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Abstract

Operations of water distribution networks (WDNs) are monitored daily via installed data 
loggers, where the collated hydraulic data can be leveraged to improve the system’s 
operations over time, and to minimize total economic losses due to non-revenue water (NRW). 
In collaboration with Public Utility Board (PUB), Singapore’s National Water Agency, a 
practically novel model calibration approach using 24/7 monitoring flow and pressure data 
has been developed to facilitate PUB’s Smart Water Grid (SWG). The approach is developed as 
a generic integrated solution process to conduct a series of systematic analyses for daily WDN 
model calibration, namely: (1) estimating the system’s daily NRW contributions; (2) 
performing flow calibration that involves net demand consumption calibration, adjusting 
pumps operational configurations and localizing NRW sources when the system’s daily 
estimated NRW volume exceeds its assumed background volume; (3) performing energy 
calibration by rectifying possible drifting in monitored pressure head data and calibrating 
other physical properties which include, but not limited to, pipe roughness and valve settings, 
especially during peak-demand hours. The effectiveness of our proposed approach is 
subsequently tested on three WDN zones in Singapore, having a total pipe length of >100km, 
that comprises of atypical water usage patterns. The results of model calibration for one of 
three zones is presented in this paper. The key outcomes derived from the study are: (a) 
localized a reported leakage event by PUB to less than 100m; (b) calibrated the system’s flow 
balance, to less than 1% average mean absolute percentage error (MAPE), by first identifying 
and addressing the system’s billing data uncertainties, followed by localizing anomaly events 
that account for the total NRW volume estimated; and (c) calibrated the system’s pipe 
roughness values to improve the total energy balance by achieving an average daily MAPE of 
4.0%.  

Keywords
water distribution networks; water losses estimation; anomaly localization; demand calibration; hydraulic 
model calibration; non-revenue water.  

1 INTRODUCTION

Potable water is a necessity to sustain the humanity’s daily livelihood. With an increasing global 
population, policy regulations and engineering management are expected to become more 
stringent to improve and ensure the supply of drinkable water to the public with minimum 
disruptions which, however, continue to be an engineering challenge to utility companies. For 
example, in the United States, an estimated volume of 6 billion gallons of treated water is reported 
to be lost each day [1]. On the other hand, while it may appears that managing underground water 
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distribution networks (WDNs) in smaller countries is less complicated, Singapore, having 
invested in Smart Water Grid (SWG) [2] management, continues to strive to reduce their yearly 
non-revenue water (NRW) of around 5% of the total supplied waters. Overall, NRW components 
can never be fully eradicated during the real-world operations of WDNs due to the system’s 
complexity and the presence of hidden/unknown anomaly events. 

Over the years, many engineering approaches have been developed to assist operators to early 
detect and localize likely anomaly sources during the operations of WDNs, which can be grouped 
into (1) hydraulic model calibration, and (2) data-driven analytics. The former, that sets the focus 
of this paper, primarily leverages on physics-based simulations to calibrate the system’s hydraulic 
properties which include flow, pressure, tank levels, pump operations, and demand patterns [3]–
[7], where if appropriately calibrated, can represent the baseline operations of the WDN system 
as part of digital twinning [8]. The latter purely adopts data-driven/statistical methods to train 
anomaly detection and localization models [9]–[11], where the trained models can be combined 
with calibrated physics models for digital twin-based decision-supports in near real-time.  

To build towards practically effective and useful calibrated hydraulic model(s), this paper 
identifies and addresses existing shortcomings from published calibration works, namely: 

i. A common and inaccurate assumption of no water losses conditions during model
calibration. As highlighted above, zero NRW component is never possible for the real-
world operations of WDNs, hence the inability to model NRW as part of the calibration
step may affect the baseline accuracy in representing the system’s actual operations.

ii. Most works are restricted to relatively small networks with high density of sensors per
area/pipeline, and leaks are usually simulated under controlled conditions to test the
calibrated models for either detection or localization analysis, or both. Quite often,
however, the operations of real-world WDNs have limited number of sensors deployed in
large supply zones and occurring leaks are usually unknown in their physical
characteristics during near real-time.

To address the above-outlined shortcomings, this work, in collaboration with PUB, Singapore, 
develops a practically novel daily model calibration approach that leverages on continuously 
monitoring flow and pressure time-series data to estimate daily NRW contributions in large WDNs 
by emulating near real-time, followed by performing total flow and energy calibration via 
calibrating the system’s daily net demand consumption pattern(s) and importantly pinpointing 
possible anomaly events in the system which constitute to the everyday NRW volume estimated.  

2 METHODOLOGY

2.1 Daily Model Calibration Approach

Figure 1 illustrates the overview of our proposed daily model calibration approach [12] that 
consists of 3 main systematic analyses for any operational WDN system, namely: (1) estimation 
of NRW components; (2) flow calibration; and (3) energy calibration. Details of each of the 
systematic analyses are as follows: 

i. NRW Estimation: Leveraging on available billing data, collated via traditional metering
means or advanced metering infrastructure (AMI), and daily total inflow time-series data
to estimate the system’s daily NRW volume and its corresponding time-series profile.

ii. Flow Calibration: Calibrating the system’s net consumption demand pattern due to the
real customers which may include accounting for varying water usage patterns due to
different types of customers, adjusting available pumps operational configurations, finally
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performing NRW localization if the total NRW volume 
exceeds an assumed background NRW volume. 

iii. Energy Calibration: After flow calibration, any
remaining energy discrepancies in the system can be
addressed via identifying and rectifying likely sensor
drifting over time and adjusting other physical
properties such as pipe roughness and valve settings,
especially during the peak-demand hours, if justifiable.

2.2 NRW Estimation

For any given day in the operational horizon, estimating its 
corresponding NRW is performed as follows:  

i. Using either historical billing data or metered data
derived from AMIs, the average daily consumption rate,
termed as 𝑄𝑐,𝑑𝑎𝑖𝑙𝑦, is first estimated, followed by

approximating the total water consumption (𝑉𝑐,𝑑𝑎𝑖𝑙𝑦)
volume. For historical billing data, simple averaging
techniques can be undertaken to estimate 𝑄𝑐,𝑑𝑎𝑖𝑙𝑦 and

𝑉𝑐,𝑑𝑎𝑖𝑙𝑦 respectively. For example, if the billing data is

collated monthly, then 𝑉𝑐,𝑑𝑎𝑖𝑙𝑦 is derived by averaging

the total consumption volume by the total number of
days for the specific month. Generally, data collected
from AMIs with finer time-resolution are expected to be
more accurate to estimate 𝑉𝑐,𝑑𝑎𝑖𝑙𝑦.

ii. Using daily monitoring data, the corresponding total net inflow time-series profile

(𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡)) is derived as follows:

𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) = 𝑄𝑅,𝑑𝑎𝑦(𝑡) + 𝑄𝐴𝐼,𝑑𝑎𝑦(𝑡) − 𝑄𝐴𝑂,𝑑𝑎𝑦(𝑡) (1) 

𝑉𝑖𝑛,𝑑𝑎𝑦 = ∫ 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) 𝑑𝑡

𝑡1

𝑡0

≈ ∑
𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡𝑖) + 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡𝑖+1)

2

𝑀

𝑖=1

∆𝑡𝑖 (2) 

where 𝑉𝑖𝑛,𝑑𝑎𝑦 is the total net inflow volume into the system, 𝑄𝑅,𝑑𝑎𝑦(𝑡) the time-series

profile for the total reservoir inflows into the system, 𝑄𝐴𝐼,𝑑𝑎𝑦(𝑡) the time-series profile for

the total additional system inflows from the adjacent zones , and 𝑄𝐴𝑂,𝑑𝑎𝑦(𝑡) the time-series

profile for the total additional system outflows into the adjacent zones, excluding the billed 
customers in the system, 𝑡 the time of the day, 𝑡0 the starting time of the day, 𝑡1 the ending 
time of the day, 𝑀 total number of intervals along the time axis based on the defined time-
step between 𝑡0 and 𝑡1, and 𝑖 the time index. 

iii. The total NRW volume (𝑉𝑛𝑟𝑤,𝑑𝑎𝑦) is then estimated as the difference between the total net

inflow and daily water consumption, given as:

𝑉𝑛𝑟𝑤,𝑑𝑎𝑦 = 𝑉𝑖𝑛,𝑑𝑎𝑦 − 𝑉𝑐,𝑑𝑎𝑖𝑙𝑦 (3) 

If 𝑉𝑛𝑟𝑤,𝑑𝑎𝑦 is estimated to be greater than an assumed background NRW volume, a corresponding 

NRW time-series profile (𝑄′𝑛𝑟𝑤(𝑡)) is subsequently derived and then further deducted from

𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) to obtain the net demand consumption profile (𝑄′
𝑖𝑛,𝑑𝑎𝑦

(𝑡))  via the following solution

procedures: 

    

    
         

Figure 1. Overview of Daily Model
Calibration Approach.
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i. For a given number of pressure sensor stations (𝑁) in the WDN system, we first estimate
the average time-series pressure head profile (𝑃𝑎𝑣𝑔(𝑡)) as:

𝑃𝑎𝑣𝑔(𝑡) =
1
𝑁

∑ 𝑃𝑖(𝑡)
𝑁

𝑖=1

(4) 

where 𝑃𝑖(𝑡) is the recorded pressure head of sensor station 𝑖 at time t.

ii. Estimate an average emitter coefficient (𝐾𝑎𝑣𝑔,𝑑𝑎𝑦) value via the well-known pressure-

dependent leakage formulation (PDLD) [13] as follows:

𝑉𝑛𝑟𝑤,𝑑𝑎𝑦 = 𝐾𝑎𝑣𝑔,𝑑𝑎𝑦 ∫ (𝑃𝑎𝑣𝑔(𝑡))
𝑛

 𝑑𝑡

𝑡1

𝑡0

(5) 

∫ (𝑃𝑎𝑣𝑔(𝑡))𝑛 𝑑𝑡

𝑡1

𝑡0

≈ ∑
(𝑃𝑎𝑣𝑔(𝑡𝑖))

𝑛
+ (𝑃𝑎𝑣𝑔(𝑡𝑖+1))

𝑛

2

𝑀

𝑖=1

∆𝑡𝑖 (6) 

where 𝑛 is the exponent, taking the common value of 0.5 for underground waterpipes. 

iii. The estimated 𝐾𝑎𝑣𝑔,𝑑𝑎𝑦 from Eq. (5-6) is then used to construct the 𝑄′𝑛𝑟𝑤(𝑡)in Eq. (7),

followed by estimating 𝑄′
𝑖𝑛,𝑑𝑎𝑦

(𝑡) using Eq. (8).

𝑄′𝑛𝑟𝑤(𝑡) = 𝐾𝑎𝑣𝑔,𝑑𝑎𝑦 · (𝑃𝑎𝑣𝑔(𝑡))𝑛
(7) 

𝑄′
𝑖𝑛,𝑑𝑎𝑦

(𝑡) = 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) − 𝑄′𝑛𝑟𝑤(𝑡) (8) 

2.3 Flow Calibration
Daily flow calibration in the operational WDN system comprising of 3 components, namely: (1) 
calibrating net demand consumption pattern(s) due to the real customers in the system, (2) 
calibrating pump  operational configurations, and (3) NRW localization to account for the total 
estimated NRW volume.  

2.3.1 Net demand consumption pattern(s) calibration

The system’s daily net demand consumption pattern is calibrated via a simple Reference 
Averaging Approach (RAA) which leverages on the estimated 𝑄′

𝑖𝑛,𝑑𝑎𝑦
(𝑡) or 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) by adhering

to the following solution procedures: 

i. Compute the average measured inflow value (𝑉𝑎𝑣𝑔) from 𝑄′
𝑖𝑛,𝑑𝑎𝑦

(𝑡) or 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) using

trapezoidal rule.

ii. Compute the temporal, i.e., at each time-step, ratio values between the respective
monitored net inflow (due to real customers) values (𝑄𝑚(𝑡)) and 𝑉𝑎𝑣𝑔 value as:

𝑅(𝑡) =
𝑄𝑚(𝑡)
𝑉𝑎𝑣𝑔

(9) 

iii. The computed 𝑅(𝑡) values represent the adjusted demand multiplier values for deriving
a new set of model simulated inflow values (𝑄𝑠(𝑡)).

iv. Compare 𝑄𝑠(𝑡) with either 𝑄′
𝑖𝑛,𝑑𝑎𝑦

(𝑡) or 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) to compute a new set of temporal ratio

values as:
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𝑅′(𝑡) =
𝑄𝑚(𝑡)
𝑄𝑠(𝑡) (10) 

v. The adjusted 𝑅′(𝑡) values obtained from Eq. (10) are then multiplied with the original 𝑅(𝑡)
values to derive another set of demand multiplier values, as:

𝑅′′(𝑡) = 𝑅(𝑡) × 𝑅′(𝑡) (11) 

vi. The computed 𝑅′′(𝑡) values are again used to derive another set of 𝑄𝑠(𝑡) profile for
comparing with 𝑄′

𝑖𝑛,𝑑𝑎𝑦
(𝑡) or 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡). Note that the previously estimated 𝑅′′(𝑡) values

become the newly represented 𝑅(𝑡) values.

vii. Repeat steps (iii – vi) till a satisfactory goodness-of-fit is achieved between 𝑄𝑚(𝑡) and
𝑄𝑠(𝑡) for the selected day.

Note the above proposed procedures using RAA are used to derive a singular universal demand 
pattern for all customers in the system. However, there may be cases where there can be multiple 
water usage patterns in the same system due to different types of customers (e.g., customers who 
tend to consume more water during the night that differs from the traditional diurnal pattern for 
water consumptions). To handle such scenarios, there is thus a need to develop daily local demand 
pattern(s) within a given system via the following solution procedures: 

i. For a selected pool of junction nodes which are affiliated to a particular water usage
pattern, assign an arbitrary emitter coefficient (K > 0) value to them. Repeat this step for
N number of possible water usage patterns as determined by the modeller.

ii. Transform the assumed K value(s) into unique demand pattern(s) by following the PDLD
formulation from Eq. (6), where the average pressure profile is derived from a singular or
selected pool of pressure sensor stations which are situated in the near proximity of the
junction nodes affiliated to their corresponding water usage pattern(s).

iii. Leverage on the transformed demand pattern(s) to simulate the system’s flow and
pressure head profiles, followed by comparing with the monitored individual/average
pressure profiles of the selected stations, and 𝑄′

𝑖𝑛,𝑑𝑎𝑦
(𝑡) or 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) for mass balance

considerations.

iv. Adjust the multiple demand pattern(s) appropriately by adhering to the simple principle
that higher pressures are affiliated to lower water usage pattern, and vice versa.

v. Repeat steps (ii-iv) till good agreement (<< 5% error) is achieved for comparing the
simulated and monitored values for 𝑄′

𝑖𝑛,𝑑𝑎𝑦
(𝑡) or 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡). At this stage, since energy

calibration has not performed, reasonable agreement (~1m) is expected for the
individual/average pressure profiles, especially for the high-demand hours.

Practically, it is expected that bulk of the customers in a given supply zone follow a universal 
calibrated demand pattern, while localized demand pattern(s) are expected to be applied to 
unique and smaller pool of customers. Hence, it is recommended that the modeller first adopts 
the proposed RAA method to calibrate a universal demand pattern, before performing the local 
demand pattern(s) calibration with multiple iterations by ensuring that mass balance for 
𝑄′

𝑖𝑛,𝑑𝑎𝑦
(𝑡) or 𝑄𝑖𝑛,𝑑𝑎𝑦(𝑡) is attained to the highest possible extent.

2.3.2 Pump operational configurations calibration

During the process of calibrating the net demand consumption pattern(s), it is equally important 
to also check that the internal pump flows within the system are properly calibrated against 
available monitored pump outflows to ensure the correct distribution of the pump energies to the 
different junction nodes. To do so, the modeller is required to calibrate the pump operating curves 
and control statuses. For the latter, it mainly involves adjusting the pumps’ operational state of 
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either fixed- or variable-speed characteristics. For fixed-speed pumps, their operational states can 
only be taken as a binary option of either “on” or “off”, while the operational states of variable-
speed pumps range between 0.0 (fully switched off) and 1.0 (fully switched on).  

2.3.3 NRW localization

If the estimated daily NRW volume is greater the assumed background NRW volume, NRW 
localization will be performed by using the same PDLD method [13]. The method generally 
enables the modeler to select and aggregate any combination of junction nodes into a demand 
group within the network. In each demand group, a given number of the junction nodes will then 
be identified as potential anomaly hotspots via suitable emitter coefficients which contribute 
“additional” flow demand to the system, hence emulating the estimated NRW volume for the 
specific day. Before NRW localization, it is expected that the system’s pipe connectivity, valve 
settings, pump configurations, if available, and net demand consumption pattern(s) are taken to 
be calibrated, to the best possible extent.   

The PDLD method can be formulated as an implicit non-linear search problem which determines 
the pool of junction nodes having positive K values to emulate the leakage hotspots in the system. 
The PDLD method is integrated with the optimization-based model calibration tool [14], 
[15],which can be executed repetitively for the same anomaly event. The optimization run for the 
non-linear implicit search problem is then performed with the competent genetic algorithm [16]. 
To determine the optimal steady-state timings from the minimum night flow (MNF) hours (2am 
– 4am) for the NRW localization analysis, the computed discrepancies between the model
simulated and monitored values for the flow and average pressure head parameters, respectively,
are considered to estimate the average hydraulic power (𝑊𝑁𝑅𝑊(𝑡)) due to the estimated daily
NRW volume in the system, defined as:

𝑊𝑁𝑅𝑊(𝑡) = |𝑃𝑎𝑣𝑔(𝑡) − 𝑃𝑠(𝑡)| × (𝑄𝑚(𝑡) − 𝑄𝑠(𝑡)) (12) 

where 𝑃𝑎𝑣𝑔(𝑡) and 𝑄𝑚(𝑡) respectively represent the monitored average pressure head and flow

values at a specific steady-state timestamp, while 𝑃𝑠(𝑡) and 𝑄𝑠(𝑡) respectively represent the
simulated average pressure head and flow values at the same timestamp.  

Note that 𝑊𝑁𝑅𝑊(𝑡) represents the average temporal NRW hydraulic power profile for the selected
day. The modeller can then inspect the estimated power values for the same MNF period to 
identify the top (e.g., top 3)  power values and their corresponding  timings (e.g., 2.30am) to 
perform the required NRW localization analysis. The greater the power values, the NRW 
contributions are expected to be more significant in their hydraulic characteristics. 

2.4 Energy Calibration

At this stage, the system’s initial energy discrepancy is addressed, to an extent, by the completed 
flow calibration. Any remaining energy discrepancy across the multiple stations in the same 
system are then managed via (1) identifying and rectifying likely drifting(s) in the monitored 
pressure values of individual sensor stations in the system, and (2) calibrating other physical 
properties which include, but not limited to, pipe roughness and valve settings within the system. 

2.4.1 Rectifying sensor drifting

For any given pressure sensor station, the most obvious indication of sensor drifting is a near-
constant deviation value observed between the simulated and monitored pressure values at all 
timestamps for a specific day. In the practical field context, sensor drifting may be caused by 
environmental disturbances to the positions of the deployed sensors underground, low operating 
power of the sensors, and  initial calibration of the sensors goes out of range.  Rectifying the sensor 
drifting thus involves adjusting the drifted monitored pressures values, across all hours of the 
selected day, by an approximated offset value.  
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2.4.2 Calibrating physical properties

After completing the NRW localization analysis, the WDN system’s average pressure head 
discrepancy is expected to be most minimum for the MNF hours as compared to the peak-demand 
hours (e.g., 9am-11am) as the observed velocities in the underground pipes during the former 
hours are expected to be much less than 1.0 m/s, hence friction losses in the pipes are expected 
to be relatively insignificant to that of the latter hours.  

To appropriately calibrate physical properties which account for the remaining energy 
discrepancies in the system, especially during the peak-demand hours, we progressively calibrate 
the pressure profiles for pressure sensor stations located nearest to the upstream 
reservoirs/tanks and gradually moving towards the furthest stations. Typically, for real-world 
WDN systems, we would expect that the valve settings to be well-calibrated with respect to the 
available Geographic Information System (GIS) information as provided by the utility company. 
Hence, the most typical physical property to be calibrated is the system’s pipe roughness by 
systematically adjusting the initial C-factor values for the different pool of connected pipes 
between the reservoirs/tanks and the respective pressure sensor stations. The final adjustments 
to the different segments of connected pipes in the system are then evaluated via the level of 
goodness-of-fit between the model simulated and monitored pressure head values for all stations. 
Finally, we note that calibration of the relevant physical properties in a given system is usually 
conducted once for the initial hydraulic model having not undergone any prior calibration.  

3 CASE STUDY

3.1 Description of WDN system

In collaboration with PUB, Singapore’s National 
Water Agency, a real-world WDN system that serves 
industrial consumers is undertaken to verify our 
proposed calibration approach. The selected system 
consists of underground water pipes having a total 
length of 331.3km, 1 service reservoir, 11796 
junction nodes, 35 pressure sensor stations, as 
illustrated in Figure 2. No operating pumps are 
installed in this network. The pipe diameters in the 
system range between 15.0mm and 1400.0mm, with 
an average value of 204.0mm. Due to data 
confidentiality information, the exact naming, and 
locations of the different hydraulic properties in the 
system cannot be revealed.  

Historical flow and pressure SCADA data for the 
operational week of 19-25 Apr 2021 is thus 
leveraged to verify our proposed approach by 
emulating the near real-time context. For the 
selected week, a single leak event is reported on 21 
Apr 2021. Again, we underline that the leak sizes of 
are often unknown in the near real-time context. 
Also, the initial hydraulic model configuration as 
provided by PUB has already been pre-constructed, 
to an extent, to represent the actual pipe 
connectivity and valve settings in the system.  Figure 2. Case study WDN system in Singapore
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For the selected system, it has been found that there are 2 sets of unique demand consumption 
patterns where one follows the traditional diurnal (TD) usage pattern, i.e., low usage during the 
night and high usage during the day, and the other follows the exact opposite trend (NTD). The 
latter appears to correspond to a segment of farms located towards the north of the network itself, 
as shown in Figure 3a, where STN_J pressure readings has been found to best represent the 
observed water usage pattern for the identified farms in that area. For engineering simplicity, a 
singular junction node, as indicated in Figure 3b, is thus assumed to aggregate the total demand 
consumption by the known farms in the same area, where the assigned node is located in the near 
center of the available farms.  The junction nodes (majority) in the other segments of the system, 
which are not situated near to the farms, are regarded to follow the TD pattern.  

For illustrations, Figure 4a and 4b represent the typical normalized pressure profiles under the 
TD and NTD water usage patterns, respectively, for the system’s Monday operations. As discussed, 
the lower normalized pressures for NTD’s pattern during the MNF hours are due to the higher 
water usage by the available farms in the identified area (Figure 3a-3b), and vice versa during the 
typical peak-demand hours when compared to that of the TD’s pattern.  

(a) 

(b) 

Figure 3. Representation of junction nodes affiliated to farms’ water usage pattern: (a) identified pool of
nodes; and (b) aggregated junction node for engineering simplicity.
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Figure 4. Normalized pressure profiles for TD vs NTD water usage patterns (Monday’s example).

3.2 Flow Calibration

By following our proposed solution procedures to calibrate TD (via RAA) and NTD (localized) 
demand consumption patterns, Figure 5 represents their respective final calibrated patterns for 
Monday-Sunday in the selected week of 19 Apr 2021. These calibrated patterns are associated 
with the real customers in the system, by removing the NRW contributions at this stage. Following 
on, by developing the unique NTD pattern, we can better estimate the actual NRW volume, in 
percentage values, for the respective days as shown in Figure 6, by leveraging on the total net 
inflow and historical billing data records for the selected month.  

Figure 5. Calibrated demand consumption patterns for TD – bulk of customers in system, and NTD – local farms.
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Figure 6. Estimated NRW volume in system for selected week of 19 Apr 2021.

The estimated NRW volumes are then localized as possible anomaly events which may include, 
but not limited to, hidden/unreported and background leak events and billing data uncertainties. 
Figures 7a-7g summarize the localized nodes, with a range of estimated emitter coefficient (K) 
values, within the network for the respective days (19-25 Apr) by using their corresponding MNF 
timestamp having the highest anomaly hydraulic power, with respect to Eq. (12). At this stage, the 
following key observations can be derived, namely: 

• Figure 7h compares the model simulated and monitored total net inflow values for the
selected system, where an average of 0.5% MAPE can be derived across the selected week.

• Across all 7 days, the NRW localization analysis constantly localize several anomaly nodes
in around the same area of the network, as shown in Figures 7a-7g, hence indicating a
strong likelihood of anomaly events (hidden leaks, demand uncertainties, etc.) taking
place in that localized area.

• The approach could localize an actual reported event by PUB to less than 100m on 23 Apr
2021 with a maximum delayed time of 1 day, while also localizing the other possible
anomalies which constitute to the respective NRW (%) volume estimated daily.

(a) (b) (c) 

306



Chew et al. (2022) 

2022, Universitat Politècnica de València 
2nd WDSA/CCWI Joint  Conference 

(d) (e) (f) 

(g) (h) 

Figure 7. Localized anomaly nodes in network across different days of selected 19 Apr 2021 week: (a) 19 Apr –
3.30am; (b) 20 Apr – 2.45am; (c) 21 Apr – 2.30am; (d) 22 Apr – 2.15am; (e) 23 Apr – 2.15am; (f) 24 Apr –
3.15am; (g) 25 Apr – 2.15am; (h) total net inflow comparison after demand calibration and NRW localization.

3.3 Energy Calibration

Upon completing the NRW localization analysis for each day in the selected week, we proceed to 
first identify and rectify any likely drifting(s) in the recorded pressure data for the available 
sensor stations in the network. For the present analysis, it has been found that rectifying any 
sensor drifting(s) is done once on Monday (19 Apr 2021), and the same adjusted pressure head 
values can subsequently be maintained for the remaining of the same week. As discussed, since 
the valve settings are expected to well-calibrated by PUB beforehand, emphasis is thus placed on 
calibrating the system’s pipe roughness values on the same Monday while maintaining the 
calibrated roughness values for the remaining days.  

We thus progressively calibrate the system’s pipe roughness from the nearest to the furthest 
pressure sensor stations from the upstream reservoir. Building upon the completed NRW 
localization scenario from Monday (19 Apr 2021), Figures 8a and 8b illustrate the before- and 
aftereffects of the pipe roughness calibration for the nearest and furthest stations respectively. 
Performing the systematic pipe roughness calibration for all available stations, excluding stations 
having “bad” monitored data such as missing data, negative/zero pressure values for the selected 
week, Figure 9 summarizes the MAPE (%) scores for the respective stations across the entire week 
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where the average daily MAPE score is approximately 4%. Likewise, several key observations can 
be derived, namely: 

• Stations, such as STN_D, STN_E and STN_Y,  located furthest away from the reservoirs, tend
to have higher daily average MAPE scores of between 4-6%. This could be caused by the
accumulated calibration errors as stations move away from the reservoirs.

• The reasonably good agreement (~2% MAPE on average) obtained for the energy
comparison for STN_I, STN_J especially, and STN_K, together with the prior good
agreement achieved for the flow calibration, justifies the proposed local demand
calibration by iterating against the daily monitored pressure values from STN_J, as the
reference station, and a singular junction node to aggregate the demands for the local
farms in the identified area.

(a) 

(b) 

Figure 8. Before- and aftereffects of pipe roughness calibration on pressure head values for Monday’s (19 Apr
2021) analysis: (a) STN_M-nearest station; and (b) STN_E-furthest station.
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Figure 9. MAPE (%) scores for pressure head comparison across stations (excluding stations having “bad”
data such as missing data, negative pressure, etc.) in WDN system for 19 Apr 2021 selected week.

4 CONCLUSIONS

This paper develops a practically novel daily model calibration approach for the real-world 
operations of water distribution networks (WDNs) by encompassing 3 main systematic 
components of (1) estimation of NRW contributions, (2) flow calibration, and (3) energy 
calibration. It is believed that the proposed approach is capable to calibrate real-world large  WDN 
systems  by leveraging on monitoring flow and pressure data which are collected 24/7 in the 
underground water pipelines. In collaboration with PUB, Singapore’s National Water Agency, the 
hypothesis has since been verified by testing the approach on three WDN zones in Singapore 
having more than 1000km of underground pipes with varying demand consumption pattern(s), 
pertaining to different groups of customers, where the calibrated hydraulic model achieves daily 
average mean absolute percentage error (MAPE) scores of <1.0% and 4.0% approximately for the 
total flow and energy calibrations, respectively. Overall, the calibration approach serves as 
integral component to PUB’s Smart Water Grid management, where a resulting well-calibrated 
model provides the baseline physics-based environment to facilitate a two-way data/information 
communication between the physical and digital working environments which can enhance the 
daily operations of WDNs. Acknowledgements  
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