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Abstract: Studies have investigated heavy metal (HM) contamination in the Bohai Sea, but primarily
in seawater and associated sediments, or in single rivers. For the first time, 31 major rivers discharging
into the Bohai Sea were analyzed, along with 27 uniformly distributed coastal seawater samples and
selected invertebrates. The elements measured were As, Cd, Cr, Cu, Ni, Pb, V, and Zn. We calculated
the ‘geo-accumulation index’, the ‘metal enrichment factor’, and the ‘contamination factor’, coupled
with the ‘pollution load index’, and our findings suggested low-grade HM pollution, although two
conspicuous associations of elements were found to stand out in particular: One is a combination of
As, Cu, Cr, and V in seawater samples that may indicate pollution from intensive ship traffic. The
other shows a significant pattern of Cr, Pb, and Zn in water samples from rivers discharging between
Yantai and Weihai on the Shandong Peninsula at the south edge of the Bohai Sea. This is primarily
a farming area, with a moderate share of industrial enterprises. Investigations including fertilizers
and pesticides point to agricultural practices and textile printing/chrome tanneries as the causes of
contamination. Overall, a significant decline was found in the HM load in the rivers, apart from those
discharging into the Yellow Sea section.

Keywords: Bohai Sea; heavy metal pollution; river discharge; risk assessment; fertilizers; pesticides

1. Introduction

The Bohai Sea lies in a semi-enclosed bay in Northern China, off the northwest Pacific.
Major rivers bring abundant nutrients into the sea, making this region a natural spawning
and feeding ground for fish [1]. However, considerable amounts of wastewater and
pollutants like heavy metals, plastic waste, and fertilizers are also discharged into the bay.
As more and more industrial companies have been set up in the regions around Bohai Bay
in recent years, it has become one of the most polluted marine areas in China. According to
the current general understanding, the main suppliers of trace metals found in the waters
of the Bohai Sea, aside from atmospheric inputs and biodegradation, are the discharging
rivers, while other pathways have relatively little impact [2]. It is estimated that the marine-
based pollution has contributed about 20%, while the effect of land activities accounts
for 80% [1]. According to a press release in 2015, nearly 2.8 billion tonnes of sewage and
700,000 tonnes of solid waste are spewed into the bay every year, and its pollution accounts
for almost half of the total discharged into the country’s offshore waters [3]. Moreover,
there is heavy ship traffic throughout the year, and the Liao and Shuangtaizi Rivers carry
significant loads of crude oil that is pumped extensively north of Liaodong Bay. In this
context, three major oil spills occurred in the Bohai Sea from 2005 to 2011 [4]. All of this
has negatively impacted the sustainable development of the Bohai Sea, and this threat
continues into the future.

Water 2024, 16, 982. https://doi.org/10.3390/w16070982 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16070982
https://doi.org/10.3390/w16070982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4430-4201
https://doi.org/10.3390/w16070982
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16070982?type=check_update&version=1


Water 2024, 16, 982 2 of 17

In recent years, a number of authors have investigated heavy metal contamination in
and around the Bohai Sea. Gao and Chen [5] analyzed six HMs in sea and river sediments at
42 stations, finding obvious anthropogenic influences, albeit relatively low as compared to
other marine coastal areas. Investigations of surface sediments in Liaodong Bay indicated
that Cu, Pb, Ni, and As pose environmental risks to the area, at low-to-medium priority [6].
Pb and As were mainly attributed to anthropogenic sources, and all other HMs were
attributed to parent rocks. Li et al. [7] summarized the advancement in sediment metal
pollution studies in China, finding the contamination status to be serious in coastal areas,
with Liaodong Bay as the worst, followed by Bohai Bay, Laizhou Bay, and the central basin
of the Bohai Sea. Kuang et al. [8] investigated the HM contamination in water bodies and
riverbed sediments in the flood and dry seasons along the Yang River. All concentrations
were found to be low and less than the threshold values, whereby the moderate pollution
downstream was much higher than in the upstream. A further review article was presented,
investigating 3171 sediment samples for eight major HMs, indicating a slight increase in
concentrations between 1980 and 2017 [9]. Generally, higher concentrations were measured
in Bohai Bay and the central Bohai Sea. Ding et al. [10] researched the spatial distribution
and risk assessment of HMs in surface sediments along the Hebei coast. They found that
most measured concentrations met China’s marine sediment quality criteria. However, a few
stations showed moderate-to-strong pollution with Cd and Hg, and about 25% of all sites had
a high ecological risk even at those lower concentrations. From the decrease in concentrations
from near-shore to offshore, they deduced strong influences by anthropogenic activities. Han
et al. [11] analyzed the concentrations of six common HMs in surface sea water and sediments
along the Tianjin coastal region. They ascertained Cu to be high in the surface seawater, and
Cd was identified as the main contaminating metal in the sediments.

Zhang et al. [12] investigated the spatial and temporal distribution trends and risk
assessment of HMs in the Bohai Sea’s waters from 2013 to 2017. From the eight common
HMs, Pb was found to be the main pollution factor, while Hg and Cd were the main
potential ecological risk factors due to their high toxicity. Li et al. [13] researched the
occurrence and risk of HMs in the Liao River protected area and found moderate pollution
for all common HMs, with increased background values of 25–50% in water and sediments.
Gao et al. [2] provided a comprehensive review paper with recordings of a broad spectrum
of HM concentrations in seawater, sediments, and organisms from a variety of authors.
In summary, they found very high metal concentrations in the western Bohai Bay and
the northern Liaodong Bay, especially on the coast near Huludao, which is polluted by
industrial sewage from the surrounding areas. Liang et al. [14] investigated the flux and
source–sink relationship of HMs and As from 12 sampling sites and water samples from
37 rivers across the Bohai Sea and the north Yellow Sea, concentrating on atmospheric
deposition and riverine discharge. It was determined that the atmosphere is the main
pathway for Pb, whereas riverine discharge dominates the input of Cr, Cu, Zn, Cd, and
As into the marine environment. Thereby, Liaodong Bay is assumed to be a sink for HMs,
while Bohai Bay and Laizhou Bay act as sources. Seasonal and spatial variations in the
HMs in surface seawater and six rivers of Liaodong Bay were recently investigated by Guo
et al. [15]. The pollution factor of HMs was in the order Pb > Zn > Cu > Cd, where the
total degree was relatively high in summer and autumn after the rainy season and lower in
winter and spring.

In 2018, the northern Chinese port city of Tianjin unveiled a three-year action plan
(2018–2020) to curb pollution in the Bohai Sea. A document released by China’s Ministry of
Ecology and Environment mandates that measures are taken to ensure that about 73 percent
of Bohai Sea’s coastal waters are fit for human contact in 2020. According to reports, the
government has addressed issues with factories, agriculture, urban runoff, and ship traffic,
and has targeted its campaign primarily on outflows and rivers as one of the main delivery
routes of the pollution. These facts, along with several previous reports on the extent
of pollution, with some rather contradictory results, prompted these investigations. Our
primary objective was to determine the extent, distribution, and potential sources of HM
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contamination in all streams flowing into the Bohai Rim, and to ascertain how the situation
has changed from previous years. For this purpose, for the first time, the loads of all
discharging rivers were analyzed almost simultaneously for HM contents and for element
associations that could be related to possible sources in their catchments. In this way, more
detailed insights into the extent and distribution of pollution throughout the Bohai Rim
were obtained. In support of this primary goal, further measurements were conducted
on river sediments, seawater in the respective estuaries, and also selected invertebrates,
so as to determine whether potential contaminants had already entered the food chain.
Finally, comparisons with previously recorded literature data allowed conclusions to be
drawn about changes over time, particularly after the ‘three-year plan’ came into effect.
The investigations carried out in this study focused for the first time on the simultaneous
acquisition and consecutive analysis of the HM contents of all major rivers discharging into
the Bohai Sea. The goal was to determine whether measures taken in recent years have been
successful in reducing the discharge of wastewater into rivers flowing into the Bohai Sea.

2. Study Area

The Bohai Sea is China’s largest coastal bay, subdivided into three major sections,
namely, Liaodong Bay in the north, Bohai Bay in the west, and Laizhou Bay in the south
(Figure 1). The Bohai Rim, with 66 harbors, is not only one of China’s most populous areas
but also a highly industrialized region, with manufacturing, fisheries, salt production, and
oil extraction. The sea has an average water depth of about 18 m, with a maximum of
about 80 m [16]. There are more than 40 rivers flowing into the Bohai Sea, among which
the Yellow River, Hai River, Luan River, Shuangtaizi River, and Liao River are the five main
ones. The average discharge of all of the rivers and streams is about 61.8 million m3/a [17].
The area investigated includes the entire Bohai Rim and the adjacent northern coast of the
Shandong Peninsula from Yantai to Weihai, a section that is assigned to the Yellow Sea.
This area, flanking the Bohai Strait, is characterized by industrial and agricultural activities
as well, and it is therefore closely linked to the Bohai Rim. All rivers examined and all
sampling points are depicted in Figure 1.
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dustrial pollution but also possible fertilizer and pesticide inputs of the farming com-
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investigated region. Sampling began in the southeast near the city of Weihai and ended at 
the city of Dalian in the north. The analyses of all samples were conducted directly after 
the field work. 

The sampling sites for river waters and sediments were chosen primarily to be lo-
cated close to the river’s mouth, so as to cover almost all possible inputs of industrial sites 
along the respective rivers but without the influence of the sea where they discharge. In 
other words, we took river samples from fresh water, not from brackish waters. Samples 
were located with GPS information and supplemented by the main industrial sites in 
their catchment area (Table S1). In parallel, we collected coastal seawater samples along 
the entire Bohai Rim to learn about the fluctuations in HM pollution from coastal indus-
try, as well as offshore sources like ship traffic and others. From each sampling site of the 
river and seawater samples, two liters of surface water was collected three times in 
deeply prewashed brown bottles, and wading sampling was executed according to the 
Chinese national standard (HJ/J 91-2002) [19]. The bottles were acidified with nitric acid 
(pH =  2), sealed after sampling, and delivered to the laboratory immediately after sam-

Figure 1. (a) Sketch map of the Bohai Sea. Sampling locations are indicated by numbers. Red
round dots mark sampling points for river water, partially in connection with sediment samples.
Rectangular blue dots denote seawater sampling spots. Yellow stars denote the breeding places of
analyzed invertebrates. Flow patterns according to Li et al. [18]. Red arrows = summer currents,
black arrows = winter currents, purple arrows = currents through summer and winter. (b,c) Scattered
oil slicks along the banks of the Liao River and floating on its surface.
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3. Materials and Methods
3.1. Sample Collection and Preparation

We collected water samples from all major discharging rivers (31), samples of river
sediments, invertebrates, and uniformly distributed coastal seawater samples (27) along the
entire Bohai Rim, including the aforementioned section of the Yellow Sea in the south. The
field investigations took place from 3 to 6 April 2019, to cover not only potential industrial
pollution but also possible fertilizer and pesticide inputs of the farming community, which
usually take place in early springtime. There was no precipitation for two weeks in the
entire area; thus, an overall balanced drainage could be expected for the investigated region.
Sampling began in the southeast near the city of Weihai and ended at the city of Dalian in
the north. The analyses of all samples were conducted directly after the field work.

The sampling sites for river waters and sediments were chosen primarily to be located
close to the river’s mouth, so as to cover almost all possible inputs of industrial sites
along the respective rivers but without the influence of the sea where they discharge. In
other words, we took river samples from fresh water, not from brackish waters. Samples
were located with GPS information and supplemented by the main industrial sites in
their catchment area (Table S1). In parallel, we collected coastal seawater samples along
the entire Bohai Rim to learn about the fluctuations in HM pollution from coastal indus-
try, as well as offshore sources like ship traffic and others. From each sampling site of
the river and seawater samples, two liters of surface water was collected three times in
deeply prewashed brown bottles, and wading sampling was executed according to the
Chinese national standard (HJ/J 91-2002) [19]. The bottles were acidified with nitric acid
(pH = 2), sealed after sampling, and delivered to the laboratory immediately after sampling.
In the laboratory, the river and seawater samples were analyzed using a NexION 350D
‘Inductively Coupled Plasma Mass Spectrometer’ (ICP-MS) (Perkin Elmer, Waltham, MA,
USA). Before the analyses, the instrument was carefully calibrated, and the calibration
solutions and samples were measured for the calculation of uncertainties. The ICP was
calibrated using appropriate Perkin Elmer Pe-Pure Spectroscopy-grade standards to ensure
accuracy. All samples were analyzed three times, and the average values were recorded
each time. Replicate analyses of the blank, standard, and samples were carried out to
achieve the highest level of precision (accuracy: 3% RSD). The water samples were filtered
(0.45 µm mesh) and diluted up to 10 times with HNO3 (1%, v/v) before analysis. We aimed
at quantification of the dissolved part of trace elements, excluding the suspended matter.
The elements analyzed in the river and seawater samples were arsenic (As), cadmium (Cd),
chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn).

Fluvial sediments were taken three times from several locations where fine-grained
clays and silt could be found (∼0.45 kg each). These were stored in polythene bags for
transport. The HM contents in the fluvial sediments were determined by X-ray fluorescence
(XRF) using a ‘NITON XL3t GOLDD+’ (Thermo Scientific, Waltham, MA, USA) analyzer
calibrated against certified standards (CRM) [20–22]. The handheld Niton XL3 analyzer has
excitation filters that can optimize analyzer’s sensitivity to various elements in different
matrices. It has three test modes: the mining mode, soil mode, and ‘test all’ mode. In
our case, the ‘test all’ mode obtained more stable values with 4 filters in the main range,
low range, high range, and light range, with a duration of 30 s each and 120 s in total.
The detection limits are provided in Table 1. As the concentrations of Cd, Cr, and V in
our samples were below the sensitivity of the measuring device, the elements analyzed
by dry weight were As, Cu, Ni, Pb, and Zn. The strong correlations between the XRF and
ICP-MS of these elements (As (0.868), Cu (0.999), Ni (0.903), Pb (0.996), and Zn (0.834)) showed
high detection accuracy with a 95% confidence interval [22,23]. All samples were naturally
air-dried in the laboratory to remove the diluting influence of moisture, and shell particles
were also removed. They were then ground in an agate mortar and passed through a 2 mm
mesh to remove the influence of large non-soil particles before the measurements. All samples
were subsequently measured six times in the laboratory, and the final results were averaged.
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Table 1. Detection limits of HMs for the NITON XRF device.

Elements As Cu Ni Pb Zn Cd Cr V

LOD of a typical soil matrix (ppm) 7 13 30 12 10 12 22 25

Additionally, we processed different types of invertebrates, such as sea snails and sea
cucumbers from several locations, to analyze the bioaccumulation of the respective trace
metals. The species (three each) were obtained from local fishermen working in aquaculture
near Qinhuangdao, Yingkou, and Weihai. The locations of the breeding sites are marked
in Figure 1. The transport and analysis procedures were conducted in accordance with
the Chinese national standard GB17378.3-2007 [24]. The digestions were performed in a
Multiwave PRO (Anton-Paar, Graz, Austria) microwave reaction system. Thereby, all soft
tissues were considered for the sea snails, and the whole body without the digestive tract
was considered for the sea cucumber. A homogenized sample (0.2 to 0.5 g) was transferred
into a PTFE (polytetrafluoroethylene) vessel after being smashed and sieved through a
0.45 µm mesh. Then, 8 mL of HNO3 was added to the vessel, and it was sealed in a graphite
heater at 100 ◦C for 60 min. Finally, the solutions were put into the Multiwave PRO again
for 5 min at an initial temperature of 80 ◦C, heated up in steps of 5 ◦C/min until 180 ◦C,
and then kept stable for 15 min. Finally, the nitric acid was removed from the acid-catching
meter and evaporated to a nearly dry condition. After cooling and washing, the sample
was moved to a volumetric flask and diluted to a final volume of 50 mL using ultrapure
water. Blank digestion was performed in the same way. Further detailed descriptions for
all analytical procedures concerning the pretreatment of sediments, and of both fluviatile
and seawater samples, can be found in the work of Zhou et al. [25]. The elements analyzed
in sea cucumbers and sea snails were As, Cd, Cr, Cu, Ni, Pb, V, and Zn.

3.2. Estimation of the Degree of Heavy Metal Pollution in Sediment Samples

To evaluate possible anthropogenic fractions of heavy metal contents in the sampled
fluvial sediments, widely accepted indices such as the ‘geo-accumulation index’ (Igeo), the
‘metal enrichment factor’ (EF), and the ‘contamination factor’ (CF) coupled with the ‘pollution
load index’ (PLI) were applied. Descriptions and formulae are provided in Table 2.

Table 2. Indices used for estimating grades of HM pollution and anthropogenic influences.

Indices Descriptions Equations References

Geo-accumulation index
(Igeo)

Uses the relation of measured values to
defined background values to rank the
intensity of HM pollution into seven classes.

Igeo = log2 (Cn/1.5 Bn)
where Cn = measured HM
concentration; Bn = geo-chemical
background.

[26]

Metal enrichment factor
(EF)

Normalizing the observed elements and their
background values based on an aluminum
(Al) standard, followed by a ratio procedure
to determine whether the pollution is of
natural origin or manmade.

EF = Xs/Als
Xb/Alb

Values between 0.5 and 1.5 refer
to natural sources, and those above
1.5 to human activities.

[27]

Contamination factor
(CF)

Ratioing the concentration of each metal in
the sediment samples by its background
value, without normalization. This is a
monitoring index of HM enrichment in the
sediments over a period of time.

CF = Cmetal
Cbackground

Results are scaled into four classes.
[28]

Pollution load index
(PLI)

Defined as the nth root of the multiplications
of the CF of metals, providing an evaluation
of the overall toxicity status of the
corresponding sample.

PLI = [CF1∗CF2∗CF3 . . . ∗CFn]
1
n

Values of 1 indicate a baseline level
of pollution; those above 1 indicate
progressive deterioration.

[29]
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The abovementioned indices require background values from natural, uncontaminated
sources for ratioing against Al values and index calculations (Table 3). We used values
of Entisols measured from soils derived from rock types dominating the entire Bohai
Rim [30]. Additional background values of Al needed for the EF approach only are not
included in the Entisols, so we had to revert to generalized values from China, published
by CNEMC-1990 [31].

Table 3. Background values (mg/kg) used to calculate the Igeo, EF, and CF indices.

As Cd Cr Cu Ni Pb Zn Al

CNEMC 1 7.3 0.071 44.0 24.4 23.1 47.5 86.1 97,100
Entisols 2 9.4 0.09 63.0 22.2 28.9 21.4 69.7 --

Notes: 1 CNEMC [31]. 2 Entisols [31]. Values in boldface were used for calculation. -- means the value is not
available.

There are no specific guidelines defined by the Chinese authorities for river waters or
river sediments. In this case, we utilized US-EPA values. Guidelines for river sediments are
given as TEC values by the US-EPA [32] (Table 4a). Those for seawater are separated into
two grades of suitability by GB 3097-1997 [33] (Table 4b). The guidelines for river waters
are provided in two different US-EPA criteria, the CCC and the CMC [34] (Table 4c). For
the HMs in the river waters, a ‘hazard quotient’ (HQ) was calculated referring to standard
US-EPA procedures [35]. Thereby, the HM concentrations were set in relation to reference
values provided by the US-EPA’s CCC guideline values [34]. A quotient less than or equal
to 1 indicates that the HM in question can be considered to have negligible impact. HQs
greater than 1 are a simple statement of whether an exposure concentration exceeds the
reference concentration. To classify the HM concentrations of sea cucumbers and sea snails,
the GB 18421-2001 guidelines for shellfish [36] were employed (Table 5).

Similarities in the patterns of distribution and strength of the measured heavy metals
may indicate possible common sources. Therefore, the ‘agglomerative hierarchical cluster-
ing’ (AHC) method was deployed to work out possible associations of elements in seawater
and river water samples [37]. The elements were grouped into clusters based on their
proximity to one another and calculated by Ward’s minimum variance method [38]. As the
elements were paired into binary clusters, the newly formed ones were grouped into larger
clusters until a hierarchical tree was formed.

Table 4. (a–c) Guideline values for HM concentrations in fluvial sediments, seawater, and river water.

a: Guideline Values (mg/kg) for HM Concentrations in Fluvial Sediments
1 US-EPA As Cd Cr Cu Ni Pb V Zn

TEC 9.79 0.99 43.4 31.6 22.7 35.8 -- 121

b: Guideline Values (µg/L) for Dissolved HM Concentrations in Seawater
2 GB 3097-1997 As Cd Cr Cu Ni Pb V Zn

Grade 1 20 1 50 5 5 1 29 * 20

Grade 2 30 5 100 10 10 5 -- 50

c: Guideline Values (µg/L) for Dissolved HM Concentrations in River Water
3 US-EPA As Cd Cr Cu Ni Pb V Zn

CCC 150 0.25 11 9 52 2.5 15 120

CMC 340 2 16 13 470 65 50 120

Notes: US-EPA, (2002) 1. TEC: Threshold effect concentrations below which harmful effects are unlikely to
occur. 2 GB 3097-1997 * Value from GB 11607-89 [39]. Grade 1: Suitable for marine fishery waters and marine
nature reserves. Grade 2: Suitable for aquaculture areas, sea bathing areas, and recreational areas. US-EPA [34] 3.
CCC (Criterion Continuous Concentration) is an estimate of the highest concentration of a material in surface
water to which an aquatic community can be exposed indefinitely without resulting in an unacceptable effect.
CMC (Criteria Maximum Concentration) is an estimate of the highest concentration of a material in surface water
to which an aquatic community can be exposed briefly without resulting in an unacceptable effect. -- means the
value is not available.
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Table 5. HM concentrations (mg/kg, wet weight) in sea cucumbers and sea snails compared to the
guidelines for shellfish.

1 GB 18421-2001 As Cd Cr Cu Ni Pb V Zn

Grade 1 1.0 0.2 0.5 10 -- 0.1 -- 20
Grade 2 5.0 2.0 2.0 25 2.0 50
Grade 3 8.0 5.0 6.0 50 -- 6.0 -- 100
Sea cucumber-Q 0.37 ± 0.04 0.05 ± 0.003 0.19 ± 0.02 1.41 ± 0.23 0.06 ± 0.003 0.05 ± 0.003 0.02 ± 0.001 2.70 ± 0.36
Sea snail-Q 13.91 ± 0.8 3.96 ± 0.49 0.33 ± 0.04 36.86 ± 2.61 0.18 ± 0.02 0.15 ± 0.01 0.05 ± 0.003 151.43± 8.53
Sea cucumber-W 1.05 ± 0.14 0.06 ± 0.003 0.28 ± 0.03 1.31 ± 0.21 0.20 ± 0.02 0.05 ± 0.003 0.08 ± 0.004 3.81 ± 0.41
Sea snail-W 8.15 ± 1.35 2.72 ± 0.36 0.41 ± 0.05 91.20 ± 6.56 0.55 ± 0.08 0.24 ± 0.007 0.06 ± 0.003 104.24 ± 7.37
Sea cucumber-Y 0.90 ± 0.11 0.28 ± 0.008 0.07 ± 0.004 1.16 ± 0.19 0.15 ± 0.01 0.03 ± 0.002 0.07 ± 0.004 5.84 ± 0.71

Notes: 1 GB 18421-2001. Grade 1: Suitable for marine fishery waters, marine aquaculture areas, nature reserves,
and industrial water areas directly related to human consumption. Grade 2: Suitable for general industrial water
areas. Grade 3: Suitable for port waters and marine development operation areas. Values exceeding grade 1 are
displayed in boldface. Values exceeding grade 2 are depicted in boldface and underlined. Values exceeding grade
3 are in boldface, underlined, and italicized. Q, W, and Y indicate the three locations near Qinhuangdao, Weihai,
and Yingkou (Figure 1) where the invertebrates had been bred in aquaculture. Measured concentrations are given
as the mean ± standard deviation. -- means the value is not available.

4. Results
4.1. River Sediments

The measured concentration ranges of the river sediments were 6.7–10.1 mg/kg for As,
25.9–47.2 mg/kg for Cu, 38.4–58.6 mg/kg for Ni, 17.6–40.6 mg/kg for Pb, and 33.0–249.4
mg/kg for Zn (Figure 2). The mean concentrations of As, Pb, and Zn met the US-EPA [32]
guidelines for fluvial sediments, apart from one outlier each measured for the Yuniao River
(10). Half of the Cu and all of the Ni samples exceeded the US-EPA guidelines by up to 20%
and 40%, respectively (Table 4a). In general, sediments from rivers draining into the Yellow
Sea section showed significantly higher HM values as compared to rivers discharging
into the Bohai Sea. Furthermore, the PLI was calculated and added to the figures of the
respective graphs (Figure 2).
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4.2. Seawater

The concentration ranges of heavy metals in littoral seawater were 8.43–13.5 µg/L for
As, 0.03–6.37 µg/L for Cd, 1.68–4.55 µg/L for Cr, 3.56–22.64 µg/L for Cu, 0.25–23.71 µg/L
for Ni, 0.15–7.20 µg/L for Pb, 4.59–7.48 µg/L for V, and 16.43–123.5 µg/L for Zn (Figure 3).
The results of the seawater samples express that Cu in particular does not meet the Chinese
GB 3097-1997 [33] grade 1 and 2 standards (Table 4b), exceeding both standards in nearly
all samples by a factor of 2 to 3. The Cd values exceeded grade 1 in some samples taken
between Yantai and Weihai (3, 7 and 14). Ni and Zn exceeded grade 1 of GB 3097-1997
in most samples [33]. Ni, Pb, and Zn further showed one to several significant outliers
in littoral seawater samples in Laizhou Bay and Bohai Bay (17, 29, 31). The values of Cr
were far below the grade 1 standards. The values for As and V were below the Chinese
grades 1 and 2 of GB 3097-1997 [33] but slightly increased in comparison to standard mean
concentrations in the world’s oceans (3–5 µg/L) [40,41].
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4.3. Invertebrates

For the selected invertebrates, the HM concentrations of As, Cd, Cr, Cu, Pb, and Zn
are displayed in comparison to the respective Chinese standards (GB 18421-2001) [36] in
Table 5. The sea cucumbers generally met the stricter grade 1 level for all HMs. For the sea
snail species, only Cr met the grade 1 level. Cd and Pb exceeded grade 2, while As, Cu,
and Zn exceeded even the grade 3 level. The sea snail species taken near Qinhuangdao
showed the highest values for Zn, As, Cd, Cu, and Pb, while the ones taken from seawater
near Weihai showed the order Cu, Zn, As, Cd, and Pb.

4.4. River Waters

The measured concentrations of the river waters were 0.17–12.5 µg/L for As,
0.03–1.25 µg/L for Cd, 1.80–58.77 µg/L for Cr, 0.04–22.9 1µg/L for Cu, 2.34–244.1 µg/L for
Ni, 0.20–12.77 µg/L for Pb, 0.30–9.22 µg/L for V, and 12.60–730.2 µg/L for Zn (Figure 4).
The analytical values of the river water samples showed a far less balanced distribution
as compared to the seawater samples. As, Ni, and V met the US-EPA guidelines [34] for
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the stricter CCC level (Table 4c), with only one outlier for Ni in the waters of the Hai River
(number 30 = 244.01 mg/kg). Increased values of Cd and Ni were found in the Yangting
River and a related sewer (5, 6). Cd, Pb, Cr, Cu, and Zn showed significantly increased
values for rivers discharging between Yantai and Weihai (1–15). The Cd and Pb values
remained below the moderate CMC guidelines, while the Cr, Cu, and Zn values exceeded
those criteria. The mean levels of the elements were somewhat comparable to those of
the seawater samples, but with significantly decreased values for some rivers, namely,
the Jialai, Yellow, and Liao, discharging into Laizhou Bay and Liaodong Bay. Cr, Cu, Pb,
Zn and, allusively, Cd depicted a similar distribution of HM concentrations, showing a
clear separation between rivers discharging into the Bohai Rim and those discharging into
the adjacent Yellow Sea section. In this context, it should be mentioned that the median
values of HMs of those rivers with the highest drainage capacity—namely, the Yellow River
(22, 23), Hai River (30), Luan River (37), Raoyang River (44, 45), and Liao River (46, 47),
sampled at several locations—showed by far the lowest values for all elements measured,
whereby the downstream values were expectably higher than the upstream values).
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5. Discussion
5.1. River Sediments

To assess the extent of the heavy metal contamination, three different indices were
calculated, namely, Igeo, EF, and CF. All of them displayed a comparable ranking of
values for the intensity of the pollution by the individual elements, in the following order:
Ni > Cu > Pb > As = Zn (Figure 5). According to the Igeo, the contamination with heavy
metals was balanced between classes 0 and 1, ranging from unpolluted to moderately
polluted. The lowest values were measured for As, Zn, and Pb; only Ni and (slightly)
Cu reached class 1. Concerning the results of the EF index, each heavy metal under
investigation exceeded the 1.5 barrier that separates the polluted from the non-polluted
level. The third index, the CF, ranked As and Zn as class 1 (low contamination) and Cu, Ni,
and Pb as moderate contaminants. The PLI, as based on the CF, depicted well-balanced
values between 0.75 and 1, thus indicating a baseline level of pollution. Only the Yuniao
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River (10) showed a value somewhat above 1, primarily due to increased values of Pb and
Zn. The slight tendency of increased values of Cu, Pb, and Zn for those rivers draining into
the Yellow Sea (2–15) was reflected more clearly in the river water samples. Comparing the
results of all indices, it can be stated that just a moderate surplus of the heavy metal contents
in the fluvial sediments around the Bohai Sea is not of natural origin but attributable to
human activities.
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5.2. Seawater

The readings of the seawater and river water samples were further subjected to AHC
analyses (Figure 6a,b), as the derived element associations can point to the respective
sources of the HMs. Considering the seawater samples, two major clusters emerged
(Figure 6a): One comprised As and V, with further associations to Cr and Cu. The second
cluster included Ni and Zn, along with Cd and Pb. Cu is a ubiquitous element that is used
for steel and alloy production as well as marine antifouling paints and is often naturally
contaminated with As. Furthermore, V, Ni, Cu, As, and Cr are the most abundant trace
metals in heavy fuel oils or crude oil, which are used to power large cargo ships [42]. Thus,
there is a direct release of Cu by the sides of cargo ships and an indirect contamination of
V > Ni > As > Cr via the atmosphere through the combustion of crude oils in the ships’
marine diesel engines [43]. Although cargo ships with open-loop scrubbers release less
HMs into the atmosphere, they flush even more of these elements directly into the seawater,
where the V and Ni values are proportional to the sulfur content of the fuels used [44].
Considering the heavy maritime traffic in the Bohai Sea, with a throughput of 4.47 million
TEU (twenty-foot equivalent standard container unit turnover volume) for the Tianjin Port
in the first quarter of 2021 [45], it can be imagined that the increased quantities of the
aforementioned heavy metals released into the bay’s waters originate not solely from the
local steel and alloy production, but also from ship traffic. On the other hand, Ni, as a main
component of crude oil, in our case, was not associated with the As, V, Cr, and Cu cluster
by using the AHC method, even though when the ratio of V to Ni is higher than 0.7 (in our
case, ~0.6) it is always considered to be influenced by shipping emissions [46].

The second cluster, the combination of Cd, Ni, Pb, and Zn, points to several processes,
especially battery production and alloy electroplating [26,47,48]. Excluding the values of
the seawater samples taken along the Yellow Sea section (1–16) from the AHC calculations,
a Cr, Zn, Ni cluster emerged, connected to Cd and Pb, similar to the results derived for
all river values. Only a few subtle outliers of these elements, found on the east coast of
Laizhou Bay (17, 18), in the entire Bohai Bay (25–31), and on the southeast coast of Liaodong
Bay (53–55), exceeded the SEPA grade 1 and 2 guidelines.

Comparing the measured HM values with the mean values collected by several
authors between 2003 and 2012, as compiled by Gao et al. [2], the Cr and Zn values were
largely unchanged, while Cd and Pb were substantially lower (by factors of three and five,
respectively), and the values for As and Cu were increased by a factor of four.
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5.3. Invertebrates

We further analyzed two types of invertebrates (sea snails and sea cucumbers from
aquaculture) to determine the extent to which HMs have reached the food chain. In particular,
the sea snails are a sentinel for trace metals, primarily due to their bioaccumulation and
biomagnification capacity [49]. They have limited mobility and uptake trace metals from the
seawater and the sediments. Although not of statistical relevance, the sea snails especially
were characterized by strongly excessive HM values, which coincided with the increased
concentrations of Cu and Zn found in all seawater samples. In relation to the specified
guidelines for shellfish, the HM load in sea cucumbers was far lower than that in sea snails,
probably due to the existence of more efficient detoxification/excretion mechanisms [50].
The highest concentrations in sea snails were found for Zn > As > Cu > Pb, followed by
Cd. A comparison of these HM concentrations with those of the seawater showed a good
agreement with regard to the increase in Cu, Pb, and Zn and the low Cr values. The
relatively high As concentrations in the sea snails were not reflected. A comparison of the
concentrations found in the sea snails with the corresponding river inputs at the Weihai
site (Yellow Sea section of the Bohai Rim) showed a good agreement for Cu, Zn, Pb, and
Cd, but As and Cr depicted controversial behavior. For the Qinhuangdao site, the Luan
River could be a source of the increased Zn values. Finally, it can be stated that compared
to the mean values measured for invertebrates during the years 1999–2008 [2], the values
of As, Cu, Ni, and Zn remained largely unchanged, while the contents of Cd, Cr, and Pb
are now significantly lower.

5.4. River Waters

One of the aims of our investigations was to determine whether the measures taken
by the respective authorities to contain river pollution have been effective. As there are no
simultaneous measurements of all rivers flowing into the Bohai Sea from previous years,
values from literature databases (China National Knowledge Infrastructure (CNKI)) for the
period 2010–2016 were used for comparison with our measurements [51]. The following
table compares the median values from the database with our measured median values,
excluding our samples taken between Yantai and Weihai (Table 6). Apart from an increase
in the As values and stagnating Ni values, all of the elements measured in this study
showed lower values than the cumulative median values recorded in previous years, by
a factor of around 2 to 3. From our perspective, it can therefore be concluded that the
measures of the 3-year initiative appear to have been successful.
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Table 6. Median values of HM concentrations (µg/L) measured in river waters inside the Bohai Rim
(19–57), accumulated from 2010–2016 and this study.

Element As Cd Cr Cu Ni Pb V Zn

CNKI 2010–2016 5 0.1 8 7 10 1 -- 50
This study (2019) 6.4 0.06 3.3 4.9 9.1 0.3 3.7 29

Note: -- means the value is not available.

A further goal was to identify potential sources responsible for the HM pollution by
the use of AHC calculations. Thereby, two significant clusters were found: As, Cu, V and
Cr, Zn, Pb, with close connections to Cd and Ni (Figure 6b). The cluster of As, Cu, and V
was also present in the seawater samples, but without Cr, and the values were generally
lower for rivers draining into the Bohai Sea in contrast to those discharging into the Yellow
Sea, indicating moderate pollution. There was a highly significant association of observable
patterns of As, Cu, and V concerning all rivers investigated. There were uniform increases
in concentrations for the rivers Wang (19) and Wei (21) discharging into Laizhou Bay, for
the rivers Zhangweixin (28) and Yongding (32) draining into Bohai Bay, and for the rivers
Liugu (40), Daliao (49), Daqing (50), Xiongyue (51), Fudu (52), Fuzhou (56), and Anzi (57)
discharging into Liaodong Bay. The patterns of As, Cu, and V were nearly identical and,
thus, strongly suggest a common origin. A comparable dissemination was not evident in
the seawater samples or in the river sediments. For the seawater samples, the heavy ship
traffic can be held co-responsible, while for the river water samples fossil fuel combustion
on land and industrial processes such as metal processing come into question (Table S1).
However, this is not a satisfactory explanation for the consistently uniform pattern of the
values of the three elements for all rivers, as there is certainly no homogeneous distribution
of the respective industries throughout the entire Bohai Rim. A further attempt to approach
this issue may be found in the natural environment. Areas with higher levels of As in China
are usually associated with naturally occurring Holocene sediments. These are located
north and south of the Bohai Sea [52], but not along the northwest coast of the bay. As is
usually associated with Cu contents, which may be another reasonable explanation for the
equal patterns, but also lacks a uniform distribution around the entire Bohai Rim.

A trigger for the moderately increased values of As, Cu, and V throughout the Bohai
Sea could be the Liao and Shuangtaizi Rivers (Figure 1a). In the north, they flow through
China’s third-largest oil field, with a multitude of pumping stations. Scattered oil slicks
attributable to the oil pumping can be seen along the banks of the Liao River and also
floating on its surface, ultimately entering Liaodong Bay (Figure 1b,c). Surprisingly, the
readings of the river water samples (44–47) and of the associated seawater sample (48), apart
from slightly elevated Cd and Pb values, showed only very low levels of HMs as compared
to the values of their neighboring locations. However, it is commonly agreed that As, Cu,
and V are included in the natural oil floating into the Bohai Sea. The question remains
where the oil ends up, and how and within what timespan it undergoes biochemical
degradation. Usually, As is filtered out by sediments on the sea floor, which keeps its
levels low. However, oil spills may clog up sediments on the ocean floor, preventing the
sediments from bonding with arsenic. Such a shutdown of the natural filtration system
could cause arsenic levels in seawater (and eventually in the Bohai Sea) to rise [41].

The values for the Cr, Pb, Zn cluster and the connected subcluster of Cd and Ni
were significantly increased for all rivers draining into the Yellow Sea, exceeding the
relevant guidelines (Figure 7). This metal combination clearly points to effluents from
textile printing, dyeing, and chrome tanning [53], which is consistent with the industries
located there (Table S1). However, as industrial companies are sparsely scattered in the
vicinity, the strength of pollution seems not to be explicable by their activity only. This
northern landscape of the Shandong Peninsula is largely characterized by huge farming
areas, primarily growing peanuts, maize, and wheat. As the area is drained by a large
number of rivers, we researched published data (Table 7) on the HM contents of pesticides
and fertilizers used in the region [54–57]. The data clearly indicated high amounts of
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Zn > Pb and moderate values of Cr > As for the pesticides used in this area. Fertilizers
deployed in the region showed a relation of Cr > Pb = Zn and additional contents of As.
The relatively high Zn contents in the river waters compared to Pb and Cr speak more
to farming practices as the source, since Zn accumulates only in small amounts during
textile printing and dyeing [53]. Cd and Ni showed a distinct increase in values for the
Yangting River and an associated sewer (5, 6), whereby its high Cd concentration was also
reflected by the nearby seawater samples 3 and 7. The same is true for the increased Cd
and Pb values of the Daliao (49) and Daqing (50) Rivers and the associated measurements
of seawater sample 48. Possible polluters could be companies that manufacture batteries in
the immediate vicinity of all three rivers (Table S1). The strength of pollution discharged
from the rivers along the northern coast of the Shandong Peninsula does not mix with the
pollution discharged from rivers into the Bohai Sea, as the current of the Bohai Sea here is
directed to the east, out of the bay [18].
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Table 7. HM concentrations (mg/kg) in pesticides and fertilizers routinely applied to agricultural
land on the Shandong Peninsula.

Chemical Substance Zn Pb Cr As

Pesticides
Herbicide 839.5 250.5 2.2 3.6
Aphids 753.0 11.6 23.3 6.0
Urea 3.9 7.5 3.4 0

Fertilizers
Organic 10.08 28.3 38.6 18.5
Diam.-hydrogen 29.69 15.8 33.2 22.7

Note: Values cited from [54–57].

To determine the degree of pollution and the associated adverse health effects intro-
duced by rivers to each individual bay in the Bohai Sea, HQs were calculated for all HMs in
river waters (Figure 8). The results clearly indicated that the HM load of rivers discharging
into the Yellow Sea section was significantly higher than in all of the other bays. Cr, Pb, and
Zn reached values between 2.5 and 3.5, and even Cd and Cu were at 1.5, indicating that
adverse effects are possible and moderate hazards are probable when exposed to the river
waters for a longer time. Rivers flowing into the southeast coast of Liaodong Bay were
the second most polluted. Rivers draining into Bohai Bay ranked third, followed by those
flowing into Laizhou Bay. The lowest values were found for those rivers flowing from the
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northwest coast into Liaodong Bay. Although the ranking is influenced by the number of
rivers per bay and their streamflow (Figures 1 and 8), these results are fully consistent with
the findings of other researchers in the past, e.g., with the extent of contamination of the
respective coastal sediments in the bay [7].
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6. Conclusions

The investigations carried out in this study focused for the first time on the simultane-
ous acquisition and consecutive analysis of the HM contents of all major rivers discharging
into the Bohai Sea. One goal was to determine whether measures taken in recent years
have been successful in reducing the discharge of wastewater into rivers flowing into
the Bohai Sea. In this context, it was found that, compared to previous studies, the HM
contamination in river waters has decreased for all measured elements, with As and Ni
remaining stable. Therefore, the HM values of the river water sediments indicate only
low-to-moderate pollution. Where seawater measurements are concerned, Cr and Zn are
unchanged, Cd and Pb have substantially lowered, and As and Cu have strongly increased.
HMs have also reached the food chain, where sea snails in particular contained excessive
values for As, Cu, and Zn. Furthermore, we learned more about the distribution of the
HM pollution across the individual bays in the Bohai Sea, and we succeeded in linking
characteristic HM element associations with local industrial and agricultural activities.

There are certainly constraints when analyzing HM pollution loads in river waters.
One problem is that the results can change abruptly within hours or even minutes if, for
example, an industrial company opens its floodgates for wastewater without prior notice
for a short period of time only. This is a problem that cannot be solved when sampling
flowing waters. Another issue may arise when concentrating on filtered water samples
only, as metals are partially insoluble in natural waters. Thus, in future studies, we will
additionally analyze the HM concentrations of the suspended particulate matter, although
a severe rating for the recommended guideline values is secured, as values are usually
provided for dissolved metals. In this context, it needs to be stated that the assessment
of pollution is based on given guidelines and so-called standards, which often fluctuate
strongly between the relevant authorized institutions in different countries. This study
did not focus primarily on the absolute HM concentrations measured but, rather, on
specific occurrences and relations of HM contamination between all analyzed river waters
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discharging into different locations. Therefore, the best way to improve the detection of
contamination levels in rivers is to carry out repeated measurements throughout the year.
Finding the optimal time (e.g., dry or rainy season) seems to be less of a problem, as the
respective element concentrations do not change significantly and the mutual concentration
ratios remain largely stable [15]. Considering that rivers contribute 80% of the pollution
of the Bohai Sea, the pollutants may come from different sources, such as stormwater [58].
Taking into account the results obtained in this study, regular random sample analyses of
river waters may be a promising complement to sediment analysis and for the support of
future pollution management in the Bohai Rim in general.
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