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Abstract: Tacrolimus, characterized by a narrow therapeutic index, significant toxicity, adverse ef-
fects, and interindividual variability, necessitates frequent therapeutic drug monitoring and dose
adjustments in renal transplant recipients. This study aimed to compare machine learning (ML)
models utilizing pharmacokinetic data to predict tacrolimus blood concentration. This prediction
underpins crucial dose adjustments, emphasizing patient safety. The investigation focuses on a pedi-
atric cohort. A subset served as the derivation cohort, creating the dose-prediction algorithm, while
the remaining data formed the validation cohort. The study employed various ML models, including
artificial neural network, RandomForestRegressor, LGBMRegressor, XGBRegressor, AdaBoostRegres-
sor, BaggingRegressor, ExtraTreesRegressor, KNeighborsRegressor, and support vector regression,
and their performances were compared. Although all models yielded favorable fit outcomes, the
ExtraTreesRegressor (ETR) exhibited superior performance. It achieved measures of −0.161 for MPE,
0.995 for AFE, 1.063 for AAFE, and 0.8 for R2, indicating accurate predictions and meeting regulatory
standards. The findings underscore ML’s predictive potential, despite the limited number of samples
available. To address this issue, resampling was utilized, offering a viable solution within medical
datasets for developing this pioneering study to predict tacrolimus trough concentration in pediatric
transplant recipients.

Keywords: machine learning; pharmacokinetics; therapeutic drug monitoring; modeling; personalized
medicine

1. Introduction

Traditionally, pharmacokinetic (PK) parameters in human therapeutic drug monitoring
(TDM) have been estimated using in vitro and in vivo methods. Pharmacokinetic data are
frequently utilized in pharmacokinetic/pharmacodynamic (PKPD) studies to establish the
relationship between drug exposure and response, such as the area under the concentration–
time curve (AUC). However, when sparse data methods are employed, population PK/PD
models (popPKPD) are suitable and commonly employed for understanding the exposure–
response relationship [1,2].

Machine learning methods have emerged as powerful tools in pharmacokinetics
methodology, marking a new trend. They enable the management of intricate relationships
within large datasets and the analysis of high-dimensional data in clinical practice. The
recent integration of artificial intelligence (AI) has further propelled the utilization of ML
for drug-dose predictions. ML demonstrates remarkable computational efficiency and
holds substantial potential in the realm of drug development [3].

Although ML is less commonly utilized for drug PK predictions compared to popu-
lation PK modeling, there are examples in the literature where ML has been successfully
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employed for forecasting PK data [4–6]. For instance, Keutzer et al. [7] conducted a study
to evaluate the performance of various ML algorithms in predicting Rifampicin PK and
compared them to population PK modeling. The authors trained lasso regression models,
gradient boosting machines, XGBoost models, and random forest models to predict plasma
concentration–time series and the area under the concentration-versus-time curve from 0 to
24 h (AUC0-24 h) after repeated dosing. The results showed that the predictive performance
of the models improved as the number of plasma concentrations per patient increased,
highlighting the impact of data availability on model accuracy. Similarly, in a study in-
volving adults with nephrotic syndrome and membranous nephropathy, Yuan et al. [8]
investigated the use of ML models to predict tacrolimus (TAC) blood concentration in
real-world settings. The XGBoost model exhibited good predictive ability for TAC blood
concentration. Yet another example is the utilization of neural networks, which are well
known for their ability to perform automated predictive analytics, to enhance temporal
prediction metrics for patient response time courses. The author of Lu et al. [9] employed
neural networks to analyze longitudinal platelet response data from 665 patients who
received T-DM1. The dataset includes patients from multiple clinical studies. By leveraging
the power of neural networks, the aim was to improve the accuracy of predicting patient
responses over time.

Therefore, the application of ML methods in PK has gained substantial interest in the
field of clinical pharmacology in recent years. Examples include the use of ML techniques
to predict drug exposure, such as TAC and mycophenolic acid, to improve the individual
clearance predictions of renally cleared drugs in adult or neonate kidney transplant recip-
ients [10–12]. Consequently, these ML approaches have opened up new possibilities in
therapeutic drug monitoring (TDM). ML models have the potential to revolutionize drug
development, enabling more efficient and cost-effective prediction of PK parameters and
informing decision-making in the early stages of drug development [13,14]. However, it is
vital to acknowledge the challenges associated with this approach. One key challenge is
the requirement for high-quality input data since inaccurate or incomplete data can lead
to unreliable predictions. Additionally, the use of ML models in drug development raises
concerns about interpretability and transparency, as these models are often seen as “black
boxes” that are difficult to understand and validate [15].

TAC is an immunosuppressant calcineurin inhibitor (CNI) commonly used in solid
organ transplants to mitigate the risk of rejection. However, its usage is limited due to vari-
ous factors, including a narrow therapeutic window and a highly variable pharmacological
profile encompassing both PK and PD. In addition, studies have shown that only 18.5% to
37.4% of kidney transplant recipients treated with an initial weight-based tacrolimus dose
were within the target concentration of the first steady-state TAC [16–18]. Thus, TAC con-
centrations in the early post-transplant period are usually not measured at a steady-state,
which can take up to 3 weeks for transplant recipients to reach the target concentration
range, increasing the risks of rejection, acute tubular necrosis, and other complications in
the early stages after renal transplantation. However, TAC concentrations decrease over
time [19]. TAC is known for its intricate pharmacokinetics, which involve liver-mediated
autoinduction of elimination, concentration-dependent clearance with circadian rhythms,
and dose-dependent bioavailability [20–23]. TAC is commercialized under different brand
names. One of the first TAC formulations developed and approved by regulatory agencies
was Prograf, which is given twice daily. However, other formulations were developed
to reduce pharmacokinetic variation in blood levels and facilitate compliance, such as
prolonged-release TAC formulations like Advagraf, which is administered once daily [24].
Consequently, these pharmacological differences increase the complexity and time required
in the modeling process for TAC. TDM serves as a fundamental approach in mitigating
these challenges by allowing for individualized dosing of TAC, reducing toxicity risks, and
minimizing the likelihood of rejection. In clinical practice, monitoring blood concentrations,
adjusting treatment plans, and administering personalized TAC dosages are essential to
achieve optimal therapeutic outcomes [25].
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In this context, the main objectives of this research are: (i) to implement ML methods
for accurately and precisely predicting the plasma concentration of tacrolimus over time
for individual TAC formulations (Prograf and Advagraf individually); (ii) to analyze the
capabilities of the ML models in achieving accurate PK predictions; (iii) to evaluate the
external predictability of the models using an independent dataset; and (iv) to apply ML
models to enhance the effectiveness of personalized medicine (PM) and provide clinicians
with rationale initial dosage recommendations that maximize the likelihood of achieving
the desired tacrolimus concentrations after the initial dose. Consequently, this research aims
to contribute to advancing individualized treatment strategies and improving therapeutic
outcomes. To the best of our knowledge, this is the first study to employ ML models for
predicting TAC steady-state trough concentration. The data were sourced from a retrospec-
tive study of stable TAC plasma concentrations over time in the pediatric population with
kidney pediatric transplants who received administration of Prograf and Advagraf [26].

The rest of this paper is structured as follows. Section 2 presents the materials and
methods used. Section 3 describes the obtained results, while Section 4 provides a com-
prehensive discussion. Finally, Section 5 draws conclusions and outlines potential lines of
future research.

2. Materials and Methods

This section describes the dataset, the validation method, the ML models trained, the
performance measures, the external evaluation, and the software employed.

2.1. Data

The TAC PK data used in this study were obtained from a previously published popu-
lation PK model that described TAC plasma concentrations over time in an article called
‘Predictive engines based on pharmacokinetics modelling for TAC personalized dosage in
pediatric renal transplant patients’ [26]. The data were sourced from a retrospective study
of a stable pediatric population with kidney transplants who received twice-daily admin-
istration of Prograf or once-daily administration of Advagraf. The data were simulated
to mimic a clinical phase 2 trial, ensuring the generation of clinically relevant informa-
tion. PK measurements were collected from 21 individuals (671 samples), with 60% from
Prograf (398 samples) and 40% from Advagraf (273 samples). The participants received
oral tacrolimus through Prograf administration every 12 h (Prograf data). During the
second phase, they switched from Prograf to the Advagraf formulation (Advagraf data).
Concentration data were recorded at various time points, including 0.5, 1, 1.5, 2, 3, 4, 6, 8,
12, 12.5, 13, 13.5, 14, 15, 16, 18, 20, and 24 h for steady-state Prograf and 0, 0.5, 1, 1.5, 2, 2.5,
3, 4, 6, 8, 12, 15, and 24 h for steady-state Advagraf during the second phase mentioned
before. The dataset included patient covariates such as body weight (WT), height (HT),
body mass index (BMI), age (AGE), gender (GNR), race, baseline hematocrit (HgBasal),
body surface area (BSA), and dosage formulation (Drug). The tacrolimus concentrations
and the covariates included in the dataset are considered the true observed concentrations
and predictors, respectively. Additionally, there are no missing values.

All variables, including demographic information, time of blood TAC concentra-
tion, hematocrit levels, and medication information, were considered for this study. We
evaluated the performance of ML models in predicting PK pediatric data using TAC as
an example drug. The predictive ability of ML models was assessed for TAC plasma
concentration–time series and exposure indices, which can be utilized as inputs for PKPD
models. In particular, the TAC plasma concentration–time from 0 to 24 h (AUC0–24 h) was
taken into account as an exposure index, and its values were calculated using the log-linear
trapezoidal rule. These derived AUC0–24 h values were considered true values. For ML
model training, the features included in the training dataset were TIME, dose, WT, HT,
BMI, AGE, GNR, race, HgbBasal, BSA, TAC AUC0–24 h, and drug. The target variable was
the TAC plasma concentration.
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A kernel density estimate (KDE) plot was developed for each variable to visualize
the distribution of observations in the derivation and validation datasets. KDE represents
the data using a continuous probability density curve in one or more dimensions. This
method was taken into account to ensure the cohorts were comparable [27]. In order to
assess if there were significant differences between the derivation and validation cohorts,
the propensity score matching method [28] was applied.

2.2. Validation Methods

Figure 1 shows the research flow chart, which is described next. To divide the eligible
patients into training and validation cohorts, a random selection was performed, where
80% of the patients constituted the ‘derivation cohort’ for developing the dose-prediction
algorithm. The remaining 20% of patients formed the ‘validation cohort’ for testing and
predicting plasma concentrations over time.

Figure 1. Flow chart describing the steps followed in our research. Green lines indicate the best
models and pharmacometrics predictions from machine learning methods.

To evaluate the information required by ML algorithms for accurate predictions, differ-
ent scenarios were considered, including varying numbers of observed TAC concentrations
as input variables, in addition to the weighted features incorporated in the model. By
conducting these analyses, we aimed to better understand how much data are needed for
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ML models to make reliable predictions and optimize the use of available clinical PK data
in drug development.

The prediction performance of the model and observational metrics for model eval-
uation were developed for patients whose predicted dose fell within 20% of the actual
dose in the validation cohort. Additionally, 100 rounds of resampling were executed to
minimize overfitting and ensure reliable results using the pandas.DataFrame.resample
method [29]. A fixed seed for the pseudorandom generator was used to ensure that results
are reproducible across all machine learning methods.

2.3. Models

ML is a branch of statistical research that focuses on training computational algorithms
to process, classify, and manipulate datasets. ML techniques are typically categorized into
supervised, unsupervised, and semisupervised learning methods [30]. Nine advanced ML
models were fitted and evaluated: artificial neural networks (ANN) [31], random forest
regressor (RFR) [32], LGBM regressor (LGMB), XGB regressor (XGB) [33], AdaBoost regres-
sor (ABR) [34], bagging regressor (BR) [35], extra-trees regressor (ETR) [36], K neighbors
regressor (KNN) [37], and support vector regression (SVR) [38].

As ML models have important parameters that cannot be directly estimated from the
data, tuning parameters allow the adjustment of settings within an algorithm to optimize
performance. These parameters are referred to as tuning parameters because there is no
analytical formula available to calculate an appropriate value. For this reason, ML models
were optimized by testing different model parameters through hyperparameter tuning
(Table 1).

Table 1. Hyperparameters for models.

Model Core Hyperparameters

ANN epoch_nr = 5, batch_size = 64, dense = 256, optimizer = sgd,
metrics = accuracy, binary_accuracy, activation = relu

RFR
n_estimators = 1000, n_jobs = −1, random_state = 1,

min_samples_split = 2, max_features = 10, min_samples_leaf = 1,
max_depth = 16

LGMB n_estimator = 1000 s, learning_rate = 0.1

XGB n_estimators = 1000, subsample = 0.7

ABR learning_rate = 0.1, max_depth = 16, subsample = 0.7,
n_estimators = 1000, gamma = 0.0003

BR n_estimators = 1000

ETR none

KNN radius = 1.0, weights = uniform, algorithm = auto, leaf_size = 100, p = 2,
metric = minkowski, metric_params = None, n_jobs = None

SVR C = 20, epsilon = 0.008, gamma = 0.0003

During the training phase, the best ML model assesses each feature and assigns it a
weight, which determines how strongly the feature contributes to the prediction of the
target variable. The goal is to explain the prediction of a target variable Y by quantifying
the contribution of each feature to that prediction. The F-score values indicate how the
prediction should be fairly distributed among the features [39].

2.4. Performance Metrics

The prediction performance of ML models were calculated using the percentage
prediction error (PE) as shown in Equation (1), and mean percentage prediction error (MPE),
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as displayed in Equation (2), where PREDi refers to the predicted value for individual i in
the sample set I, with |I| = n, and OBSi is the observed value for i:

PE(%) =
PREDi −OBSi

OBSi
· 100 (1)

MPE =
1
n
·∑

i∈I
PE (2)

The overall predictability of the model is evaluated in terms of bias and precision
using the conventional metrics of average-fold error (AFE), as shown in Equation (3), and
absolute average-fold error (AAFE), as displayed in Equation (4):

AFE = 10
1
n ∑ log PREDi

OBSi (3)

AAFE = 10
1
n ∑ |log PREDi

OBSi
| (4)

If the AFE and AAFE values are between 0.8- and 1.25-fold, then the predictive per-
formance of the model is considered to be reasonably satisfactory [40,41]. In addition
to the aforementioned metrics, the following traditional ones were implemented as well:
mean squared error (MSE) as displayed in Equation (5), mean absolute error (MAE) as
shown in Equation (6), R2 score as shown in Equation (7), and explained variance score
(EVS) as displayed in Equation (8) [42]. MSE and MAE are risk metrics representing the
expected value of squared (quadratic) error or loss. A lower score, closer to 0.0, indicates
better performance. R2 represents the proportion of variability in the target variable Y
explained by the model’s independent variables. A high R2 implies a strong fit, indicating
how well the model predicts hypothetical samples. The best achievable score is 1.0. EVS
calculates the explained variance regression score. Higher values, closer to 1.0, indicate
better performance.

MSE =
∑i∈I(OBSi − PREDi)

2

n
(5)

MAE =
∑i∈I |OBSi − PREDi|

n
(6)

R2 =

√
∑i∈I(OBSi − PREDi)2

n
(7)

EVS = 1− Var{OBS− PRED}
Var{OBS} (8)

2.5. External Evaluation

External evaluation of ML models involves using an independent dataset to assess
the accuracy and bias of the overall model performance in subjects with characteristics
similar to those with whom the models were developed. It is also a useful methodology to
evaluate and select the most accurate and precise model for a different target population.
Therefore, external evaluation is an appropriate approach for selecting ML models available
for model-informed precision dosing.

The external predictability of ML models was evaluated using the pediatric renal
transplantation dataset from the following references: (i) the pharmacokinetics, efficacy,
and safety of once-daily tacrolimus formulation (Prograf and Advagraf) were assessed in 34
stable pediatric kidney transplant recipients [43]; (ii) the bioavailability of Prograf and Ad-
vagraf was evaluated in 21 stable renal transplant pediatric patients for determining serial
blood samples of tacrolimus [44]; and (iii) a Phase II study comparing the pharmacokinetics
of tacrolimus in stable pediatric kidney, liver, or heart transplant patients [45]. Data from
these references were extracted using the Plot Digitizer software (Version v3) [46]. This
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is a free data-extraction program that invokes the external tool AutoTrace for automatic
curve detection.

2.6. Software

All analyses in this study were performed using Python, a cross-platform, free, and
open-source programming environment. Python was utilized for dataset manipulation,
data visualization, and ML model training. Specifically, the Python programming language
version 3.9.7 was utilized, along with its powerful packages for data management, statistical
computing, and graphical production capabilities. Default parameters were used for each
programming function unless otherwise specified.

For regression modeling and algorithm implementation, the sklearn package
(version 1.3.0) was utilized. The ensemble package was used to fit the RFR, BR, ETR,
and ABR models. The regression package was used for the KNNR model, the neural
network package for the NN model, the SVM package for the SVR model, and the Xgboost
and Lightgbm packages for XGB and LGMB, respectively [47]. Similarly, the SciPy pack-
age (version 1.11.1) [48] was employed to implement statistical tests. Finally, the Seaborn
package (version 0.12.2) [49] was used to plot heat map figures and analyze the feature
importance of each ML method.

3. Results

This section shows the results obtained, covering basic patient characteristics, model
performance, feature analysis, predictions, external validation, and clinical significance.

3.1. Basic Patient Characteristics

The basic characteristics of the 21 renal transplant pediatric patients are shown in
Table 2. Continuous variables are presented as mean ± standard deviation, along with
the corresponding p-value obtained from the t-test. Categorical variables are displayed
as percentages, accompanied by the associated p-value derived from the chi-squared test.
There were no significant differences in demographic information, clinical, and PK data
between the derivation cohort (N = 536) and the validation cohort (N = 135).

Table 2. Basic characteristic of the patients.

Variable The Derivation Cohort
(N = 536)

The Validating Cohort
(N = 135) p Value *

Continuous variable mean (sd)

Tacrolimus stable dose
(mg/day) 1.99 (1.21) 2.29 (1.37) 0.95

Age (year) 12.14 (4.07) 12.85 (4.11) 0.98

Weight (cm) 41.96 (15.17) 44.79 (15.39) 0.8

Height (cm) 142.88 (17.76) 145.27 (17.63) 0.92

BMI (kg/m2) 19.58 (3.29) 20.29 (3.31) 0.78

Hemoglobin (g/dL) 12.26 (1.13) 12.36 (1.37) 0.46

BSA (m2) 1.28 (0.31) 1.33 (0.32) 0.85

AUC (ng/mLh) 180.1(33.26) 185.42 (32.45) 0.17

Categorical variable (%)

Sex Male (57) and Female (43) Male (57) and Female (43) 0.84

Race White (81), Black (10),
Asian (5) and Other (5)

White (79), Black (10),
Asian (6) and Other (5) 0.95

Dosage form Prograf (64) and
Advagraf (36)

Prograf (58) and
Advagraf (42) 0.17

* Computed using the t-test for continuous variables and the chi-squared test for categorical variables.
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For example, the mean tacrolimus stable dose among these patients was
1.99± 1.21 mg/day and 2.29± 1.37 mg/day, respectively. Patients in the derivation cohort
were an average age of 12.28± 4.08 years old, and 57% were males. Similarly, patients in
the validation cohort were 12.85± 4.11 years old, and, again, 57% were males.

Figure 2 displays a heat map plot showing the correlation coefficients among WT, HT,
BMI, AGE, GNR, Race, HgbBasal, BSA, and drug. Since BMI and BSA depend on WT and
HT, there are positive correlations between these variables. Additionally, AGE is positively
correlated with both WT and HT. The remaining correlation coefficients approach zero,
indicating that there are no more statistically significant correlations.
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Figure 2. Heat map correlation of basic patient characteristics.

Figure 3 displays KDE plots for all variables used in the models, showing the distri-
bution of observations in the derivation and validation dataset. These plots suggest that
there are no significant differences between the derivation and validation cohorts. Thus,
they are considered comparable. Figure 4 shows the propensity score matching plot for the
derivation and validation cohorts. There is a complete overlap between both groups. We
concluded that the cohorts are comparable and can be used for training models.

3.2. Model Performance

A comprehensive comparison of models based on the derivation cohort is presented
in Table 3. Among the various models considered, namely, KNN, BR, RFR, and ETR, consis-
tent results were observed in terms of the R2 value (89%, 77%, 80%, and 80%, respectively)
and MPE (1.214, −0.605, −0.378, and −0.161, respectively). Furthermore, LGBM and XGB
models exhibited promising outcomes, similar to other machine learning analyses, for TAC
blood concentrations in adults [8]. Variables such as membrane permeability, plasma pro-
tein binding, and total body water play pivotal roles in explaining alterations in medication
distribution between pediatric and adult populations. Notably, significant differences in
drug metabolism were identified between these two groups, highlighting variations in
different metabolic enzymes. The variance stems from the immaturity of glomerular filtra-
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tion, renal tubular secretion, and tubular reabsorption at birth, alongside their subsequent
maturation, thereby contributing to the divergence in drug excretion patterns between
children and adults. Thus, the intricacies of pharmacokinetics and pharmacodynamics
in the pediatric and adult cohorts are multifaceted [50]. This study was specifically cen-
tered on a pediatric TAC dataset. Despite the intrinsic disparities in pharmacokinetics
and pharmacodynamics between pediatric and adult subjects, the overall outcomes of the
investigation underscored the competence of machine learning methods in accurately pre-
dicting TAC concentration–time profiles in the pediatric demographic. Within this context,
the ExtraTreesRegressor (ETR) algorithm emerged as the top performer among all models
for forecasting TAC blood concentrations in the pediatric population. In comparison to
KNN, BR, and RFR models, the ETR algorithm exhibited superior performance, particularly
evident in terms of AFE and AAFE. ETR demonstrated an AAFE value of 1.063, which is
the closest approximation to unity among all the machine learning methods scrutinized in
this study.

Figure 3. KDE plot for all variables used in the models. Variables: dose, weight, area under the curve,
height, body mass index, time, age, gender, body surface area, hemoglobin, race, and dosage form.
Blue: derivation data. Grey: validation data.

Figure 4. Propensity score matching plot for all variables used in the models. Blue: derivation data.
Grey: validation data.
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Table 3. Performance of the models.

Metrics
Model ANN RFR LGMB XGB ABR BR ETR KNN SVR

MPE −0.404 −0.378 −0.703 −0.886 −0.097 −0.605 −0.161 1.214 −0.394
AFE 0.987 0.992 0.989 0.986 0.991 0.999 0.995 1.002 0.987

AAFE 1.125 1.070 1.071 1.077 1.107 1.071 1.063 1.114 1.109
MSE 0.1 0.03 0.043 0.048 0.074 0.04 0.035 0.089 0.087
MAE 0.255 0.132 0.145 0.156 0.217 0.145 0.132 0.233 0.225

R2 0.41 0.8 0.74 0.71 0.56 0.77 0.8 0.89 0.48
EVS 0.43 0.8 0.74 0.71 0.56 0.77 0.8 0.72 0.49

Figure 5 allowed us to perform a visual evaluation of the regression models. The
performance metrics of the models displayed in Table 3 are consistent with the patterns
observed in the scatter plots. Specifically, the ETR, BR, RFR, XGB, KNN, and LightGBM
models exhibit an excellent regression fit, with data points closely aligned to the diagonal
line, which represents the actual values. Deviations from this line reveal the model’s error.
However, the scatter plot alone does not provide actionable insights on how to improve
the model. To gain further insights, residual plots (Figure 6) were examined to analyze
whether the residuals follow a homoscedastic (i.e., equal variance) or heteroscedastic
distribution. Unequal variance in residuals causes heteroscedastic dispersion and may be
represented by different shapes. The ETR, BR, RFR, XGB, KNN, and LGBM models show
uncorrelated residuals, with almost zero expected values and constant variance, indicating
homoscedasticity. In addition, other ML models, such as ANN, display heteroscedastic
structures, suggesting varying variance in prediction errors.

The scatter plot and residual plots helped us evaluate the performance of regression
models. The selected ETR algorithm, along with BR, RFR, XGB, and LGMB, demonstrate
excellent predictive capabilities with minimal residuals, while models with heteroscedastic
structures, like ANN, may require further improvements.

Figure 5. Scatter plots prediction versus real data. Models: ANN, RFR, LGMB, XGB, ABR, BR, ETR,
and SVR.
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Figure 6. Residual plots of machine learning predicted vs. reference TAC concentration for the
validation cohort. Models: ANN, RFR, LGMB, XGB, ABR, BR, ETR, and SVR.

3.3. Feature Analysis

The features’ relevance for each model is shown in Figure 7. AUC and time have
a significant effect on the blood concentration of TAC. Additionally, in the ANN and
XGB models, drug formulation is identified as an important feature. On the contrary,
the remaining variables such as weight, age, height, gender, sex, and race have relatively
minor importance.

Figure 7. Features importance analysis. Models: ANN, RFR, LGMB, XGB, ABR, BR, ETR, and SVR.
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3.4. Predictions of Tacrolimus Plasma Concentration over Time

The analysis of the ETR model after Prograf and Advagraf administration for the data
of 21 pediatric patients is shown in Figures 8 and 9. The concentration–time profiles of the
children are observed to be quite heterogeneous, characterized by a distribution phase with
a remarkable half-life, followed by an elimination phase with a long half-life. This PK profile
aligns with the typical behavior of tacrolimus when administered as Prograf and Advagraf
formulations [43–45]. The ETR model demonstrates a wide ability to accurately account
for and predict these standard PK profiles associated with tacrolimus oral administration.
Thus, ML models, particularly the ETR model, hold promise for effectively predicting
human plasma concentration–time profiles of tacrolimus. The findings from this analysis
contribute to the growing evidence supporting the potential of ML in pharmacokinetics
and its application in predicting drug behaviors in pediatric populations.

3.5. External Validation

The external validation serves to assess the performance of the ETR model in pre-
dicting TAC concentration–time profiles in pediatric patients, using data from published
studies. Observed longitudinal PK profiles following single TAC administration of Prograf
and Advagraf in pediatric renal transplant patients were obtained from published PK
studies in stable pediatric clinical cases found in the literature [43–45]. The mean baseline
demographic and characteristic values of the patients from these external references are
presented in Table 4. These data were used as inputs for predictions using the ETR model.

Table 4. Mean patient baseline demographics and characteristic values from external references.

Reference Carcas-Sansuán et al. [44] Min et al. [43] Rubik et al. [45]

Variable Prograf Advagraf Prograf Advagraf Prograf Advagraf

Continuous variable mean (sd)

Tacrolimus stable dose (mg/day) 2.4 4.8 1.845 3.69 3.81 7.62

Age (year) 12.29 12.29 12.3 12.3 10.8 10.8

Weight (cm) 42.85 42.85 40.7 40.7 38.7 38.7

Height (cm) 143.4 143.4 143.7 143.7 138.1 138.1

BMI (kg/m2) 20.8 20.8 19 19 20.29 20.29

Hemoglobin (/dL) 12 * 12 * 12 * 12 * 12 * 12 *

BSA (m2) 1.44 1.44 1.27 1.27 1.2 1.2

AUC (ng/mLh) 206.6 200.7 147.6 144.73 175.4 169.5

* Data not reported in references. Mean value for pediatric 6–18 years [51].

In order to characterize the longitudinal PK behavior of TAC concentration–time in
pediatric patients, the ETR model was applied to predict concentrations. The ETR model
was defined as the best option based on the metrics identified in Table 3. The resulting
predictions are depicted in Figure 10.

The metrics of the ETR model for exposure PK concentration–time samples from
the selected references are displayed in Table 5. The values demonstrate a successful
characterization of the observed data. For instance, the AFE and AAFE values between
0.8 and 1.25 indicate that the ETR model’s predictions are close to the observed data. This
level of accuracy suggests that the ETR model is robust and reliable for predicting TAC
pharmacokinetics in pediatric patients across different populations and clinical scenarios.
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Figure 8. Individual Prograf plasma concentrations predicted from the ETR model for the whole
dataset. Blue: real data. Red: prediction data.
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Figure 9. Individual Advagraf plasma concentrations predicted from the ETR model for the whole
dataset. Blue: real data. Red: prediction data.
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Figure 10. Mean blood tacrolimus concentration–time profiles versus ETR ML model pre-
dictions. Blue: real data. Red: prediction data. Data: (A) Prograf and (B) Advagraf for
Carcas-Sansuán et al. [44]; (C) Prograf and (D) Advagraf for Min et al. [43]; (E) Prograf and (F) Adva-
graf for Rubik et al. [45].

Table 5. Performance of validation with ETR model.

Reference Carcas-Sansuán et al. [44] Min et al. [43] Rubik et al. [45]

Metrics Model Prograf Advagraf Prograf Advagraf Prograf Advagraf

MPE −4.32 −7.387 −5.72 0.68 −12.519 −2.01
AFE 1.05 1.086 1.142 1.12 1.155 1.067

AAFE 1.082 1.109 1.072 1.007 1.15 1.023
MSE 0.851 1.567 1.193 1.07 1.439 0.24
MAE 0.691 0.918 0.845 0.687 1.01 0.44

R2 0.86 0.68 0.83 0.79 0.67 0.94
EVS 0.88 0.79 0.83 0.79 0.88 0.94

The successful external validation of the ETR model further supports its suitability
for application in real-world clinical settings, providing clinicians with valuable tools for
optimizing individualized treatment strategies and improving therapeutic outcomes in
pediatric patients receiving TAC.

3.6. Clinical Significance

The comparison between the model predictions and the observed values throughout
the research demonstrates a consistently good predictive performance of the ETR model.
To assess the clinical significance of the dosing algorithm, the researchers calculated the
percentage of samples from patients for whom the actual concentration–time sample of
TAC was successfully predicted. They considered different percentages to illustrate how
well the predictions aligned with the observed data. Table 6 presents the results for the
success rates at different percentages, specifically 10%, 15%, and 20%. The percentages in
the table indicate the proportion of samples for which the ETR model’s predictions are
accurate within the specified range of the actual concentration–time data.
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The model’s ability to achieve a high success rate across multiple percentage thresholds
further validates its effectiveness in providing clinically relevant and accurate predictions.

Table 6. Successful ETR model TAC predictions.

Reference Carcas-Sansuán et al. [44] Min et al. [43] Rubik et al. [45]

% * Prograf Advagraf Prograf Advagraf Prograf Advagraf

10% 61.14% 69.23% 46.15% 76.92% 53.85% 92.31%
15% 76.92% 69.23% 69.23% 84.62% 61.54% 100%
20% 92.3% 84.62% 76.92% 84.62% 76.92% 100%

* Success rates at different percentages.

4. Discussion

Our study’s findings indicate that most of the ML models used for TAC prediction
demonstrated a high accuracy. The models that achieved better results for AFE and AAFE
values were the ETR, BR, RFR, KNN, XGB, and LGMB models.

The ETR model, which implements a meta-estimator involving randomized deci-
sion trees and averaging, achieved slightly better performance. This advantage could be
attributed to its ability to control overfitting and improve predictive accuracy by using mul-
tiple subsamples of the dataset. This finding emphasizes the importance of considering the
characteristics of different ML models and their potential advantages in specific scenarios.

The top three ML models for TAC concentration prediction in this study were ETR,
BR, and RFR, while XGB and LGMB also demonstrated good accuracy. This is similar to
the findings of other research on TAC predictions in adults [8,33].

The results show that there were no significant accuracy differences between the top
three or five best models, which suggests that these models perform comparably well.

Overall, the successful performance of ML models in predicting TAC concentrations in
pediatric patients suggests that they could be valuable tools in real-world clinical settings.
By providing accurate predictions of TAC concentrations, these models can aid in indi-
vidualized treatment strategies, optimizing dosage regimens, and ultimately improving
therapeutic outcomes for pediatric renal transplant recipients.

The feature importance analysis for the ETR model revealed that the area under the
concentration–time curve (AUC) of TAC blood concentration had a significant effect on
TAC blood concentration. This finding aligns with the existing knowledge in the field, as
AUC is a critical PK parameter used to assess drug exposure and is considered the pre-
ferred measure for TAC exposure in clinical practice [52,53]. Interestingly, the importance
of AUC was also supported by other ML models used in this study, including RFR, LGMB,
ABR, and BR. This consistency in feature importance across different models reinforces
the significance of AUC as a critical factor in predicting TAC blood concentrations and its
relevance in guiding individualized dosing strategies. Furthermore, some of the models
considered the importance of the pharmaceutical form of TAC (Prograf vs. Advagraf) in
predicting blood concentrations. This is a logical consideration, as the dosing regimens and
concentration–time profiles differ between Prograf (twice-daily administration) and Adva-
graf (once-daily administration). The number of maximum concentration points for each
pharmaceutical form is indeed different, which could influence the overall concentration–
time profile. Therefore, taking into account the pharmaceutical form as a feature in the
models can help capture these differences and improve prediction accuracy.

Validating ML methods for TAC predictions in the presence of other co-administered
drugs is crucial for real-world clinical applications. The PK of TAC can be affected by
drug–drug interactions, where the presence of other drugs in the patient’s regimen can
influence its metabolism, absorption, distribution, and elimination.

In addition, drug interactions may not only affect the PK of TAC but also impact the
therapeutic outcomes and safety of the patient. Therefore, the ability of ML models to
accurately predict TAC blood concentrations in the presence of co-administered drugs can
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have significant clinical implications, guiding clinicians in optimizing dosing regimens and
minimizing the risk of adverse drug events [54].

Unfortunately, this dataset does not take into account genomic information. Despite
numerous factors that may affect the pharmacokinetics of tacrolimus, genetic factors are
quite important and common. TAC is metabolized by two enzymes of the cytochrome
P450 family: CYP3A5 and CYP3A4. The effect of CYP3A5 and CYP3A4 genotypes on
TAC bioavailability has been demonstrated, and a significant portion of the interindividual
variability in its PK is explained by mutations in the CYP3A4 and CYP3A5 enzymes.
For example, studies have shown that the mean dose-adjusted blood TAC concentration
was significantly higher among CYP3A53 homozygotes compared to carriers of the wild-
type allele (CYP3A51) [55]. In a recent prospective study, a group of kidney transplant
patients received a TAC dose either based on the CYP3A5 genotype (the adapted group)
or according to the standard regimen (the control group) [56]. Consequently, additional
studies are necessary to determine whether the pharmacogenetic approach could help
reduce the necessity for induction therapy and co-immunosuppressors [55].

ML methods have become a prominent trend in predicting drug concentrations in
the blood, and this approach has also been applied to predict TAC blood concentrations
in previous research. The majority of these studies utilized artificial neural networks and
regression models for their predictions [8,11,57–61].

However, it is essential to acknowledge that these earlier studies faced certain limita-
tions. Firstly, they often dealt with a relatively limited amount of data, which may impact
the generalizability of their models. Additionally, the lack of external validation in many of
these studies raises concerns about the robustness and reliability of their findings.

Furthermore, when comparing modeling approaches in PK, there are some key points
to consider. PK methods primarily focus on estimating parameters for the structural
model, variability, and covariate model parameters within a population, which contributes
to mechanistic understanding, biological interpretability of the results, and the ability
to simulate in silico experiments from the model. Conversely, ML is primarily geared
towards predicting outcomes and ML has the inherent danger of producing results that
are not therapeutically meaningful. Consequently, PK/PD analysis provides valuable
mechanistic insights into biological processes, whereas ML models, while trained more
swiftly, offer fewer mechanistic insights and can be perceived as enigmatic ’black boxes’,
making it challenging to extract underlying mechanisms [6]. This underscores the necessity
for ML to have access to substantial training data that can reasonably be assumed to be
exchangeable with the test data. Conversely, Bayesian inference excels when dealing with
sparse data and a dense model, thereby requiring fewer patients to obtain meaningful
results in PK methods [7].

Because of the numerous issues that PM and ML encounter, research in this field
remains in its exploratory phase, underscoring the need for further investigation and
validation. The fusion of PK and ML holds the potential to yield precise estimations of
drug exposure by simulating rich concentration-versus-time profiles, by exploring and
learning the relationships within all the patient covariates [62] or by using faster models
and performing faster analyses [63]. For instance, the ML approach has been shown to
confer advantages over traditional approaches, including increased accuracy and reduced
variance [64]. These innovative approaches represent a significant advancement compared
to the prior situation where extensive databases were essential to train an ML algorithm,
leaving scarce independent datasets for validation purposes [7].

As ML methods continue to advance and more data become available, it is hoped
that these limitations can be addressed and the potential of ML fully harnessed in drug
concentration prediction, benefiting both adult and pediatric populations alike.

5. Conclusions

The therapeutic drug monitoring approach has been widely applied in clinical prac-
tice to assess specific medications at predetermined intervals. This technique ensures a
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consistent drug concentration in a patient’s bloodstream, thereby improving the tailoring
of individual dosage plans. Concurrently, pharmacokinetics models have been extensively
utilized to establish the link between drug exposure and its resulting effects, as demon-
strated by metrics like the area under the curve. Nonetheless, innovative and successful
predictive methods from diverse fields have emerged as viable alternatives to conventional
PK predictions.

In this study, a machine learning model was established to categorize blood tacrolimus
concentration in pediatric patients who had undergone kidney transplants. While clinical
data present certain limitations such as data dependency and bias, resampling techniques
were employed to address these issues. Variables were also screened based on their
importance, and the performance of nine different models was compared. The primary
influencing factor on blood TAC concentration was determined to be the AUC variable.
Ultimately, the extra-trees regression model was chosen as the best predictive model with
an R2 value of 80% and an MPE of −0.161, although other models performed nearly
as well, indicating strong prediction capabilities across all of them. It should also be
highlighted that most models exhibited satisfactory predictions, meeting the criteria of
AFE and AAFE falling between 0.8- and 1.25-fold with 0.999 and 1.063, respectively, for
internal validation. The external validations developed with the extra-trees regression
model were also successful under the criteria of AFE and AAFE, falling between 0.8- and
1.25-fold. On the other hand, the extra-trees regression model presents the results for the
success rates at different percentages, where specifically 15% and 20% are accurate within
the specified ranges of 60–85% and 75–100%, respectively, of the actual external validation
concentration–time data.

Hence, this study offers valuable insights into the predictive capacity of machine
learning for TAC blood concentration in children, which is similar to other machine learning
analyses conducted for TAC blood concentrations in adults. Despite allometric and PK/PD
differences between adults and children, machine learning methods accurately projected
TAC concentration–time patterns for pediatrics, akin to the achievements seen in adult
studies. In addition, essential genetic factors are quite important to take into account
the effect of CYP3A5 and CYP3A4 genotypes on TAC bioavailability, which has been
demonstrated, and a significant portion of the interindividual variability in its PK is
explained by mutations in the CYP3A4 and CYP3A5 enzymes. Nevertheless, further
extensive research is necessary to address potential bias and to further validate and refine
these predictive models to achieve a high success rate effectiveness in providing clinically
relevant and accurate predictions.

As a result, this study delved into the ability of machine learning to predict two
pharmaceutical forms of TAC blood concentration and validated these predictions against
independent references for pediatric kidney transplant cases. The study’s findings indeed
highlight the predictive potential of machine learning to a certain extent. As a future
research line, new studies could analyze the influence of pharmacogenomics, an aspect not
addressed in this study due to data limitations.
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AAFE Absolute Average-Fold Error
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AGE Age
AI Artificial Intelligence
ANN Artificial Neuronal Networks
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BR Bagging Regressor
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Drug Dosage Formulation
ETR Extra-Trees Regressor
EVS Explained Variance Score
GNR Gender
HgBasal Baseline Hematocrit
HT Height
KDE Kernel Density Estimate
KNN K Neighbors Regressor
LASSO Linear Regression Models
LGMB LGBM Regressor
MAE Mean Absolute Error
ML Machine Learning
MPE Mean Percentage Prediction Error
MSE Mean Squared Error
NCA Non-Compartmental Analysis
PE Percentage Prediction Error
PK Pharmacokinetic
PKPD Pharmacokinetic/Pharmacodynamic
PM Personalized Medicine
popPKPD Population PK/PD models
R2 Coefficient of determination
RFR Random Forest Regressor
SVR Support Vector Regression
TAC Tacrolimus
TDM Therapeutic Drug Monitoring
XGB XGBRegressor
WT Body Weight
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