 

• 𝑋𝑀(𝑡)̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ =  1
𝑀

∑ 𝑋𝑚(𝑡)𝑀
𝑚=1  is the mean value of a sensor at time 𝑡 over the M consecutive days 

to classify;

• 𝑋𝑁(𝑡)̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ = 1
𝑁

 ∑ 𝑋𝑛(𝑡)𝑁
𝑛=1  is the mean value of a sensor at time 𝑡 over N previous days that 

exhibit a normal behaviour; and 
• 𝜎(𝑋𝑁(𝑡)) is the standard deviation of values of a sensor at time 𝑡 over N previous days that

exhibit a normal behaviour.

Parameters N and M are chosen depending on the network hydraulics and precisions of the 
sensors. Repetition helps isolate signals from noise. Note that for synthetic data, N and M do not 
represent a number of consecutive days. Simulations are unordered as each simulation with the 
EPANET software is independent of others. Days can be selected randomly for the simulation 
scenarios. The times 𝑡 can be either chosen during the day, a window during night time, on a 
precise time of the day such as the time at which the minimal night flow is observed. 

One issue we face when using synthetic data is that our training and testing data are different. 
Training data is drawn from simulation from the EPANET model and thus has a bias (from 
modelling) and variability different from the testing data drawn from measurements. The purpose 
of transfer learning and domain adaptation methods [19] is to handle this common issue 
encountered in machine learning. In the domain adaptation setting, one considers, on one hand a 
source domain from which a large sample of labelled data is available. And on the other hand, a 
target domain from which no labelled data are available. One refers to unsupervised domain 
adaptation. The goal is to build an estimator on the target domain by leveraging information from 
the source domain.  

CORAL (CORrelation ALignment) [21] is a feature based domain adaptation method which 
minimises domain shift by aligning the second-order statistics of source and target distributions. 
Feature-based methods consist of searching for common features which have similar behaviour 
with respect to the classification task on source and target domain. A new feature representation 
(often called encoded feature space) is built with a projecting application which aims to correct 
the difference between source and target distributions. The CORAL method transforms source 
features to minimise the Frobenius norm between the correlation matrix of the input target data 
and the one of the transformed input source data. CORAL can use only labelled source and 
unlabeled target data. The ADAPT Python package [22] provides tools that can be used for domain 
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adaptation. The classification task is then trained in this encoded feature space instead of the 
initial input space. 

2.5 Performance metrics

2.5.1 Accuracy score

The accuracy score is defined in Equation 2 as the percentage of leak samples that were correctly 
located by the classifier for N samples: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1
𝑁

∑ 𝕀𝐿𝑖
(𝐿̂𝑖)

𝑁

𝑖=1

 (2) 

where 𝐿𝑖 is the actual leak zone for sample i, 𝐿̂𝑖 is the predicted leak zone for sample i, and 𝕀 the 
indicator function. 

2.5.2 Top-k accuracy score

For the multiclass classification problem, another metric of interest is the top-k accuracy score. 
The leak zone prediction is considered correct as long as the true leak zone is associated with one 
of the k highest leak zones predicted by the classifier. For N samples, the top-k accuracy is defined 
in Equation 3 as: 

𝑡𝑜𝑝𝑘 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1
𝑁

∑ ∑ 𝕀𝐿𝑖
(𝐿̂𝑖,𝑗)

𝑘

𝑗=1

𝑁

𝑖=1

 (3) 

where 𝐿𝑖 is the actual leak zone for sample i, 𝐿̂𝑖,𝑗 is the j-th largest score of the predicted leak zones 

for the sample i, and 𝕀 the indicator function. This metric is interesting for leak localization as it 
can measure the leak localization performance along a path to search the DWN. 

2.5.3 Matthews correlation coefficient

The Matthews correlation coefficient (MCC) is used in machine learning as a measure of the 
quality of classification. The MCC ranges between 1 and -1. A coefficient of 1 represents a perfect 
prediction, 0 an average random prediction, and a negative score is linked to an inverse prediction. 
The MCC is defined for N samples by Equation 4: 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑐 ×  𝑁 − ∑ 𝑝𝑘 × 𝛾𝑘

𝑁𝐿
𝑘=1

√(𝑁2 − ∑ 𝑝𝑘
2𝑁𝐿

𝑘=1 ) × (𝑁2 − ∑ 𝛾𝑘
2𝑁𝐿

𝑘=1 )
(4) 

where 𝛾𝑘 is the number of times a leak  truly occurred in leak zone k, 𝑝𝑘 is the number of times a 
leak  was predicted in leak zone k, c the count of leak zones correctly predicted, and 𝑁𝐿  the number 
of leak zones. Having an unbalanced and few number of samples of each leak zone, this measure 
provides a metric on leak zones not being predicted by randomness. 

2.5.4 Leak Search Zone Size

On top of machine learning metrics, we propose to look at the expected gain in terms of reduced 
leak search zone. The expected leak search zone size is defined in Equation 5 as the percentage of 
the total DWN linear length to explore to truly find a leak:  

𝐿𝑒𝑎𝑘 𝑆𝑒𝑎𝑟𝑐ℎ 𝑍𝑜𝑛𝑒 𝑆𝑖𝑧𝑒 =  
𝐷 − ∑ (𝑐𝑘

𝑁 × ∑ 𝑑𝑗
𝑁𝑍
𝑗≠𝑘 )𝑁𝑍

𝑘=1

𝐷
× 100 

(5) 
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where 𝑐𝑘 is the number of times a leak  is correctly predicted in leak zone k, 𝑑𝑗 is the pipe length 

of leak zone 𝑗 in km, D the total pipe length in the DWN , N the number of samples, and 𝑁𝑍 the 
number of leak zones.  A correct prediction by the classifier would avoid the need to inspect the 
rest of the network. 

3 CASE STUDY AND RESULTS

3.1 Case study

The methodology was developed and implemented on a Colombian DWN operated by Veolia 
Colombia. The DWN is located in a residential sector, and the INP model provided by the operator 
accounts for 288 nodes (users with individual demands), 303 pipes for a total length of 13.5 km 
approximately, a reservoir representing the unique source of water for the whole sector, and 3 
pressure reduction valves (PRV). In 2019 the sector reported a total water loss of 18% (leaks 
+apparent losses). Figure 2 shows topology of the sector of analysis.

The set of data used in this work, contains the measured values of 12 pressure sensors and 1 
flowmeter, whose locations are also detailed in Figure 2. Data was collected for a year (September 
2020 to August 2021), including mostly normal operation measurements, as well as data of 2 leak 
campaigns, over 5 different points (1 to 5 in Figure 2). The field data frequency is 1 measurement 
every 15 minutes. 

Figure 2. Location of the sensors and controlled leaks in the case study sector

The leak campaigns consisted of a total of 9 leak configurations (Table 1), each one with a duration 
of 26 hours. The first leak campaign was launched in February 2021 (configurations A and B) and 
the second one in June 2021. Three of the configurations considered simultaneous leaks in two of 
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the five points. For the sake of consistency,  at least two days of normal operation were considered 
between each consecutive configuration to avoid any possible effect of the precedent controlled 
leak. 

Table 1. Leak campaign configurations

Config Location Max flow rate [m³/h] Config Location Max flow rate (m³/h) 

A 2 1 
G 

3 5 

B 5 3 5 2 

C 2 5 
H 

2 5 

D 3 3 4 2 

E 1 2 
I 

5 3 

F 2 5 1 2 

3.2 Experimental results

When implementing the methodology in the case study, we tested the division of the sector into 
different numbers of clusters ranging from 2 to 8.  Figure 3 details the resulting zones for 2, 4, 6 
and 8 leak zones. Residuals have been computed with M=1, N=5, at time 𝑡 when the minimum 
night flow is observed. The training dataset contains 15000 simulations. Performance of the 
proposed method is evaluated on the leak campaign test dataset. 

Figure 3. Leak zones for different numbers of clusters [(a) 2, (b) 4, (c) 6, (d) 8]

Figure 4 and Figure 5 present  respectively the accuracy score and the top-2 accuracy score for 
the different number of leak zones to search within. As expected, the lesser number of zones, the 
higher the accuracy of the classifier. Using domain adaptation to compute a feature encoded space 
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before training the classifier seems to improve the accuracy of the classifier. Without domain 
adaptation, the classifier is trained directly on the pressure residuals. With domain adaptation, 
the 2-zone classifier reports an accuracy of 78%.  The top-2 accuracy score remains over 80% up 
to 4 zones. 

Figure 4. Accuracy score by number of zones

Figure 5. Top-2 Accuracy score by number of zones

The Matthews correlation coefficient score is depicted in Figure 6. The MCC score can help to 
identify the ineffectiveness of the classifier. For 6 and more zones, the score is below 0.2. In this 
case, the classifier is very close to a random guess classifier. For 2 to 5 zones, the classifier can be 
considered better than a random guess classifier. 

On a field perspective of the method's performance, the percentage of the expected leak zone 
search is presented in Figure 7. The 2-zones classifier yields a leak search zone of just above 60% 
of the total DWN pipe length. With the proposed method, the length of pipe inspected is expected 
to be reduced by one third. The 4-zones classifier also yields promising gains with a leak search 
zone just below 70% of the total DWN.  
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Figure 6. Matthews correlation coefficient by number of zones 

Figure 7. Expected leak search zone size in percentage of the total DWN pipe length by number of zones

4 CONCLUSIONS

Reducing costs and time searching leakages in DWNs is known to be a difficult task for the water 
utility industry. The presented work demonstrates the benefits of using a hybrid model-based and 
data-driven approach for early leak localization. Dividing the DWN into two or four zones doesn’t 
seem like the target, but shows success in contributing to early leak localization by reducing the 
leak search space. This low cost solution requires only pressure sensors on top of common inlet 
and outlet flowmeters, and it relies on more frugal (less data, parameters, and computational 
resources required) algorithms than neural networks. The field experiment considers 12 sensors, 
but with few zones, the number of required sensors could be lower.  
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Proper data collection of network hydraulic behaviour for data-driven approaches is a challenging 
task. Historical data are either non-existent or not properly labelled. To overcome this issue, our 
experimental approach focuses on evaluating the performance only on measured data from a 
designed leak campaign. This strategy allows us to go further than using synthetic data or toy 
DWN models. To reduce the differences between synthetic data samples and the measured data 
samples, a domain adaptation approach was implemented. Moreover, the proposed residuals 
don’t require such high fidelity simulation of the DWN. The current limitation lies in the 
identification of previous normal operation days to be able to compute a mean pressure profile 
for each of the sensors. 

In conclusion, the proposed methodology allows to improve early leak detection performance, 
while meeting operational requirements. The field experiments show that the total pipe length 
required for inspection in the DMA can be reduced by one third with a significant gain of 
performance in accuracy, while requiring a limited number of pressure sensors installed on the 
network. 

5 REFERENCES

[1] M. Quiñones-Grueiro, M. Ares Milián, M. Sánchez Rivero, A. J. Silva Neto, and O. Llanes-Santiago, “Robust
leak localization in water distribution networks using computational intelligence,” Neurocomputing, vol. 438,
pp. 195–208, May 2021, doi: 10.1016/j.neucom.2020.04.159.

[2] A. Gupta and K. D. Kulat, “A Selective Literature Review on Leak Management Techniques for Water
Distribution System,” Water Resour Manage, vol. 32, no. 10, pp. 3247–3269, 2018, doi: 10.1007/s11269-
018-1985-6.

[3] A. Soldevila, J. Blesa, S. Tornil-Sin, E. Duviella, R. M. Fernandez-Canti, and V. Puig, “Leak localization in
water distribution networks using a mixed model-based/data-driven approach,” Control Engineering Practice,
vol. 55, pp. 162–173, Oct. 2016, doi: 10.1016/j.conengprac.2016.07.006.

[4] T. K. Chan, C. S. Chin, and X. Zhong, “Review of Current Technologies and Proposed Intelligent
Methodologies for Water Distributed Network Leakage Detection,” IEEE Access, vol. 6, pp. 78846–78867,
2018, doi: 10.1109/ACCESS.2018.2885444.

[5] S. El-Zahab and T. Zayed, “Leak detection in water distribution networks: an introductory overview,” Smart
Water, vol. 4, no. 1, p. 5, Jun. 2019, doi: 10.1186/s40713-019-0017-x.

[6] Z. Hu, B. Chen, W. Chen, D. Tan, and D. Shen, “Review of model-based and data-driven approaches for leak
detection and location in water distribution systems,” Water Supply, vol. 21, no. 7, pp. 3282–3306, Apr.
2021, doi: 10.2166/ws.2021.101.

[7] S. Sophocleous, D. Savić, and Z. Kapelan, “Leak Localization in a Real Water Distribution Network Based
on Search-Space Reduction,” Journal of Water Resources Planning and Management, vol. 145, no. 7, p.
04019024, Jul. 2019, doi: 10.1061/(ASCE)WR.1943-5452.0001079.

[8] I. Rojek and J. Studzinski, “Detection and Localization of Water Leaks in Water Nets Supported by an ICT
System with Artificial Intelligence Methods as a Way Forward for Smart Cities,” Sustainability, vol. 11, no.
2, p. 518, Jan. 2019, doi: 10.3390/su11020518.

[9] D. De Silva, J. Mashford, and S. Burn, “Computer aided leak location and sizing in pipe  networks
(second edition),” Urban Water Security Research Alliance, Technical Report EP112167, Apr.
2011.[Online]. Available:  http://hdl.handle.net/102.100.100/104745?index=1

[10] G. Gupta, “Monitoring Water Distribution Network using Machine Learning,” KTH  Royal Institute of
Technology, Stockholm, Sweden, 2017. Accessed: Apr. 12, 2022. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221832.

[11] M. J. Ares-Milián, M. Quiñones-Grueiro, C. Verde, and O. Llanes-Santiago, “A Leak Zone Location
Approach in Water Distribution Networks Combining Data-Driven and Model-Based Methods,” Water, vol.
13, no. 20, p. 2924, Jan. 2021, doi: 10.3390/w13202924.

[12] A. Soldevila, J. Blesa, R. M. Fernandez-Canti, S. Tornil-Sin, and V. Puig, “Data-Driven Approach for Leak
Localization in Water Distribution Networks Using Pressure Sensors and Spatial Interpolation,” Water, vol.
11, no. 7, p. 1500, Jul. 2019, doi: 10.3390/w11071500.

526



An Experimental Study On Early Leak Localization In Water Distribution Networks using Pressure Measurements 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

[13] R. Pérez, V. Puig, J. Pascual, J. Quevedo, E. Landeros, and A. Peralta, “Methodology for leakage isolation
using pressure sensitivity analysis in water distribution networks,” Control Engineering Practice, vol. 19, no.
10, pp. 1157–1167, Oct. 2011, doi: 10.1016/j.conengprac.2011.06.004.

[14] L. A. Rossman, “The EPANET Programmer’s Toolkit for Analysis of Water Distribution Systems,” pp. 1–
10, Apr. 2012, doi: 10.1061/40430(1999)39.

[15] M. Hittmeir, A. Ekelhart, and R. Mayer, “On the Utility of Synthetic Data: An Empirical Evaluation on
Machine Learning Tasks,” in Proceedings of the 14th International Conference on Availability, Reliability
and Security, New York, NY, USA, août 2019, pp. 1–6. doi: 10.1145/3339252.3339281.

[16] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 888–905, Aug. 2000, doi: 10.1109/34.868688.

[17] L. Rokach, “Ensemble-based classifiers,” Artif Intell Rev, vol. 33, no. 1, pp. 1–39, Feb. 2010, doi:
10.1007/s10462-009-9124-7.

[18] J. Friedman, “Greedy function approximation: A gradient boosting machine.,” 2001, doi:
10.1214/AOS/1013203451.

[19] F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,” Proceedings of the IEEE, vol. 109, no.
1, pp. 43–76, Jan. 2021, doi: 10.1109/JPROC.2020.3004555.

[20] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol.
12, no. 85, pp. 2825–2830, 2011, Accessed: Apr. 15, 2022. [Online]. Available:
http://jmlr.org/papers/v12/pedregosa11a.html

[21] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” in Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, février 2016, pp. 2058–2065.

[22] A. de Mathelin, F. Deheeger, G. Richard, M. Mougeot, and N. Vayatis, “ADAPT : Awesome Domain
Adaptation Python Toolbox,” arXiv:2107.03049 [cs], Jul. 2021, Accessed: Apr. 15, 2022. [Online].
Available: http://arxiv.org/abs/2107.03049

527


	14153



