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Abstract

Uncertainty is inevitable while trying to tackle any real-world problem, Water distribution 
system design problem is not an exception for that. Among the many uncertainties involved in 
the design problem, demand uncertainty is the most important. The current study aims to 
provide efficient designs that can handle the predicted variations in demand without 
compromising the resilience of the network system. Most previous studies explored stochastic 
solutions to handle the uncertainty that consumed immense computational power. 
Innovations in developing non-probabilistic techniques like robust optimization paved the 
way to reduce computational time and handle uncertainty efficiently. A new methodology is 
proposed in this study to obtain efficient designs for the multi-objective design problem of 
WDS under uncertainty. The proposed methodology uses a combination of robust 
optimization approaches to handle the uncertainty and a multi-objective cuckoo search 
algorithm. The proposed methodology is applied to a common benchmark water distribution 
system problem, and the designs are compared with the nominal designs obtained when 
demand is assumed as certain. Furthermore, the effect of considering different uncertainty 
sets is discussed.   

Keywords
Water Distribution System, Optimization Under Uncertainty, Multi-objective Optimization, Robust 
Optimization, Self Adaptive Multi-Objective Cuckoo Search Algorithm (SAMOCSA). 

Optimal design and management of water distribution systems (WDS) is an extensively explored 
research area in the water resources field. The main objective of the optimal design of WDS is to 
minimize the design cost (i.e. Pump capacity, Tank size, Pipe diameter, etc.) such that the system 
satisfies the hydraulic and water quality constraints. Over the past four decades, multiple variants 
of this problem have been explored using many optimization approaches. The research explored 
linear programming, non-linear programming, as well as dynamic programming 
approaches(Alperovits and Shamir 1977; Avi Ostfeld and Shamir 1996.; Kessler and Shamir 
1989). Later with the development of evolutionary meta-heuristic algorithms, these techniques 
have also been explored to solve the problem (Ostfeld et al. 2008.; Savic and Walters 1997; Vasan 
and Simonovic, 2010.; Wu et al. 2005). Even though these approaches could provide the least cost 
design alternative that could satisfy the required constranits, the obtained designs could not meet 
the expected reliability. Walski (2001) emphasized incorporating additional objectives to the 
least-cost design problem like reliability, capacity, and resistance to uncertainty. With the 
development of multi and many-objective optimization algorithms and Pareto-front 
representation of designs, the research moved towards incorporating multiple conflicting 
objectives into the problem definition. Over the last two decades, optimal multi-objective WDS 
design has been extensively explored with studies considering two objectives: minimization of 
cost and resilience/robustness/ reliability (Pankaj et al. 2020; Perelman et al. 2008; Prasad and 
Park 2004; Wang et al. 2014), three objectives(Farmani et al. 2006; Wu et al. 2013) and also six 
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objectives (Fu et al. 2013). Most of these studies considered the design problem to be 
deterministic and ignored the uncertainties associated with various design variables. In most real 
cases, this assumption is not true. Babayan et al. 2005 stated that almost all the design parameters 
associated with the WDS design problem have some uncertainty. Even though the multi-objective 
optimization approach considering maximization of resilience/ reliability provided some 
protection against uncertianiy, they lacked quantitative realization of the protection level 
achieved.  This motivated the resercheres to solve stochastic formulation of the WDS design 
problem. 

Lansey and his team were the pioneers in developing a methodology to solve the stochastic least-
cost design problem. They used chance constraints to address the stochastic nature of the 
problem. They used GRG-2 methodology to obtain the stochastic optimal designs with various 
levels of protection for the two-loop network (Lansey et al. 1989). Later, Sumer and Lansey (2005) 
proposed a stochastic optimization model using First Order Second Moment (FOSM) uncertainty 
analysis. Other stochastic approaches have been explored using various probabilistic analysis 
methods to solve the stochastic least-cost design of the WDS problem (Jung et al. 2012, 2014; 
Seifollahi-Aghmiuni et al. 2013). Table -1 summarizes few of the studies that used probabilistic 
approaches to solve the WDS design problem.  

Although the probabilistic approach successfully handled the uncertainty, the considerable 
computational time and the uncertainty in the assumption of probability density function (PDF) 
hindered its practical application. The researchers moved toward applying non-probabilistic 
approaches to handle the uncertainty to overcome these disadvantages. The robust optimization 
(RO) is a non-probabilistic approach that has been getting attention in the recent past to handle 
the uncertainty. This technique was successfully applied to WDS least-cost design by  (Perelman 
et al. 2013a, b) under single loading conditions and (Schwartz et al. 2016) under multiple loading 
conditions. This approach has also been used to handle water quality constraints (Pankaj et al. 
2022). Non-probabilistic approach application in the design of WDS is limited to the least cost 
design problem. There have not been any studies that used these methods to solve a multi-
objective problem considering cost minimisation and resilience maximisation as objectives.  

Table 1 List of few works in the area so WDS design and analysis under uncertainty

Uncertain
parameters

PDF
assumed

Uncertainty
handling
techniques

Optimization
techniques

References Type

q,H, RC Normal FORM GRG2 (Xu and 
Goulter 
1999) 

Hydraulic 
analysis 

q,H, RC Normal MCS GRG2 (Lansey et 
al. 1989) 

SO Design 

q,RC Normal MCS SFLA (Seifollahi-
Aghmiuni et 
al. 2013) 

Hydraulic 
analysis 

q,RC Normal FOSM & MCS -- (Hwang et 
al. 2018) 

Hydraulic 
analysis 

q Gaussian LHS GA (Babayan et 
al. 2004) 

SO Design 

q,RC Normal FORM GA (Tolson et 
al. 2004) 

SO Design 

819



Ostfeld & Boindala (2022) 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

q Gaussian LHS RNSGA-II (Kapelan et 
al. 2005a) 

MO Design 

q -- Robust 
optimization 

cross entropy (Perelman 
et al. 2013a, 
b) 

SO Design 

q- Demand; RC - roughness coefficient; H- Pressure head; LHS-Latin Hypercube
Sampling; MCS - Monte Carlo Simulations; GA- Genetic Algorithm; FORM -First order
reliability method; SO -single objective; MO- multiobjective design; SFLA -Shuffled frog
leap algorithm

The current study proposes a new robust multi-objective design optimization formulation that 
simultaneously minimizes construction cost and maximizes network resilience considering 
consumer demands as uncertain. In this study, the uncertain problem is reformulated using a 
robust counterpart for both objectives. A ‘self-adaptive multi-objective cuckoo search algorithm’ 
(Pankaj et al. 2020) and ‘fmincon’ optimization algorithms have been used to solve the problem. 
The proposed methodology is demonstrated on the Hanoi water distribution system.  

Robust optimization is a recent non-probabilistic optimization under uncertainty (OUU) 
technique. The main advantage of this technique is that the uncertain problem is reformulated 
into a tractable form, and the solution obtained is feasible for all possible realizations of the 
uncertain parameter within the specified uncertainty set. This method is gaining popularity in 
engineering applications due to its fast computational ability and ability to handle uncertain 
parameters that do not follow any standard probability distribution.  

The main problem with optimal water distribution system design under uncertainty is 
computational time, and consumer demands do not follow any probability distribution. This 
robust optimization technique can solve both problems. The robust approach to solving the multi-
objective design optimization of WDS involves converting the uncertain problem into a 
deterministic form using a robust counterpart approach and a self-adaptive multi-objective 
cuckoo search algorithm. This methodology is applied to a Hanoi WDS.Robust optimization

The aim of robust optimization is to obtain a unique solution for the optimization problem whose 
feasibility is independent of the uncertainty in the data. The general robust optimization 
formulation is as follows, 

𝑚𝑖𝑛 𝑓(𝑥) 

𝑠. 𝑡 𝑔𝑖(𝑥, 𝛼𝑖) ≥ 0 ∀𝛼𝑖 ∈ 𝑈𝑖 , 𝑖 ∈ [1, 𝑚]
(1) 

Here x is decision vectors, 𝑓(. ) is the objective function and 𝑔𝑖(. ) is the ith constraint function. 𝛼𝑖

is the uncertain parameter and 𝑈𝑖  is the uncertainty set corresponding to the ith constraint 
function.  

In general, the problem in equation (1) is intractable, leading to infinite constraints (all possible 
realizations within the uncertainty sets), we can write this in-tractable constaint as shown in 
equation (2), if we can obtain the minimum value of g(x,a) for all values of a in the uncertainty set 
U and check its value to the inequality, it implies that all the values of g(x,a) within the set of U 
satisfy the inequality. By using this we can covert the infine constraints into one single tractable 
cosntriant. 

𝑠. 𝑡 min
𝛼𝑖∈𝑈𝑖,𝑖∈[1,𝑚]

𝑔𝑖(𝑥, 𝛼𝑖) ≥ 0 (2)
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This reformulation is called the robust counterpart of the problem. A detailed description of 
robust optimization and robust counterpart formulation and its applications is provided by 
Bertisimas et al (2011).  The reformulation approach varies with the type of uncertainty set. For 
the current study, we use ellipsoidal uncertainty sets as they are less conservative compared to 
box uncertainty sets and can also incorporate the correlation between the uncertain variables 
(Baron et al. 2011).  

2.2 Ellipsoidal uncertainty set [(Ben-Tal and Nemirovski 1998)]:

Let us assume that for every ith constraint, 𝛼𝑖, can vary within the interval [�̂�𝑖 − 𝛿, �̂�𝑖𝑗 + 𝛿], where

�̂� is the nominal value of 𝛼 and 𝛿 is the maximum deviation from the nominal value.  

For any uncertain coefficient 𝛼 with the nominal value �̂� and covariance matrix Σ, the ellipsoidal 
uncertainty can be defined using Mahalanobis distance in the form:  

𝑈(Ω) = {𝛼|(𝛼 − �̂�)𝑇Σ−1(𝛼 − �̂�) ≤ Ω2} (3) 

'Ω' is a value controlling the size of the ellipsoidal uncertainty set, which is also referred to as the 
protection level. 

Let us consider a simple function as the constraint (2), 𝑔(𝑥, 𝛼) = 𝛼𝑇𝑥 and the uncertainty set be
ellipsoidal uncertainty set described in equation (3), then the constraint in the equation (2) can 
be written as 

min
𝛼𝑖∈𝑈(Ω)𝑖,𝑖∈[1,𝑚]

𝛼𝑖
𝑇𝑥 ≥ 0 (4) 

Then the solution to this minimization problem can be easily attained by Karush Kuhn tucker 

conditions, the minimum value of 𝛼𝑇𝑥 can be attained when 𝛼 = �̂� − Ω
√(𝑥𝑇Σ𝑥 ) 

Σ𝑥 

By substituting this value, we can re-write the constraint as 

min
𝛼𝑖∈𝑈(Ω)𝑖,𝑖∈[1,𝑚]

𝛼𝑖
𝑇𝑥 ≥ 0 ⇒ 𝛼𝑖̂ 𝑥 − Ω√𝑥𝑇Σ𝑥 ≥ 0 (5) 

2.3 Cost vs resilience optimal design of WDS problem formulation

The optimal design of WDS is an np-hard problem containing complex non-linear equations in 
energy constraint and discrete search space. Initial efforts were made considering this as single 
objective as explained in the introduction section, and then the research moved towards multi-
objective optimation, considering maximization of reliability or resilance as the second objective. 
Although there is no exact maximization way to realize resilience, many authors suggest a few 
surrogate measures to indicate the system's resilience. The most popular surrogate measure is 
the resilience index. In the current study we incorporate this resilience index as the second 
objective. The mathematical representation of the problem is expressed as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑈𝐶(𝐷(𝑖)) ∗ 𝐿(𝑖)
𝑛𝑝

𝑖=1

(6) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝐼 =  
∑ 𝑞𝑖(ℎ𝑖 − ℎ𝑖

𝑚𝑖𝑛)𝑛𝑛
𝑖=1

(∑ 𝑄𝑠𝐻𝑠
𝑛𝑟
𝑠=1 + ∑ 𝑃𝑏

𝛾
𝑛𝑝𝑢
𝑏=1 ) − ∑ 𝑞𝑖ℎ𝑖

𝑚𝑖𝑛𝑛𝑛
𝑖=1

(7) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   𝐴21𝑄 − 𝑞 = 0 (8)
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𝐴11𝑄 + 𝐴12h=0 (9) 

ℎ ≥ ℎ𝑚𝑖𝑛 (10) 

𝐷𝑖 ∈ {𝐷𝐶} (11) 

Here 𝑈𝑐- Unit cost per length of pipe corresponding to the diameter, 𝐷 – set of design diameters, 
{𝐷𝐶} is the set of commercially available diameters, 𝐿 – length of pipe, np – number of pipes, 𝑞𝑖-
demand of node 'I', h- pressure head at node, ℎmi n  – minimum pressure required, nr – number
of reservoirs, 𝑄𝑠- flow from reservoir 's', 𝐻𝑠 – pressure head of reservoir 's', npu – number of 
pumping units, 𝑃𝑏 – energy of pump 'b', 𝛾 – efficiency of the pump, nn – number of nodes in the 
network, 𝐴21=𝐴12

𝑇  is the connectivity matrix of the network based on topology, 𝐴11- nonlinear
elements representing the frictional resistance of the pipe, Q- Flow values in each pipe. 

The equation (9) represents the energy constraint where the 𝐴11𝑄 is the non-linear head loss term 
that can be expressed as : 

𝛥ℎ = 𝛥ℎ(𝑄) = 𝑅𝑐𝑄𝑎1} (12) 

Where 𝑅𝑐(𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡) =  𝑎3𝐿
𝑓𝑐

𝑎1 × 𝐷𝑎2⁄  , 𝑓𝑐- pipe friction coefficient, 𝑎1 = 1.852,

a2 = 4.87 and 𝑎3 is the Hazen-Willams coefficient 

2.4 Robust Counterpart formulation considering demand(q) as uncertain

Among all the uncertain parameters affecting WDS design, demand is the most important 
parameter (Babayan et al. 2005). For the current study, demand is assumed to be uncertain. To 
explicitly formulate the constraint with demand uncertainty, we use the linearization method 
proposed in (Perelman et al. 2013) to replace the head loss function. Among the two linearization 
methods they proposed, for the current study we incorporate the linearisation within a range [Q1, 
Q2] that under estimates the head within the range. For the case study we used Q1 = mean demand 
-2*standard deviation and Q2 = mean demand +2*standard deviation.

Δℎ = (𝛥ℎ(𝑄2)−𝛥ℎ(𝑄1)
𝑄2−𝑄1

) 𝑄 + Δℎ(𝑄1)𝑄2−𝛥ℎ(𝑄2)𝑄1
𝑄2−𝑄1

; 𝐿1𝑄 + 𝐿0 (13) 

[𝐴12 𝐿1
0 𝐴21

] [ℎ
𝑄

] = 𝐺 [ℎ
𝑄

] = [−𝐿0 + ℎ𝑜

𝑞
] 

⇒ [ℎ
𝑄

] = 𝐾 [𝐿0
∗

𝑞
] = [𝐾11 𝐾21

𝐾12 𝐾22
] [𝐿𝑜

∗

𝑞
] 

(14) 

Where 𝐺−1 = 𝐾 = [𝐾11 𝐾21
𝐾12 𝐾22

] is the inverse of the matrix [𝐴12 𝐿1
0 𝐴21

], 𝐾11  is of the size [𝑛𝑛 × 𝑛𝑝],

𝐾12  is of size [𝑛𝑛 × 𝑛𝑛] and 𝐿𝑜
∗ = −𝐿𝑜 + ℎ𝑜, where ℎ𝑜 is a given vector of fixed known heads.

From the equation (15), the nodal heads' h' can be computed as  

ℎ = 𝐾11𝐿0
∗ + 𝐾12𝑞 (15)
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑈𝐶(𝐷(𝑖)) ∗ 𝐿(𝑖)
𝑛𝑝

𝑖=1

(16) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝐼 =  
∑ �̃�𝑖((𝐾11𝐿0

∗ + 𝐾12 �̃�)𝑖 − ℎ𝑖
𝑚𝑖𝑛)𝑛𝑛

𝑖=1

(∑ 𝑄𝑠𝐻𝑠
𝑛𝑟
𝑠=1 + ∑ 𝑃𝑏

𝛾
𝑛𝑝𝑢
𝑏=1 ) − ∑ �̃�𝑖ℎ𝑖

𝑚𝑖𝑛𝑛𝑛
𝑖=1

; (47) 

𝐾11𝐿0
∗ + 𝐾12 �̃� ≥ ℎ𝑚𝑖𝑛 (18) 

�̃� ∈ 𝑈 (19) 

Now consider the equation (18,19), the equation contains demand (q) as an uncertian parameter, 
the robust optimization formulation for this is assuming the demand varies in the uncertainty set 

𝑈(𝛤) = {�̃�𝑖𝑗|(�̃�𝑖𝑗 − �̂�𝑖𝑗)𝑇
𝛴−1(�̃�𝑖𝑗 − �̂�𝑖𝑗) ≤ 𝛤2} and 𝑃: 𝛴 = 𝑃. 𝑃𝑇 . Then as explained in the

ellipsoidal robust optimization formulation (equation 3-6), we can write the formulation as 
follows. 

min
�̃�∈𝑈

𝐾11𝐿0
∗ + 𝐾12�̃� ≥ ℎ𝑚𝑖𝑛 ⇒ 𝐾11,𝑖𝐿0

∗ + �̃�𝑇𝐾12,𝑖
𝑇 − Γ‖𝑃𝑇𝐾12,𝑖

𝑇 ‖ ≥ ℎmi n
(20) 

Robust optimization formulation for resilience index, for simplifying the problem, lets assume that 
the network consists of only one source and no pumps. Then the simplified resilience index 
equation can be written as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝐼 =  
�̃�𝑇𝐾12�̃� + �̃�𝑇𝐾11𝐿𝑜

∗ − �̃�𝑇ℎ𝑚𝑖𝑛

(Σ�̃�)𝐻𝑠 − �̃�𝑇ℎ𝑚𝑖𝑛
; 𝐾11𝐿0

∗ + 𝐾12 �̃� ≥ ℎ𝑚𝑖𝑛;  �̃� ∈ 𝑈
(21) 

The robust optimization formulation for the problem in equation 21 is, 

max 𝜏 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: min
�̃�∈𝑈(Γ)

�̃�𝑇𝐾12�̃� + �̃�𝑇𝐾11𝐿𝑜
∗ − �̃�𝑇ℎ𝑚𝑖𝑛

(𝛴�̃�)𝐻𝑠 − �̃�𝑇ℎ𝑚𝑖𝑛
≥ 𝜏;  𝐾11𝐿0

∗ + 𝐾12�̃� ≥ ℎ𝑚𝑖𝑛
(5) 

The resilience index formulation is still nonlinear with a form similar to quadratic over linear, but 
all the elements in the matrix 𝐾12  are negative (Perelman et al, 2013). The denominator is always 

positive as energy at the source ((𝛴�̃�)𝐻𝑠) is always greater than energy reached at the nodes

(�̃�𝑇ℎ𝑚𝑖𝑛), this problem will never be of the form quadratic over linear with the positive definite

quadratic matrix.   

In order to solve the optimization problem in equation 22, an inbuilt nonlinear optimization 
algorithm in MATLAB named "fmincon" is used.  

The overall robust multiobjective formulation used in this study is as follows 

 Using this formulation, we can rewrite the optimization problem as 
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Objective 
function 
(2) 

𝑚𝑎𝑥 𝜏 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑚𝑖𝑛
�̃�∈𝑈(𝛤)

�̃�𝑇𝐾12�̃� + �̃�𝑇𝐾11𝐿𝑜
∗ − �̃�𝑇ℎ𝑚𝑖𝑛

(𝛴�̃�)𝐻𝑠 − �̃�𝑇ℎ𝑚𝑖𝑛
≥ 𝜏; 

𝐾11𝐿0
∗ + 𝐾12 �̃� ≥ ℎ𝑚𝑖𝑛

(24) 

The proposed method is applied to a standard benchmark problems Hanoi WDS proposed by 
(Fujiwara and Khang 1990) 

3.1 Multiobjective optimization method:

Self-adaptive multiobjective cuckoo search algorithm (SAMOCSA) combined with fmincon 
nonlinear optimization model is used to solve the robust multiobjective WDS design optimization 
problem. SAMOCSA is an improved version of the multiobjective cuckoo search that adapts the 
algorithm's exploration and exploitation governing parameters at every iteration. This algorithm 
has been tested on the two-loop network, Hanoi network and Pamapur network (Indian network) 
for deterministic multiobjective design problem of WDS. The complete details of the algorithm 
and its efficiency can be obtained from (Pankaj et al. 2020).  

3.2 Hanoi WDS case study

Hanoi WDS is a medium gravity-based WDS proposed by Fujiwara and Khang 1990. The network 
consists of 32 demand nodes and 34 pipes connected to a single source with a head of 100m. The 
minimum pressure head required at every node is 30m. The network needs to be designed with 
6 different sized pipes. The unit cost corresponding to the available diameter are shown in Table 
-1.

The full data for this example can be found 
https://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/design-
resiliance-pareto-fronts/medium-problems/ 

Table 2 Diameter options and associated unit costs for Hanoi WDS 

To model uncertainty in demands, the WDS nodes were partitioned into three demand regions: 
region 1—nodes 1:15, region 2—16:24, and region 3—25:32 (Figure 1). Demands in region 2 
were assumed to be certain and in regions 1 and 3 as uncertain with a standard deviation of 12% 
from the mean demand of each region [i.e., 80 and 50 (m3/h)], respectively. Two different 
protection levels are studied 𝛀 = [𝟏, 𝟐]. Furthermore, the correlation between the nodes within 
the region and the correlation between the regions are also altered. The intraregional correlation 
values are set to be 𝝆 = 𝟎. 𝟖, and the interregional correlation varies between positive, no-
correlation and negative correlation 𝝆 = [𝟎. 𝟔, 𝟎, −𝟎. 𝟔]. SAMOCSA algorithm is used to solve the 

Objective 
function 
(1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑈𝐶(𝐷(𝑖)) ∗ 𝐿(𝑖)
𝑛𝑝

𝑖=1

Subject to: 𝐾11,𝑖𝐿0
∗ + �̃�𝑇𝐾12,𝑖

𝑇 − Γ‖𝑃𝑇𝐾12,𝑖
𝑇 ‖ ≥ ℎmi n

(63)
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outer design problem, and the “fmincon” algorithm is used to solve the nonlinear inner 
optimization problem for minimization of the resilience index within the demand search space.  

Figure 1 Graph of the topology of Hanoi WDS (Fujiwara & Khang 1990) 

The graphs are shown in fig(2) compare the results obtained for different uncertainty sets 
(Ellipsoidal-1, Ellipsoidal -2) for positive, negative and no correlation. We can infer that 
uncertainty changes the cost to resilience trade-off from the graphs. As the ellipsoidal set size 
increases (Ω = 1 𝑡𝑜 2), the cost vs resilience trade-off gets worst. The worst case is obtained when 
the demands are positively correlated among the three cases. We need to provide a higher cost 
design, even for a small resilient design.  
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(a) 

(b) 

(c) 

Figure 2 Cost vs Resilience Pareto Fronts for two different sizes of uncertainty sets [Ω = 1,2] when 
the demands are considered (a) Positively Correlated (b) Negatively Correlated (c) no correlation 
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This work proposes using a robust counterpart approach to handle the demand uncertainty in 
WDS. The results show significant promise of this new approach in terms of ease of computation 
and model formulation. Once the problem is converted to tractable deterministic robust 
counterparts, the methodology for solving the problem is similar to solving a conventional multi-
objective design problem. Even though the formulation is similar to max-min approach, the 
ellipsoidal uncertainty set makes it less conservative. As the size of the uncertainty set to increase, 
the trade-off also increases; even for little resilience, we need to incorporate high-cost designs. 
The worst-case scenario is attained when the demands are assumed to be positively correlated. 
The results of the ellipsoidal set with Ω = 1 is a less conservative and robust solution. The further 
scope of this work is trying to incorporate other objectives like (minimizing the leakages or carbon 
emissions )  
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