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Abstract 

Smart metering of domestic water consumption to continuously monitor the usage of different 
appliances has been shown to have an impact on people’s behavior towards water conservation. 
However, the installation of multiple sensors to monitor each appliance currently has a high 
initial cost and as a result, monitoring consumption from different appliances using sensors is 
not cost-effective. To address this challenge, studies have focused on analyzing measurements of 
the total domestic consumption using Machine Learning (ML) methods, to disaggregate water 
usage into each appliance. Identifying which appliances are in use through ML is challenging 
since their operation may be overlapping, while specific appliances may operate with 
intermittent flow, making individual consumption events hard to distinguish. Moreover, ML 
approaches require large amounts of labeled input data to train their models, which are typically 
not available for a single household, while usage characteristics may vary in different regions. In 
this work, we initially propose a data model that generates synthetic time series based on 
regional water usage characteristics and resolution to overcome the need for a large training 
dataset with real labeled data. The method requires a small number of real labeled data from the 
studied region. Following this, we propose a new algorithm for classifying single and overlapping 
household water usage events, using the total domestic consumption measurements. The 
classification procedure is described below: 1) During the offline feature learning stage, a dataset 
of labeled data corresponding to water-use profile signals is analyzed to some predefined 
features, such as event volume, event duration, event flow peak, and event signature, to extract 
its statistical properties, 2) The event classification stage monitors the provided measurement 
time-series for events between zero-flow intervals. The identified events are then classified using 
Dynamic Time Wrapping and an optimization procedure that finds the best label for the observed 
event based on the features learned in the first stage and similarity indices. Non-classified events 
are processed using a variation vector technique to identify the combined events which are then 
split into sub-single events and classified.  

Keywords  
Non-intrusive water usage classification, device disambiguation 

1 INTRODUCTION 

The increasing water consumption due to population growth and excessive urban development is 
creating an unbalanced situation between water demand and supply [1]. Adding to this, the need 
for continuous water supply and sufficient pressure during peak times puts even more burden on 
the water utilities that must face these challenges [2]. Among others, water demand management 
practices have been proposed as a response to these problems, aiming to ensure water demand 
needs are met constantly while promoting water conservation [3].  

New advancements in sensor technology for collecting, analyzing, and transmitting high-
resolution data to both utilities and consumers, are considered important tools for water 
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management [4]. Smart metering of domestic water consumption to continuously monitor the 
usage of different appliances has been shown to have an impact on people’s behavior towards 
water conservation [5] and can be a useful tool for water utilities in managing demand during 
peak hours and drought periods thus eliminating the need for further investment in upgrading 
the water infrastructure [6].  

Smart metering can be categorized into intrusive and non-intrusive metering. Intrusive metering 
considers the installation of a sensor in each water-consuming appliance (e.g., dishwasher, toilet, 
shower) while non-intrusive metering considers the installation of only one sensor on the main 
water supply pipe of a house thus measuring the total household consumption. Although intrusive 
metering offers more insight into consumer habits, the installation of multiple sensors to monitor 
each appliance may have a high initial cost and may be inapplicable due to practical considerations 
[7].  

Real-time data that are available through new smart metering systems must be coupled with data 
analytic techniques and intelligent algorithms to play a significant role as a decision-making tool 
and to have an impact on water demand management and water conservation. Disaggregation 
algorithms process the data retrieved through non-intrusive metering and identify which water 
end-use appliance is active by analyzing the total water consumption signal. Identifying which 
appliances are in use through non-intrusive water usage classification is challenging since their 
operation may be overlapping while specific appliances may operate with intermittent flow 
making individual consumption events hard to distinguish.  

Water end-use disaggregation belongs to the general spectrum of time series classification 
problems. Time series classification is extensively addressed using machine learning and deep 
learning methodologies which require large training datasets [8] as well as with pattern 
recognition techniques based on similarity measurements such as Dynamic Time Wrapping 
(DTW) [9] and Longest Common Subsequence (LCSS) [10] that generally require a reference 
dataset. Various studies have been conducted to address the challenge of water end-use 
classification using smart water metering. In a first approach (Trace Wizard and Identiflow), 
decision tree methods were applied for water end-use classification which required significant 
data [11,12]. In [13,14], the authors suggested the use of pressure sensors combined with a 
Bayesian approach to identify water usage events (Hydrosense). These approaches required a 
high initial cost for the deployment of the sensor network and did not achieve high accuracy. Non-
intrusive metering combined with machine learning methods were further used to disaggregate 
water end-use events. The authors in [15] proposed the use of an adaptable neuro-fuzzy network 
to classify water end-uses achieving high accuracy, using a limited dataset of flow measurements. 
In more recent studies, machine learning and data analytic algorithms were developed to address 
the problem of water end-use disaggregation, with promising results [16–21]. Several drawbacks 
that were noted in these studies include the need for a large amount of historical data to train the 
model and the absence of disaggregation techniques for combined water events. A notable study 
by [22] (Autoflow) addressed the aforementioned drawbacks using a hybrid combination of 
Hidden Markov Models, Artificial Neural Networks, and DTW algorithms, which was further 
improved to avoid the need of collecting new use-data for different regional use cases [23]. The 
“Autoflow" model addresses the classification of single and combined water end-use events with 
85.9-96.1% and 81.8-91.5% accuracy respectively. However, as stressed by the authors, more 
regional data are needed to improve the performance of this method.  

This work has two main contributions:  

• Proposes an approach for calibrating an existing synthetic time-series data generator 
based on regional water usage characteristics and resolution. The generated data can be 
used to train Machine Learning algorithms without the need of collecting real labeled data 
for long periods from pilot studies.  
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• The development of a new methodology for classifying single and overlapping household 
water usage events within the same dataset using non-intrusive metering. The proposed 
approach takes into consideration water end-use events which exhibit intermittent or 
non-uniform flow. 

The paper is structured as follows: Section 2 describes the data models, Section 3 provides the 
proposed classification methodology, Section 4 presents the performance of our classification 
approach and in Section 5 we conclude the paper and discuss some future extensions. 

2 DATA MODEL 

2.1 Available usage characteristics model  

In this study, we use the available usage characteristics incorporated in the STochastic Residential 
water End-use Model (STREaM) introduced by [24]. STREaM is a modeling software that generates 
synthetic time series of data of a household with up to 10s resolution and it was calibrated on a 
large dataset including observed and disaggregated water end-uses from more than 300 single-
family households in nine U.S. cities [25]. Each of the water end-uses considered in the STREaM 
dataset (toilet, shower, faucet, clothes washer, dishwasher) is characterized by its signature (i.e., 
typical consumption pattern) and the probability distributions of the water event volume, the 
single-use durations, the number of uses per day and the time of use during the day. The number 
of events per day is modelled using the negative binomial and Poisson distributions, the event 
start time with the Kernel distribution, and the event volume and duration with two-component 
Gaussian Mixtures. The probability distributions are created by taking into consideration the 
number of house residents and the efficiency of each appliance (standard or high efficiency.  

The STREaM data model requires as inputs the number of household occupants, the available 
water appliances with their corresponding efficiency level, the simulation time, and the data 
resolution. Following, it generates time series of each water end-use and their sum as the total 
household water consumption based on the following procedure: i) samples the number of events 
for each water end-use and each day of the simulation time using the Monte-Carlo method from 
its probability distributions, ii) samples using the Monte-Carlo method the event-usage 
characteristics, duration, volume and time of use form their probability distributions, iii) 
randomly chooses one of the available signatures of the selected water end-use, iv) scales the 
duration and magnitude of the signature to match the pre-selected event duration and volume,  
and v) positions the newly created event time-series in the total event time series of the selected 
water end-use according to its start time. 

2.2 Model calibration using limited regional data 

The data model proposed in this work extends the STREaM data model to generate synthetic data 
based on regional water usage characteristics. For this, we assume that we have water usage data 
from a limited number of households within the region. We use a 1-week dataset from a single-
family house in Cyprus to update the existing signatures and generate data with up to 1s 
resolution. The regional dataset includes data from the following appliances: toilet, shower, 
faucet, clothes washer and dishwasher. We assume that these data have been correctly classified 
per their usage and were collected at a resolution of 1s. Finally, it is assumed that no leakages exist 
in the recorded data. 

The drawback of having a small dataset is that we may not be able to identify the probability 
distribution describing event occurrence, volume, and duration. However, the characteristic 
signatures of events can be identified even from this small dataset which are more representative 
of the appliances and local usage characteristics. Thus, the main approach for the development of 
the data model relies on updating the existing signatures with regional signatures from the case 
study. In addition, during the last step of the event generation process which includes the scaling 
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of the duration and magnitude of the selected signature, boundaries were applied to ensure that 
generated events comply with the consumption flow rate indicated by the regional signatures. For 
example, during the sampling process of the usage characteristics, our model could pick a water 
end-use with a short-time duration and large volume resulting in an event with an inconsistent 
consumption pattern compared to the regional signature.  

In the following paragraphs, we describe the methodology for the creation of regional 
consumption patterns. Signatures from the regional labeled dataset are extracted using a hybrid 
combination of DTW algorithm, k-medoids clustering method evaluated based on the “Silhouette 
index” and an affinity search technique. We use DTW in a clustering procedure to extract water 
end-use signatures from the regional dataset. The partitioning algorithm k-medoids splits the 
time series dataset into k clusters based on the minimum distance between the points of a cluster 
and a specified point at the center of the cluster and can be considered faster than other clustering 
methods [26]. The silhouette method measures the consistency of each cluster by comparing the 
similarity of an object to its cluster, compared to the remaining clusters of the group [27]. 
Silhouette score ranges from -1 to +1, with high values indicating a better fit of the object to its 
predefined cluster.  

Initially, the time series (events) of each water appliance are extracted from the dataset, pre-
processed to remove potentially faulty sensor measurements, and normalized to avoid scale 
differences. A similarity matrix for each group of events is obtained using DTW followed by k-
Medoids clustering. The “Silhouette index” is used to define the number of clusters per fixture and 
the prototype signature is generated using a similarity search technique. 

Each event time-series 𝑆𝑆𝑡𝑡 = {𝑆𝑆1, . . , 𝑆𝑆𝑛𝑛} comprised of n flow data points, is normalized to have a 
zero mean and standard deviation of one, thus being invariant to scale and offset, as follows: 

 

 �̃�𝑆𝑡𝑡(𝑡𝑡) =
𝑆𝑆𝑡𝑡(𝑡𝑡) −𝑚𝑚

𝜎𝜎
 (1) 

 

where the arithmetic mean 𝑚𝑚 is given by: 

 𝑚𝑚 =
∑ 𝑆𝑆𝑡𝑡𝑛𝑛
𝑡𝑡=1
𝑛𝑛

 (2) 

 

and the standard deviation is given by: 

 𝜎𝜎 = �∑ (𝑆𝑆𝑡𝑡 − 𝑚𝑚)𝑛𝑛
𝑡𝑡=1

2

𝑛𝑛
 (3) 

The similarities between the time series of each group of events are calculated using the DTW 
method, resulting in the similarity matrix M of size AxA, where A the number of events per water-
end use category, and the matrix elements are calculated as follows: 

 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑊𝑊(�̃�𝑆𝑖𝑖, �̃�𝑆𝑖𝑖) (4) 

where function 𝑊𝑊(⋅) calculates the distance between points of two time-series, using the DTW 
method. DTW is a methodology to measure the shape similarity between two time-series with 
different lengths. DTW wraps the time axis to align the data points and calculates the optimal 
alignment between two time-series according to the following equation: 
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𝑊𝑊(𝑖𝑖, 𝑗𝑗) = 𝑤𝑤(𝑖𝑖, 𝑗𝑗) + 𝑚𝑚𝑖𝑖𝑛𝑛{𝑊𝑊(𝑖𝑖 − 1, 𝑗𝑗),𝑊𝑊(𝑖𝑖 − 1, 𝑗𝑗 − 1),𝑊𝑊(𝑖𝑖, 𝑗𝑗 − 1)} (5) 

where 𝑠𝑠 = {𝑠𝑠1, . . , 𝑠𝑠𝑖𝑖, . . , 𝑠𝑠𝑚𝑚} and 𝑡𝑡 = �𝑡𝑡1, . . , 𝑡𝑡𝑖𝑖, . . , 𝑡𝑡𝑛𝑛� are the two time series with m and n data 
points, respectively. Distance metric w is given by 𝑤𝑤(𝑖𝑖, 𝑗𝑗) = |𝑠𝑠𝑖𝑖 − 𝑡𝑡𝑖𝑖| with the possible 
combinations limited to (𝑖𝑖 − 1, 𝑗𝑗), (𝑖𝑖 − 1, 𝑗𝑗 − 1), (𝑖𝑖, 𝑗𝑗 − 1). The accumulated DTW distance 𝑊𝑊(𝑚𝑚, 𝑛𝑛) 
is considered the optimal alignment between the two time-series, with initial condition 𝑊𝑊(1,1) =
𝑤𝑤(1,1).  

Following, the time series of each water fixture are grouped into clusters based on their similarity 
using the k-medoids clustering approach. Since the k-medoids method requires the number of 
clusters to be defined prior to clustering, the process can be carried out for a given range of 
clusters (e.g., 2-10 clusters). In order to define the appropriate number of clusters per water 
fixture, an evaluation method was simultaneously applied using the “Silhouette index”.  

The last step includes the extraction of the most representative signature of each cluster according 
to the DTW similarity results [28]. The time series with the lowest total dissimilarity 𝑀𝑀𝑥𝑥𝑥𝑥 is 
extracted as the main signature: 

𝑑𝑑𝑛𝑛(𝑆𝑆𝑥𝑥) = �
∑ 𝑀𝑀𝑥𝑥𝑥𝑥𝑥𝑥∈𝐶𝐶𝑛𝑛

𝑇𝑇𝐶𝐶𝑛𝑛
� , 𝐷𝐷𝑛𝑛 = min(𝑑𝑑𝑛𝑛) (6) 

where: 

 𝑀𝑀𝑥𝑥𝑥𝑥 : 𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠𝑖𝑖𝑚𝑚 𝑏𝑏𝑏𝑏𝑤𝑤𝑡𝑡𝑏𝑏𝑏𝑏𝑛𝑛 𝑡𝑡𝑖𝑖𝑚𝑚𝑏𝑏 𝑠𝑠𝑏𝑏𝑠𝑠𝑖𝑖𝑏𝑏𝑠𝑠 𝑆𝑆𝑥𝑥  𝑠𝑠𝑛𝑛𝑑𝑑 𝑆𝑆𝑥𝑥 𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑛𝑛𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 𝑡𝑡𝑏𝑏 𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝑏𝑏𝑠𝑠 𝐶𝐶𝑛𝑛 

𝑇𝑇𝐶𝐶𝑛𝑛 :𝑛𝑛𝑐𝑐𝑚𝑚𝑏𝑏𝑏𝑏𝑠𝑠 𝑏𝑏𝑜𝑜 𝑡𝑡𝑖𝑖𝑚𝑚𝑏𝑏 𝑠𝑠𝑏𝑏𝑠𝑠𝑖𝑖𝑏𝑏𝑠𝑠 𝑖𝑖𝑛𝑛 𝑏𝑏𝑠𝑠𝑐𝑐ℎ 𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝑏𝑏𝑠𝑠 𝐶𝐶𝑛𝑛  

𝑛𝑛 :𝑛𝑛𝑐𝑐𝑚𝑚𝑏𝑏𝑏𝑏𝑠𝑠 𝑏𝑏𝑜𝑜 𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝑏𝑏𝑠𝑠𝑠𝑠  

The extracted signature from each water end-use category can be eventually smoothened using 
polynomial fitting to remove measurement noise caused by the sensor and then stored in the data 
model. To illustrate the approach, we utilize a water-use dataset collected from a single-family 
household in Cyprus, in which water consumption was recorded with a 1-second resolution, and 
the data were labeled as toilet, shower, faucet, clothes washer, and dishwasher. Figure 1 shows 
the signatures extracted from each cluster of the shower category.  

 

 
Figure 1: Signature patterns for shower water end-use 

2.3 Datasets 

Two synthetic datasets with a duration of 45 and 15 days respectively and 1s resolution were 
produced from the data model considering the following water end-uses: standard toilet, standard 
shower, standard faucet, high-efficiency clothes washer, and standard dishwasher. The 45-day 
dataset serves as the training set and the 15-day as the testing set. The training set is used to 
identify potential usage characteristics for each water end-use category and the testing set to 
evaluate the performance of the classification model described in the next section. 
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3 CLASSIFICATION METHODOLOGY 

The water end-use classification procedure consists of two main stages. 

1. In the first stage, namely the offline feature learning stage, the training dataset consisting 
of labeled data corresponding to water end-use signals is analyzed to extract the statistical 
properties of some predefined features including event duration, event volume, event flow 
peak, and event signature.  

2. The event classification stage monitors the provided measurement time series from the test 
set for events between zero-flow intervals followed by the single and overlapping event 
classification. The classification of water end-use event relies on the DTW approach and 
an optimization procedure that uses similarity indices and statistical bounds extracted 
from the features learned in the first stage. Classification of events with an intermittent 
flow such as Dishwashers (DW) and Clothes washers (CW) are further processed 
considering a time window in the time series analysis that includes the device cycle in its 
entirety. 

3.1 Offline Feature Learning Stage  

This stage assumes the availability of inflow data of a residential household labeled according to 
which appliance is operating. In our case, the training dataset extracted from the data model is 
analyzed. The algorithm first creates event sets from labeled data by acquiring the observed time-
series data with event labels and separating events, creating the set of events 𝐸𝐸. The events with 
the same label 𝑠𝑠 are then gathered, creating the subsets of events 𝐸𝐸𝑙𝑙 ⊂ 𝐸𝐸. The features of event 
duration, event volume, and event flow peak were extracted. The next step includes the calculation 
of the 99% confidence intervals of each feature from each water end-use. The statistical analysis 
showed that sets of data have a skewed distribution, thus the proposed confidence intervals were 
obtained by filtering out the 1% most distant data points. This was achieved by calculating the 
absolute distance between each data point and the arithmetic mean of the dataset. We considered 
that only the generated training dataset is available for the classification model and not all the 
data that is stored in the data model.  

3.2 Event Classification Stage 

Overview of the event classification process  

This stage distinguishes individual events in the time-series by filtering out data points separated 
by a zero-flow time interval. The event classification process is applied on the extracted events 
and consists of the single event classification and the combined event disaggregation and 
categorization. A combined event includes two or more single events with overlapping operations. 
Single event classification is performed using a hybrid approach that includes DTW algorithm and 
criteria based on similarity indices using statistical bounds extracted from the features at the 
previous stage. Following, the combined event disaggregation takes place using initially a filtering 
method to split the combined event into sub-events which are then processed through the single 
event classification procedure. Besides the difficulty in identifying both single and overlapping 
events another two obstacles that were identified during the process are: 

• DW and CW devices have a working cycle that exhibits intermittent flow. Classification of 
such events was performed using a sliding time window of measurements.  

• The existence of single events with a varying flow rate that occurs in rare circumstances 
can be easily misclassified as combined events. To overcome this problem, a filtered 
variation vector technique is applied in the combined event classification procedure to 
identify these events. 

The overall classification process is presented in Figure 2. 
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Figure 2: Water end-use event classification process 

Single event classification 

The proposed single event classification relies mostly on pattern recognition through DTW. 
Initially, the investigated events and labeled signatures are normalized as described in equation 
1. The first task is the detection of potential time windows inside the dataset with the operation 
of intermittent flow devices such as DW and CW. This is achieved by applying DTW between a 
sliding time window with a length equal to the full cycle of operation of the selected appliance and 
its corresponding labeled signatures. From the Cyprus case study pilot, in Figure 3a, the signature 
of a DW full-cycle operation is presented with a duration of 2793 seconds which corresponds to 
the time window used for the classification. Bounds of maximum flow criteria are also applied in 
this task to avoid misclassification of DW or CW time windows.  

Following, DTW is applied in all events and distinguishes them into the following categories: toilet, 
shower, and faucet. Classification of WM and CW single events from their full cycle of operation is 
performed only within the time windows specified previously. In this case, the labeled signatures 
of WM and CW devices are broken down forming smaller sub-patterns (Figure 3b). A similarity 
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matrix is created between the investigated event and the available labeled signatures stored in 
the database. Events with signature similarity above a specific threshold are then labeled. 
Simultaneously, a screening procedure is performed utilizing the minimum and maximum bounds 
obtained from features extracted from the training dataset (volume, duration, and peak flow). Any 
events not complying with the criteria defined through the DTW and the water end-use feature’s 
statistical analysis are marked as unclassified.  

 
Figure 3: a) Signature of Dishwasher’s full operation cycle b) Sub-single events within the Dishwasher’s main 

signature 

Unclassified events are then categorized into unclassified single and combined events. The 
categorization is performed using a filtering technique that detects flow rate changes within an 
event that exists at a specific threshold. Changes in the flow rates of an event are a good indication 
that another water-end use event has either been started or completed. The elements of the 
calculated vector are the differences between adjacent data points within an event, calculated as: 

𝑣𝑣𝑖𝑖 = 𝑜𝑜𝑖𝑖+1 − 𝑜𝑜𝑖𝑖, 1 ≤ 𝑖𝑖 < 𝑛𝑛  (7) 

 

Where 𝑜𝑜 = (𝑜𝑜1,𝑜𝑜2, . . , 𝑜𝑜𝑖𝑖, . . ,𝑜𝑜𝑛𝑛) the event flow rate points with a duration of n seconds and 𝑣𝑣 =
(𝑣𝑣1,𝑣𝑣2, . . , 𝑣𝑣𝑖𝑖, . . , 𝑣𝑣𝑛𝑛−1) the extracted vector. A threshold is then specified to neglect fluctuations 
within the vector that do not correspond to the use of a new water appliance. A range of thresholds 
calculated based on the variation between the maximum flows of labeled events from the training 
dataset were evaluated and the value of 0.01 L/sec was selected as it achieved the highest 
accuracy. Unclassified single events are selected as the events which exhibit no fluctuations in the 
extracted filtered variation vector. The initial and final phases of the filtered vector are ignored 
since they mark the starting and ending of the event (Figure 4). 

The main DTW classification methodology is applied again without using statistical bounds to 
categorize the unclassified single events. The remaining unlabeled events are considered as 
combined events and their classification follows in the next step. 
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Figure 4: a) Combined event as extracted from the dataset, b) Filtered variation vector of the combined event, 

c) Sub-events extracted from the original event 

Combined event classification 

The combined event classification consists of two main tasks, the disaggregation of the combined 
event into single events and their classification following the approach described previously. 
Overlapping between events can be expressed in two different categories. The first category 
includes events overlapping with one sub-event a) starting and finishing before one or more other 
sub-events and b) starting and finishing after one or more other sub-events. The second category 
includes sub-events that start and finish within other sub-events. 

The first step is the disaggregation of events belonging to the first category. This task is performed 
using an approach presented in [29], where the last flow-rate drop that corresponds to the 
finishing time of a combined event is compared to the last flow rate rise. If their difference is below 
a predefined threshold (a value of 0.005 L/sec resulted in the highest accuracy between a range 
of thresholds) then it is considered that a single sub-event occurred in the last phase of the 
combined event. The same principle applies to the starting phase. The sub-event is extracted from 
the initial combined event and the algorithm calculates its flow rate for the period that it was 
overlapping with other events. This is achieved by calculating the median flow rate during the 
period when only the targeted sub-event was active. An example is shown in Figure 4 with a sub-
event starting and ending before the second sub-event. The remaining sub-event is evaluated 
again using the filtered variation vector approach and categorized as a single or combined event. 
If identified as a combined event, then it is included in the second category and processed as 
follows. 

The second step includes the disaggregation of combined events included in the second category 
using the filtered variation vector defined previously. In this case, the algorithm searches within 
the filtered vector to identify the positions where a zero value is followed by a positive value and 
the positions where a negative value is followed by a zero value. These positions indicate the 
beginning and finishing of a sub-event within the combined event. The first “starting” position is 
matched with the first “finishing” position and the sub-event is separated from the base combined 
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event. Events included in this category that do not meet these conditions (including at least one 
“starting” and “finishing” point) but they do present considerable fluctuations in their flow rate, 
are considered as single events and are then processed to the single event classification procedure 
with the use only of the DTW method. With this technique, single events with a varying flow rate 
that can be presented in real datasets (Figure 5), can be distiguinshed from combined events.  

In the third step, the classification of the sub-events and the left-over (the remaining event after 
the separation process) base combined event extracted from the two previous steps takes place 
using the single event classification. Any events not classified are processed again through the 
combined event classification procedure.  

 
Figure 5: Example of a single event initially misclassified as a combined event. a) Original event as extracted 

from the dataset, b) Filtered variation vector of the event 

4 RESULTS  

Evaluation metrics 

The macro f1-Score [30], a widely accepted metric that takes into consideration both the 
algorithm’s precision and recall, is used: 

Macro f1-score =
2 × 𝑝𝑝𝑠𝑠𝑏𝑏𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑏𝑏𝑛𝑛 × 𝑠𝑠𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑠𝑠𝑏𝑏𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑏𝑏𝑛𝑛 + 𝑠𝑠𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠

 (8) 

 

Precision indicates the percentage of true positive indices among the total number of positive 
indices classified by the model: 

𝑝𝑝𝑠𝑠𝑏𝑏𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑏𝑏𝑛𝑛 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (9) 

and recall measures the amount of correctly labeled positive cases among the total number of 
positive cases: 
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𝑠𝑠𝑏𝑏𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (10) 

 

TP, TN, FP, FN correspond to the number of true positives, true negative, false positive, and false 
negative events. The combination of the model’s precision and recall makes F1-score less sensitive 
to imbalance classification scenarios and reaches its best value at 1 and worst score at 0. Testing 
accuracy is presented in terms of the number of events and consumption volume. 

A confusion matrix is used to visually present the algorithm’s performance by illustrating the 
number of correctly predicted events against the actual number of events. 

Confidence intervals 

The 99% confidence intervals were calculated from the statistical analysis of the three predefined 
features extracted from the training set (Table 1). For the DW and CW devices, the statistical 
analysis refers to the sub-single events that comprise a full cycle of operation. Toilet, faucet, and 
CW events have similar event characteristics, specifically for consumption duration and peak flow. 
Similarly, the calculated event volume bounds are identical as well, although CW can generate 
lower volume events than toilets and faucets. On the other hand, shower and DW events have 
more distinctive characteristics than the other categories which play a significant role in the 
classification process. Shower events have a longer duration, larger consumption volume, and a 
maximum flow higher than other categories. DW operation on the other side results in small 
events with low consumption and the lowest peak flow that can easily be distinguished from other 
appliances. 

Table 1: 99% confidence intervals obtained for the water end-use features: volume, duration, peak flow  

 Toilet Shower Faucet CW DW 

Duration (s) 10-190 90-880 10-170 1-139 1-85 

Volume (L) 0.66-9 13-90 0.43-10 0.03-11.85 0.002-2.22 

Peak flow (L/s) 0.04-0.10 0.09-0.15 0.02-0.11 0.06-0.13 0.004-0.03 
 

Classification results 

The test set comprised of 1323 single and 22 combined events for a period of 15 days. The 
proposed approach has shown high accuracy (99%) in distinguishing the single events from the 
set of events while a lower F1-score of 69% was achieved for the combined event categorization 
although 77% of the combined events were correctly classified (Table 2). This is explained due to 
the existence of single events with a varying flow rate which were misclassified as combined 
events thus reducing the algorithm’s precision. The calibration of the data model, which includes 
a large database of volume and duration features with regional water-end use signatures resulted 
in the development of a realistic dataset that included a few events with non-uniform 
consumption patterns. It was decided to keep these events in the dataset since they can indeed be 
presented in real conditions. An example is presented in Figure 5, showing a faucet event with an 
irregular flow trace. Although this event is considered rare, it is very realistic since it can be 
presented during the use of a single faucet (e.g during plate washing).  
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Table 2: Accuracy results in distinguishing single and combined events 

 Single Events Combined Events 

Recall (%) 99.2 77.3 

Precision (%) 99.6 63.0 

Macro f1-score (%) 99.4 69.4 
 

Single events 

Table 3 presents the results from the classification of single events in terms of the number of 
events and event volume. Scoring ranges from 83% to 98% in terms of the number of events and 
84% to 99% in terms of volume. Single event classification precision is also presented through the 
confusion matrix (Figure 6) among the percentage of misclassified events per category. 

Toilet: The model demonstrates an accuracy of 84% in classifying toilet events with 87% of the 
total toilet events being identified. In terms of volume, we notice a total score of 90% with 
approximately 91% of the total water volume consumed to be correctly calculated. Toilet events 
were mainly distinguished from the rest of the events due to their fixed mechanical 
operation/signature which was identified by the DTW algorithm. A few toilet events were 
misclassified with faucet events as presented in the confusion matrix due to similarity between 
their usage characteristics.  

Shower: The highest recall score in terms of the number of events and volume was achieved for 
the shower appliance (100%) mainly due to its distinctive consumption volume, duration, and 
pattern characteristics. This score indicates that all shower events were correctly classified. The 
precision regarding the number of events, in this case, is lower (77%) though due to 
misclassification with faucet events. This occurs due to the presence of a small number of shower 
events with a short duration. This misclassification is not considered a limitation since the 
algorithm precision in terms of volume is considerably high (91%). The overall score for this 
category reaches 87% and 95% accuracy in terms of the number of events and volume, 
respectively. 

Faucet: An 83% accuracy was achieved for faucet event classification with an 81% recall score 
regarding the total number of classified faucet events and 79% recall score for their 
corresponding volume. The lower score in terms of volume is explained by the misclassification 
of some single events as combined. As previously explained, a small number of single faucet events 
were misclassified as combined events due to their flow trace variation. Although in small 
number, these events had a considerably larger volume than typical faucet events which explained 
the variation between the two scoring categories.  

Clothes washer: The model has also been able to correctly classify most of the CW events with 
91% accuracy. The few misclassified events were confused with faucet events. The high score 
indicates the effectiveness of applying a sliding window to detect the full operation cycle of 
intermittent flow devices.  

Dishwasher: Regarding the DW category, the model demonstrates the highest accuracy for both 
scoring categories (98-99%). Approximately all DW events were identified with the 
corresponding algorithm precision reaching 100%. The distinctive usage characteristics of DW 
events obtained from the statistical analysis along with the application of DTW using sliding 
windows proved to be highly efficient in detecting such events. 
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Table 3: Single event classification accuracy in terms of number of events and volume 

Number of events / 
Volume Toilet Shower Faucet CW DW 

Recall (%) 86.7/91.4 100/100 81.4/78.7 91.3/91.0 95.7/98.7 

Precision (%) 81.6/88.6 76.9/91.1 85.3/90.4 90.1/90.5 100/100 

Macro f1-score (%) 84.1/90.0 87.0/95.3 83.3/84.2 90.7/90.8 97.8/99.4 
 

 
Figure 6: Confusion matrix for single event classification precision (number of events) 

Combined events 

As stated in Table 2, the algorithm correctly identified 17 out of 22 combined events (recall of 
77%) using the proposed approach. The following approach consisting of the separation process 
and the classification of the extracted sub-events demonstrated an accuracy of 70%. Filtering out 
single events within combined events, which can be occurring completely at the same time or 
starting and finishing at the same time is considered a challenging task that needs to be further 
investigated. The extraction of sub-events under these circumstances is not always accurate, and 
the imbalance between the number of sub-events and single events can explain the lower 
classification score. Further improvements can be considered in the separation process to reach 
a higher precision of combined event separation and classification. 

5 CONCLUSIONS AND FUTURE WORK 

In this work, we initially presented an approach of extracting water end-use signatures from a 
limited real labeled dataset to calibrate our data model on regional water usage characteristics 
and resolution. The developed data model gives us the ability to use an existing large database of 
water end-use features from STREaM including event duration, volume, and number of events per 
day, and produce synthetic time series of events with regional consumption patterns. The method 
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requires a small number of real labeled data from the target region. Following, a water end-use 
classification procedure is presented considering non-intrusive monitoring. The developed 
approach addresses the main difficulties of this challenging problem such as identifying 
overlapping events, devices with intermittent flow, and single events which exhibit a non-uniform 
consumption pattern. In the proposed hybrid approach, we use sliding windows, DTW, and 
confidence intervals to identify active water end-uses with accuracy ranging between 84-99% for 
single events and 70% for combined events. The main difficulties encountered were the 
identification of single events with varying flow rates and the accurate separation of combined 
events into sub-singe events. As shown in the results, the accurate extraction of single events from 
a combined event is crucial during the classification process. The applicability of this approach is 
further suggested to be tested in large real datasets from regions with different water usage 
characteristics considering also the presence of leakages. 
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